
To appear in Theory and Practice of Logic Programming 1

Planning as Tabled Logic Programming

NENG-FA ZHOU

CUNY Brooklyn College and Graduate Center

Roman Barták

Charles University

Agostino Dovier

Univ. di Udine

submitted ; revised ; accepted

Abstract

This paper describes Picat’s planner, its implementation, and planning models for several do-
mains used in International Planning Competition (IPC) 2014. Picat’s planner is implemented
by use of tabling. During search, every state encountered is tabled, and tabled states are used
to effectively perform resource-bounded search. In Picat, structured data can be used to avoid
enumerating all possible permutations of objects, and term sharing is used to avoid duplication
of common state data. This paper presents several modeling techniques through the example
models, ranging from designing state representations to facilitate data sharing and symmetry
breaking, encoding actions with operations for efficient precondition checking and state updat-
ing, to incorporating domain knowledge and heuristics. Broadly, this paper demonstrates the
effectiveness of tabled logic programming for planning, and argues the importance of modeling
despite recent significant progress in domain-independent PDDL planners.

1 Introduction

Planning and logic programming are two close areas of research. PLANNER (Hewitt

1969), which was designed as a language for proving theorems and manipulating models

in a robot, is perceived as the first logic programming language. Planning has been

an important problem domain for Prolog (Kowalski 1979; Warren 1974). Despite the

amenability of Prolog to planning, Prolog is no longer a competitive tool for planning.

Tabling (Michie 1968; Tamaki and Sato 1986; Warren 1992) is a technique used in logic

and functional programming systems, which caches the results of certain calculations in

memory and reuses them in subsequent calculations through a quick table lookup. Like

state marking used in search algorithms, tabling can prevent the same state from being

expanded more than once during search. Tabling has been found useful in many search

problems, including theorem proving (Nielson et al. 2004; Pientka 2003), program analysis

(Dawson et al. 1996) and model checking (Ramakrishna et al. 1997). Recently, tabled

logic programming has been successfully employed to solve specific planning problems

(Bartak and Zhou 2014; Zhou and Dovier 2013; Zhou 2014), and has been shown to be

ar
X

iv
:1

50
7.

03
97

9v
1

 [
cs

.A
I]

 1
4

Ju
l 2

01
5

2 N.-F. Zhou

significantly faster than the state-of-the-art ASP (Answer Set Programming) planners

on some problems (Zhou and Dovier 2013; Zhou 2014).

This paper describes Picat’s planner and its implementation. This paper also presents

planning models in Picat for several domains used in International Planning Competition

2014 (IPC’14) (Chrpa et al. 2014), and demonstrates broader applicability of tabled logic

programming to planning. Picat is a logic-based multi-paradigm language that provides

logic variables, pattern matching, nondeterminism through backtracking, loops, func-

tions, constraints, and tabling as its core modeling and solving features. As a modeling

language for planning, Picat differs from PDDL (Plan Domain Description Language)

(McDermott 1998) and ASP (Brewka et al. 2011; Gebser et al. 2012; Lifschitz 2002)

in several aspects: (1) Picat allows use of structures to represent states; (2) Picat sup-

ports explicit commitment and nondeterministic actions, which enables users to have

better control over action applications; (3) Picat provides facilities for describing domain

knowledge and heuristics for pruning search space.

As a solving system, Picat’s planner implements several techniques for better perfor-

mance. First, it tables every state encountered during search and avoids repeating the

exploration of the same state. Second, it adopts the hash-consing technique (Zhou and

Have 2012) to share common state data and to speed up the equality testing of states.

Third, it utilizes tabled states to effectively perform resource-bounded search. For optimal

planning, Picat offers built-ins to perform iterative search, but unlike IDA* (Korf 1985),

Picat also reuses results tabled in early iterations (Zhou 2014).

This paper shows that the above-mentioned features of Picat make Picat a more ap-

propriate language than PDDL for modeling and solving planning problems. To that

end, this paper presents examples in Picat for several domains used in IPC’14. These

examples illustrate several modeling techniques on how to design state representations

to facilitate data sharing and symmetry breaking, on how to translate PDDL operators

into Picat actions, and on how to incorporate domain knowledge and heuristics to reduce

search spaces. This paper also gives the experimental results of the presented models and

several other models encoded in the same way. The experimental results demonstrate the

effectiveness of tabling and the importance of modeling.

2 A Brief Overview of Picat

Picat is a dynamically-typed language. The basic types are taken from Prolog, except

for arrays and maps. An array takes the form {t1,. . .,tn}. The index of the first array

element is 1, and the index notation X[I] can be used to access array elements. Picat also

borrows the basic logical operators from Prolog, including conjunction (A,B), negation

(not A), disjunction (A;B), and if-then-else (C->A;B).

Picat allows function calls in arguments. For this reason, it requires structures to be

preceded with a dollar symbol $ in order for them to be treated as data, unless the

structure is special, or it occurs in a head pattern.

For each type, Picat provides a set of built-in functions and predicates. Many built-

in predicates are taken from Prolog, including member/2, nth/3, and select/3. The

function insert ordered(List,Term) inserts Term into the ordered list List such that

the resulting list remains ordered.

In Picat, predicates and functions are defined with pattern-matching rules. Picat has

Planning as Tabled Logic Programming 3

two types of rules: the non-backtrackable rule Head,Cond => Body, and the backtrack-

able rule Head,Cond ?=> Body. In a predicate definition, the Head takes the form

p(t1, . . . , tn), where p is a predicate name, and n is the arity. The condition Cond, which

is an optional goal, specifies a condition under which the rule is applicable. For a call C, if

C matches Head and Cond succeeds, then the rule is said to be applicable to C. When ap-

plying a rule to call C, Picat rewrites C into Body. If the used rule is non-backtrackable,

then the rewriting is a commitment, and the program can never backtrack to C. How-

ever, if the used rule is backtrackable, then the program will backtrack to C once Body

fails, meaning that Body will be rewritten back to C, and the next applicable rule will

be tried on C. In a function definition, the Head takes the form f(t1, . . . , tn) = Term

where f is a function name and Term is a result to be returned. All of the rules in a

function definition must be non-backtrackable.

A pattern can contain as-patterns of the form V @Pattern, where V is a new variable

in the head, and Pattern is a non-variable term. The as-pattern V @Pattern is the same

as Pattern in pattern matching, but after pattern matching succeeds, V is made to

reference the term that matched Pattern.

Picat supports loops and list comprehensions. For example, the loop

foreach(E in L) Goal end

is true if Goal is true for each E in L. Picat adopts the following simple scoping rule:

variables that occur only in a loop, but do not occur before the loop in the outer scope, are

local to each iteration of the loop. Loops are compiled into tail-recursive predicates, and

list comprehensions are compiled into tail-recursive predicates through foreach loops.

Picat supports tabling for dynamic programming solutions. Other features of Picat

include assignments, list comprehensions, global maps for storing permanent data, higher-

order functions, action rules for defining event-driven actors, and modules for modeling

and solving constraint satisfaction problems with CP, SAT, and MIP.

3 Tabling in Picat

Both predicates and functions can be tabled. In order to have all calls and answers of a

predicate or function tabled, users just need to add the keyword table before the first

rule. For a predicate definition, the keyword table can be followed by a tuple of table

modes, including + (input), - (output), min, max, and nt (not tabled). For a predicate

with a table mode declaration that contains min or max, Picat tables one optimal answer

for each tuple of the input arguments. The last mode can be nt, which indicates that the

corresponding argument will not be tabled.

