
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2018

Concurrency Platforms for Real-Time and Cyber-
Physical Systems
David Ferry
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Civil Engineering Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Ferry, David, "Concurrency Platforms for Real-Time and Cyber-Physical Systems" (2018). Engineering and Applied Science Theses &
Dissertations. 360.
https://openscholarship.wustl.edu/eng_etds/360

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/360?utm_source=openscholarship.wustl.edu%2Feng_etds%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

School of Engineering & Applied Science
Department of Computer Science & Engineering

Dissertation Examination Committee:
Christopher D. Gill, Chair
Kunal Agrawal, Co-Chair

James H. Anderson
Roger Chamberlain
I-Ting Angelina Lee

Arun Prakash

Concurrency Platforms for Real-Time and Cyber-Physical Systems
by

David Ferry

A dissertation presented to
The Graduate School

of Washington University in
partial ful�llment of the

requirements for the degree
of Doctor of Philosophy

August 2018
St. Louis, Missouri

© 2018, David Ferry

Table of Contents

List of Figures . iv

List of Tables . vi

Acknowledgements . vii

Abstract . x

Preface . xi

1 Parallelism and Concurrency Platforms for Real-Time Systems 1

2 RT-OpenMP 8

2.0.1 Overview of OpenMP . 9

2.0.2 Parallel Synchronous Task Model . 11

2.0.3 RT-OpenMP Scheduling Service Design 13

2.1 RT-OpenMP Evaluation . 24

2.1.1 RT-OpenMP Design Space Choices 27

2.1.2 System Overhead Measurements . 30

2.1.3 Empirical Results . 31

3 Mixed-Criticality Federated Scheduling Service 37

3.1 Implementing Mixed-Criticality Federated Scheduling (MCFS) 39

3.1.1 Overrun Detection . 41

3.1.2 Core Reallocation . 42

3.1.3 State-Aware Barrier Implementation 44

3.1.4 Recovering from critical-state to typical-state 46

3.2 Evaluation of MCFS . 47

3.2.1 MCFS Benchmarks . 48

3.2.2 Impact of high-criticality tasks on low-criticality tasks 48

3.2.3 MCFS Validation . 51

3.2.4 Mode Switch Stress Testing . 52

3.2.5 Graceful Degradation . 53

3.3 Discussion of RT-OpenMP vs Federated Scheduling Implementations 54

ii

4 CyberMech, A Concurrency Platform for Real-Time Hybrid Simulation 64

4.1 Background on RTHS . 64

4.1.1 Structural Simulation Methodology 70

4.1.2 Shake Table Hardware . 72

4.2 RTHS Challenges for CyberMech . 75

4.3 Computational Architecture for RTHS . 77

4.3.1 Specifying RTHS Computations . 78

4.3.2 Thread Safe Hardware I/O . 81

4.3.3 Interaction Between Tasks . 83

4.3.4 RTHS Repeatability on CyberMech 85

4.4 Further Challenges . 91

4.4.1 Application to General Cyber-Physical Systems 91

4.4.2 Challenges in RTHS for CyberMech 93

5 Parallel Computing Tradeo�s In Statically Determined Cyber-Physical

Systems 96

5.1 Linearity of RTHS determines proportion of parallel/serial computation . . . 98

5.2 Parallel Real-time Computation of Static RTHS 103

5.3 Further Challenges and Future Work . 110

6 Related Work and Other Soft Real-Time Platforms on Linux 115

6.1 Concurrency Platforms and Parallel Programming 115

6.2 Multi-processing vs. Parallel Processing . 121

6.3 Soft Real-Time vs. Hard Real-Time . 122

6.4 Parallel Real-Time . 125

6.5 Real-Time Hybrid Simulation (RTHS) . 127

7 Conclusion 129

7.1 Future Parallel Real-Time Platforms . 131

7.2 Future of RTHS Infrastructure . 133

7.3 Future of Cyber-Physical Parallelism . 135

8 Bibliography 137

iii

List of Figures

2.1 An example parallel-synchronous task with four segments. 11

2.2 An example decomposition and scheduling of two tasks under RT-OpenMP. . 14

2.3 Division of responsibility between the scheduler and run-time dispatcher in

the RT-OpenMP system. 20

2.4 RT-OpenMP task set utilization vs. failure rate for the 2ms timescale. 34

2.5 RT-OpenMP task set utilization vs. failure rate for the 4ms timescale. 34

2.6 RT-OpenMP task set utilization vs. failure rate for the 8ms timescale. 35

2.7 RT-OpenMP task set utilization vs. failure rate for the 16ms timescale. . . . 35

2.8 RT-OpenMP task set utilization vs. failure rate for the 32ms timescale. . . . 36

2.9 RT-OpenMP task set utilization vs. failure rate for the 2048ms timescale. . . 36

3.1 MCFS Periodic Task Invocation Psuedocode 44

3.2 MCFS Mode Aware Barrier Psuedocode . 45

3.3 High-criticality mode transition latency in MCFS 49

3.4 Graceful degradation of low-criticality tasks in the presence of high-criticality

task overruns. 53

4.1 The fundamental RTHS control loop. 68

4.2 A generic Real-Time Hybrid Simultion (RTHS) decomposition of a two-story

structure. 70

4.3 The electronic shake table used for experimental evaluations in this chapter. 74

4.4 And overview of the CyberMech system architecture as applied to RTHS. . . 79

4.5 Two-story frame validation RTHS for CyberMech and xPC. 88

4.6 Comparison of transfer system performance between CyberMech and xPC. . 89

4.7 Normalized error in displacement of 1st �oor resulting from modeling ideal-

ization and epistemic experimental sources of error. 89

4.8 Standard deviation in displacement response of the 1st �oor for both sets of

runs as a function of time. 90

iv

4.9 Normalized di�erence of the average displacement response of the 1st �oor

between CyberMech and xPC. 90

4.10 Generalized decision making-loop for cyber-physical applications. 92

5.1 Ten degree of freedom numerical substructure. 104

5.2 Static RTHS per-period time by simulation size and number of cores 106

5.3 Static RTHS periodic rate by simulation size and number of cores 107

5.4 Static RTHS numerical simulation computation timings by model size and

number of processor cores . 111

5.5 Static RTHS Hardware communication time by model size and number of

processor cores. Model sizes under 506 DOF are not shown as they were

extremely similar to the 506 DOF data . 112

v

List of Tables

2.1 Timescales used to validate the RT-OpenMP system. 27

2.2 RT-OpenMP scheduling latency and barrier latency micro-benchmarks. . . . 31

4.1 Observed analog read/write and digital read communication overheads for the

electric shake table. 83

4.2 CyberMech achievable state sizes as in�uenced by communication sizes and

synchronization type. 85

5.1 Categories of RTHS Explored in This Work 98

5.2 Serial vs. Parallelizable work in an exemplar RTHS 101

vi

Acknowledgements

I am grateful to both Chris Gill and Kunal Agrawal, both of whom have provided incredible

guidance through my graduate career. I could not have asked for a better pair of co-advisers

given nature of this project at the intersection of parallel computing and real-time computing,

and they are certainly a case where the whole is greater than the sum of the parts. They

met my needs as a student and have shepherded me into an academic life that is all my own,

and for that I am deeply thankful.

This work could not exist without both Jing Li and Abusayeed Saifullah, both of whom

were instrumental in developing the related theory of parallel real-time execution. Jing's

theoretical work on federated scheduling in particular should be considered an essential

companion to this dissertation as it forms the underpinning for much of the systems work

that is within.

Chenyang Lu has been a constant collaborator over my graduate experience and has closely

directed the parallel real-time computing e�ort at Washington University alongside Chris

and Kunal. He has contributed to this work in innumerable ways both large and small.

The civil engineers at Purdue University have been fantastic collaborators, without which

the large body of work on real-time hybrid simulation (RTHS) would not have been possible.

In particular: Gregory Bunting, Amin Maghareh, and Johnny Condori Uribe, who have been

advised by Shirley Dyke and Arun Prakash. They have been an exceptional group of people

to work with, and their willingness to engage in topics outside of their domain has been

tremendous.

James Orr has helped to �esh out ideas on the application of parallelism in cyber-physical

systems; in particular the frontier between statically allocated systems and dynamically

allocated systems.

vii

There are many undergraduate and master's students who have worked alongside me in

various capacities, who have contributed in ways seen and unseen. Two students with par-

ticular contributions are Kevin Kieselbach, who wrote the �rst prototype for the federated

scheduling runtime, and Tommy Powers, who did much of the initial work in setting up our

shake table. Thank you all.

Thanks also to the National Science Foundation, which has funded me as a graduate student

under awards CNS-1136075 and CCF-1439062.

Lastly, my deepest gratitude is to my wife Laura, who has been a constant support and

without whom none of this would have happened. My son Gideon and daughter Tabitha

certainly haven't sped me along to completion, but I love them both as well.

David Ferry

Washington University in St. Louis

August 2018

viii

Dedicated to my inspiration, Laura

and to those I measure myself against: Al, George, Michael, and Joe.

ix

Abstract of the Dissertation

Concurrency Platforms for Real-Time and Cyber-Physical Systems

by

David Ferry

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2018

Professor Christopher D. Gill, Chair

Associate Professor Kunal Agrawal, Co-Chair

Parallel processing is an important way to satisfy the increasingly demanding computational

needs of modern real-time and cyber-physical systems, but existing parallel computing tech-

nologies primarily emphasize high-throughput and average-case performance metrics, which

are largely unsuitable for direct application to real-time, safety-critical contexts. This work

contrasts two concurrency platforms designed to achieve predictable worst case parallel per-

formance for soft real-time workloads with millisecond periods and higher. One of these is

then the basis for the CyberMech platform, which enables parallel real-time computing for

a novel yet representative application called Real-Time Hybrid Simulation (RTHS). RTHS

combines demanding parallel real-time computation with real-time simulation and control in

an earthquake engineering laboratory environment, and results concerning RTHS character-

ize a reasonably comprehensive survey of parallel real-time computing in the static context,

where the size, shape, timing constraints, and computational requirements of workloads are

�xed prior to system runtime. Collectively, these contributions constitute the �rst published

implementations and evaluations of general-purpose concurrency platforms for real-time and

cyber-physical systems, explore two fundamentally di�erent design spaces for such systems,

and successfully demonstrate the utility and tradeo�s of parallel computing for statically

determined real-time and cyber-physical systems.

x

Preface

My graduate work has focused on two eminently practical branches of computer science:

parallel and real-time computer systems. This let me build the �rst (as far as I am aware)

parallel real-time execution platform, and then contribute heavily to the second.

Parallelism can fundamentally change the game in real-time systems. If a computation must

execute 1024 times per second then success is binary: either that is achievable or it isn't.

In other �elds parallelism might allow a program to run twice or four times as fast, which

is great, but it's an improvement on the margins. With real-time systems, parallelism can

make the di�erence between achieving an inviolable timing constraint or not: the di�erence

between success and failure. In this way it enables new applications that were simply not

possible before.

The combination of parallel computing and real-time computing was certainly foreseen before

me. The critical theoretical work that underpins the systems described herein is not my own.

I would liken this experience to a mountain that nobody has climbed before. It's sitting there

in the distance, and everyone knows that someone will get there eventually. There is no innate

power that is needed� just the willingness and e�ort to get to the top. But, getting there

�rst makes it your mountain.

I didn't do it alone. I climbed with Jing, Abu, James, Greg, Amin, Johnny, Chris, Kunal,

Chenyang, Arun, Shirley, and a host of other characters. We got there together, and it's an

experience I treasure.

David Ferry

Washington University in St. Louis

August 2018

xi

Chapter 1: Parallelism and Concurrency

Platforms for Real-Time Systems

This work explores parallel computing on general purpose symmetric multiprocessor plat-

forms for real-time and cyber-physical systems. The need to manage interactions between

parallel real-time tasks drives the design of system mechanisms, so an understanding of these

interactions is essential to the engineering of parallel real-time platforms. Parallel tasks have

multiple threads executing on multiple processors, and this poses new challenges for real-

time systems designers both in that these tasks must use intra-task synchronization to ensure

correct execution of threads within a task, and they also need to manage the potential for

greatly increased inter-task interference. The newness and challenge posed by the former

is illustrated by observing that intra-task synchronization simply is not relevant for single-

threaded computations, and for the latter we observe that parallel tasks that are co-located

on a set of cores can interfere with each other many times per period between cores, so events

in one part of a system can have nearly arbitrarily far reaching e�ects. Sequential tasks are

usually expected to only interfere with other tasks sharing that single core. Later in this

work we will see that systems with strong task interactions are signi�cantly more complex

when compared to those without, as evidenced by two systems we will examine later called

Federated Scheduling and Mixed-Criticality Federated Scheduling.

