86 research outputs found

    Zuverlässige und Energieeffiziente gemischt-kritische Echtzeit On-Chip Systeme

    Get PDF
    Multi- and many-core embedded systems are increasingly becoming the target for many applications that require high performance under varying conditions. A resulting challenge is the control, and reliable operation of such complex multiprocessing architectures under changes, e.g., high temperature and degradation. In mixed-criticality systems where many applications with varying criticalities are consolidated on the same execution platform, fundamental isolation requirements to guarantee non-interference of critical functions are crucially important. While Networks-on-Chip (NoCs) are the prevalent solution to provide scalable and efficient interconnects for the multiprocessing architectures, their associated energy consumption has immensely increased. Specifically, hard real-time NoCs must manifest limited energy consumption as thermal runaway in such a core shared resource jeopardizes the whole system guarantees. Thus, dynamic energy management of NoCs, as opposed to the related work static solutions, is highly necessary to save energy and decrease temperature, while preserving essential temporal requirements. In this thesis, we introduce a centralized management to provide energy-aware NoCs for hard real-time systems. The design relies on an energy control network, developed on top of an existing switch arbitration network to allow isolation between energy optimization and data transmission. The energy control layer includes local units called Power-Aware NoC controllers that dynamically optimize NoC energy depending on the global state and applications’ temporal requirements. Furthermore, to adapt to abnormal situations that might occur in the system due to degradation, we extend the concept of NoC energy control to include the entire system scope. That is, online resource management employing hierarchical control layers to treat system degradation (imminent core failures) is supported. The mechanism applies system reconfiguration that involves workload migration. For mixed-criticality systems, it allows flexible boundaries between safety-critical and non-critical subsystems to safely apply the reconfiguration, preserving fundamental safety requirements and temporal predictability. Simulation and formal analysis-based experiments on various realistic usecases and benchmarks are conducted showing significant improvements in NoC energy-savings and in treatment of system degradation for mixed-criticality systems improving dependability over the status quo.Eingebettete Many- und Multi-core-Systeme werden zunehmend das Ziel für Anwendungen, die hohe Anfordungen unter unterschiedlichen Bedinungen haben. Für solche hochkomplexed Multi-Prozessor-Systeme ist es eine grosse Herausforderung zuverlässigen Betrieb sicherzustellen, insbesondere wenn sich die Umgebungseinflüsse verändern. In Systeme mit gemischter Kritikalität, in denen viele Anwendungen mit unterschiedlicher Kritikalität auf derselben Ausführungsplattform bedient werden müssen, sind grundlegende Isolationsanforderungen zur Gewährleistung der Nichteinmischung kritischer Funktionen von entscheidender Bedeutung. Während On-Chip Netzwerke (NoCs) häufig als skalierbare Verbindung für die Multiprozessor-Architekturen eingesetzt werden, ist der damit verbundene Energieverbrauch immens gestiegen. Daher sind dynamische Plattformverwaltungen, im Gegensatz zu den statischen, zwingend notwendig, um ein System an die oben genannten Veränderungen anzupassen und gleichzeitig Timing zu gewährleisten. In dieser Arbeit entwickeln wir energieeffiziente NoCs für harte Echtzeitsysteme. Das Design basiert auf einem Energiekontrollnetzwerk, das auf einem bestehenden Switch-Arbitration-Netzwerk entwickelt wurde, um eine Isolierung zwischen Energieoptimierung und Datenübertragung zu ermöglichen. Die Energiesteuerungsschicht umfasst lokale Einheiten, die als Power-Aware NoC-Controllers bezeichnet werden und die die NoC-Energie in Abhängigkeit vom globalen Zustand und den zeitlichen Anforderungen der Anwendungen optimieren. Darüber hinaus wird das Konzept der NoC-Energiekontrolle zur Anpassung an Anomalien, die aufgrund von Abnutzung auftreten können, auf den gesamten Systemumfang ausgedehnt. Online- Ressourcenverwaltungen, die hierarchische Kontrollschichten zur Behandlung Abnutzung (drohender Kernausfälle) einsetzen, werden bereitgestellt. Bei Systemen mit gemischter Kritikalität erlaubt es flexible Grenzen zwischen sicherheitskritischen und unkritischen Subsystemen, um die Rekonfiguration sicher anzuwenden, wobei grundlegende Sicherheitsanforderungen erhalten bleiben und Timing Vorhersehbarkeit. Experimente werden auf der Basis von Simulationen und formalen Analysen zu verschiedenen realistischen Anwendungsfallen und Benchmarks durchgeführt, die signifikanten Verbesserungen bei On-Chip Netzwerke-Energieeinsparungen und bei der Behandlung von Abnutzung für Systeme mit gemischter Kritikalität zur Verbesserung die Systemstabilität gegenüber dem bisherigen Status quo zeigen