Linear tabling (Zhou et al. 2008) is used in Picat, and table modes are taken from

(Guo and Gupta 2008), except for the nt mode, which was initially proposed by (Zhou

et al. 2010). Ground structured terms are hash-consed (Zhou and Have 2012) so that

common ground terms are tabled only once. For example, for the three lists [1,2,3],

[2,3], and [3], the shared sub-lists [2,3] and [3] are reused from [1,2,3].
Mode-directed tabling has been successfully used to solve specific planning problems

such as Sokoban (Zhou and Dovier 2013), and the Petrobras planning problem (Bartak
and Zhou 2014). A planning problem is modeled as a path-finding problem over an
implicitly specified graph. The following gives the framework used in all these solutions.

4 N.-F. Zhou

Fig. 1. A DAG.

table (+,-,min)

path(S,Path,Cost), final(S) => Path = [],Cost = 0.

path(S,Path,Cost) =>

action(S,S1,Action,ActionCost),

path(S1,Path1,Cost1),

Path = [Action|Path1],

Cost = Cost1+ActionCost.

The call path(S,Path,Cost) binds Path to an optimal path from S to a final state. The

predicate final(S) succeeds if S is a final state, and the predicate action encodes the

set of actions in the problem.

Consider using the path/3 predicate to find a shortest path from node a to node d in

the DAG shown in Figure 1. The final state is d. The call path(a,Path,Cost) initiates

the search from node a. In order to resolve the call, Picat applies the transition a→b to

node a, and generates a new call to path for finding a shortest path from b to d. After

the answer b→c→d is found for the call, Picat tables the answer a→b→c→d, which has

cost 8, for the inital call. After that, Picat backtracks, trying the alternative transition

a→c to node a. After the shortest path c→d is found, Picat finds another path a→c→d,

which has cost 5, for the initial call. Since this path is shorter than the tabled path,

Picat replaces the tabled path with this new path. Since the graph has no cycles, Picat

returns the new path as the final answer. In general, calls need to be re-evaluated until

fixed points are reached if there are looping calls (Zhou et al. 2008).

When applied to the single-source shortest path problem, linear tabling is similar to

Dijkstra’s algorithm, except that linear tabling tables shortest paths from the encountered

states to the goal state rather than shortest paths to the encountered states from the

initial state.

The above framework performs depth-unbounded search. For many planning problems,

branch & bound and IDA* (Korf 1985) are useful for finding optimal solutions. The

planner module of Picat provides built-ins for planning with different types of search.

4 The planner Module of Picat

The planner module is based on tabling but it abstracts away tabling from users. For a

planning problem, users only need to define the predicates final/1 and action/4, and

call one of the search predicates in the module on an initial state in order to find a plan

or an optimal plan.

• final(S): This predicate succeeds if S is a final state.

• action(S,NextS,Action,ACost): This predicate encodes the state transition di-

agram of a planning problem. The state S can be transformed to NextS by per-

Planning as Tabled Logic Programming 5

forming Action. The cost of Action is ACost, which must be non-negative. If the

plan’s length is the only interest, then ACost = 1.

These two predicates are called by the planner. The action predicate specifies the pre-

condition, effect, and cost of each of the actions. This predicate is normally defined with

nondeterministic pattern-matching rules. As in Prolog, the planner tries actions in the

order they are specified. When a non-backtrackable rule is applied to a call, the remaining

rules will be discarded for the call.

The following predicates constitute the core of the planner module.

• best plan unbounded(S,Limit,Plan,PlanCost): This predicate finds an opti-

mal plan by performing depth-unbounded search. This predicate is implemented

based on the path-finding framework shown above. The argument Limit is not uti-

lized to limit the depth of search. It is compared with PlanCost after an optimal

plan has been found. During depth-unbounded search, once a state has failed, it

will not be explored again.

• plan(S,Limit,Plan,PlanCost): This predicate searches for a plan by performing

resource-bounded search, in which a state is expanded only if it is new and its

resource limit is non-negative, or if the state has previously failed but the current

occurrence has a higher resource limit than before. This predicate is defined as

a tabled predicate that tables the Limit argument but does not use it in variant

checking (Zhou 2014). The implementation of this predicate is described in the next

subsection.

• best plan(S,Limit,Plan,PlanCost): This predicate finds an optimal plan by

performing resource-bounded iterative-deepening search. It calls the plan/4 predi-

cate to find a plan, using 0 as the initial cost limit and gradually relaxing the cost

limit until a plan is found. Unlike IDA*, which starts a new round from scratch,

Picat also reuses the states that were tabled in the previous rounds.

• best plan bb(S,Limit,Plan,Cost) This predicate finds an optimal plan using

branch & bound. First, it calls plan/4 to find a plan. Then, it tries to find a better

plan by imposing a stricter limit. This step is repeated until no better plan can be

found. It returns the last plan that was found.

• current resource(): This function returns the resource limit argument of the

latest call to plan/4. In order to retrieve the argument, the implementation has to

traverse the call-stack until it reaches a call to plan/4. This function can be used

to check against a heuristic value. If the heuristic estimate of the cost to travel

from the current state to a final state is greater than the resource limit, then the

current state should fail.

5 The Implementation of Resource-Bounded Search

Figure 2 sketches Picat’s implementation of the predicate plan/4. The following array is

passed from a state to the next state as an nt argument:

{Limit,IPlan,IPlanCost}

In order to perform resource-bounded search, Picat treats the second argument of the

predicate plan bounded aux differently from other nt arguments. Picat stores the Limit

6 N.-F. Zhou

plan(S,Limit,Plan,PlanCost) =>

IPlan = {Limit,[],0},

catch(plan_bounded_aux(S,IPlan), (Plan,PlanCost), true).

table (+,nt)

plan_bounded_aux(S,{Limit,IPlan,IPlanCost}),

final(S)

=>

throw((IPlan.reverse(), IPlanCost)).

plan_bounded_aux(S,{Limit,IPlan,IPlanCost}) =>

action(S,NextS,Action,ACost),

Limit1 = Limit-ACost,

Limit1 >= 0,

Inherited1 = {Limit1,

[Action|IPlan],

IPlanCost+ACost},

plan_bounded_aux(NextS,Inherited1).

Fig. 2. The implementation of plan/4.

Fig. 3. Resource-bounded search.

argument of each failed call to plan bounded aux, and uses this information to decide

whether the same state should fail when it recurs.

The first rule of plan bounded aux throws the inherited plan and its cost as an ex-

ception if final(S) succeeds. The exception will be caught by the catch call in the rule

body of plan/4.

The second rule of plan bounded aux calls action/4 to select an action, which pro-

duces a new state, NextS. Then, the rule computes the new resource limit, Limit1, by

subtracting the cost of the selected action from Limit. If Limit1 >= 0 succeeds, then

the rule continues with the tabled search by recursively calling plan bounded aux on

the new state NextS. Otherwise, if Limit1 >= 0 fails, then Picat backtracks to select an

alternative action.

The idea of resource-bounded search is to utilize tabled states and their resource limits

to effectively decide when a state should be expanded and when a state should fail.

Let SR denote a state with an associated resource limit, R, as depicted in Figure 3.

If R is negative, then SR immediately fails. If R is non-negative and S has never been

encountered before, then S is expanded by using a selected action. Otherwise, if the same

state S has failed before and R′ was the resource limit when it failed, then SR is only

Planning as Tabled Logic Programming 7

expanded if R > R′, i.e., if the current resource limit is larger than the resource limit

was at the time of failure.