1

Parallel computing coordinates multiple processing cores to collectively perform computa-

tions either faster or in greater depth than they could be done with individual processor

cores. This represents a de�nite paradigm shift from traditional real-time computing, which

often assumes sequential processing, either with one core or more than one core (multiple

sequential computations, or multi-processing). This conservatism is a reasonable response:

multi-core processors and parallel computing add complexity, and traditional real-time com-

puting strives to be as predictable and reliable as possible. The �elds of real-time computing

and cyber-physical computing encompass truly safety-critical computer systems, where peo-

ple's lives are at stake, so it is only prudent to exercise extreme caution with new and

untested technologies. This can be seen in action at the FAA and related aviation regulatory

agencies, where the question of when, where, and how to incorporate multi-core processors

(much less full-blown parallel computing) is still not a decided issue, even more than 20 years

after the mainstream availability of such hardware. Indeed, even early papers on parallel

real-time processing [1, 2, 3] did not appear until 2008-2010, while mature non-real-time

parallel processing systems such as Cilk [4] (1995), OpenMP [5] (1998), and MPI [6] (1994)

had been developed much earlier.

While moving away from established single-core and sequential processing approaches in-

troduces many open research challenges, it is also clear that parallel computing is now an

inevitability for real-time and cyber-physical systems. The majority of gains in processing

potential in recent years are from adding more processing cores to individual chips. Multi-

core chips with four, eight, twelve or even more processing cores are now commonplace,

and host machines with 16, 32, or more cores are a�ordable and represent a huge untapped

potential. Moreover, sequential processing gains have not kept pace with increases in com-

putational demand, especially for data-heavy and sensor-heavy cyber-physical systems that

increasingly seek to understand the physical world through on-board processing and simu-

lation. These technologies are probably here to stay� even if sequential speeds rebounded

2

dramatically, it seems unlikely at this point that hardware designers would consider giving

up on multi-core processors. Regardless of what the future may hold, parallel computing

today is a source of computational potential for cutting-edge, compute-heavy applications.

If the technical and regulatory concerns surrounding these disruptive technologies can be

addressed, the unique bene�ts that parallel processing a�ords can be leveraged. There are

many conceivable bene�ts, and in this work parallel real-time computing:

� Is used to enable earthquake engineers to perform laboratory evaluations at a �delity

that would be infeasible with single-core processing.

� Allows a system to rapidly reallocate additional computational resources to prevent

imminent system failure.

� Improves the physical �delity of an exemplar cyber-physical system.

Beyond those demonstrated bene�ts there are other potential uses for parallelism as well.

Parallel processing could be a way to provide scalable and energy-e�cient on-demand pro-

cessing power to embedded applications with bursty computational loads. Multi-core pro-

cessors could be used to reduce latencies due to contention on shared resources, simply by

virtue of having multiple processing units capable of responding to events. Hard real-time

systems may �nd themselves with an extra margin of safety through replication of resources

and computations. These are all speculative directions for potential future work beyond

this dissertation, but they are plausible and demonstrate the potential for parallel real-time

computing to fundamentally change the real-time system designer's relationship with com-

putational supply and demand.

This work lies at the intersection of three �elds of research: symmetric multiprocessor parallel

computing, real-time systems, and cyber-physical systems. The ultimate goal is the develop-

ment of an engineering methodology for incorporating parallel computing into soft-real-time

3

cyber-physical systems, and reconciling these �elds together is a nontrivial task. The classic

design criteria for each sub�eld are disjoint at best, and even sometimes antagonistic. Rec-

onciling these to each other is not easy. This work explores two concurrency platforms for

parallel real-time computing, RT-OpenMP and the Federated Scheduling Service, which take

dramatically di�erent approaches to the problem or reconciliation. The former makes heavy

assumptions about computational workloads and implements an entirely novel scheduling

and runtime approach, while the latter makes very few assumptions and relies heavily on

existing parallel systems. Surprisingly and counter-intuitively, it is found that the second

approach is much more e�ective for the soft real-time applications explored in this work,

but only when such existing parallel systems are carefully con�gured to provide reasonable

behavior.

Traditionally, real-time systems prize predictability and reliability above all else. They are

an outgrowth of early avionics and space�ight, where lives did (and still do) depend on

the correct and timely operation of such systems. The design process for these systems

is, roughly, to quantify the runtime behavior of individual computational workloads and

then to assemble them all into a single validated, analyzed, simulated, and exhaustively

tested task set on an approved set of hardware. Each computational task is classi�ed by

its worst-case execution time, which is taken to be its largest execution timing out of many

observed tests. A pessimistic scheduling analysis is performed to provide a priori assurance

of computational success under all operating scenarios. Formal validation may be performed

in order to demonstrate that the system always responds correctly to physical stimulus and

with the correct timing response.

Parallel computing systems without real-time constraints are radically di�erent. High-

performance systems are designed to execute large, bulk-parallel scienti�c or engineering

computations. The goal of improving parallel systems is to execute computations as fast as

4

possible, often measured in total computational throughput. Speci�c responses to speci�c

events is typically unimportant. Successes in such environments may be to reduce a compu-

tational time from hours to minutes or from minutes to seconds. The bene�t of increased

speed is either largely qualitative, or is tied to an external (e.g. economic) objective. For

example, training a machine learning data set may require many computations that analyze

the computational data over and over again. The training may require a hour or more on a

sequential processor, but parallelism may reduce this time interval to a bearable number of

minutes.

In contrast to both, cyber-physical systems seek to quantify and manage the interactions of

computational algorithms and physical components. These systems have existed for decades,

but generally at an ad-hoc level where systems are designed and built individually rather than

via an established methodology, and the thinking on how to design these systems continues

to evolve. As late as 2017 an NSF solicitation o�ers funding to conduct basic research in such

systems and claims, "we do not yet have a mature science to support systems engineering of

high-con�dence CPS" [7]. Parallel processing opens a new dimension to the design of such

systems, where interdependence within the system means that allocation of computational

resources directly impacts physical control performance and behavior uncertainty.

In leveraging parallel real-time computing for cyber-physical systems the goal of this work

is to maximize computational performance, subject to meeting soft real-time computational

constraints. The target timing performance in this work for parallel real-time execution is

roughly 1KHz (1 millisecond periods) in order to provide high �delity for the physical com-

ponents of Real-Time Hybrid Simulation1. However, unlike in traditional parallel platforms,

1In the application domain of structural engineering, for example, this rate is justi�ed by researchers who
want to quantify the oscillatory/vibrational modes of a test specimen. A system that senses at a rate of
1000Hz can accurately determine structural response between 0Hz and 500Hz, per the Nyquist frequency.
Full-scale structures often have dominant vibrational modes between 0-10Hz, but scale models and individual
structural elements may have dominant modes of several hundred hertz. A rate of 1000Hz allows the capture

5

timing uncertainty must be managed, or at a minimum quanti�ed and accounted for. System

overheads are relevant as they not only detract from the overall computational ability of the

platforms under consideration, but they also threaten to derail the accuracy of parallel real-

time scheduling analyses. As can be seen, the three individual topics of parallel computing,

real-time computing, and cyber-physical computing have disjoint primary and secondary ob-

jectives, and the �eld of parallel real-time computing has a multitude of primary objectives

which all must be achieved simultaneously to provide correctness and good overall system

performance.

In addition to providing new techniques for parallel real-time systems more generally, this

work seeks speci�cally to produce soft-real-time systems that are suitable for use in a struc-

tural engineering laboratory environment to conduct real-time processing within experiments

that are a minute to two in duration. The consequences for software failure in this particular

work are meaningful, but not safety-critical: failure in this case means wasted time, possi-

bly wasted materials, and potential damage to equipment. The physical apparatuses under

control are in a laboratory environment with minimal danger to operators. It is possible for

violation of timing constraints to damage physical experimental specimens or apparatus, but

the equipment at risk in this work was (relatively) inexpensive and this risk was managed

through extensive testing of software in simulation prior to hooking it up to real hardware.

Because the software could be carefully tested prior to runtime, in practice the goal of build-

ing soft-real-time software in this work has meant that a particular experimental code can be

con�gured into a state where there are no timing constraints violated (no deadline misses)

over a trial execution period signi�cantly longer than the expected experimental runtime.

For example, behavior in many cases was declared satisfactory after one hundred trial exe-

cutions with no deadline misses. However, the speci�c measure of robustness varies for the

of higher modes for specimens, and provides plenty of excess sampling to ensure all relevant data is captured
when testing a smaller specimen of unknown response.

6

di�erent software systems presented, and this is discussed in more detail in their respective

chapters.

More theoretically, there are many possible de�nitions of what it means for a system to have

soft-real-time behavior, in addition to the above de�nition that is used in this dissertation.

Such systems have been de�ned to have bounded tardiness, to provide a low probability of

per-period failure, or to minimize utility loss subject to an overall system utility function.

In fact, the parallel real-time scheduling theories that are used in this work provide strong

su�cient conditions for schedulability- if the scheduling theory assumptions are met then

the theory makes a strong guarantee of system performance suitable for implementation in a

hard-real-time system. However, both the operating system (Linux with the RT_PREEMPT

patchset applied) and the parallel platform (OpenMP) that were used are not real-time

software, so no claim to building a hard-real-time system is ever made in this work.

This dissertation continues in Chapters 2 and 3 with an examination of two parallel real-time

concurrency platforms. The �rst, RT-OpenMP, adopts a highly regimented design to provide

�ne-grained control over executable pieces of parallel real-time workloads. The latter, the

Mixed-Criticality Federated Scheduling Service, instead makes only a few light assumptions

about how parallel real-time computations will execute, and then hands o� the task of

execution to existing parallel concurrency platforms. Chapter 4 introduces CyberMech, a full

concurrency platform for Real-Time Hybrid Simulation based on the Federated Scheduling

Service. Chapter 5 draws broader conclusions about the process of engineering cyber-physical

systems in the context of parallel real-time execution. Finally, Chapter 6 provides some

background and related work in the general �eld of parallel computing, real-time computing,

and cyber-physical systems, and the dissertation concludes in Chapter 7.

7

Chapter 2: RT-OpenMP

This chapter describes the �rst platform ever implemented for the execution of parallel real-

time tasks that provides scheduling with respect to a theoretical schedulability bound. This

platform is a scheduling service called RT-OpenMP [8], a parallel real-time concurrency

platform that supports real-time semantics, performs scheduling of parallel tasks [9], and is

based on theoretical results [10] in parallel real-time scheduling. This system was designed

to provide a true parallel programming interface via modi�cation of the OpenMP [5] im-

plementation in the GNU Compiler Collection (GCC), but for soft real-time workloads was

subsequently superseded by the Federated Scheduling Service (FSS) described in Chapter 3.

The RT-OpenMP implementation explores a radically di�erent design space for parallel

real-time systems when compared to the Federated Scheduling Service. To contrast these

approaches at a high level, RT-OpenMP tightly controls how and when processes execute

by controlling execution of code scopes explicitly, while the Federated Scheduling Service

o�oads the responsibility of thread creation and management to existing parallel concurrency

platforms such as OpenMP or Cilk Plus. As such, RT-OpenMP o�ers a much more tightly

orchestrated architecture and implementation, and for this reason it can be seen as a potential

model for future work in hard real-time parallel systems. As such an implementation would

be signi�cantly more complex and the types of parallel programs it could execute may be

8

limited compared to the unrestricted execution (of programs described by arbitrary directed

acyclic graphs) supported by the Federated Scheduling Service, such further investigation is

left for future work.

This chapter presents the following contributions:

� The design and implementation of a scheduler and runtime dispatcher capable of

scheduling and executing a collection of parallel real-time tasks that conform to the

parallel synchronous task model introduced in [10].

� System evaluation with a set of synthetic workloads to measure the performance of

the platform under various partitioned scheduling strategies and utilizations. This

shows that the platform provides good performance for a signi�cant class of potential

workloads.

The author is responsible for the design and implementation of the online job dispatcher and

system evaluation. The theoretical analysis of this system was performed in [10], and the

o�ine scheduler itself was implemented by Jing Li (second author on [8], where this system

was originally presented).

Section 2.0.1 provides background information about OpenMP. Section 2.0.2 describes the

parallel synchronous task model. Section 2.0.3 describes the design of the scheduler and

dispatcher. In Section 2.1 an empirical evaluation of the scheduling service through full

system tests with synthetic parallel tasks is presented, as well micro-benchmarks.

2.0.1 Overview of OpenMP

OpenMP is an Application Programming Interface (API) speci�cation that de�nes a stan-

dardized model for parallel programming on shared-memory multiprocessors. The speci�ca-

tion is governed by the OpenMP Architecture Review Board, which is primarily composed of

9

representatives from companies engaged in the production of hardware and software used in

parallel and high-performance computing. The OpenMP API [5] is de�ned for the languages

C, C++, and FORTRAN, and has been implemented on many di�erent architectures and

major compilers. Importantly, for the purposes of this work, there exists an open source

version within the GNU Compiler Collection (GCC).

