306 research outputs found

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    A Photovoltaic-Fed DC-Bus Islanded Electric Vehicles Charging System Based on a Hybrid Control Scheme

    Get PDF
    Electric vehicle (EV) charging stations fed by photovoltaic (PV) panels allow integration of various low-carbon technologies, and are gaining increasing attention as a mean to locally manage power generation and demand. This paper presents novel control schemes to improve coordination of an islanded PV-fed DC bus EV charging system during various disturbances, including rapid changes of irradiance, EV connection and disconnection, or energy storage unit (ESU) charging and discharging. A new hybrid control scheme combining the advantages of both master–slave control and droop control is proposed for a charging station supplying 20 EVs for a total power of 890 kW. In addition, a three-level (3L) boost converter with capacitor voltage balance control is designed for PV generation, with the aim to provide high voltage gain while employing a small inductor. The control techniques are implemented in a simulation environment. Various case studies are presented and analysed, confirming the effectiveness and stability of the control strategies proposed for the islanded charging system. For all tested conditions, the operating voltage is maintained within 5% of the rated value

    Power Electronic Architecture for Multi-Vehicle Extreme Fast Charging Stations

    Get PDF
    Electric vehicles (EV) are quickly gaining popularity but limited driving range and a lack of fast charging infrastructure are preventing widespread use when compared with gas powered vehicles. This gave rise to the concept of multi-vehicle extreme fast charging (XFC) stations. Extreme fast charging imposes challenges in the forms of power delivery, battery management, and energy dispatch. The extreme load demand must be handled in such a way that users may receive a timely charge with minimal impacts on the electric grid. Power electronics are implemented to address these challenges with highly power dense and efficient solutions. This work explores a power electronic architecture as one such solution. The system consists of three parts: a cascaded H-bridge (CHB) active rectifier that interfaces to a medium voltage (MV) grid, a dual active bridge (DAB) based solid state transformer (SST) that provides isolation and forms a low voltage DC (LVDC) bus, and full bridge DC-DC converters configured as partial power converters (PPC) that interface with the vehicle battery

    Battery charging station for electric vehicles based on bipolar dc power grid with grid-to-vehicle, vehicle-to-grid and vehicle-to-vehicle operation modes

    Get PDF
    This paper proposes an electric vehicle (EV) battery charging station (EV-BCS) based on a bipolar dc power grid with the capabilities of returning energy back to the power grid (vehicle-to-grid – V2G mode), as well as to perform power transfer between different EVs connected to the EV-BCS without drawing power from the power grid (vehicle-to-vehicle – V2V mode), besides the traditional battery charging operation (grid-to-vehicle – G2V mode). The proposed EV-BCS is modular, using three-level bidirectional dc-dc converters. In this paper, for simplicity reasons, only two converters, and hence two EVs, are considered in order to validate the previously referred operation modes. Furthermore, unbalanced operation from the EVs side is also considered for all the operation modes, aiming to consider a real scenario of operation. Simulation results verify the correct operation of the EV-BCS in all cases, with balanced and unbalanced current consumption from the EVs resulting always in balanced currents from the bipolar dc power grid side

    The state of the art of battery charging infrastructure for electrical vehicles: Topologies, power control strategies, and future trend

    Get PDF
    Electric vehicle battery (EVB) charger topologies play a vital role to increase the penetration of EVs. This paper reviews the status quo of EV battery (EVB) chargers in term of converter topologies, operation modes, and power control strategies for EVs. EVB Chargers are classified based on their power levels and power flow direction. Referring to power ratings, EV chargers can be divided into Level 1, Level 2 and Level 3. Level 1 and Level 2 are normally compatible with on-board chargers while Level 3 is used for an off-board charger. Unidirectional/bidirectional power flow can be obtained at all power levels. However, bidirectional power flow is usually designed for Level 3 chargers as it can provide the huge benefit of transferring power back to grid when needed. Moreover, the different operation modes of an EVB charger are also presented. There are two main modes: Grid-to-Vehicle (V1G or G2V) and Vehicle-to-Grid (V2G). The V2G mode helps bring EV batteries to become active distributed sources in smart grids and is the crucial solution for a high EV penetration. Future trend and authors\u27 recommendations with preliminary simulation and experimental results are demonstrated in this paper

    A bidirectional power charging control strategy for Plug-in Hybrid Electric Vehicles

    Get PDF
    © 2019 by the authors. Plug-in Hybrid Electric Vehicles (PHEVs) have the potential of providing frequency regulation due to the adjustment of power charging. Based on the stochastic nature of the daily mileage and the arrival and departure time of Electric Vehicles (EVs), a precise bidirectional charging control strategy of plug-in hybrid electric vehicles by considering the State of Charge (SoC) of the batteries and simultaneous voltage and frequency regulation is presented in this paper. The proposed strategy can control the batteries charge which are connected to the grid, and simultaneously regulate the voltage and frequency of the power grid during the charging time based on the available power when different events occur over a 24-h period. The simulation results prove the validity of the proposed control strategy in coordinating plug-in hybrid electric vehicles aggregations and its significant contribution to the peak reduction, as well as power quality improvement. The case study in this paper consists of detailed models of Distributed Energy Resources (DERs), diesel generator and wind farm, a generic aggregation of EVs with various charging profiles, and different loads. The test system is simulated and analyzed in MATLAB/SIMULINK software

