48,357 research outputs found

    Masonry wall panels retrofitted with thermal-insulating GFRP-reinforced jacketing

    Get PDF
    Today there is a need to provide thermally efficient walls, while at the same time to increase the mechanical properties of old unreinforced masonry walls that will not require large amounts of energy in the retrofitting or deconstruction processes. To address this problem, this paper gives the results of shear tests carried out on masonry panels made of solid bricks retrofitted with a new technique based on the use of glass fiber-reinforced polymers (GFRP) grids inserted into a thermal insulating jacketing. This was made of different low-strength lime-based mortars. Tests were carried out in laboratory and results were used for the determination of the shear modulus and strength of the wall panels before and after the application of the GFRP reinforcement. Retrofitted panels exhibited a significant enhancement in the lateral capacity when compared to the control panels. The thermal performance of the proposed mortars was also investigated both with and without GFRP. Low values of thermal conductivity were found, especially for the samples with GFRP; a reduction of the thermal transmittance value in the 34–45 % range was also obtained by applying 45 mm layer of coating in conventional masonry walls

    Planning as Tabled Logic Programming

    Get PDF
    This paper describes Picat's planner, its implementation, and planning models for several domains used in International Planning Competition (IPC) 2014. Picat's planner is implemented by use of tabling. During search, every state encountered is tabled, and tabled states are used to effectively perform resource-bounded search. In Picat, structured data can be used to avoid enumerating all possible permutations of objects, and term sharing is used to avoid duplication of common state data. This paper presents several modeling techniques through the example models, ranging from designing state representations to facilitate data sharing and symmetry breaking, encoding actions with operations for efficient precondition checking and state updating, to incorporating domain knowledge and heuristics. Broadly, this paper demonstrates the effectiveness of tabled logic programming for planning, and argues the importance of modeling despite recent significant progress in domain-independent PDDL planners.Comment: 27 pages in TPLP 201

    Trilogy on Computing Maximal Eigenpair

    Full text link
    The eigenpair here means the twins consist of eigenvalue and its eigenvector. This paper introduces the three steps of our study on computing the maximal eigenpair. In the first two steps, we construct efficient initials for a known but dangerous algorithm, first for tridiagonal matrices and then for irreducible matrices, having nonnegative off-diagonal elements. In the third step, we present two global algorithms which are still efficient and work well for a quite large class of matrices, even complex for instance.Comment: Updated versio
    corecore