OpenMP provides programming support through library routines and directives. Library

routines include auxiliary functions that allow a program to query and modify OpenMP

runtime parameters (such as the number of threads or thread scheduling policy), as well

as locking and timing routines. OpenMP directives are compiler pragma statements that

indicate where and how parallelization can occur within a program. For example, one such

directive converts a regular for loop to a parallel-for loop, by prefacing the loop with

#pragma omp parallel for.

However, the unmodi�ed OpenMP implementation does not support real-time execution.

First, the speci�cation lacks any notion of real-time deadline and period semantics. More

fundamentally, current OpenMP platforms, and particularly their schedulers, are ill-suited

for real-time performance. When invoking a parallel directive in OpenMP there is no expec-

tation of how, where, and when parallel execution will take place. These directives merely

point out the available program parallelism, and the compiler and runtime system make

very few guarantees about how the program actually executes. For general parallel execu-

tion this may be desirable, as it allows the system to load-balance �exibly and e�ectively,

allowing OpenMP to run correctly on a sequential machine or on di�erent parallel machines

with varying numbers of processors. Unfortunately, such �exibility is not good for real-time

computing, where correctness is also a function of execution time. Thus, it is necessary for a

real-time concurrency platform to provide the stronger assurance that the feasible deadlines

of a given parallel workload are met on a speci�c execution target. It is also necessary that

10

A Single Synchronous Task

Segment 1 Segment 2 Segment 3 Segment 4

Strand 1

Strand 2

Strand 3

Strand 4

Strand 5

Figure 2.1: An example parallel-synchronous task with four segments.

the runtime system supports such assurances through robust deadline-aware scheduling and

dispatching.

2.0.2 Parallel Synchronous Task Model

The RT-OpenMP platform focuses on synchronous tasks � tasks described by a sequence

of segments where each segment consists of one or more parallel strands1 of execution, as

shown in Figure 2.1. The end of each segment serves as a synchronization point: no strand

from the next segment may begin executing before all strands from the current segment have

completed. The deadline of a synchronous task is the time by which all strands of the last

segment must �nish executing.

This is not the most general model for describing parallel programs, but we use this model

for two reasons. First, the work in [10] allows RT-OpenMP to provide schedulability assur-

ance. Second, the high-level parallel for programming construct naturally maps to this

1The nomenclature used here is purposely di�erent from the preferred term in [10], threads. In the context
of the RT-OpenMP scheduling service it reduces confusion to use the term strands to refer to fundamental
units of executable code and reserve the term threads for the operating system's persistent threads that are
responsible for executing those units.

11

particular task model. This construct is of primary importance for many parallel programs

as it nicely captures the SIMD (single instruction multiple data) paradigm that is widely

used.

To describe the model more formally, a task set τ consists of n parallel synchronous tasks

{τ1, τ2, · · · , τn}. Each task τi is a sequence of ki segments, and a segment may not ex-

ecute until the previous segment is entirely �nished. The jth segment in the ith task

τi is denoted 〈ei,j,mi,j〉, where ei,j is the worst-case execution requirement of all strands

in segment j and mi,j is the total number of strands. Since there is a synchronization

point at the end of each segment a task τi can be alternately described as the sequence

(〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,ki ,mi,ki〉), where ki is the number of segments of task i. We

assume periodic (or sporadic) implicit deadline tasks with the deadline Di of each task equal

to its arrival plus its period Ti (minimum inter-arrival interval). Later, for the purpose of

scheduling, we will refer to the release time ri,j and deadline di,j of a strand, which respec-

tively are the times by which a strand may start and must �nish execution in order to assure

that the overall task deadline Di is met.

Other De�nitions: Intrinsic to each task are several quantities of practical importance.

The worst case execution time of a task τi on a single processor, called its work, is denoted

by Ci. The task's execution time on an in�nite number of cores, called its critical-path

length, is denoted by Pi. By de�nition, the worst case execution time is Ci =
∑ki

j=1mi,j · ei,j

and the critical path length is Pi =
∑ki

j=1 ei,j. Intuitively, the work is the total amount of

computation in a task (all strands from all segments), while the critical-path is the longest

chain of sequential computation (the longest strand from each segment). The utilization

Ui = Ci/Ti of a task τi is the ratio of total work to the task period, while the utilization

of a task set is simply the sum of the utilization of each task in the set. Note that, unlike

sequential tasks, it is possible for a parallel task to have utilization greater than 1.

12

The augmentation bound is a property of a scheduling algorithm which provides a schedula-

bility test. In our case where all processors execute at the same speed (as in many common

multiprocessor systems), an augmentation bound of b implies that under the given scheduling

algorithm a system with p processors can execute any task set with total utilization equal

to or less than p/b. This is a su�cient but not necessary test, meaning that task sets with

greater utilization may still be schedulable.

2.0.3 RT-OpenMP Scheduling Service Design

The role of our scheduling service for RT-OpenMP is to schedule parallel-synchronous ap-

plications while providing real-time assurances to application developers. There are two ob-

jectives. First, RT-OpenMP must ensure that dependences between segments are respected.

Second, it must execute tasks so that they meet their deadlines.

RT-OpenMP uses two sub-systems to enforce this behavior, a scheduler and a dispatcher.

The scheduler decomposes and annotates tasks prior to execution time, and the dispatcher

uses that information to dispatch strands of execution at runtime. In the current system,

the scheduling phase occurs before execution begins and the dispatching phase occurs at

runtime.

Scheduler: The scheduler consists of two components: a decomposition algorithm (from

[10]) that decomposes a parallel task into a set of sequential strands, each with its own release

time and deadline; and a priority assignment and partitioning algorithm (from [9]) that sets

priorities for each sequential strand and assigns each of them to a particular core given a

p-core processor. The theoretical result from [10] provides an augmentation bound of 5 for

this method. This yields the following schedulability test: if the total utilization of a task

set is less than p/5 (20% of the maximum utilization allowed) and the critical path length

13

(a) Task set consists of two tasks. (b) The decomposed tasks on 3 processors. Each
strand has its own release time and deadline.

strand deadline priority core
s11 10/3 2 1
s21 40/9 3 1
s31 40/9 3 2
s41 40/9 3 3
s51 40/9 3 1
s61 20/9 1 1
s12 8 4 2

(c) Priority Assignment and Partitioning (d) Execution trace of the strands execution

Figure 2.2: An example decomposition and scheduling of two tasks under RT-OpenMP.

Pi of each task is at most 1/5th of its deadline Ti, then the theory guarantees this task set

as schedulable.

Decomposition Algorithm: The decomposition algorithm from [10] performs the fol-

lowing operations. First, each task in the task set is decomposed into a set of independent

strands, where each strand has its own individual release time and deadline. These strands

are analyzed collectively, and the total computational time is divided in a way that provides

enough capacity for each. This assignment is re�ected in an intermediate release time and

deadline for each individual strand. Release times are also chosen to satisfy dependences

between segments (the actual mechanism used to enforce this in the system is barrier syn-

14

chronization, but the dependency timing constraints are used to ensure the correctness of

the decomposition).

For this to work, we must perform the following adaptation: the above decomposition pro-

vides an augmentation bound of 5: this means that if an ideal scheduler can schedule a task

set onm cores of speed 1, then a decomposed task set can be scheduled onm cores of speed 5.

Due to the derivation in [10], it is important that the parameters Ti, Ci and Pi, are measured

on an ideal unit-speed machine and the decomposition is done at speed 2. In this formulation

both the speed-1 and speed-2 machines are hypothetical, while the task set actually runs

on what are considered speed-5 processors. Therefore, we must compute the decomposition

for machines that are 2.5 times slower than our machines, since decomposition occurs at

speed-2.

Hence, this gives rise to a constant value of 2.5 in the following equations. In practice we

measure Ci, Ti, and Pi on real machines and then multiply those quantities by 2.5 to simulate

a 2-speed machine. The following process of decomposition is otherwise exactly the same as

in [10], but is modi�ed to re�ect the inversion we have described.

The decomposition works as follows. The total slack of a task is the extra time it has to

�nish computation, if it was given an in�nite number of processors as soon as it was released.

Then the slack on the (hypothetical) speed-2 processors is denoted as

Li = Ti − 2.5Pi

The idea behind decomposition is to divide this total slack among all the segments �equi-

tably.� For this purpose, we classify segments into heavy and light segments. Intuitively,

heavy segments are those with many strands, and therefore, a larger computational require-

ment. The classi�cation is based on a threshold: a segment is classi�ed as heavy if the

15

number of strands in the segment is more than the total computational requirement divided

by the slack (on the 2-speed processor), that is,

mi,j >
2.5Ci

Ti − 2.5Pi

and otherwise it is a light segment. The total slack is distributed among heavy segments,

giving them more time to �nish and therefore reducing the maximum workload density of

the task.

If there are any heavy segments in a task, we compute their segment slack as

lhi,j =
mi,j(Ti − 2.5P `

i)

2.5(Ci − C`
i)
− 1

where P `
i is the portion of the critical path contributed by light segments and C`

i is the

portion of the worst case execution time contributed by light segments. In the case where

heavy segments exist, no slack will be given to light segments: that is, l`i,j = 0. The relative

deadline for all strands in a segment is

di,j = 2.5ei,j(1 + li,j)

Note that even when light segments are not given any slack on the (hypothetical) speed-2

processors, when we run them on the (real) speed-5 processors, they do have slack.

If all segments are light, each segment will receive an equal portion of the slack and the

relative deadline of all strands in a segment is

di,j =
ei,jTi
Pi

16

In either case, the release time of each strand is the deadline of the preceding segment.

Now an example to show the action of the scheduler in Figure 2.2. The example task set has

two synchronous tasks, whose parameters are shown in Figure 2.2a, which are executed on a

machine with three cores. In task 1, all segments are calculated as heavy segments, sincem1,j

should be larger than 0.643. Thus, segments 1, 2 and 3 get extra slack of 1.22, 7.88 and 1.22

respectively and hence have relative deadlines of 10/3, 40/9 and 20/9 respectively. Similarly,

the only segment of task 2 is a heavy segment and gets all the slack (3.2 time units). So the

deadline for segment 1 is 3.2 ∗ 2.5 ∗ 1 = 8, the same as task 2's deadline. Figure 2.2b shows

the decomposed sequential strands with individual release times and deadlines.

Partitioning and Priority Assignment: As indicated by [10], we use FBB-FFD [9]

(Fischer Baruah Baker First-Fit Decreasing bin packing) to assign strands to cores.

First, strands are sorted according to their relative deadlines. Since we are using a segment-

level �xed-priority scheduler, the segments with the smallest relative deadlines have the

highest priority. Note that all strands in a segment have the same priority and the same

relative release time, though strands from the same segment may be placed on di�erent

cores. As shown in Figure 2.2c, the priorities are assigned according to each strand's relative

deadline, where priority 1 is the highest priority.

Starting with the highest priority strands, the scheduler then tries to place each strand on a

core. To do so, the FBB-FFD [9] algorithm de�nes a request-bound function (RBF) as:

RBF (τi, t) = ei + uit

The RBF is the maximum amount of computation required by task i over time of length t

on the system. The above original RBF is tight for sequential tasks and represents the upper

bound of the computational requirement. However, for decomposed parallel tasks, strands

17

from di�erent segments of the same task will never be released and executed simultaneously.

Hence when calculating the total RBF of a task, directly summing the RBF of every strand

would be pessimistic.

The o�set-aware FBB-FFD algorithm replaces the original RBF with RBF ∗, which takes

release o�sets into account. It calculates all possible interference from other strands of other

tasks, as well as strands from the same segment on a given core.

When segment τj,l is the �rst interfering segment, the interference of task τj on segment τi,k

with relative deadline di,k is de�ned as

RBF ∗q (τj,l, di,k) =∑
(rj,p+Tj−rj,l) mod Tj≤di,k

ej,p.mj,p,q +
∑
j,p

uj,p.mj,p,q.di,k.

This o�set-aware RBF is di�erent in the �rst term by only summing the interference from

strands that can be released within the deadline di,k, considering the start segment τj,l and

all the o�sets of subsequent segments.

Then the maximum interference of task τj is

RBF ∗q (τ decomj , di,k) = max
{
RBF ∗q (τj,l, di,k)|1 ≤ l ≤ ki

}

A more detailed explanation can be found in [11].

If theRBF ∗ of a strand on a given core q satis�es the condition that di,k−
∑

jRBF
∗
q(τ

decom
j , di,k) ≥

ei,k (load condition), then the strand can be assigned to this core. In this case, the strand is

guaranteed not to miss its deadline.