6 Modeling Examples

This section describes the Picat models for four of the problem domains used in the

sequential optimal track of IPC’14: Transport, Tetris, Floortile, and Parking. Each of the

following models will show the state representation, the encoding of the actions, the search

predicate that is used (best plan or best plan unbounded), and the domain knowledge

and heuristics that are employed. In these models, states are typically represented by lists,

and preconditions and state updates are handled by standard list operations. Sometimes,

arrays are used when no list suffixes can be shared. The Picat encodings of actions are

mostly straightforward translations from the PDDL encodings. These models do not

use sophisticated domain knowledge or heuristics that would hurt the readability or

compromise the optimality of answers. These four domains, as well as five other domains,

are described in Appendix A.

6.1 Example-1: Transport

This problem is a variant of the popular logistics domain in planning. Given a weighted

directed graph, a set of trucks each of which has a capacity for the number of packages it

can carry, and a set of packages each of which has an initial location and a destination,

the objective of the problem is to find an optimal plan to transport the packages from

their initial locations to their destinations. This problem is more challenging than the

Nomystery problem that was used in IPC’11, because of the existence of multiple trucks,

and because an optimal plan normally requires trucks to cooperate. This problem degen-

erates into the shortest path problem if there is only one truck and only one package.

The PDDL and Picat encodings of the problem are given in Appendix B.

Basic Encoding

A state is represented by an array of the form {Trucks,Packages}, where Trucks is an

ordered list of trucks, and Packages is an ordered list of waiting packages. A package in

Packages is a pair of the form (Loc,Dest) where Loc is the source location and Dest is

the destination of the package. A truck in Trucks is a list of the form [Loc,Dests,Cap],

where Loc is the current location of the truck, Dests is an ordered list of destinations of

the loaded packages on the truck, and Cap is the capacity of the truck. At any time, the

number of loaded packages must not exceed the capacity.

Note that keeping Cap as the last element of the list facilitates sharing, since the suffix

[Cap], which is common to all the trucks that have the same capacity, is tabled only once.

Also note that the names of the trucks and the names of packages are not included in the

representation. Two packages in the waiting list that have the same source and the same

destination are indistinguishable, and as are two packages loaded on the same truck that

have the same destination. This representation breaks symmetries. Two configurations

that only differ by a truck’s name or a package’s name are treated as the same state.
A state is final if all of the packages have been transported.

8 N.-F. Zhou

final({Trucks,[]}) =>

foreach([_Loc,Dests|_] in Trucks)

Dests == []

end.

The PDDL rules for the actions are straightforwardly translated into Picat as follows.

action({Trucks,Packages},NextState,Action,ACost) ?=>

Action = $load(Loc), ACost = 1,

select([Loc,Dests,Cap],Trucks,TrucksR),

length(Dests) < Cap,

select((Loc,Dest),Packages,PackagesR),

NewDests = insert_ordered(Dests,Dest),

NewTrucks = insert_ordered(TrucksR,[Loc,NewDests,Cap]),

NextState = {NewTrucks,PackagesR},

action({Trucks,Packages},NextState,Action,ACost) ?=>

Action = $unload(Loc), ACost = 1,

select([Loc,Dests,Cap],Trucks,TrucksR),

select(Dest,Dests,DestsR),

NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),

NewPackages = insert_ordered(Packages,(Loc,Dest)),

NextState = {NewTrucks,NewPackages}.

action({Trucks,Packages},NextState,Action,ACost) =>

Action = $move(Loc,NextLoc),

select([Loc|Tail],Trucks,TrucksR),

road(Loc,NextLoc,ACost),

NewTrucks = insert_ordered(TrucksR,[NextLoc|Tail]),

NextState = {NewTrucks,Packages}.

For the load action, the rule nondeterministically selects a truck that still has room for

another package, and nondeterministically selects a package that has the same location as

the truck. After loading the package to the truck, the rule inserts the package’s destination

into the list of loaded packages of the truck. Note that the rule is nondeterministic. Even

if a truck passes by a location that has a waiting package, the truck may not pick it.

If this rule is made deterministic, then the optimality of plans is no longer guaranteed,

unless there is only one truck and the truck’s capacity is infinite.

Domain Knowledge and Heuristics

Domain knowledge can be used to reduce the nondeterminism and avoid unnecessary

applications of actions. In the complete Picat encoding given in Appendix B, the predi-

cate action begins with a rule that deterministically unloads a package if the package’s

destination is the same as the truck’s location.
Resource-bounded search is used to find an optimal plan. After each new state is

generated, the following condition is checked to ensure that the current path is viable.

current_resource() - ACost >= estimated_cost(NewState).

Let P1, . . ., Pn be the remaining packages, and Ci be the minimum cost of moving

package Pi to its destination by using any truck. The moving cost of a state can be safely

estimated as max({C1, . . . , Cj}). The estimated total cost is the estimated moving cost

plus the loading and unloading costs of all of the remaining packages. This heuristic is

admissible.

Planning as Tabled Logic Programming 9

6.2 Example-2: Tetris

The problem is a simplified version of the well-known Tetris. There are three kinds of

pieces: 1-cell boxes, 2-cell rectangles, and 3-cell L-shaped pieces. Initially, all the pieces

are distributed on a grid board. The pieces can freely move on the board to any cells as

long as the cells are not occupied by other pieces. There is a region on the board that

is designated as the target region. The goal of the game is to move all the pieces to the

target region. In the IPC setting, rectangles can rotate but L-shaped pieces cannot.

Basic Encoding

Pieces can be represented as follows: A square is represented by the cell it occupies; a

rectangle by a term of the form rect(C1,C2) where C1 and C2 are cell locations; and an

L-shaped piece by a term of the form ell(C1,C2,C3). In the IPC setting, the ordering

of the cells that are occupied by a piece is important. So rect(C1,C2) and rect(C2,C1)

represent two different rectangle pieces. A state is represented by an array of the form

{Squares,Rects,Ls}, where each argument gives a sorted list of a single kind of pieces.
The PDDL rules for actions can be translated into Picat in a straightforward manner.

For example, the following rule selects a rectangle piece to move.

action(State@{Squares,Rects,Ls},NewState,Action,ACost) ?=>

Action = $move(Rect,NewRect), ACost = 1,

select(Rect,Rects,RectsR),

Rect = $rect(C1,C2),

connected(C2,C3),

not_occupied(C3,State), %% C3 is free

NewRect = $rect(C2,C3),

NewState = {Squares,insert_ordered(Rects,NewRect),Ls}.

The predicate not occupied(C3,State) is true if C3 is not occupied by any of the pieces

in State.

Heuristics

Resource-bounded search is used to find an optimal plan for this problem. The goal of

the problem is to move all the pieces to the target region. For each piece, assume that it’s

the only piece on the board, disregarding all other pieces. The estimated cost of moving

the piece to the target region is its shortest distance to the nearest cell in the target

region times the cost of each move. The estimated cost of transforming a state into a

final state is the sum of the estimated costs of all the pieces. This heuristic function is

admissible and easy to compute, but very conservative because a cell in the target region

can serve as a target for multiple pieces.

6.3 Example-3: Floortile

A set of robots use two different colors (black and white) to paint patterns in floor tiles.

The robots can move around the floor tiles in four directions (up, down, left and right).

Robots paint with one color at a time, but can change their spray guns to the other color.

However, robots can only paint the tile that is in front (up) and behind (down) them,

and once a tile has been painted no robot can stand on it.

