105 research outputs found

    Effects of modulation techniques on the input current interharmonics of Adjustable Speed Drives

    Get PDF
    Adjustable speed drives (ASDs) based on a three-phase front-end diode rectifier connected to a rearend inverter may generate interharmonic distortion in the grid. The interharmonic components can create power quality problems in the distribution networks such as interference with the ripple control signals, and consequently they can hamper the normal operation of the grid. This paper presents the effect of the symmetrical regularly sampled space vector modulation and discontinuous pulse width modulation-30° lag (DPWM2) techniques, as the most popular modulation methods in the ASD applications, on the drive's input current interharmonic magnitudes. Further investigations are also devoted to the cases where the random modulation technique is applied to the selected modulation strategies. The comparative results show how different modulation techniques can influence the ASD's input current interharmonics and consequently may not be a suitable choice of modulation from an interharmonics perspective. Finally, the theoretical analysis and simulation studies are validated with obtained experimental results on a 7.5-kW motor drive system

    Interharmonics Analysis and Mitigation in Adjustable Speed Drives

    Get PDF

    Analysis of the use of the Hanning Window for the measurement of interharmonic distortion caused by close tones in IEC standard framework

    Get PDF
    Producción CientíficaThe widespread use of devices based on power electronics and other nonlinear loads has led to an increase in harmonic distortion that affects the quality of power systems. Therefore, the correct measurement of harmonic and interharmonic content is necessary. The International Electrotechnical Commission (IEC) standards define the concepts of spectral and time grouping required for such measurements. This paper demonstrates that the procedures defined in the IEC standards are not sufficiently accurate when several close interharmonic tones interact due to the lack of stability of the values that the Discrete Fourier Transform obtains in each sampling window, and to the inaccuracy in the measurement of interharmonic groups and rates when using the Hanning window. This paper proposes novel solutions based on time aggregation and the use of other groupings and alternative windows. The results obtained are compared with the results produced by applying the rectangular window indicated in the standards, using sensitivity analysis varying one of the tones and using experimental results measuring the output signals of frequency inverters driving induction motors. The proposed method achieves greater accuracy and stability in the measurement of spectral groupings and their related distortion rates in signals with abundant and dispersed interharmonic content

    A study of the effects of time aggregation and overlapping within the framework of IEC standards for the measurement of harmonics and interharmonics

    Get PDF
    Producción CientíficaThe increasing incorporation of power electronics and other non-linear loads, in addition to their energy advantages, also implies a poor power quality, especially as regards harmonic pollution. Different solutions have been proposed to measure harmonic content, taking the International Electrotechnical Commission (IEC) standards as a reference. However, there are still some issues related to the measurement of the harmonic, and especially, interharmonic content. Some of those questions are addressed in this work, such as the problem derived from the instability of the values obtained by applying the discrete Fourier transform to each sampling window, or the appearance of local peaks when there are tones separated by multiples of the resolution. Solutions were proposed based on time aggregation and the overlapping of windows. The results demonstrate that aggregation time, window type, and overlapping can improve the accuracy in harmonic measurement using Fourier transform-based methods, as defined in the standards. The paper shows the need to consider spectral and time groupings together, improving results by using an appropriate percentage of overlap and an adaptation of the aggregation time to the harmonic content

    New advanced methods for the spectral analysis of time-varying waveforms in power systems

    Get PDF
    This thesis presents new advanced methods for the spectral analysis of time-varying waveforms in power systems. First, the main non-parametric, parametric and hybrid methods are presented in details under an analytical review of the state of the art, stressing both their advantages and their weaknesses. Then, a new advanced modified parametric method and three new advanced hybrid methods are presented in this thesis. All of the proposed methods guarantee an accuracy typical of the parametric methods, though with a significantly lower computational efforts

    Advances in power quality analysis techniques for electrical machines and drives: a review

    Get PDF
    The electric machines are the elements most used at an industry level, and they represent the major power consumption of the productive processes. Particularly speaking, among all electric machines, the motors and their drives play a key role since they literally allow the motion interchange in the industrial processes; it could be said that they are the medullar column for moving the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This review presents a general overview of the reported works that address the efficiency topic in motors and drives and in the power quality of the electric grid. This study speaks about the relationship existing between the motors and drives that induces electric disturbances into the grid, affecting its power quality, and also how these power disturbances present in the electrical network adversely affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, classification, and mitigations of power quality disturbances are discussed. Additionally, several works are reviewed in order to present the panorama that show the evolution and advances in the techniques and tendencies in both senses: motors and drives affecting the power source quality and the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends in techniques and future work about power quality analysis from the motors and drives efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that could help in overcome the gaps until now detected in the reported approaches referring to the detection, classification and mitigation of power disturbances with views toward the improvement of the efficiency of motors and drives.Peer ReviewedPostprint (published version

    Modeling and Simulation of VSI Fed Induction Motor Drive in Matlab/Simulink

    Get PDF
    The theory of reference frames and switching functions are effective in analyzing the performance of the induction motor fed from VSI (Voltage Source Inverter). In this work, mathematical model of Adjustable Speed Drive (ASD) is developed by taking synchronous reference frame equations for induction motor, switching function concept for VSI and non-switching concept for diode bridge rectifier.  The developed model is implemented using MATLAB/Simulink as it is an important tool for the validation of the proposed model. The performance of induction motor is analysed for different frequencies. The developed model is tested for the steady state behavior of machine drive. The proposed mathematical model is validated by the simulation results

    Harmonic Estimation Of Distorted Power Signals Using PSO – Adaline

    Get PDF
    In recent times, power system harmonics has got a great deal of interest by many Power system Engineers. It is primarily due to the fact that non-linear loads comprise an increasing portion of the total load for a typical industrial plant. This increase in proportion of non-linear load and due to increased use of semi-conductor based power processors by utility companies has detoriated the Power Quality. Harmonics are a mathematical way of describing distortion in voltage or current waveform. The term harmonic refers to a component of a waveform occurs at an integer multiple of the fundamental frequency. Several methods had been proposed, such as discrete Fourier transforms, least square error technique, Kalman filtering, adaptive notch filters etc; Unlike above techniques, which treat harmonic estimation as completely non-linear problem there are some other hybrid techniques like Genetic Algorithm (GA), LS-Adaline, LS-PSOPC which decompose the problem of harmonic estimation into linear and non-linear problem. The results of LS-PSOPC and LS-Adaline has most attractive features of compactness and fastness. . Our new proposed technique tries to reduce the pitfalls in the LS-PSOPC, LS-Adaline techniques. With new technique we tried to estimate the Amplitudes by Least square estimator, frequency of the signal by PSOPC and phases of the harmonics by Adaline technique using MATLAB program. Harmonic signals were estimated by using LS-PSOPC, PSOPC-Adaline. Errors in estimating the signal by both the techniques are calculated and compared with each other
    corecore