For each strand, there may be more than one core that satis�es the load condition. Therefore,

there is a choice of assignment algorithms that can be used to place strands on cores. This

18

choice results in di�erent scheduling strategies and potentially di�erent execution results.

One contribution of this work is to evaluate the following two heuristics.

A �rst-�t heuristic will scan cores in some canonical order (from core 1 to core p) and place

the strand on the �rst core that satis�es the load condition. This is the standard method

for FBB-FFD bin-packing algorithms. However, it does not provide any load-balancing, and

the �rst few cores may become heavily loaded, while the last cores may be entirely unused.

A worst-�t heuristic on the other hand, will scan all the cores and �nd the core with the least

RBF ∗ value (the least loaded core) and will assign the strand to that core. In principle,

the worst-�t heuristic should exhibit better load balancing than the �rst-�t heuristic by

spreading computational work across as many cores as possible. However, it takes longer to

run the scheduler since each assignment step must scan all cores. An example assignment

using worst-�t assignment is shown in Figure 2.2c. Note that if using �rst-�t, all strands in

this example would have been assigned to core 1, simply because the sum of the worst case

execution times of both tasks is much smaller than either task's period.

Dispatcher: The dispatcher is responsible for enforcing previously generated schedules

and providing synchronization at the end of each segment during runtime. This requires

the dispatcher to support scheduling priorities, runtime preemption, and synchronization,

which we accomplish through facilities provided by Linux. We use real-time priorities to

enforce the schedule and enable task-level preemption. We accomplish segment (barrier)

synchronization through futex (fast user-space mutex) system calls.

Recall from the previous section: prior to runtime, the scheduler decomposes a task set into

individual strands and encodes this in a static schedule. Thus, when the dispatcher begins,

it has the program structure of each task, and each strand is annotated with a processor

assignment, priority, and relative release time. An example of such an assignment table is

shown in Figure 2.2c. In order to enforce that schedule, the dispatcher must be able to

19

CPU 1

Task 1
-

Thread 1

Task 2
-

Thread 1

CPU 2

Task1
-

Thread 2

Task 2
-

Thread 2

CPU 3

Task 1
-

Thread 3

Task 2
-

Thread 3

Task 1
 Program Schedule

int main(int argc, char*
 char* config_file = arve;
 unsigned first_= 1
 unsigned last;

 //This is a comment rigt
 //am a good programme

 For(int i = 0; i > -10;){
 i -= i + 1;
 printf("What\?\n");
 }

 Priority Processor

1 20 1, 2, 3, 4, 5
2 10 12, 11, 10, 9
3 32 8
4 44 9, 3,, 1
5 55 9, 0, 2, 1, 0
6 AB 20, 20 20
7 08 9, 4,, 5
8 13 12 12 12
9 37 32, 32, 32 ,32
10 22 98, 76, 54, 32
11 90 1, 8, 0

Task 2
 Program Schedule

int main(int argc, char*
 char* config_file = arve;
 unsigned first_= 1
 unsigned last;

 //This is a comment rigt
 //am a good programme

 For(int i = 0; i > -10;){
 i -= i + 1;
 printf("What\?\n");
 }

 Priority Processor

1 20 1, 2, 3, 4, 5
2 10 12, 11, 10, 9
3 32 8
4 44 9, 3,, 1
5 55 9, 0, 2, 1, 0
6 AB 20, 20 20
7 08 9, 4,, 5
8 13 12 12 12
9 37 32, 32, 32 ,32
10 22 98, 76, 54, 32
11 90 1, 8, 0

Dispatcher

Scheduler

Figure 2.3: An RT-OpenMP con�guration consisting of two tasks and three processors. Each
task has a team of threads that are created at runtime, and consists of exactly one thread per
processor. The black dashed line represents the division between compile time and runtime:
the schedule is generated prior to runtime, but the dispatcher must refer to the generated
schedule frequently during execution.

run strands on cores to which they are assigned at the proper release time, and if a high

priority strand is released while a low-priority strand is running on its assigned core, then

the high-priority strand must preempt the low priority strand.

We describe the operation of the dispatcher in two phases: initialization and runtime oper-

ation.

Initialization: The ability to assign speci�c strands to processors is accomplished by

creating a team of threads for each task in the system. Each team has exactly as many

threads as available cores. Therefore, if there are n tasks and p processors, there are a

total of n ∗ p threads in the system: one thread from each team pinned to each core. The

numbers of tasks and processors are known a priori, so all teams are created and pinned

during initialization. This simpli�es the dynamic operation of the system, as once these

threads are pinned during initialization they never again migrate. In the system shown in

20

Figure 2.3, there are two tasks and three processors. Each task has a dedicated team of

threads, and the team is distributed so that every task has one thread per processor.

Runtime Operation: A thread from task i's team, pinned on processor j has the

following function: it executes all the strands from task i that are assigned to processor j

(and only those strands). Therefore, given a strand-to-core assignment computed by the

scheduler, we have an automatic strand to thread assignment; once a strand is assigned to

a processor, there is one corresponding thread that is responsible for executing it. This can

be seen in the example in Figure 2.2d.

The execution of the dispatching system occurs in a completely distributed manner. Each

thread is individually responsible for �nding the right work to do, and doing it at the right

time. This distributed approach has the advantage that all cores do useful processing, rather

than having a core for dedicated dispatching, and this avoids overhead due to centralized

coordination. The pseudo-code for how dispatching occurs is given in Algorithm 1.

Algorithm 1 realizes a team of threads synchronously stepping through a task segment by

segment, and is executed by all threads at runtime. At the start of each segment each thread

will look at the schedule to determine whether some strand is assigned to it from the current

segment. Note that more than one strand from a segment may be assigned to the same

thread. The thread looks to see if any strands of the segment are assigned to it. If there

are, it performs the work of those strands. Once it �nishes this work (or if it has no strands

assigned to it) it skips to the barrier (line 11) and waits for the rest of its team to �nish the

segment. Threads wait at the barrier until all threads in the team have reached it.

There is one additional issue: each thread is responsible for dispatching itself, but each

thread is running concurrently with many other threads, some of which are executing real-

time workloads. Two dangers thus arise: dispatching actions done at a high priority may

interfere with currently executing jobs, while dispatching actions done at a low priority could

21

Algorithm 1 Distributed Dispatching

1: Raise priority to system maximum
2: while new_task_iteration do
3: while more_segments_remain do
4: Wait until segment relative release
5: Check whether any strands from this segment are assigned
6: while has_assigned_strands do
7: Lower priority to segment priority
8: Perform the work of the strand
9: Raise priority to system maximum
10: end while

11: Team barrier synchronization
12: end while

13: Sleep until next task iteration
14: end while

lead to a situation in which a moderately high priority job blocks the dispatch of a higher

priority job (which results in priority inversion).

We address this by reserving the maximum real-time priority for dispatching. The choice

to have threads spend time frequently at the highest system priority might seem counter-

intuitive, as this means that all dispatching actions will always block the real-time execution

of any currently working thread (even if those dispatching actions are for a lower priority

thread). However, each thread is only ever performing one of three actions while dispatching:

checking for work, modifying its own priority, or barrier waiting. These three actions can be

made brief enough that they do not signi�cantly disrupt the operation of other threads in the

system. In essence, we have traded long and unpredictable priority inversion (a long-running

low priority thread blocking the dispatch of a high priority thread) for very brief and very

predictable priority inversion (the brief but frequent dispatching actions of every thread).

Preemption: Note that preemption occurs correctly and automatically in this design.

Each thread executes a strand assigned to it at the priority of the strand itself. Therefore,

when a high-priority strand is released on processor p, the thread that is responsible for

22

that strand inherits this high priority. If another thread is executing a lower-priority task

on processor p, that thread has the lower priority. As a result, the high-priority thread will

preempt the lower priority thread through the normal Linux thread scheduling mechanism.

As can be seen in Figure 2.2d strand s31 has higher priority than strand s12. Therefore, when

s31 is released, the thread responsible for it immediately preempts the thread executing s12.

When s31 completes, s
1
2 resumes its execution.

Synchronization Mechanism: Finally, the dispatcher must ensure that no thread

executing a parallel-synchronous task can race ahead and begin executing a future segment

before it's predecessors have �nished. We ensure this in our system through barrier synchro-

nization, and we now describe how this barrier is implemented e�ciently.

Recall that barriers have two operations (wait and wake) that allow a team of threads to

synchronize with one another. When a thread reaches a barrier it waits there until all other

threads arrive. Once this happens all threads are awoken and allowed to proceed. This is

the precise behavior desired for segment synchronization, and prevents any one thread from

racing ahead and starting on a new segment while other threads are still working on the

previous one.

In this system the wait and wake operations are performed at the system's maximum real-

time priority (to address the same priority inversion problem as with dispatching). This

necessitates a barrier implementation that is as non-interfering as possible. To achieve this

we use the futex (fast userspace mutex) system call within Linux.

Futexes are single atomic counters in shared memory, used to support e�cient mutual ex-

clusion. There are two system calls that allow the kernel to arbitrate between processes that

are contending on the same futex: futex_wait and futex_wake. When a thread waits on

a futex it yields the processor and is put to sleep by the kernel. Later, some other thread

wakes the futex, which revives some or all of the threads that were previously waiting.

23

futex_wait is used to implement the barrier wait, and futex_wake to implement the barrier

wake. This is especially advantageous for our system: in this design the threads spend almost

all their time either working or barrier waiting at the maximum system priority. Many

waiting threads at such high priority might contribute signi�cant overhead. However, with

the futex implementation the kernel is invoked to put the threads to sleep, and they consume

no resources in this wait state. This allows the system to have many threads idling at the

highest real-time priority without incurring substantial overhead.

2.1 RT-OpenMP Evaluation

This section presents an experimental evaluation of RT-OpenMP with two types of experi-

ments: (A) full-system evaluation using synthetic parallel tasks to see if the scheduling service

meets task deadlines, and (B) micro-benchmarks in order to understand the overheads of

the mechanisms used by the system.

System Evaluation: Synthetic Parallel Tasks:

One of the goals of this evaluation is to determine whether system behavior agrees with the

theoretical augmentation bound of 5. Even though that bound holds in theory, the overheads

of a practical implementation might invalidate it on a real system. Theoretically schedulable

task sets were generated to test this, meaning that (1) utilization by each task set is at most

m/5 (20% of maximum allowed utilization), and (2) each task's critical path length is at

most 1/5 its deadline (again, 20% of maximum). These will be called 20% utilization tests

for brevity.

To evaluate the practical applicability of RT-OpenMP more broadly, several parameters were

considered, as follows.

24

Utilization Level: The theoretical results hold only for 20% utilization task sets. Since theo-

retical results are often pessimistic, RT-OpenMP was also evaluated with higher utilization

task sets.

Task Frequency: Each periodic iteration of a task costs a (relatively) �xed amount of over-

head. Hence, a task that executes at 1000Hz (1000 times per second) is likely to incur

approximately ten times more overhead than a task that executes at 100Hz, and this ad-

ditional overhead may impact performance. We explore several timescales to quantify this

e�ect.

Bin-Packing Heuristic: As we described in Section 2.0.3, the heuristic changes how work

is assigned to processors: the �rst-�t heuristic heavily loads as few processors as necessary

and leaves the rest underutilized, while the worst-�t heuristic attempts to minimize the

maximum load on any particular processor. Theoretically both heuristics should guarantee

schedulability for 20% utilization task sets, but we expect their performance may di�er for

higher utilization task sets.

Number of Processors: Also of interest is how well this approach scales as the number

of processors involved increases. The size of each thread team increases by one for every

processor used in the system, which may increase the synchronization overhead at the end of

every segment. In addition, each processor chip in our machine has 12 cores. When we use

more than 12 cores, the teams have to synchronize across multiple chips, potentially leading

to additional communication overheads.

Test Platform: We tested our runtime system with a 48-core symmetric multiprocessor,

a 1U AMD Quad with four Opteron 6168 processors. We used standard Linux kernel version

3.4.4 with RT_PREEMPT patch version r14 as our underlying RTOS. We left processors

0-11 in their default con�guration (to handle normal Linux activities and interrupts), and

processors 12-47 were optimized for real-time performance. This was done by isolating

25

them from the Linux scheduler and load balancer with the boot parameter isolcpus and

preventing them from servicing any maskable interrupts. This gave 36 processors on which

to run real-time task sets.

Task Set Generation: Task set generation is straightforward; tasks were randomly

generated and included in the task set until the total utilization of the whole set was as

desired. Given a certain number of processors, the goal is to generate a parallel synchronous

task set that achieves within 2% of the desired utilization (e.g. if the desired utilization level

is 50% then the actual utilization will be between 48% and 50%). Task periods and strand

lengths are unitless and can be scaled at runtime to achieve a desired task frequency.