    Active Filter Modelling To Mitigate Harmonics Generated By Electric Vehicle Chargers

    Get PDF
    The Automotive industry is going through a rapid transformation to adopt electrified technology. A major share of the electrified vehicles is going to be in the Battery electric vehicles (BEVs) and plug in hybrids segments that need to connect to the grid to recharge the batteries. For customer convenience, the time required for fully charging the battery need to be brought down significantly. EV charging stations are getting installed that could bring down the charging time to less than 30 minutes. However this pose a unique issue to the power quality of the utility grid. During charging, the EV charging unit injects harmonics to the grid. When a large number of EVs are getting charge simultaneously, which is a likely scenario in the future, the degradation in the power quality of the grid would be significant. This thesis discuss the modelling of an active filter to reduce the Total harmonic distortion (THD) generated by electric vehicle (EV) chargers. The main objective of this thesis is to determine the percentage of harmonic current injected by the EV chargers to the power grid and to model an active filter to mitigate the harmonic distortion generated by these chargers. The active filter is modelled as bidirectional three-phase pulse width modulation (PWM) rectifier. The EV in this proposed model is represented as an injected current harmonic source. Positive sequence synchronous reference frame controller (SRFC) is used to generate the reference current. The hysteresis controller is used to compare the load current and injected current, and its output is used to generate the switching pulses for Metal oxide semiconductor field effect transistor (MOSFET). The DC link voltage control is achieved by using conventional Proportional and integral controller (PI) and fuzzy logic control PI. MATLAB/Simulink simulation result shows that the proposed filter can be used to mitigate the THD of EV chargers without violating the limit set by IEEE Std. 519 - 1992

    A Review of Power Converters for Ships Electrification

    Get PDF
    Fully electric ships have become popular to meet the demand for emission-free transportation and improve ships' functionality, reliability, and efficiency. Previous studies reviewed the shipboard power systems, the different types of shipboard energy storage devices, and the influences of the shore-to-ship connection on ports' electrical grid. However, the converter topologies used in the electrification of ships have received very little attention. This article presents a comprehensive topological review of currently available shore-to-ship and shipboard power converters in the literature and on the market. The main goal is to anticipate future trends and potential challenges to stimulate research to accelerate more efficient and reliable electric ships

    Power Management and Protection in MT-HVDC Systems with the Integration of High-Voltage Charging Stations

    Get PDF
    Due to the significant increase of the long-distance electricity demand, effective use of Distributed Generations (DGs) in power system, and the challenges in the expansion of new transmission lines to improve the reliability of power system reliability, utilizing Multi-Terminal HVDC (MT-HVDC) technology is an applicable, reliable, and cost-effective solution in hybrid AC/DC grids. MT-HVDC systems have flexibility in terms of independent active and reactive power flow (reversible control) and voltage control. Interconnecting two AC grids with different frequencies and transmitting electricity for the long-distance with low power-losses, which leads to less operation and maintenance costs, can be done through the MT-HVDC systems. The integration of large-scale remote DGs, e.g., wind farms, solar power plants, etc., and high-voltage charging stations for Electric Vehicles (EVs) into the power grid have different issues, such as economic, technical, and environmental challenges of transmission and network expansion/operation of both AC and DC grids. In details, damping oscillation, voltage support at different buses, operation of grid-connected inverters to the off-shore and on-shore AC systems, integrating of existing converter stations in MT-HVDC systems without major changes in control system, evaluation of communication infrastructure and also reactive power and filtering units’ requirements in MT-HVDC systems are the technical challenges in this technology. Therefore, a reliable MT-HVDC system can be a possible mean of resolving all the above-mentioned issues. MT-HVDC systems need a control system that can bring stability to the power system during a certain period of the operation/planning time while providing effective and robust electricity. This thesis presents an improved droop-based control strategy for the active and reactive power-sharing on the large-scale MT-HVDC systems integrating different types of AC grids considering the operation of the hybrid AC/DC grids under normal/contingency conditions. The main objective of the proposed strategy is to select the best parameters of the local terminal controllers at the site of each converter station (as the primary controller) and a central master controller (supervisory controller) to control the Power Flow (PF) and balance the instantaneous power in MT-HVDC systems. In this work, (1) various control strategies of MT-HVDC systems are investigated to propose (2) an improved droop-based power-sharing strategy of MT-HVDC systems while the loads (e.g., high-voltage charging stations) in power systems have significant changes, to improve the frequency response and accuracy of the PF control, (3) a new topology of a fast proactive Hybrid DC Circuit Breaker (HDCCB) to isolate the DC faults in MT-HVDC grids in case of fault current interruption. The results from this research work would include supporting energy adequacy, increasing renewable energy penetration, and minimizing losses when maintaining system integrity and reliability. The proposed strategies are evaluated on different systems, and various case scenarios are applied to demonstrate their feasibility and robustness. The validation processes are performed using MATLAB software for programming, and PSCAD/EMTDC and MATLAB/Simulink for simulation
    • …
    corecore