10 N.-F. Zhou

Basic Encoding

A state is represented by a list of the form [Robots,WTiles,BTiles], where Robots

is an ordered list of robots and WTitles (BTiles) is an ordered list of locations of the

painted white (black) tiles. A robot in Robots is a pair (Color,Loc) where Color is the

color of the paint that the robot is holding and Loc is the robot’s location.
A state is final if all the tiles that are required to be painted are all painted.

final({_,WTiles,BTiles}) =>

painted_w_tiles_in_goal(WTiles),

painted_b_tiles_in_goal(BTiles).

The actions are encoded according to the state representation. For example, once a

tile is painted, the tile’s location is added into WTiles or BTiles depending on the color

of the paint; once a robot (Color,Loc) moves from Loc to Loc1, the pair is changed to

(Color,Loc1). The current graph is determined by the initial graph, the set of painted

tiles, and the set of robots. A robot can move from its current location Loc to a new

location NextLoc if NextLoc is connected to Loc in the graph, NextLoc is not painted,

and NextLoc is not occupied by another robot.

Macro Actions and Domain Knowledge

The color-changing action, if needed, can be forced to take place right before a painting

action. This macro action helps reduce the search space.

For IPC’14, the used instances were generated in the fashion that robots should only

paint tiles in front of them. This special condition can be exploited to reduce the non-

determinism of the painting rules: if a robot is at location Loc, trying to paint the up

location ULoc, and the up location of ULoc has already been painted, then ULoc can be

painted deterministically; similarly, if a robot is at location Loc, trying to paint the down

location DLoc, and the down location of DLoc has already been painted, then DLoc can

be painted deterministically.

Depth-unbounded search is used for this problem. During depth-unbounded search,

dead ends are tabled and are not re-explored when they are encountered again. For this

problem, a state becomes a dead end if there is an unpainted tile that is not reachable

by any robot. No extra code is needed to detect dead ends. Because depth-unbounded

search is used, no heuristics are needed.

6.4 Example-4: Parking

This domain involves parking cars on a street with N curb locations, and where cars

can be double-parked but not triple-parked. The goal is to find a plan to move from

one configuration of parked cars to another configuration, by driving cars from one curb

location to another. For each curb location, there are two parking spots: the curb side

and the road side. For a car to move from a spot at a curb into a spot at a different curb,

the destination spot must be clear; and if the spot is on the curb side, then the road-side

spot must also be clear. In some ways, this problem is similar to the Blocks World and

the Tower of Hanoi.

Planning as Tabled Logic Programming 11

Basic Encoding

A configuration is represented by an array of curbs {B1, B2, . . . , Bn}, where each Bi is a

list of up to two cars. When a curb has two cars [C1,C2], it is assumed that C1 is the

road-side car and C2 is the curb-side car. This representation allows the road-side car C1

to be removed without touching the curb-side car C2.

A state is represented by a pair of the form (CurrConfig,GoalConfig), where a

CurrConfig is the current configuration, and GoalConfig is the goal configuration. As

shown below, the inclusion of the goal configuration in the state representation facilitates

the encoding of domain knowledge.
A state is final if the current configuration is the same as the goal configuration.

final((Config,Config)) => true.

All possible moves are specified with one rule as follows:

action((Config,GConfig),NextS,Action,ACost) =>

Action = $move(I,J), ACost = 1,

nth(I,Config,ICars),ICars = [ClearCar|NewICars],

nth(J,Config,JCars), J !== I, JCars != [_,_],

N = length(Config),

NewConfig = new_array(N),

foreach (K in 1..N)

(K == I -> NewConfig[K] = NewICars

;K == J -> NewConfig[K] = [ClearCar|JCars]

; NewConfig[K] = Config[K])

end,

NextS = (NextConfig,GConfig).

The built-in predicate nth(I,Array,Arg) is true if the I-th argument of Array is Arg.

When I is a variable, this predicate nondeterministically searches for an argument that

unifies with Arg. The rule finds a non-empty curb I and a different curb J that has less

than two cars, and moves the clear car, ClearCar, from curb I to curb J.

Domain Knowledge and Heuristics

Two knowledge rules can be incorporated into the basic encoding in order to speed up

the search. First, when a car is moved into a spot that is its final spot in the goal

configuration, such a move should be made deterministically. Note that if a car is moved

to a road-side final spot then the curb-side spot must be occupied by a correct car.

Second, a car that has been placed in its final spot should not be moved away. This kind

of domain knowledge has been used in solving the Tower of Hanoi (Alford et al. 2009)

and the Blocks World (Bacchus and Kabanza 2000).

Resource-bounded search is used to find an optimal plan. The cost of transforming a

state to a final state can be simply estimated as the number of incorrectly-positioned

cars. This estimation is admissible, since at least one action is needed to move each

incorrectly-positioned car. The following improved heuristic function, which takes special

curb configurations into account, is used by the model: For each curb, if the curb has

two cars [A,B] in the current state, but is required to have [B,A] in the final state, then

its cost is 4; if the curb has two cars [A,B], but is required to have [C,A] or [B,C] (A 6=
C, B 6= C), then its cost is 3; otherwise, the cost is the number of incorrectly-positioned

cars.

12 N.-F. Zhou

Table 1. The number of instances solved optimally.
Domain # insts Picat Picat-nt Picat-nh Symba
Barman 14 14 0 14 6

Cave 20 20 0 20 3
Childsnack 20 20 20 20 3

Citycar 20 20 17 18 17
Floortile 20 20 0 20 20

GED 20 20 19 13 19
Parking 20 11 4 0 1
Tetris 17 13 13 9 10

Transport 20 9 0 4 8

7 Experimental Results

In addition to the four domains presented in this paper, we have encoded in Picat several

other domains used in the deterministic sequential track of IPC’14. The domains and their

Picat encodings are given in Appendix A. The Picat encodings are simple, compact, and

comparable in size with the PDDL encodings used in IPC’14. Most of the encodings can

be further improved by incorporating sophisticated domain knowledge and heuristics. In

order to evaluate the effectiveness of the use of tabling and the use of heuristics, we have

built two separate sets of encodings, namely, Picat-nt and Picat-nh, which use the same

state representation as the original Picat encodings but have some component removed.

Picat-nt performs Prolog-style non-tabled iterative-deepening search. Since Picat-nt does

not table any state, it may explore the same state multiple times during search. The

Picat-nh encodings do not use any heuristics. We have compared these Picat encodings

with the IPC’14 PDDL encodings solved with Symba (Torralba et al. 2014), a domain-

independent bidirectional A* planner which won the optimal sequential track of IPC’14.

This comparison offers a glimpse of how well Picat compares with the best domain-

independent planner. A comparison of Picat’s planner and several domain-dependent

planners also shows the promise of tabled planning (Bartak et al. 2015).

Table 1 shows the number of instances (#insts) in the domains used in IPC’14 and

the number of (optimally) solved instances by each planner. The results were obtained

on a Cygwin notebook computer with 2.4GHz Intel i5 and 4GB RAM. Both Picat and

Symba were compiled using g++ version 4.8.3. For Symba, a setting suggested by one of

Symba’s developers was used. A time limit of 30 minutes was used for each instance as

in IPC. For every instance that was solved by both Symba and Picat, the plan quality is

the same.

A comparison of Picat and Picat-nt shows the effectiveness of the use of tabling. For ev-

ery domain, except for Childsnack and Tetris, Picat solved more instances than Picat-nt.

For Barman, Cave, Floortile and Transport, Picat-nt could not solve any of the instances.