    Advancing mixed criticality scheduling techniques to support industrial applications

    Get PDF
    Safety critical software development is an extremely costly endeavour; software developers must forever target efficient processes that reduce software cost, while allowing significant increases in system size. The key challenge being how to reduce software cost, without compromising safety or quality. The focus of this thesis is to research the development and temporal proof of a mixed criticality system. The thesis, which attempts to define an end to end process, begins by studying appropriate and efficient methods for assessing the timing performance of system components. The key being an approach that can be applied automatically at an early point in the design lifecycle. The thesis then progresses to study how existing mixed criticality research needs to be advanced and matured in order to support an industrial safety critical application. This includes the definition of a scheduling model designed to provide the necessary protections advised by international aviation guidelines. In the final part of this thesis the timing process and mixed criticality system model are brought together to explore how a real system using these techniques could be validated

    Analyses and optimizations of timing-constrained embedded systems considering resource synchronization and machine learning approaches

    Get PDF
    Nowadays, embedded systems have become ubiquitous, powering a vast array of applications from consumer electronics to industrial automation. Concurrently, statistical and machine learning algorithms are being increasingly adopted across various application domains, such as medical diagnosis, autonomous driving, and environmental analysis, offering sophisticated data analysis and decision-making capabilities. As the demand for intelligent and time-sensitive applications continues to surge, accompanied by growing concerns regarding data privacy, the deployment of machine learning models on embedded devices has emerged as an indispensable requirement. However, this integration introduces both significant opportunities for performance enhancement and complex challenges in deployment optimization. On the one hand, deploying machine learning models on embedded systems with limited computational capacity, power budgets, and stringent timing requirements necessitates additional adjustments to ensure optimal performance and meet the imposed timing constraints. On the other hand, the inherent capabilities of machine learning, such as self-adaptation during runtime, prove invaluable in addressing challenges encountered in embedded systems, aiding in optimization and decision-making processes. This dissertation introduces two primary modifications for the analyses and optimizations of timing-constrained embedded systems. For one thing, it addresses the relatively long access times required for shared resources of machine learning tasks. For another, it considers the limited communication resources and data privacy concerns in distributed embedded systems when deploying machine learning models. Additionally, this work provides a use case that employs a machine learning method to tackle challenges specific to embedded systems. By addressing these key aspects, this dissertation contributes to the analysis and optimization of timing-constrained embedded systems, considering resource synchronization and machine learning models to enable improved performance and efficiency in real-time applications with stringent constraints

    Scheduling and locking in multiprocessor real-time operating systems

    Get PDF
    With the widespread adoption of multicore architectures, multiprocessors are now a standard deployment platform for (soft) real-time applications. This dissertation addresses two questions fundamental to the design of multicore-ready real-time operating systems: (1) Which scheduling policies offer the greatest flexibility in satisfying temporal constraints; and (2) which locking algorithms should be used to avoid unpredictable delays? With regard to Question 1, LITMUSRT, a real-time extension of the Linux kernel, is presented and its design is discussed in detail. Notably, LITMUSRT implements link-based scheduling, a novel approach to controlling blocking due to non-preemptive sections. Each implemented scheduler (22 configurations in total) is evaluated under consideration of overheads on a 24-core Intel Xeon platform. The experiments show that partitioned earliest-deadline first (EDF) scheduling is generally preferable in a hard real-time setting, whereas global and clustered EDF scheduling are effective in a soft real-time setting. With regard to Question 2, real-time locking protocols are required to ensure that the maximum delay due to priority inversion can be bounded a priori. Several spinlock- and semaphore-based multiprocessor real-time locking protocols for mutual exclusion (mutex), reader-writer (RW) exclusion, and k-exclusion are proposed and analyzed. A new category of RW locks suited to worst-case analysis, termed phase-fair locks, is proposed and three efficient phase-fair spinlock implementations are provided (one with few atomic operations, one with low space requirements, and one with constant RMR complexity). Maximum priority-inversion blocking is proposed as a natural complexity measure for semaphore protocols. It is shown that there are two classes of schedulability analysis, namely suspension-oblivious and suspension-aware analysis, that yield two different lower bounds on blocking. Five asymptotically optimal locking protocols are designed and analyzed: a family of mutex, RW, and k-exclusion protocols for global, partitioned, and clustered scheduling that are asymptotically optimal in the suspension-oblivious case, and a mutex protocol for partitioned scheduling that is asymptotically optimal in the suspension-aware case. A LITMUSRT-based empirical evaluation is presented that shows these protocols to be practical