First, the period of the task is chosen to be 2i, where i ∈ {11, 12 . . . 16}. To conform to

the applicable scheduling theory, the critical path length of each task was chosen to be 8%,

10%, 14% or 20% of the period, with probability of 0.4, 0.3, 0.2 and 0.1 respectively, to yield

tasks that have varying levels of slack. As indicated above, the maximum allowable critical

path length is 100% of the period of speed-1/5 ideal processors, or 20% of the period on our

processors. This methodology gives us critical path lengths of 40%, 50% 70% and 100% of

the maximum allowable critical path length.

Given these parameters, the task is generated segment by segment to get a series of segments

such that the critical path length of the task is equal to the chosen critical path length. To

do so, we generate each segment in turn and randomly choose its execution time from a log

normal distribution. This allows us to control the distribution mean while still allowing for

occasional large and small values. The average segment length was 400, and the minimum

segment length was 100. The number of strands in each segment also was chosen from a

log-normal distribution with mean 4 and minimum value 1.

Methodology: We ran experiments with m = 12 and m = 36, where m is the number

of cores. For both values of m, we generated task sets with utilizations between 20% and

26

Minimum Maximum Minimum Average

Task Period Task Period Segment Length Segment Length

2048ms 216ms 100ms 400ms
32ms 1024ms 1563µs 6250µs
16ms 512ms 781µs 3125µs
8ms 256ms 391µs 1563µs
4ms 128ms 195µs 781µs
2ms 64ms 98µs 391µs

Table 2.1: Several timescales allow us to validate the system for a variety of potential
application domains. The top three timescales demonstrate the limits of the design under 36-
core operation, and the bottom three timescales demonstrate the limits for 12-core operation.

80%. For m = 12 we generated 100 task sets, and for m = 36 we generated 20 task sets.

Each task set was then scheduled with both the �rst-�t and worst-�t heuristics. Each task

set was run for �ve minutes of wall-clock time under various timescalings. The absolute

values derived from each timescaling can be seen in Table 2.1.

For each experiment, we calculate the failure rate. A task set is said to have failed if any

task misses a deadline. The failure rate is the ratio of the number of task sets that failed

to the total number of task sets. Before presenting these results we �rst describe a series of

relevant design choices and system overhead measurements.

2.1.1 RT-OpenMP Design Space Choices

In the design of RT-OpenMP, many choices were made among many alternatives. This

subsection describes some of those alternatives, and discusses the pros and cons of each.

In particular, three major decisions were made: the scheduling strategy, the preemption

mechanism, and the synchronization mechanism.

Scheduling: RT-OpenMP uses partitioned DM (Deadline Monotonic) scheduling. The

alternative would have been to use global EDF (Earliest Deadline First), which, in fact,

27

provides a better augmentation bound of 4 (instead of 5 provided by partitioned DM).

We chose to implement partitioned DM for our �rst prototype for multiple reasons. First,

partitioned DM is easier to implement on a multi-core system by leveraging thread priorities.

Dynamic priority schedulers are more di�cult to implement using OS priorities (and a user-

space scheduler that implements preemption also would have been di�cult, as is discussed

subsequently). Second, partitioned scheduling has lower overheads for several reasons: (1)

scheduling occurs statically, so there are no overheads of computing the schedule at run time;

(2) strands do not migrate from one core to another during execution; and (3) preemption

occurs more rarely and predictably since strands can only preempt other strands that are

assigned to the same core. For these reasons, RT-OpenMP was prototyped with this strategy.

Future systems may explore global dynamic priority scheduling strategies in this or other

concurrency platforms.

Preemption: There are two ways to implement preemption between threads. One

can either rely on the operating system mechanisms to provide preemption (as RT-OpenMP

does), or implement user-space preemption by voluntary yielding. For user-space preemption,

each thread must periodically check whether it has been preempted. If it has, it should save

its current state and yield the core to the preempting thread. This has the advantage that

it doesn't involve expensive system calls. In addition, this is often safer for programs that

use mechanisms such as locks, since threads can make sure that they are at a safe point

before they yield. On the other hand, this method has a few disadvantages as well. The user

(or compiler) must provide mechanisms for periodic polling and checkpointing. Moreover, a

high-priority thread may have to wait for a long time before a low-priority thread decides

to yield its processor. Due to this priority inversion, it is di�cult to provide real-time

performance unless there are bounds on how long such a priority inversion can last and

how often it can happen. RT-OpenMP is designed to enforce the real-time performance

provided by the theory presented in [10], which assumes immediate preemption. In addition,

28

the parallel synchronous task model assumes that tasks do not acquire and hold locks, so

the runtime system does not need to consider whether or not to preempt a thread holding

an exclusive lock on a shared resource. Therefore, RT-OpenMP uses OS preemption by

managing thread priorities. In the future, other systems may explore user-space yielding

mechanisms for real-time parallelism, which may have lower latency or be more suitable for

a user-space scheduler such as those found in traditional parallel concurrency platforms such

as OpenMP or Cilk Plus.

Synchronization: In RT-OpenMP, each thread must wait on a barrier for other threads

of its team to �nish executing the current segment. There are two ways to implement such

waiting. One method is to use sleeping (which is the option we used), and the other is

to use polling. Both methods involve waiting for a speci�c condition to change, but their

implementation di�ers. Sleeping generally means that a thread is removed from consideration

of the scheduler (through removal from the runqueue) and hence does not consume further

processor time, even indirectly, until it is woken. The downside of this is that the operating

system must become involved both to suspend and resume the thread. The other approach,

polling, involves spinning until the condition becomes true. Unlike a sleeping thread, a

polling thread continuously occupies the processor. The bene�t is that polling generally

o�ers better latency; a thread can get past the barrier faster once the condition becomes

true. Hence, polling is the preferred strategy if it is known that wait times will be very short.

In RT-OpenMP, the number of threads may be much larger than the number of cores, and

many threads may spend a large amount of time waiting on a barrier. Therefore, the sleeping

mechanism is a clear choice for barrier synchronization in this platform, and is implemented

using the futex_wait system call.

29

2.1.2 System Overhead Measurements

As described earlier, one goal of our system design is to minimize the overhead due to

contention. There are two primary sources of contention within the system, preemption and

segment (barrier) synchronization. We evaluate these mechanisms with micro-benchmarks:

short programs designed to expose a speci�c facet of system performance.

Preemption Overhead: Our �rst micro-benchmark is designed to measure the e�ect

of preemption on scheduling latency, which we de�ne to be the di�erence in time from when

a job may start executing (its release time when it has higher priority than any other job

that is currently executing) to when it actually starts. We use two jobs to accomplish this:

the �rst is a low-priority job that executes for a long time on twelve cores simultaneously.

The second is a 12-core high-priority job whose release time is a �xed interval after the

start of the low-priority job. There are two salient features: the second job should always

preempt the �rst job immediately upon its release, and we always know the precise time of

that release. Hence, we can measure the di�erence between the second task's release time

and the time it actually starts executing code. This always involves preempting task one,

and thus we consider this to be a practical measure of overhead due to preemption.

Barrier Latency Delay: The second micro-benchmark addresses the segment syn-

chronization delay. Whenever a team of threads moves through a barrier there will be many

threads waiting on the barrier and only one thread to wake them. This could introduce a

signi�cant delay for whichever thread happens to be woken last. This micro-benchmark is

straightforward: a team of threads goes through a barrier and they timestamp immediately

before and after. The last pre-barrier timestamp is the time that the last thread entered the

barrier, so it is the time that all threads become eligible to proceed. The last post-barrier

timestamp is the time that the last thread left the barrier, which is the thread that su�ered

30

Scheduling 12-Core Barrier 36-Core Barrier

Latency (µs) Latency (µs) Latency (µs)

25th Pct. 9.2 11.7 3277.5
50th Pct. 9.9 12.2 3284.9
75th Pct. 10.8 15.6 3290.1
95th Pct. 12.5 18.1 3296.6
Max 27.5 76.8 6503.5

Table 2.2: The 25th, 50th, 75th, and 95th percentiles for the scheduling and barrier latency
micro-benchmarks, as well as the worst-case observed latency.

the most delay. Thus, we can compare these two timestamps to determine the true total

delay of the barrier operation� the total amount of time it took for a thread to actually

leave the barrier once it was semantically allowed to do so.

We perform the barrier latency micro-benchmark twice: once with a team of 12 threads on

12 cores, and once with a team of 36 threads on 36 cores. As previously discussed, we expect

the 36-core version to incur greater overhead both because of the greater number of threads

in the team as well as the cost of communicating across multiple processor chips.

All micro-benchmark results are presented numerically in Table 2.2. We see that the overhead

is generally small for teams of 12-cores: less than 30 µs overhead for preemption and less

than 80 µs delay for barriers. However, the overhead of barrier synchronization for large

teams is several orders of magnitude greater, requiring more than 3ms in all cases.

2.1.3 Empirical Results

Figures 2.4 through 2.9 present the results of our experiments. We now evaluate those

results.

Our experiments show that all 12-core task sets are schedulable at 20% utilization once

the minimum task period is 4ms or greater. This validates the theoretical augmentation

31

bound results for those timescales, and demonstrates the suitability of the system to handle

applications that require task frequencies of 250Hz. It is di�cult to determine whether the

2ms boundary is due entirely to preemption and barrier overhead or an additional factor,

because the total incurred overhead is dependent on the exact task set con�guration (how

many preemptions and barrier synchronizations occur).

As we run slower timescale tasks we're able to execute higher utilization task sets. Between

�gures 2.5 and 2.6 the achieved utilization grows from 20% to 30% at the expense of doubling

the shortest task period. For 12-core operation we are able to achieve full schedulability at

reasonably high utilization (greater than 50%) when the shortest task periods are greater

than or equal to 16ms.

The large 36-core task sets are much more di�cult to schedule, which is to be expected given

the much higher barrier synchronization overhead. We only successfully schedule all 20%

utilization tasks once the minimum task period is 16ms. We can achieve high (70%-80%)

utilization if we double the minimum task period to 32ms. This is not fast enough to run

real-time applications that require extremely short timescales, but does demonstrate the

suitability of the system for applications that have slightly longer periods but require much

more processing power, for example processing video in real-time at 25 frames per second.

The barrier overhead appears to be the primary limiting factor in how fast we can run large

teams of threads. Minimizing or avoiding multi-chip communication would appear to be

necessary for any real-time systems that require sub-millisecond operation.

Packing Heuristic: One very clear result concerns the performance of the �rst-�t and worst-

�t bin packing heuristics. The worst-�t heuristic dominates the �rst-�t heuristic, meaning

that there was not a single task set where the �rst-�t heuristic was successful but the worst-

�t heuristic was not. The worst-�t heuristic also scales better at longer timescales, which

32

actually is not due to the timescale: at high utilizations the �rst-�t heuristic tends to over-

utilize individual processors, resulting in a task set that is unschedulable under any scaling.

This provides strong evidence for the source of task set failures. If task failures were primarily

due to contention and synchronization overhead, then worst-�t would be worse, since it

potentially spreads a task across many cores, while �rst-�t clusters the tasks on a small

number of cores. This result seems to suggest that the primary danger in our system is over-

utilization of individual cores, rather than the contention overhead due to the cooperation

of many cores.

This seems to be con�rmed by the 2048ms timescale experiment, a timescale so large that it

is extremely unlikely that any deadline misses arise due to overheads. At the 70% utilization

level the �rst-�t heuristic begins to perform extremely poorly, while worst-�t has only a

small increase in the number of unschedulable task sets. From a system design perspective

the worst-�t heuristic appears to be a better choice, as it seems to o�er a much larger margin

of safety.

33

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80

F
a
il
u
re

R
a
te

Utilization

Utilization and Taskset Failure Rate, 2ms-64ms Tasks

First-Fit, 12 cores
Worst-Fit, 12 cores

Figure 2.4: Task set utilization vs. failure rate (both in percentages) for the 2ms timescale.
Both the worst-�t and �rst-�t task sets failed at 20% utilization. This shows that at the 2ms
timescale the scheduler's theoretical assurance fails due to system overheads. All 36-core
task sets failed, and their results are not shown.

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80

F
a
il
u
re

R
a
te

Utilization

Utilization and Taskset Failure Rate, 4ms-128ms Tasks

First-Fit, 12 cores
Worst-Fit, 12 cores

Figure 2.5: Task set utilization vs. failure rate (both in percentages) for the 4ms timescale.
The worst-�t heuristic succeeded at 20% utilization, but failed otherwise. Most 36-core task
sets failed, and their results are not shown.

34

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80

F
a
il
u
re

R
a
te

Utilization

Utilization and Taskset Failure Rate, 8ms-256ms Tasks

F-F, 36
W-F, 36
F-F, 12
W-F, 12

Figure 2.6: Task set utilization vs. failure rate (both in percentages) for the 8ms timescale.
Failure means at least one periodic deadline miss. The �rst-�t task sets are never completely
schedulable, while the 12-core worst-�t task set is schedulable up to 30%. Worst-�t (W-F)
and �rst-�t (F-F) are abbreviated.