The Picat encodings for five of the domains (Citycar, GED, Parking, Tetris, and Trans-

port) use heuristics. The use of heuristics is helpful for these domains, especially for

Parking, for which Picat-nh did not solve any of the instances.

Picat solved more instances than Symba for every domain except for Floortile, for which

both systems solved all of the instances. The running times of the instances are not given,

but the total runs for Picat were finished within 24 hours, while the total runs for Symba

took more than 72 hours.

Planning as Tabled Logic Programming 13

8 Conclusion and Future Work

This paper has presented Picat’s planner, its implementation, and example models for

several domains from IPC’14. The example models illustrate several modeling techniques

in Picat. One key task of modeling is finding an efficient state representation. While

classical planning frameworks such as PDDL are based on a factored representation of

states, Picat uses a structured representation. A structured state representation can leave

out unnecessary information that is not needed for planning and can break symmetries by

avoiding enumerating all possible permutations of objects. Another key task of modeling

is utilizing domain knowledge to reduce search spaces. In the past, a lot of work has been

done on the use of domain knowledge in planning (Bacchus and Kabanza 2000; Haslum

and Scholz 2003; Kautz and Selman 1998), but recently, this part of modeling has been

put aside, because of the advancement of domain-independent PDDL planners. This

paper has shown that, even with simple domain knowledge, the declarative encodings of

Picat significantly outperform Symba, a state-of-the-art domain-independent planner.

This paper has demonstrated for the first time that tabled logic programming is com-

petitive with the cutting-edge PDDL planners. The key to the success is tabling. Tabling

avoids repeating the exploration of the same state and facilitates performing resource-

bounded search. The Picat planner does not do prior grounding that is typical for most

current state-space search planners, and hence Picat has no problem with exploded mem-

ory consumption due to grounding. Nevertheless, memory consumption can be demand-

ing during search since every encountered state is tabled. This is why careful modeling

that removes symmetries and uses domain control knowledge to prune useless state tran-

sitions is important.

A good state representation should also exploit the underlying term-sharing technique

that is used in the tabling system. In the examples that are presented in this paper,

ordered lists are used to represent collections of objects. It takes linear time to perform

the basic operations. One direction for future work is to design data structures for state

representations which are compact, efficient, and good for sharing.

A plethora of action languages have been designed for modeling and solving planning

problems (e.g., A and its successors (Gelfond and Lifschitz 1998), Golog (Levesque et al.

1997), and K (Eiter et al. 2004)). The focus of these languages has been on the modeling

power rather than efficiency and scalability. These languages have been implemented

by translation into SAT, ASP, CP, or PDDL (Baier et al. 2011; Dovier et al. 2011),

but no implementation has been shown to be competitive with the cutting-edge PDDL

planners. Picat can be used as an implementation language for these action languages.

Like in PDDL, a state is represented as a set of flat facts in all of these action languages.

Another direction for future work is to devise an efficient translation from these action

languages into Picat that automatically exploits structural representation, symmetries,

domain control knowledge, and heuristics.

14 N.-F. Zhou

References

Alford, R., Kuter, U., and Nau, D. S. 2009. Translating HTNs to PDDL: A small amount
of domain knowledge can go a long way. In IJCAI. 1629–1634.

Bacchus, F. and Kabanza, F. 2000. Using temporal logics to express search control knowledge
for planning. Artif. Intell. 116, 1-2, 123–191.

Baier, J. A., Fritz, C., and McIlraith, S. A. 2011. Golog-style search control for planning.
In Knowing, Reasoning, and Acting: Essays in Honour of Hector J. Levesque, G. Lakemeyer
and S. A. McIlraith, Eds. College Publications.

Bartak, R., Dovier, A., and Zhou, N.-F. 2015. On modeling planning problems in logic
programming. In PPDP. to appear.

Bartak, R. and Zhou, N. 2014. Using tabled logic programming to solve the Petrobras
planning problem. TPLP 14, 4-5, 697–710.

Brewka, G., Eiter, T., and Truszczyński, M. 2011. Answer set programming at a glance.
Commun. ACM 54, 12, 92–103.

Chrpa, L., Vallati, M., and McCluskey, L. 2014. International planning competition.

Dawson, S., Ramakrishnan, C. R., and Warren, D. S. 1996. Practical program analysis
using general purpose logic programming systems — A case study. ACM SIGPLAN No-
tices 31, 5, 117–126.

Dovier, A., Formisano, A., and Pontelli, E. 2011. Perspectives on logic-based approaches
for reasoning about actions and change. In LNCS. Vol. 6565. 259–279.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., and Polleres, A. 2004. A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM Trans. Comput.
Log. 5, 2, 206–263.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2012. Answer Set Solving in
Practice. Morgan and Claypool Publishers.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electron. Trans. Artif. Intell. 2,
193–210.

Guo, H.-F. and Gupta, G. 2008. Simplifying dynamic programming via mode-directed tabling.
Softw., Pract. Exper. 38, 1, 75–94.

Haslum, P. and Scholz, U. 2003. Domain knowledge in planning: Representation and use. In
ICAPS Workshop on PDDL.

Hewitt, C. 1969. Planner: A language for proving theorems in robots. In IJCAI. 295–302.

Kautz, H. and Selman, B. 1998. The role of domain-specific knowledge in the planning as
satisfiability framework. In AIPS98. 181–189.

Korf, R. E. 1985. Depth-first iterative-deepening: An optimal admissible tree search. Artif.
Intell. 27, 1, 97–109.

Kowalski, R. 1979. Logic for Problem Solving. North Holland, Elsevier.

Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., and Scherl, R. B. 1997. GOLOG:
A logic programming language for dynamic domains. J. Log. Program. 31, 1-3, 59–83.

Lifschitz, V. 2002. Answer set programming and plan generation. Artif. Intell. 138, 1-2, 39–54.

McDermott, D. 1998. The planning domain definition language manual. CVC Report 98-003,
Yale Computer Science Report 1165.

Michie, D. 1968. “memo” functions and machine learning. Nature, 19–22.

Nielson, F., Nielson, H. R., Sun, H., Buchholtz, M., Hansen, R. R., Pilegaard, H., and
Seidl, H. 2004. The succinct solver suite. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems: 10th International Conference (TACAS), LNCS 2988. 251–265.

Pientka, B. December 2003. Tabled higher-order logic programming. Ph.D. thesis, Technical
Report CMU-CS-03-185.

Ramakrishna, Y. S., Ramakrishnan, C. R., Ramakrishnan, I. V., Smolka, S. A., Swift,

Planning as Tabled Logic Programming 15

T., and Warren, D. S. 1997. Efficient model checking using tabled resolution. In Computer
Aided Verification. 143–154.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In ICLP. 84–98.

Torralba, A., Alcazar, V., and Borrajo, D. 2014. Symba: A symbolic bidirectional a
planner. In The 2014 International Planning Competition. 105–109.

Warren, D. H. D. 1974. WARPLAN: A system for generating plans. Tech. Rep. DCL Memo
76, University of Edinburgh.

Warren, D. S. 1992. Memoing for logic programs. Comm. of the ACM, Special Section on
Logic Programming 35, 93–111.

Zhou, N.-F. 2014. Combinatorial search with Picat. ICLP, invited talk,
http://arxiv.org/abs/1405.2538 .

Zhou, N.-F. and Dovier, A. 2013. A tabled Prolog program for solving Sokoban. Fundam.
Inform. 124, 4, 561–575.

Zhou, N.-F. and Have, C. T. 2012. Efficient tabling of structured data with enhanced hash-
consing. TPLP 12, 4-5, 547–563.