    Concurrency Platforms for Real-Time and Cyber-Physical Systems

    Get PDF
    Parallel processing is an important way to satisfy the increasingly demanding computational needs of modern real-time and cyber-physical systems, but existing parallel computing technologies primarily emphasize high-throughput and average-case performance metrics, which are largely unsuitable for direct application to real-time, safety-critical contexts. This work contrasts two concurrency platforms designed to achieve predictable worst case parallel performance for soft real-time workloads with millisecond periods and higher. One of these is then the basis for the CyberMech platform, which enables parallel real-time computing for a novel yet representative application called Real-Time Hybrid Simulation (RTHS). RTHS combines demanding parallel real-time computation with real-time simulation and control in an earthquake engineering laboratory environment, and results concerning RTHS characterize a reasonably comprehensive survey of parallel real-time computing in the static context, where the size, shape, timing constraints, and computational requirements of workloads are fixed prior to system runtime. Collectively, these contributions constitute the first published implementations and evaluations of general-purpose concurrency platforms for real-time and cyber-physical systems, explore two fundamentally different design spaces for such systems, and successfully demonstrate the utility and tradeoffs of parallel computing for statically determined real-time and cyber-physical systems

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    Achieving fault tolerance via robust partitioning and N-Modular Redundancy

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Includes bibliographical references (p. 165-169).This thesis describes the design and performance results for the P-NMR fault tolerant avionics system architecture being developed at Draper Laboratory. The two key principles of the architecture are robust software partitioning (P), as defined by the ARINC 653 open standard, and N-Modular Redundancy (NMR). The P-NMR architecture uses cross channel data exchange and voting to implement fault detection, isolation and recovery (FDIR). The FDIR function is implemented in software that executes on commercial-off-the-shelf (COTS) hardware components that are also based on open standards. The FDIR function and the user applications execute on the same processor. The robust partitioning is provided by a COTS real-time operating system that complies with the ARINC 653 standard. A Triple Modular Redundant (TMR) prototype was developed and various performance metrics were collected. Evaluation of the TMR prototype indicates that the ARINC 653 standard is compatible with an NMR and FDIR architecture. Application partitions can be considered software fault containment regions which enhance the overall integrity of the system. The P-NMR performance metrics were compared with a previous Draper Laboratory design called the Fault Tolerant Parallel Processor (FTPP). This design did not make use of robust partitioning and it used proprietary hardware for implementing certain FDIR functions. The comparison demonstrated that the P-NMR system prototype could perform at an acceptable level and that the development of the system should continue. This research was done in the context of developing cost effective avionics systems for space exploration vehicles such as those being developed for NASA's Constellation program.by Brendan Anthony O'Connell.S.M

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Rethinking Grid Governance for the Climate Change Era

    Get PDF
    The electricity sector is often appropriately called the linchpin of efforts to respond to climate change. Over the next few decades, the U.S. electricity sector will need to double in size to accommodate electric vehicles, at the same time that it transforms to run entirely on clean energy. To drive this transformation, states are increasingly adopting 100% clean energy targets. But fossil fuel corporations are pushing back, seeking to maintain their structural domination of the U.S. energy sector. This article calls attention to one central but under-scrutinized way that these companies impede the clean energy transition: Incumbent fossil fuel companies essentially run the United States’ electricity grid, writing its rules in ways that favor their private interests at the expense of societal goals.In most of the country, the electricity grid is managed by Regional Transmission Organizations (RTOs), which operate under Federal Energy Regulatory Commission (FERC) oversight. These organizations—formed in the late 1990s—have a distinct intellectual lineage in the privatization and new governance movements of that time. Most RTOs are structured as private industry clubs, in which industry members “vote” on the rules for regional electricity markets and grid operation. This governance arrangement has proven successful at maintaining a reliable grid but often serves as an impediment to progress on clean energy. Over the twenty years of their existence, many RTOs have resisted incorporating clean energy and energy conservation measures into their grids and market rules, despite strong evidence that treating these resources commensurately would lower costs and improve market functionality. Now, several regions are pursuing reforms in the name of “investor confidence” and “fuel security” that privilege coal and natural gas resources—the same fossil fuels that many states are trying to phase out of their energy mix.This Article’s central contention is that it is time to reevaluate the United States’ functionally privatized mode of electricity governance, to make it work for an era in which regulatory priorities are shifting in response to climate change. U.S. electricity law suffers from a gaping and growing accountability gap, in which neither FERC nor states have the authority needed to make electricity markets bend to democratically established prerogatives that harm industry incumbents. To remedy the situation, federal and state regulators need more robust authority to shape energy market rules to public aims. Drawing from informative differences across RTOs, the Article concludes with four reform pathways, suggesting that FERC or Congress might (1) pare back RTOs’ responsibilities, (2) enhance state and federal oversight capabilities, (3) police corporate agglomeration in the sector, and (4) explore public ownership or control over the grid
    • …
    corecore