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80

F
a
il
u
re

R
a
te

Utilization

Utilization and Taskset Failure Rate, 16ms-512ms Tasks

F-F, 36
W-F, 36
F-F, 12
W-F, 12

Figure 2.7: Task set utilization vs. failure rate (both in percentages) for the 16ms timescale.
Worst-�t (W-F) and �rst-�t (F-F) are abbreviated.

35

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80

F
a
il
u
re

R
a
te

Utilization

Utilization and Taskset Failure Rate, 32ms-1024ms Tasks

First-Fit, 36 cores
First-Fit, 12 cores

Worst-Fit, 36 cores
Worst-Fit, 12 cores

Figure 2.8: Task set utilization vs. failure rate (both in percentages) for the 32ms timescale.
This demonstrates how the worst-�t heuristic scales better than the �rst-�t heuristic, as
the 36-core worst-�t task sets are approximately just as di�cult to schedule as the 12-core
�rst-�t task sets.

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80

F
a
il
u
re

R
a
te

Utilization

Utilization and Taskset Failure Rate, 2048ms-216ms Tasks

First-Fit, 36 cores
First-Fit, 12 cores

Worst-Fit, 36 cores
Worst-Fit, 12 cores

Figure 2.9: Task set utilization vs. failure rate (both in percentages) for the 2048ms
timescale. Failure means at least one periodic deadline miss.

36

Chapter 3: Mixed-Criticality Federated

Scheduling Service

When it was introduced, the Federated Scheduling Service (FSS) constituted a major revision

in thought for parallel real-time scheduling theory and practice. It solves a major limitation

of all prior research avenues in the �eld, which is the need to de�ne a speci�c task model

(such as the parallel-synchronous task model from section 2.0.2), and to explicitly schedule

individual elements of a parallel computation (e.g. the strands from the parallel-synchronous

task model). It addresses these concerns by providing for the strict separation of parallel

workloads onto individual processor partitions, invoking a greedy scheduling strategy that

is indi�erent to the structure of the parallel programs it executes, and then justifying this

approach by providing theoretical performance that surpasses the 20% utilization bound for

RT-OpenMP as well as the other scheduling approaches known at the time.

The need for a speci�c task model in earlier work was driven by the desire to analyze exactly

how parallel tasks would be executed. For both RT-OpenMP [8] and earlier work [1] the

scheduling analysis relied on sequencing exactly how a parallel task runs, and then allocating

enough processor cores to ensure there is enough slack in a generated schedule for each parallel

task to meet its real-time constraints. Not only does this arti�cially restrict the freedom of

37

real-time application developers, but it invariably demands a system where parallel tasks

must be separated into their most basic runnable components and each atom of work must

be executed individually. While this approach can be successful, it is responsible for the high

degree of system overhead evidenced in RT-OpenMP, which was described in Chapter 2.

In contrast, the FSS analysis abstracts each parallel task into two quantities. The �rst is

the total work, which is the sum of all computational e�ort in the parallel program. The

second is the critical-path length, which is the longest sequential chain of work in the parallel

program. These quantities re�ect the structure of a parallel program (but do not de�ne it)

and are suitable for stating a bound using the greedy scheduler theorem. If we allow T1 to

be the work of a parallel program, and T∞ to be the critical-path length, then the greedy

scheduler theorem states [12] that the actual runtime T of a parallel program on P processors

is bounded by:

max(T1/P, T∞) < T < T1/P + T∞ (3.1)

Importantly, the only assumption made about a greedy scheduler is that processor cores are

never left idle when there is work available to do. This assumption can be violated in prac-

tice by scheduling overheads in realistic systems, as well as poor system con�guration (e.g.,

OpenMP's chunk size or Cilk Plus' grainsize), but most concurrency platforms can approxi-

mate this criterion with appropriate con�guration. Thus, any existing parallel scheduler that

is "su�ciently greedy" may be used to schedule and execute parallel real-time programs in

the FSS while achieving a strong theoretical bound. A detailed analysis can be found in [13].

In practice, the FSS implementation is simple, powerful, and �exible. The job of the FSS

is to determine suitably sized partitions for each parallel task and then enforce isolation at

38

runtime. The actual running of the parallel real-time tasks is handled by existing parallel

concurrency platforms such as Cilk Plus and OpenMP (but not RT-OpenMP, which as we

have noted assumes a more restrictive task model). These are not inherently real-time envi-

ronments but are nonetheless highly e�cient and provide good soft real-time performance.

This chapter examines the implementation of a (dual-criticality) mixed-criticality federated

scheduling (MCFS) system. As in traditional federated scheduling, parallel tasks are par-

titioned onto sets of processor cores according to their processor demand. Each task may

execute in two modes (high-criticality and low-criticality), each of which has its own pre-

assigned partition of potentially di�erent sizes and even of disjoint partitions. Moreover,

this state transition may be triggered at any point during execution, and an e�ective system

must allow for the allocation of e�ort from low-criticality work to high-criticality work with

a minimum of delay.

3.1 Implementing Mixed-Criticality Federated Schedul-

ing (MCFS)

A mixed-criticality workload is one where certain computational tasks are considered more

important than others, and the more-critical tasks must be guaranteed under all operating

conditions, potentially at the expense of less-critical tasks. For example, a set of four proces-

sors may be shared among two normally-disjoint tasks. A structural engineering experiment

might identify two regions of structure to simulate- a highly critical region that is tightly

connected to the experimental purpose of the endeavor, and a less critical portion that is

farther away from the region of interest. In the event of unexpectedly high computational

demand, the MCFS system is designed to reallocate some of the computational resources

provided to the low-criticality task, either one or both processors, to the highly-critical task.

39

While this example captures the original intent of mixed-criticality real-time systems, which

is prioritization, in the most general sense the MCFS system may be viewed as implementing

two operating modes de�ned by pre-computed schedules.

This implementation is a particularly good example of the complexities of real-time systems

design for parallel computation, as it converts an existing parallel concurrency platform into

a real-time parallel concurrency platform with mixed criticality semantics. The original

designers of OpenMP had no reason to consider the prioritization of some threads over other

threads, much less the challenge of dynamically adjusting those priorities during runtime in

response to system events. Creating an e�ective mixed-criticality mode transition required

modifying the basic mechanisms of OpenMP, essentially leaving only the thread creation and

parallel work management code intact. In particular, three mechanisms were required.

The three key requirements for the MCFS runtime are: (1) the system must detect when a

mode transition must occur (any high-criticality task has overrun its virtual deadline); (2)

it must modify the core allocation to give more cores to high-criticality tasks in the event

of a mode transition (virtual deadline miss); and (3) since the number of active threads in

the system �uctuates with its criticality state, it must provide a state-aware concurrency

mechanism to facilitate parallel programming � i.e., a state-aware barrier.

This reference implementation supports parallel programs written in OpenMP [5]. It uses

Linux with the RT_PREEMPT patch as the underlying RTOS and the OpenMP parallel

concurrency platform to manage threads and assign work at runtime.

Background

As this is a dual-mode mixed-criticality implementation, there are only two states: the

typical-state and the critical-state. The system transitions from the typical state into the

critical state when the system is in danger of overrunning any job's deadline. This moment

40

of danger is the virtual deadline, which is calculated to be a point in time su�ciently early to

detect undesirable system behavior while also leaving enough slack so that a high criticality

job may have enough time to �nish successfully after the mode transition.

For a more complete background, including full details of the MCFS scheduling (core parti-

tioning) algorithm, calculation of virtual deadlines, etc. see [14]. Those details are not this

author's work and are beyond the scope of a discussion of system implementation.

3.1.1 Overrun Detection

The MCFS runtime system detects that a high-criticality task overruns its virtual deadline

via Linux's timer_create and timer_settime API. These timers are set and disarmed at

the start and end of each job period by each high-criticality task while in the typical-state,

so expiration only occurs in the event of an overrun. Timer expirations are delivered via

signals and signal handlers. To make sure that timer expiration is noticed promptly, kernel

ksoftirq threads are given higher real-time priority than all other threads.

These ksoftirq threads are part of the interrupt handling system in Linux that consists

of a fast uninterruptable component and a slower, deferrable component (the deferrable

component being run in the ksoftirq thread). Allowing them to run at a priority above

high criticality tasks constitutes criticality inversion whenever they are invoked to handle

an event that does not belong to one of the system's high criticality task, meaning that

services for low-criticality tasks may be performed in preference to handling high-criticality

execution. However, these threads are necessary to the handling of timer events, and are thus

vital to the process of high-criticality escalation should it need to occur. If the ksoftirq

threads executed at a priority below the low-criticality tasks, then a low-criticality task could

block the execution of the ksoftirq thread, and thereby block the delivery of a timer signal

41

destined for a high-criticality task. In practice, interrupt handling is fast and constitutes

minimal overhead, even for the slow portion of the interrupt hander.

3.1.2 Core Reallocation

A key requirement of MCFS is to increase the allocation of cores to a high-criticality task

when it exceeds its virtual deadline, by taking cores away from low-criticality tasks. This is

accomplished in four parts. (1) during initialization each high-criticality task τi creates the

maximum number of threads it would need in the critical-state (nO
i). Each low criticality

task creates nN
i threads. (2) When the runtime system starts (in typical-state), only nN

i

threads are awake for each task and they are pinned to distinct cores1. (3) The remaining

nO
i − nN

i threads of high-criticality tasks are put to sleep with the FUTEX_WAIT system call2,

while also pinned to their cores (which may be shared with a low-criticality task). These

threads sleep at a priority higher than any low-criticality thread on the same core. (4) When

a job of high-criticality task τi overruns its virtual deadline, its sleeping threads are awoken

with FUTEX_WAKE and they preempt the low-criticality thread on the same core and begin

executing.

Note that the set of cores assigned by the typical-state mapping to τi is a subset of the

cores assigned by the critical-state mapping; therefore, the system needs no migration for

the high-utilization tasks.

In this design, the threads of each task must be activated and deactivated each period via

the OpenMP directive #pragma omp parallel. Thus, this approach of maintaining a pool

of unused, high-criticality threads does impose an additional overhead on the system, even if

1In order to pin threads to cores, before task execution we use an initial #pragma omp parallel directive
where individual threads make a call to Linux's sched_setaffinity and pin themselves to the assigned cores.

2Currently only accessible through the generic syscall function with the FUTEX_WAIT and FUTEX_WAKE

de�nes.

42

it never transitions into critical-state, due to these activations and deactivations. However,

these overheads are only imposed on low-criticality tasks by high-criticality tasks, so there

is no criticality inversion.

When a job of high-criticality task τi overruns its virtual deadline and preempts the low-

criticality tasks on the shared cores, the current jobs of these low-criticality tasks may con-

tinue to execute when the higher-priority threads from high-criticality tasks are idling. If,

however, the start times of these low-criticality jobs are already later than their absolute

deadlines, such jobs are dropped voluntarily by low-criticality tasks. Therefore, when the

system is able to recover from critical-state to typical-state, there is little backlog of low-

criticality jobs and the future arriving jobs of the same task are able to resume normal

execution. Note that for systems that can tolerate tardiness for low-criticality jobs, an alter-

native could be not to drop these backlogged jobs, and instead to design policies to bound

such tardiness.

The primary reason for allowing current low-criticality jobs to run at a lower priority instead

of directly killing the threads of these job is to avoid the cost of creating new threads

during system operation, but it also allows the low-criticality threads to make progress on

a best-e�ort basis. Note that since we allow low-criticality threads to continue executing

after a mode transition has occurred, they will continue to interfere with high-criticality

threads through cache pollution, resource contention, and other e�ects. Even so, allowing

low-criticality threads to continue progressing seems appropriate for a soft real-time system.

The other option besides killing these processes would be to suspend them, but we do not

investigate either of these options here.

Since high-criticality tasks do not share cores in MCFS, if a high-criticality task receives

a timer signal indicating that it has overrun its virtual deadline, it does not initiate a

system-wide mode switch. Instead, it simply wakes up its sleeping nO
i − nN

i threads and

43

in doing so acquires the necessary additional cores from a subset of low-criticality tasks. If

a low-criticality task overruns its deadline, it need not do anything. This natural default

implementation leads to graceful degradation since low-criticality tasks are not discarded on

entering critical-state.

p e r i o i d i c_ i t e r a t i o n (){
#pragma omp p a r a l l e l
{
i f (t yp i c a l_s ta t e && high_crit_task)

s leep_extra_threads ()

//Do p a r a l l e l program
#pragma omp for schedu le (dynamic) nowait
for (j = 0 ; j < num_strands ; ++j)
{

// Perform work
busy_work () ;

}

mc_barrier_wait ()
wake_extra_threads ()
}

}

Figure 3.1: MCFS Periodic Task Invocation Psuedocode

3.1.3 State-Aware Barrier Implementation

One side-e�ect of this mixed-criticality model for parallel tasks is that counting-based thread

synchronization methods such as traditional barriers will not work properly as the number

of active threads �uctuates. In barrier synchronization there is (usually) a �xed number of

threads that must periodically rendezvous. The obvious implementation is to have a counter

that increments each time a thread reaches the barrier and have each thread wait at that

barrier. Once all threads have arrived the counter is reset and all threads are released.