Zhou, N.-F., Kameya, Y., and Sato, T. 2010. Mode-directed tabling for dynamic program-
ming, machine learning, and constraint solving. In ICTAI. 213–218.

Zhou, N.-F., Sato, T., and Shen, Y.-D. 2008. Linear tabling strategies and optimizations.
TPLP 8, 1, 81–109.

http://arxiv.org/abs/1405.2538/

16 N.-F. Zhou

Appendix A Benchmarks used in the paper

In this section we summarize, for reader’s convenience, the descriptions of all the domains

used as benchmarks. Descriptions are drawn from https://helios.hud.ac.uk/scommv/

IPC-14/domains_sequential.html; Picat’s complete encodings for these benchmarks

are available at http://picat-lang.org/ipc14/.

A.1 Barman

There is a robot barman that manipulates drink dispensers, glasses, and a shaker. The

goal is to find a plan of robot’s actions that serves a desired set of drinks. Robot hands

can grasp at most one object at a time. Glasses need to be empty and clean to be filled.

The benchmark was proposed by Sergio Jiménez Celorrio.

%% INITIAL state

ontable(shaker1), ontable(shot1),

... , ontable(shot8),

clean(shaker1), clean(shot1),

... , clean(shot8),

empty(shaker1), empty(shot1),

..., empty(shot8),

dispenses(dispenser1,ingredient1), dispenses(dispenser2,ingredient2),

dispenses(dispenser3,ingredient3), dispenses(dispenser4,ingredient4),

handempty(left), handempty(right),

%% Cocktail rules

cocktail part1(cocktail1,ingredient1), cocktail part2(cocktail1,ingredient3),

...

cocktail part1(cocktail6,ingredient2), cocktail part2(cocktail6,ingredient1),

%% GOAL

contains(shot1,cocktail1), contains(shot2,cocktail1),

contains(shot3,cocktail2), contains(shot4,cocktail6).

1 2

3

1 2 3 4

5 6 7 8

1

4

Fig. A 1. Example of Barman instance

In Figure A 1 we represent the initial configuration and the corresponding input spec-

ifications.

https://helios.hud.ac.uk/scommv/IPC-14/domains_sequential.html
https://helios.hud.ac.uk/scommv/IPC-14/domains_sequential.html
http://picat-lang.org/ipc14/

Planning as Tabled Logic Programming 17

Actions available are:

• grasp(OBJ) that executes the grasping either of a specific shot or shaker (OBJ)
• leave(OBJ) that allows us to leave the shot or shaker (OBJ)
• fill shot(SHOT,ING) that allows us to fill the shot SHOT with the ingredient ING
• empty shot(SHOT) (resp., empty shaker(SHAKER)) that allows us to empty the

shot SHOT (resp., the skaker SHAKER)
• clean shot(SHOT) (resp., clean shaker(SHAKER)) that allows us to clean the shot

SHOT (resp., the skaker SHAKER)
• pour shot to shaker(SHOT,SHAKER) (resp., pour shaker to shot(SHAKER,SHOT))

that allows us to pour the content of the shot SHOT in the shaker SHAKER (resp.,

vice versa).
• shake(SHAKER) that executes that shaking of the shaker to mix the ingredients.
• reduce (remove a shot from the state once it contains a required cocktail

All actions have cost 1 but reduce that has cost 0.

A.2 Cave Diving

There is a set of divers, each of who can carry four tanks of air. These divers must

be hired to go into an underwater cave and either take photos or prepare the way for

other divers by dropping full tanks of air. The cave is too narrow for more than one

diver to enter at a time. Divers have a single point of entry. Certain rooms of the cave

branches are objectives that the divers must photograph. Swimming and photographing

both consume air tanks. Divers must exit the cave and decompress at the end. They can

therefore only make a single trip into the cave. Certain divers have no confidence in other

divers and will refuse to work if someone they have no confidence in has already worked.

Divers have hiring costs inversely proportional to how hard they are to work with. This

domain was proposed by Nathan Robinson, Christian Muise, and Charles Gretton.

The cave system is represented by an undirected acyclic graph. Divers can carry an

amount of tanks according to their capacity. Rooms that need to be reached are among

the leaves of the graph. In Figure A 2 we represent an instance of the problem.

The actions available are:

• hire diver(Diver) that requires the availability of hiring cost and should satisfy

the compatibility constraints among divers,
• prepare tank(T) that prepares the tank T for the current diver if his capacity

allows it,
• enter water that requires the diver to be in the cave entrance,
• photograph(Loc) that requires the diver to be in the target location Loc,
• drop tank(Loc) that allows the diver to leave a tank in the location Loc (the tank

can be either full or empty),
• swim(Loc1,Loc2) that allows the diver to swim between two locations that are

adjacent in the graph,
• pickup tank(Loc) that allows the diver to collect a tank stored in the location

Loc,
• decompress should be made at the end of diving in the cave entrance.

Each action swim and photograph consumes (empties) one air tank. All actions but the

first one have unitary cost.

18 N.-F. Zhou

%% Divers information

available(d0) available(d1) available(d2)

capacity(d0,four) capacity(d1,four) capacity(d2,four)

=(hiring cost(d0),60) =(hiring cost(d1),10) =(hiring cost(d2),10)

precludes(d1,d2)

%% Cave and tank information

in storage(t1)

next tank(t1,t2) ... next tank(t8,t9)

cave entrance(l0)

connected(l0,l1), ... connected(l5,l1)

%%GOAL

have photo(l4) have photo(l5)

decompressing(d0) decompressing(d1)

decompressing(d2) decompressing(d3)

0 1

2 3 4

5

1 2 3 4 5 6 7 8 9

0 1 2

Fig. A 2. Example of Cave Diving instance

A.3 Childsnack

This domain is to plan how to make and serve sandwiches for a group of children in

which some are allergic to gluten. There are two actions for making sandwiches from their

ingredients. The first one makes a sandwich and the second one makes a sandwich taking

into account that all ingredients are gluten-free. There are also actions to put a sandwich

on a tray and to serve sandwiches. Problems in this domain define the ingredients to

make sandwiches at the initial state. Goals consist of having selected kids served with a

sandwich to which they are not allergic. This domain was proposed by Raquel Fuentetaja,

Tomàs de la Rosa Turbides.

Available actions are the following:

• make sandwich no gluten(Sw,B,Co) and make sandwich(Sw,B,Co) where SW is a

sandwich, B is a (no-gluten) bread, and Co is a (no-gluten) content allows us to

make the sandwiches.

• put on tray(Sw,T) puts the sandwich Sw on the tray T

Planning as Tabled Logic Programming 19

%% Positions

at(tray1,kitchen) at(tray2,kitchen)

at kitchen bread(bread1) at kitchen bread(bread2)

at kitchen bread(bread3)

at kitchen content(content1) at kitchen content(content2)

at kitchen content(content3) at kitchen content(content4)

at kitchen content(content5)

no gluten bread(bread3)

no gluten content(content1) no gluten content(content4)

waiting(child1,table1) waiting(child2,table2)

waiting(child3,table3) waiting(child4,table4)

%% Info on allergies

allergic gluten(child2) allergic gluten(child4)

%% Not yet ready sandwhiches

notexist(sandw1) notexist(sandw2)

notexist(sandw3) notexist(sandw4)

notexist(sandw5) notexist(sandw6)

%% Goal

served(child2) served(child3)

3

1 2
3

1 2

1

2 3
4 5

13
24

Table 1

Table 2

Fig. A 3. Example of Childsnack instance

• serve sandwich no gluten(Sw,Ch,T,Loc) and serve sandwich(Sw,Ch,T,Loc) serves

the (no-gluten) sandwich Sw which is on tray T to the children Ch at the location

Loc

• move tray(T,Loc1,Loc2), where T is a tray, Loc1 and Loc2 is a location (i.e., a

table, the kitchen)

Each action has cost 1. make sandwich (no-gluten) consumes ingredients.

