23,940 research outputs found

    Reciprocal relations, bounds, and size effects for composites with highly conducting interface

    Get PDF
    We provide a reciprocal relation linking the effective conductivity of a composite with highly conducting phase interfaces to that of a composite with the same phase geometry but with an electrical contact resistance at phase interfaces. A field relationship linking the electric field inside a composite with highly conducting phase interfaces to the current in a composite with contact resistance between phases is found. New size effects exhibited by isotropic particulate suspensions with highly conducting interface are obtained. The effective properties of periodic composites are shown to be monotonically increasing as the size of the period cell tends to zero. The role of surface energy for energy minimizing polydisperse suspensions of disks is examined; a necessary condition for isotropic polydisperse suspensions with minimal effective conductivity is found. For monodisperse suspensions of spheres, a critical radius is found for which the electric field is uniform throughout the composite

    Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experiment was far from being satisfactory. In an attempt to close up the gap between theory and experiment, we considered the more realistic cells of spherocylinders, i.e., circular cylinders with two hemispherical caps at both ends. We have formulated a Green function formalism for calculating the spectral representation of cells of finite length. The Green function can be reduced because of the azimuthal symmetry of the cell. This simplification enables us to calculate the dispersion spectrum and hence access the effect of cell structure on the dielectric behavior of cell suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of the American Physical Society. Accepted for publications in J. Phys.: Condens. Matte

    Modeling tensorial conductivity of particle suspension networks

    Full text link
    Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality

    Electrokinetic and hydrodynamic properties of charged-particles systems: From small electrolyte ions to large colloids

    Get PDF
    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics

    Ion size effects on the electrokinetics of salt-free concentrated suspensions in ac fields

    Full text link
    We analyze the influence of finite ion size effects in the response of a salt-free concentrated suspension of spherical particles to an oscillating electric field. Salt-free suspensions are just composed of charged colloidal particles and the added counterions released by the particles to the solution, that counterbalance their surface charge. In the frequency domain, we study the dynamic electrophoretic mobility of the particles and the dielectric response of the suspension. We find that the Maxwell-Wagner-O'Konski process associated with the counterions condensation layer, is enhanced for moderate to high particle charges, yielding an increment of the mobility for such frequencies. We also find that the increment of the mobility grows with ion size and particle charge. All these facts show the importance of including ion size effects in any extension attempting to improve standard electrokinetic models.Comment: J. Colloid Interface Sci., in press, 13 pages, 9 figure

    Thermal optical non-linearity of nematic mesophase enhanced by gold nanoparticles – an experimental and numerical investigation

    Get PDF
    In this work the mechanisms leading to the enhancement of optical nonlinearity of nematic liquid crystalline material through localized heating by doping the liquid crystals (LCs) with gold nanoparticles (GNPs) are investigated. We present some experimental and theoretical results on the effect of voltage and nanoparticle concentration on the nonlinear response of GNP-LC suspensions. The optical nonlinearity of these systems is characterized by diffraction measurements and the second order nonlinear refractive index, n 2 , is used to compare systems with different configurations and operating conditions. A theoretical model based on heat diffusion that takes into account the intensity and finite size of the incident beam, the nanoparticle concentration dependent absorbance of GNP doped LC systems and the presence of bounding substrates is developed and validated. We use the model to discuss the possibilities of further enhancing the optical nonlinearity

    Two-step percolation in aggregating systems

    Full text link
    The two-step percolation behavior in aggregating systems was studied both experimentally and by means of Monte Carlo (MC) simulations. In experimental studies, the electrical conductivity, σ\sigma, of colloidal suspension of multiwalled carbon nanotubes (CNTs) in decane was measured. The suspension was submitted to mechanical de-liquoring in a planar filtration-compression conductometric cell. During de-liquoring, the distance between the measuring electrodes continuously decreased and the CNT volume fraction φ\varphi continuously increased (from 10310^{-3} up to 0.3\approx 0.3% v/v). The two percolation thresholds at φ1103\varphi_{1}\lesssim 10^{-3} and φ2102\varphi_{2}\approx 10^{-2} can reflect the interpenetration of loose CNT aggregates and percolation across the compact conducting aggregates, respectively. The MC computational model accounted for the core-shell structure of conducting particles or their aggregates, the tendency of a particle for aggregation, the formation of solvation shells, and the elongated geometry of the conductometric cell. The MC studies revealed two smoothed percolation transitions in σ(φ)\sigma(\varphi) dependencies that correspond to the percolation through the shells and cores, respectively. The data demonstrated a noticeable impact of particle aggregation on anisotropy in electrical conductivity σ(φ)\sigma(\varphi) measured along different directions in the conductometric cell.Comment: 10 pages, 6 figure
    corecore