44

// Ca l l ed asynchronous ly by s i g n a l hand ler
barr i e r_state_switch ()

needs_switch = true

check_needs_updating ()
i f (needs_switch)

atomica l ly_cla im_switcher ()
i f (sw i t che r)

v e r i f y_ba r r i e r_ ina c t i v e ()
update_barrier_count ()
needs_switch = f a l s e
r e l e a s e_sp inwa i t e r s ()

else sp inwa i t ()

mc_barrier_wait ()
check_needs_updating ()
do_barrier_wait ()

Figure 3.2: MCFS Mode Aware Barrier Psuedocode

This works in some use cases, but assumes that the number of threads is constant throughout

the lifetime of the barrier, which is not the case in the MCFS system. In particular, some

of the threads in a high-criticality task may be sleeping, so the implicit barrier at the end

of each #pragma omp for loop may deadlock if the sleeping threads never arrive. Equally

troubling is that if a race condition occurs on the thread counter, newly awoken threads

may race ahead and cause deadlock or could release threads from the barrier early (thus

having some threads working before the barrier and some threads working after the barrier),

violating the synchronization ordering of the program.

We address this by removing the implicit barrier with the OpenMP clause nowait, as shown

in Figure 3.1 and implementing a state-aware barrier shown in 3.2, which operates as fol-

lows. When a task begins a transition, its signal handler sets a variable indicating that the

barrier needs updating before waking the extra high-criticality threads. The next thread

to encounter the barrier checks this variable and claims responsibility for updating with an

45

atomic compare-and-swap on a boolean �ag. Other threads arriving after that will spin-wait.

The update thread will then verify that the barrier is not currently being modi�ed by any

thread that arrived before the transition, spin-waiting otherwise, and �nally will increment

the barrier count when it is safe to do so. It then releases any threads that are spin-waiting

so that they may proceed through the barrier.

This imposes a small, constant overhead every time a thread accesses the barrier, since

threads must check to see if the barrier needs updating. However, it allows us to use the same

barrier in both states, and the barrier can be updated even if some threads are currently

waiting on the barrier. Without such an arrangement, the transition overhead could be

unbounded, since the additional nO
i −nN

i high-criticality threads could not be released while

any barrier was in an indeterminate state.

3.1.4 Recovering from critical-state to typical-state

The MCFS scheduling theory naturally supports tasks that may transition between the

typical-state and critical-state many times over the life of the system. This is desirable as it

allows low-criticality tasks to continue executing on a best-e�ort basis. Otherwise, a high-

criticality task transitioning into critical-state would permanently impair any low-criticality

task it happened to share a processor core with, even if the conditions that lead to the state

transition were transient.

Reverting to typical-state is straightforward compared with transitioning into the critical-

state, because the MCFS theory allows this to happen at a time of our choosing and not

in response to any external event. Thus, a particularly convenient time for this to occur is

outside the execution of any job of the task, because the task's team of parallel threads is not

active during those times. Modifying the system while a parallel computation is underway

46

is the major source of complexity for the critical-state transition and is what requires the

complex core reallocation and state-aware barrier mechanisms that are discussed above.

E�ecting the transition to typical-state requires resetting the state-aware barrier and reduc-

ing the number of threads that will participate in future job invocations. Since this process

occurs outside the execution of any job, it is guaranteed that the barrier is not in use and

that no parallel threads are active. Thus there are no concurrency issues to resolve, and

reversion is accomplished without synchronization. In particular, the state-aware barrier

is recon�gured to expect the number of threads that should be active in the typical-state

(i.e. a modi�ed version of update_barrier_count() from Figure 3.2 may be called without

protection). Second, a global �ag is set that indicates to the critical-state threads that they

should sleep with FUTEX_WAIT upon activation rather than immediately participating.

Under the MCFS theory this reversion may be performed as often as the completion of each

individual job that has entered the critical-state. In e�ect, the critical-state transition occurs

on a per-job basis rather than a per-task basis, and all new jobs start in the typical-state

but may transition to the critical-state as needed, allowing for very �ne grained control

over the system criticality and providing the minimum interruption to low-criticality tasks.

Such low-criticality tasks operate on a best-e�ort basis but are not guaranteed in the face of

interference from a task in the critical-state. In Section 3.2, we construct a benchmark task

set to test and evaluate the recovery to typical-state feature of our MCFS runtime system.

3.2 Evaluation of MCFS

The MCFS system described previously was successfully implemented and tested. First,

two overhead benchmarks are described which were then incorporated into the scheduling

47

theory. After incorporation, tests of taskset behavior behaved as expected for both high and

low criticality tasksets, in both the normal and critical modes.

3.2.1 MCFS Benchmarks

Latency due to mode transition: The most important factor to optimize for ensuring

the safe operation of high-criticality tasks is the high-criticality activation latency� the delay

between when a mode transition is detected and when the additional nO
i −nN

i high-criticality

threads that were sleeping in the typical mode wake up and are ready to perform work. We

measure this by inducing a mode transition at a �xed time, and the extra threads perform

a time-stamp as soon as they wake up. The di�erence between the mode switch time and

the latest time-stamp gives the latency. This latency was very low in general but increases

with the increasing number of threads, as can be seen in Figure 3.3. The number of awoken

threads varies from one to fourteen, measuring the latency 400 times for each setting, and

the maximum observed latency was 84 microseconds.

Note that this mode transition latency may occur only once for each high-criticality job

in the critical-state. To incorporate it into schedulability analysis, we subtract it from the

deadline of each high-criticality task.

3.2.2 Impact of high-criticality tasks on low-criticality tasks

In the MCFS system, low-criticality tasks may share cores with a high-criticality task. As

described above, this is managed by creating two threads on these cores� one for the low-

criticality task and one for the high-criticality task. The low-criticality task is subject to in-

terruption by high-criticality threads that must sleep and awake at the start and end of every

period, which involves two context switches, the start and end of a #pragma omp parallel

48

Figure 3.3: High-criticality mode transition latency in MCFS

49

directive, and interactions with a Linux futex. One can compare the wall-clock execution

time of the low-criticality task with the Linux clock source CLOCK_THREAD_CPUTIME_ID to in-

fer the total amount of time the low-criticality task was preempted. The maximum observed

overhead was relatively high at 1555 microseconds per preemption. This is high enough

that it was important to incorporate this overhead into the schedulability analysis presented

in [14] to ensure that low-criticality tasks meet their deadlines. However, note that this over-

head is only incurred when a high-criticality task's sleeping thread is sharing a core with a

low-criticality task in the typical-state, so high criticality tasks are not a�ected. In addition,

the preemption only occurs once per period of the high-criticality task. Therefore, we can

calculate the maximum number of preemptions and subtract the appropriate time from the

low-criticality task's deadline.

These experiments on a simple prototype platform demonstrated a signi�cant overhead, but

one that is low enough that the e�ect can be mitigated by incorporating the overhead into

the scheduling theory. However, using the worst-case 1.5ms, this limits low-criticality tasks

to periods of 1.5ms or longer. It is mostly attributed to the cost of entering and exiting

the #pragma omp parallel each period as shown in Figure 3.1. For a reference system like

we have described here, the choice of including the parallel directive within the periodic

invocation greatly simpli�es programming and reasoning about the system, and also allows

the user to use existing parallel programs with little modi�cation, but the overhead may

be unsuitably high for practical systems. In a traditional OpenMP program, the parallel

directive would be used once or just a few times� calling it once every period exposes an

important limitation of this standard parallel concurrency platform when used in real-time

system, and represents a serious mismatch between the expectations of the OpenMP system

designers and the current use case.

50

3.2.3 MCFS Validation

We evaluate the implementation of the MCFS runtime system using synthetic workloads

written in OpenMP. Experiments were conducted on a 16-core machine composed of two

Intel Xeon E5-2687W processors (each with 8 cores). When running the experiments, we

reserved two cores for operating system services, leaving 14 experimental cores. Linux with

RT_PREEMPT patch version 4.1.7-rt8 was the underlying RTOS. For each setting, we

randomly generated 100 task sets, each of which runs for 5 minutes � 300× the maximum

period.

Now we explain how we generate task sets for the empirical evaluation. In these experiments,

the number of cores m is 14. We construct a task set by repeatedly adding randomly

generated tasks until the MCFS schedulability test cannot admit any more tasks. Tasks are

either high- or low-criticality with equal probability.

Note that the synthetic tasks in these experiments are written in OpenMP. Each task has a

sequence of parallel for loops, or segments. Each iteration of a segment is called a strand.

We generate a task by �rst randomly choosing a desired overload critical-path length L′, and

then adding randomly generated segments until L′ is reached.

The task parameter generation process is similar to the one in [15]. To generate tasks with

large parallelism, we �x the maximum ratio pmax of the overload critical-path length over

period: pmax = 1
2(2+

√
2)
. The other parameters are as follows:

1. Criticality zi: 50% high-criticality and 50% low-criticality.

2. Nominal and overload utilization ratio ri for high-criticality task: uniformly from

[0.025, 0.25]; ratio ri for low-criticality tasks is always 1.

3. Implicit deadline Di: uniformly from 100ms to 1000ms.

51

4. Max overload critical-path length L′: 40%, 50%, 70% or 100% of Dipmax, with proba-

bility of 0.4, 0.3, 0.2 and 0.1.

5. Number of strands of a segment si,j: randomly chosen from a log normal distribution

with mean of 1 +
√
m/3.

6. Overload length of strands of a segment tOi,j: randomly chosen from a log normal

distribution with mean of 5ms.

7. Nominal length of strands of a segment tNi,j = rit
O
i,j.

With these parameters, we can calculate the nominal and overload work and critical-path

length, which are used in the MCFS schedulability test.

3.2.4 Mode Switch Stress Testing

To validate the entire system we conducted experiments to stress test the performance of

the MCFS runtime system in both typical- and critical-states. In typical-state stress test-

ing, both high- and low-criticality tasks are generated to execute their nominal work and

critical-path length, such that no mode transition is expected. The experimental results were

consistent with the correctness condition: no mode transition occurred and all high- and low-

criticality tasks met all their deadlines. In critical-state stress testing, each task executes

exactly its worst-case overload work and critical-path length. Again, in this worst case be-

havior, the result is also consistent with the correctness condition: every high-criticality task

successfully transitions to critical-state and has no deadline misses. Some low-criticality

tasks are preempted by high-criticality tasks, suspend some of their jobs and hence have

deadline misses, which is allowed in a critical-state transition.

52

Figure 3.4: Fraction of tasks with no deadline miss, for the sets of tasks with high- and low-
criticality, respectively, when increasing the number of high-criticality tasks that overrun
their nominal parameters.

3.2.5 Graceful Degradation

The mixed-criticality correctness condition allows us to discard all low-criticality tasks as

soon as any task misses its virtual deadline and the system transitions to critical-state.

However, our MCFS platform need not do so as is discussed above. Figure 3.4 demonstrates

that the MCFS runtime system can continue to run many low-criticality tasks even after

some high-criticality jobs transition to critical-state. Here, we generate task sets with at

least 4 high-criticality tasks. For each set, we run 5 experiments: either 0, 1, 2, 3 or 4 high-

criticality tasks execute with their overload parameters and the remaining tasks execute with

their nominal parameters. We plot the fraction of tasks with no deadline miss in Figure 3.4.

We can see that all high-criticality tasks always meet their deadlines. In contrast, the low-

criticality task performance does not drop abruptly to zero as soon as the transition occurs,

but rather degrades gracefully as more and more high-criticality tasks exceed their nominal

settings. For instance, when only 1 high-criticality task overruns, only about 33% of the

low-criticality tasks miss their deadlines.

53

3.3 Discussion of RT-OpenMP vs Federated Scheduling

Implementations

The parallel real-time implementations discussed in this chapter and the previous chapter

are useful case studies for current and future parallel real-time systems designers, in part

because their approaches di�er so signi�cantly. RT-OpenMP is a restrictive and regimented

system that places heavy assumptions on the kinds of tasks that can execute, while Federated

Scheduling is much less so. It would be intuitive to suspect that a system targeting a speci�c

subset of programs (RT-OpenMP) would perform better than one that is more general, but

experience shows otherwise. Federated scheduling can execute any program expressible as a

directed acyclic graph, and it has a utilization bound of 50% (which surpasses RT-OpenMP's

bound of 20%). In practice it also executes with much lower overhead, and can achieve much

higher periodic rates.