20 N.-F. Zhou

A.4 Citycar

This model aims to simulate the impact of road building/demolition on traffic flows. A

city is represented as an acyclic graph, in which each node is a junction and edges are

“potential” roads. Some cars start from different positions and have to reach their final

destination as soon as possible. The agent has a finite number of roads available, which

can be built for connecting two junctions and allowing a car to move between them.

Roads can also be removed, and placed somewhere else, if needed. In order to place

roads or to move cars, the destination junction must be clear, i.e., no cars should be in

there. The domain was proposed by Mauro Vallati.

%% Initial State

same line(junction0 0,junction0 1) same line(junction0 1,junction0 0)

same line(junction1 0,junction1 1) same line(junction1 1,junction1 0)

same line(junction0 0,junction1 0) same line(junction1 0,junction0 0)

same line(junction0 1,junction1 1) same line(junction1 1,junction0 1)

diagonal(junction0 0,junction1 1) diagonal(junction1 1,junction0 0)

diagonal(junction0 1,junction1 0) diagonal(junction1 0,junction0 1)

clear(junction0 0) clear(junction0 1)

clear(junction1 0) clear(junction1 1)

at garage(garage0,junction0 1)

starting(car0,garage0) starting(car1,garage0)

%% GOAL

arrived(car0,junction1 1) arrived(car1,junction1 0)

0 1

0

1
garage 0
0 1

Fig. A 4. Example of Citycars instance

Allowed actions are the following:

• car arrived(Dest), which has cost 0. It allows to remove a car from the network

and to remove the occurrence of the destination Dest (a junction) from the list of

all final destinations.

• car start(Loc): A car is put in the road from the garage of location Loc: it has

cost 1.

• move car in road(FromLoc) allows us to move a car in a road from the junction

FromLoc (cost 1—the road is a straight line or a diagonal road starting in FromLoc).

• move car out road(ToLoc) allows us to move a out of a road as soon as the junc-

tion ToLoc is reached by the car (cost 1—the road is a straight line or a diagonal

road ending in ToLoc).

Planning as Tabled Logic Programming 21

• These actions allow us to build diagonal, straight roads or of deleting one road:

— build diagonal oneway(FromLoc,ToLoc) (cost 30),

— build straight oneway(FromLoc,ToLoc) (cost 20),

— destroy road(FromLoc,ToLoc) (cost 10).

Let us observe that search symmetries are eliminated by considering the cars equivalent

during the search. It is trivial to label them a-posteriori given a correct plan.

A.5 GED

The GED problem is to find a min-cost sequence of operations that transforms one

genome (signed permutation of genes) into another. The purpose of this is to use this

cost as a measure of the distance between the two genomes, which is used to construct

hypotheses about the evolutionary relationship between the organisms. The domains was

proposed by Patrik Haslum.

This problem can be stated at several abstraction levels. A general version could include

gene insertions and deletions. Let us focus on the abstraction level and on the three rules

required by the competition benchmarks.

A gene is identified by a symbolic name. The connection between genes is stated by

a binary predicate cw that encodes a linear graph. Each gene can occur in a regular

direction (normal) or in reverse direction (inverted).

The three rules allowed are cut (of a substring) from the main genome, and then a

splice of the cut substring directed or reversed in a selected point of the main genome.

The reverse of a single gene is also allowed. Just to fix the ideas, let us consider the

example in figure A 5. Reversed genes are overlined.

%% INITIAL STATE

normal(a),

normal(b),

normal(c),

normal(d),

cw(a,b),

cw(b,c),

cw(c,d)

a · b · c · d
⇓ (cut 2–4, temp situation)
a b · c d

⇓ (cut 2-4, final situation)
a · d b · c
⇓ (reverse of the 2nd string)
a · d c · b
⇓ (and splice in the 1st)
a · c · b · d

%% GOAL

normal(a),

inverted(b),

inverted(c),

normal(d),

cw(a,c),

cw(c,b),

cw(b,d)

Fig. A 5. An instance of the GED problem and a possible solution

Each complex action (cut and splice) is split in some sub-actions as done by Patrik

Haslum in his PDDL encoding (http://picat-lang.org/ipc14/ged.pddl).

A.6 Floortile, Parking, and Tetris

For the three domains discussed extensively in the core of paper we only show here an

instance both in concrete form and as a picture (see Figures A 6–A 8). The Transport

domain is discussed in detail in the next section.

http://picat-lang.org/ipc14/ged.pddl

22 N.-F. Zhou

%% Floor description

clear(01) ... clear(64),

up(11,01) ... up(64,54),

down(01,11) ... down(54,64)

right(02,01) ... right(64,63)

left(01,02) ... left(63,64)

%% Robots positions and states

robot at(robot1,11) robot has(robot1,white)

robot at(robot2,52) robot has(robot2,black)

available color(white) available color(black)

%% GOAL

painted(11,white) painted(12,black)

painted(13,white) painted(14,black)
...

...

painted(61,black) painted(62,white)

painted(63,black) painted(64,white)

1 2 3 4
0

1

2

3

4

5

6

1 2 3 4
0

1

2

3

4

5

6

Fig. A 6. Example of Floortile instance. A solution with plancost 104 exists (benchmark

instance p01642).

Planning as Tabled Logic Programming 23

%% INITIAL STATE

at curb(car3), at curb num(car3,curb0),

behind car(car2,car3), car clear(car2),

at curb(car4), at curb num(car4,curb1),

behind car(car10,car4), car clear(car10),

at curb(car0), at curb num(car0,curb2),

behind car(car5,car0), car clear(car5),

at curb(car1), at curb num(car1,curb3),

behind car(car9,car1), car clear(car9),

at curb(car7), at curb num(car7,curb4),

behind car(car8,car7), car clear(car8),

at curb(car11), at curb num(car11,curb5),

behind car(car6,car11), car clear(car6),

curb clear(curb6)

%% GOAL

at curb num(car0,curb0), behind car(car7,car0),

at curb num(car1,curb1), behind car(car8,car1),

at curb num(car2,curb2), behind car(car9,car2),

at curb num(car3,curb3), behind car(car10,car3),

at curb num(car4,curb4), behind car(car11,car4),

at curb num(car5,curb5), at curb num(car6,curb6)

0

2

3

5

4

6

3 2

4 10

0

1 9

5

1

7 8

11 6

0

2

3

5

4

6

3

2

4

10

0

1

9

5

1

7

8

11

6

Fig. A 7. An instance of parking (left: initial state, right: goal). A solution with 18 moves

exists (benchmark instance p 12 7 01).

24 N.-F. Zhou

%% Board description

connected(f0 0f,f0 1f), ... connected(f0 2f,f0 3f)

connected(f1 1f,f1 0f), ... connected(f1 2f,f1 3f),

...

connected(f6 0f,f7 0f), ... connected(f6 3f,f7 3f)

clear(f0 3f), ... clear(f7 3f),

%% Pieces

at right l(rightl0,f0 0f,f1 0f,f1 1f), at right l(rightl1,f2 1f,f3 1f,f3 2f),

at two(straight0,f0 2f,f1 2f), at square(square0,f0 1f)

%% Goal

clear(f0 0f), ... clear(f0 3f)

clear(f1 0f) ... clear(f1 3f)

clear(f2 0f) ... clear(f2 3f)

clear(f3 0f) ... clear(f3 3f)

0 1 2 3
0

1

2

3

4

5

6

7

8

9

0 1 2 3
0

1

2

3

4

5

6

7

8

9

0 1 2 3
0

1

2

3

4

5

6

7

8

9

Fig. A 8. Example of Tetris instance: initial state (left), goal (center). A plan of length

36 exists (instance 01 8 of the benchmarks) leading to the final situation to the right.

Planning as Tabled Logic Programming 25

Appendix B The Transport Domain

B.1 PDDL Encoding of the Transport Domain

(define (domain transport)
(:requirements :typing :action-costs)
(:types

location target locatable - object
vehicle package - locatable
capacity-number - object

)

(:predicates
(road ?l1 ?l2 - location)
(at ?x - locatable ?v - location)
(in ?x - package ?v - vehicle)
(capacity ?v - vehicle ?s1 - capacity-number)
(capacity-predecessor ?s1 ?s2 - capacity-number)

)

(:functions
(road-length ?l1 ?l2 - location) - number
(total-cost) - number

)

(:action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:precondition (and

(at ?v ?l1)
(road ?l1 ?l2)

)
:effect (and

(not (at ?v ?l1))
(at ?v ?l2)
(increase (total-cost) (road-length ?l1 ?l2))

)
)

(:action pick-up
:parameters (?v - vehicle ?l - location ?p - package ?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(at ?p ?l)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s2)

)
:effect (and

(not (at ?p ?l))
(in ?p ?v)
(capacity ?v ?s1)
(not (capacity ?v ?s2))
(increase (total-cost) 1)

)
)

(:action drop
:parameters (?v - vehicle ?l - location ?p - package ?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(in ?p ?v)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s1)

)
:effect (and

(not (in ?p ?v))
(at ?p ?l)
(capacity ?v ?s2)
(not (capacity ?v ?s1))
(increase (total-cost) 1)

)
)

)

26 N.-F. Zhou

B.2 Picat Encoding of the Transport Domain

final({Trucks,[]}) => % no waiting packages and no loaded packages
foreach([_Loc,Dests|_] in Trucks)

Dests == []
end.

% unload a package
action({Trucks,Packages},NextState,Action,ActionCost),

select([Loc,Dests,Cap],Trucks,TrucksR),
select(Loc,Dests,DestsR) % unload it deterministically

=>
Action = $unload(Loc),
ActionCost = 1,
NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),
NextState = {NewTrucks,Packages}.

action({Trucks,Packages},NextState,Action,ActionCost) ?=>
Action = $unload(Loc),
ActionCost = 1,
select([Loc,Dests,Cap],Trucks,TrucksR),
select(Dest,Dests,DestsR),
NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),
NewPackages = insert_ordered(Packages,(Loc,Dest)),
NextState = {NewTrucks,NewPackages}.

% load a package onto a truck if the truck and the package are at the same location
action({Trucks,Packages},NextState,Action,ActionCost) ?=>

Action = $load(Loc),
ActionCost = 1,
select([Loc,Dests,Cap],Trucks,TrucksR),
length(Dests) < Cap,
select((Loc,Dest),Packages,PackagesR), % the package is at the same location as the truck
NewTrucks = insert_ordered(TrucksR,[Loc,insert_ordered(Dests,Dest),Cap]),
NextState = {NewTrucks,PackagesR}.

% drive a truck from Loc to NextLoc
action({Trucks,Packages},NextState,Action,ActionCost) =>

Action = $move(Loc,NextLoc),
select([Loc|Tail],Trucks,TrucksR),
road(Loc,NextLoc,ActionCost),
NewTrucks = insert_ordered(TrucksR,[NextLoc|Tail]),
NextState = {NewTrucks,Packages},
estimate_cost(NextState) =< current_resource()-ActionCost.

table
estimate_cost({Trucks,Packages}) = Cost =>

LoadedPackages = [(Loc,Dest) : [Loc,Dests,_] in Trucks, Dest in Dests],
NumLoadedPackages = length(LoadedPackages),
TruckLocs = [Loc : [Loc|_] in Trucks],
travel_cost(TruckLocs,LoadedPackages,Packages,0,TCost),
Cost = TCost+NumLoadedPackages+length(Packages)*2. % includes load and unload costs

% the maximum of the minimum cost of transporting each single package
travel_cost(_Trucks,[],[],Cost0,Cost) => Cost=Cost0.
travel_cost(Trucks,[(PLoc,PDest)|Packages],Packages2,Cost0,Cost) =>

Cost1 = min([D1+D2 : TLoc in Trucks,
shortest_dist(TLoc,PLoc,D1),
shortest_dist(PLoc,PDest,D2)]),

travel_cost(Trucks,Packages,Packages2,max(Cost0,Cost1),Cost).
travel_cost(Trucks,[],Packages2,Cost0,Cost) =>

travel_cost(Trucks,Packages2,[],Cost0,Cost).

Planning as Tabled Logic Programming 27

B.3 An Instance of the Transport Domain

1

4

3

5

2

36

40

37

26

24

18

1 2

3

4

1

4

3

5

2

36

40

37

26

24

18

1 2

3

4

Initial state Goal state

Fig. B 1. An Instance of the Transport Domain (p01).

B.3.1 Solving the instance with Picat

main =>
Facts =

$[road(c3,c1,40),road(c1,c3,40),road(c3,c2,18),
road(c2,c3,18),road(c4,c1,36),road(c1,c4,36),
road(c4,c3,37),road(c3,c4,37),road(c5,c2,24),
road(c2,c5,24),road(c5,c3,26),road(c3,c5,26)],

cl_facts(Facts,[$road(+,-,-)]),
Trucks = [[c2,[],3],[c1,[],2]],
Packages = [(c1,c2),(c1,c2),(c3,c1),(c2,c5)],
best_plan({sort(Trucks),sort(Packages)},Plan,PlanCost),
foreach ({I,Action} in zip(1..len(Plan),Plan))

printf("%3d. %w\n",I,Action)
end,
println(plan_cost=PlanCost).

B.3.2 An Optimal Plan for the Instance

1. load(c1)
2. load(c1)
3. load(c2)
4. move(c1,c3)
5. move(c2,c5)
6. unload(c5)
7. move(c3,c2)
8. unload(c2)
9. unload(c2)

10. move(c2,c3)
11. load(c3)
12. move(c3,c1)
13. unload(c1)

plan_cost = 148

	1 Introduction
	2 A Brief Overview of Picat
	3 Tabling in Picat
	4 The planner Module of Picat
	5 The Implementation of Resource-Bounded Search
	6 Modeling Examples
	6.1 Example-1: Transport
	6.2 Example-2: Tetris
	6.3 Example-3: Floortile
	6.4 Example-4: Parking

	7 Experimental Results
	8 Conclusion and Future Work
	References
	Appendix A Benchmarks used in the paper
	A.1 Barman
	A.2 Cave Diving
	A.3 Childsnack
	A.4 Citycar
	A.5 GED
	A.6 Floortile, Parking, and Tetris

	Appendix B The Transport Domain
	B.1 PDDL Encoding of the Transport Domain
	B.2 Picat Encoding of the Transport Domain
	B.3 An Instance of the Transport Domain