The question is why, from a whole-system point of view, RT-OpenMP performs poorly in

relation to federated scheduling. RT-OpenMP was constructed in an e�ort to build a good

parallel real-time system according to the best practices of real-time computing available at

the time. When this approach was insu�cient it was found that approaching the problem

starting with the principles of parallel computing was far more successful. First we should

rule out some potential di�erences.

First, greedy scheduling used in federated scheduling is guaranteed to be relatively e�cient

in its utilization of available processor resources, while decomposition scheduling used in

RT-OpenMP is not. Is it possible that RT-OpenMP's scheduling method generates inferior

schedules? Probably not� it can be argued RT-OpenMP generates a greedy-like schedule.

The worst-�t bin packing method used has the e�ect of heuristically minimizing processor

54

demand across all processors. This should also yield a schedule that is greedy-like in that

it should be unlikely that some processors will be heavily loaded while other processors are

left idle, unless that condition is an inevitable element of a particular task set.

Second, can the observed performance di�erence be due to the use of only parallel-synchronous

tasks within RT-OpenMP? Again, probably not. The directed acyclic graph tasks that fed-

erated scheduling permits include all parallel-synchronous tasks as a subset, and intuition

tells us that the dependencies present in parallel-synchronous tasks are at worst no harder

than those found in general directed acyclic graph tasks (and are probably easier).

Thus, the performance di�erence between RT-OpenMP and federated scheduling is likely

primarily explained by the systems implementation, rather than fundamental di�erences in

the e�ciency of the scheduling policy.

Testing showed that the overheads in the initial RT-OpenMP implementation, with its reg-

imentation, were extremely high, and unacceptably so for tasks running higher that 500Hz.

In contrast, tests of the federated scheduling system, running OpenMP or Cilk Plus code,

such as those that will be discussed in Section 5.3 could run meaningful (but small) tasks

as high as 7000Hz, with substantially computationally expensive tasks running successfully

at 1000Hz. The overheads in RT-OpenMP are due to explicit synchronization, priority set-

ting, and thread management. All of these require the cooperation of the operating system

to achieve, as the choice to use thread-priorities as the preemption mechanism drives the

requirement to have many threads, which then requires the system to create many more

threads than processors, which in turn drives the requirement to use futex sleep-waiting to

avoid priority inversion between waiting threads and running threads. In e�ect, RT-OpenMP

uses the operating system extensively to manage what work is being done, as well as when

and where it is being done. Federated scheduling relies on the OS only implicitly (to start

threads, etc.).

55

This leads us to a major contrast between both systems. Current parallel concurrency

platforms (OpenMP and Cilk Plus) operate almost entirely in userspace, and hence federated

scheduling operates primarily in userspace. RT-OpenMP executes user code in userspace, but

its mechanisms operate mostly in kernelspace. However, the choice between userspace and

kernelspace was not the design decision, but the consequence of a much more fundamental

mechanism.

Critically important is that this dichotomy is not an artifact of chance. It is the inevitable

consequence of two early decisions made in the development of both systems, and re�ects

how both systems deal with contention between tasks at a fundamental level. Federated

scheduling takes a hands-o� approach: it classi�es parallel tasks into high-utilization and

low-utilization and isolates high-utilization parallel tasks from one another on dedicated sets

of cores, while low-utilization tasks disable parallelism. Contention between parallel tasks

is eliminated because parallel tasks are segregated. RT-OpenMP embraces contention and

co-schedules strands of di�erent tasks together on the same processing cores. This then

introduces the need for threads of di�erent process spaces (tasks) to be able to preempt each

other at arbitrary points in time.

On re�ection, it becomes clear that this need for arbitrary preemption of threads is in fact the

key di�erentiating characteristic between RT-OpenMP and federated scheduling, and may

very well be a key de�ning characteristic of any possible parallel real-time system. Truly

arbitrary preemption cannot be accomplished entirely in userspace with the mechanisms

currently available to systems developers. Arbitrary preemption can only happen when a

processor core is interrupted via an external source� either a software or hardware interrupt

delivered via the OS. Otherwise, the behavior of the processor is to continue executing the

fetch-decode-execute cycle until the currently executing program voluntarily yields control

of the processor.

56

As a purely parallel system, neither Cilk Plus nor OpenMP has a need for preemption of

threads. It is assumed that all units of work in these systems are equal and the objective is to

maximize throughput of units of work. Scheduling decisions happen to maximize throughput,

not to enforce timing requirements. As a result, these systems are implemented entirely in

userspace. They create only as many OS threads as is necessary to manage all processors.

They use internal work queues to manage a larger number of apparent user level threads.

Switching between units of work only happens when currently executing work voluntarily

yields the processor back to the concurrency platform. All of these mechanisms are readily

achievable without heavy reliance on the OS.

Suppose, as a thought experiment, that one of these systems did want to implement priority-

based scheduling between contending tasks. The only place where preemption may occur is

during voluntary yielding. Hence, such systems have no mechanism to guarantee scheduling

behavior (a misbehaving program may never yield the processor). Even if correctness is

assumed, there is no mechanism to enforce latency during preemption, and preemption can

be delayed arbitrarily. Individual units of work in parallel concurrency platforms tend to

be quite small (on the order of single loop iterations) but this is not a requirement, with

deviations from this possibly leading to unbounded priority inversion.

In contrast, RT-OpenMP achieves true arbitrary preemption via thread priorities and sleep-

ing via the futex mechanism. Thread sleeping is ultimately rooted in hardware timers, which

permits the CPU to be interrupted by a hardware clock at predictable times. Since future

interrupt times are always known (due to the static schedule used in this system) simple

timers are su�cient to implement the preemption needed for this system. This approach

has de�nite advantages for real-time computing. First, preemption of a low priority task for

the sake of a high priority task cannot be delayed by the low-priority task if it is misbehav-

ing. Second, the latency is determined by the implementation of the OS mechanisms rather

57

than the behavior of the low-priority task. This minimizes and potentially bounds priority

inversion if the preemption mechanism is itself bounded.

This link between systems is so fundamental that it was only apparent in hindsight (to this

author) that the mixed-criticality implementation of federated scheduling is actually a hybrid

between RT-OpenMP and traditional federated scheduling. What is the de�ning characteristic

between regular federated scheduling and mixed-criticality federated scheduling? It is pre-

cisely the need to preempt a low-criticality task at arbitrary times! In traditional federated

scheduling the strict partition between parallel tasks eliminates this need. In MCFS there

are low-criticality and high-criticality tasks that share cores, and when a virtual deadline

is overrun the low-criticality task must be preempted immediately. The mechanism here is

identical to RT-OpenMP: each task has its own set of threads on all relevant processors, with

thread priorities con�gured appropriately. If a preemption happens it will happen at a known

time which is the current virtual deadline for some high-criticality task, and the preemp-

tion is induced by a hardware timer waking a set of waiting high-priority (high-criticality)

threads.

If one accepts this premise that the presence (or lack) of arbitrary preemption is the funda-

mental distinguishing feature for parallel real-time systems then there are ultimately three

kinds of parallel real-time systems:

1. Systems without arbitrary preemption are more e�cient and computationally powerful

due to keeping more code-paths within userspace, and can use any existing parallel con-

currency platform, but are unsuitable for hard-real-time processing due to potentially

unbounded priority inversion.

2. Systems with arbitrary preemption are less e�cient due to heavy reliance on OS mech-

anisms and the need for more OS threads, and must implement their own work schedul-

ing (cannot use existing concurrency platforms), but may be more suitable for hard-

58

real-time processing as they provide more control over the system which helps to bound

priority inversion.

3. There are middle-ground systems that will be variously suitable for real-time processing

depending on the application. For example, user tasks could perform periodic checks

to see if a preemption is needed, and voluntarily yield if asked to do so. This would

bound preemption latency and thus priority inversion to whatever the longest gap is

between checks. This does not protect the system from misbehaving tasks however,

and thus would not be a strong hard-real-time system.

One question is why this dichotomy has not been explored more fully in the sequential

processing case. Real-time systems have been around for a long time and have needed

to deal with preemption before, so what is di�erent in the parallel context? The biggest

di�erence is the frequency with which preemption and synchronization is needed in a parallel

context. In a parallel-synchronous task running on RT-OpenMP, for example, each segment

of a task (with many segments per task) requires an explicit synchronization leading to

many synchronizations per period. Additionally, depending on how strands are packed onto

processors, a single period of task execution may see many preemptions by other, higher-

priority tasks. With parallelism, a single long-running task may be preempted multiple

times on each processor by multiple other higher priority tasks over its lifetime. E�ectively,

preemption and synchronization have gone from being a once-per-period event to a many-

per-period event. The quantity and interleavings of events that occur in the system become

signi�cantly more complex when parallelism is introduced.

Similarly, the overhead of thread management in a sequential context simply may not be sig-

ni�cant enough to be particularly noteworthy. A sequential system (whether multi-processing

or not) would have approximately one thread per task. A parallel system must support run-

ning multiple threads per task, so the worst-case situation would be one thread per task on

59

each core (which could happen regularly in practice, such as in RT-OpenMP). This presents

a serious scaling concern, since the number of threads in the system would increase semi-

quadratically with the numbers of cores and tasks. Userspace approaches to threading can

be wary of this concern and ensure that all overheads are distributed evenly, but OS-based

approaches to threading would need to be exceedingly careful that there are no hidden mech-

anisms or overheads that impose a quadratic overhead burden on any one task or processor.

Such hidden overheads appear to be documented in both [8] and [16].

This tension between the need for arbitrary preemption and more capable parallel real-time

systems has just begun to be explored, and it is not at all clear whether the this tension will

be made better or worse by more tightly or loosely coupling the real-time platform with the

OS itself. For example, locks and mutual exclusion are basic primitives in both concurrent

real-time systems and non-real-time parallel systems. Parallel systems have not needed to

contend with work priority in the past, where real-time systems have developed concepts such

as priority-ordered locks. Now, in the parallel real-time context, it becomes apparent that

there is a need for preemption mechanisms that take into account userspace lock status. True

preemption of a task due to an external interrupt is necessary for bounding priority inversion

due to scheduling. However, this could have disastrous e�ects in the real-time context if the

currently executing parallel real-time task is holding a lock that would prevent the incoming

high-priority task from making progress. What is the appropriate resolution here? Should the

parallel real-time systems designer simply eschew OS mechanisms, implementing everything

in userspace where they have total control? Or, does the OS need to become aware of the

locking status of the processes it seeks to preempt at a hardware level?

Similarly, how should future userspace systems handle preemption? What needs to be done

to integrate a traditional concurrency platform like OpenMP or Cilk Plus into a framework

where work prioritization and preemption are expected? Both of these platforms currently

60

assume that they have a set of OS threads, one per core, that has exclusive control over that

hardware resource. This model clearly does not adapt well if some of those OS threads may

be preempted unexpectedly. Managing work priorities is more achievable, but will present its

own challenges as well. For example, the basic premise of the Cilk scheduler is to decentralize

work management for the purpose of scalability. How is work prioritized and can you prevent

priority inversion in such a decentralized system while retaining a high degree of scalability?

Ultimately, the question of how to achieve good parallel performance across many co-located

tasks with varying real-time priorities may require a strong degree of coupling between the

parallel scheduling runtime and the operating system itself. To rely on the same example

again, the classic work-stealing scheduler scales very well but can not strongly enforce priori-

tization. Prioritization is a basic function of modern OS schedulers even in the non-real-time

context, for example as implemented in the Linux Completely Fair Scheduler (CFS) niceness

system. It seems entirely possible that future systems designers may have to make a choice

of one over the other: either a system may support e�cient parallel scheduling of multiple

parallel processes simultaneously, or they can have a rich, strongly enforced priority struc-

ture, but not both simultaneously. It is possible that if a high degree of parallel real-time

performance is ultimately required then this might require an entirely specialized operating

system that re-envisions some of the basic POSIX mechanisms that we take for granted.

Further Challenges

The major systems challenges in the development of RT-OpenMP and MCFS were due

to the blending of two di�erent technological traditions: parallel computing and real-time

computing. Unlike previous systems it was critical to understand how a team of threads

could be managed under the constraint of real-time semantics. Where existing parallel

concurrency platforms reason about a single cooperative team of threads all coexisting on

the same set of processors, these new real-time concurrency platforms must worry about

61

potentially competing teams of threads belonging to di�erent real-time tasks, potentially of

di�erent priority/criticality levels, and must also be concerned about the ways these teams

interfere with each other. Importantly, due to the desire to make schedulability guarantees

these teams of threads must be managed on speci�c cores at runtime, unlike existing parallel

systems where threads and/or work are free to migrate.

In both RT-OpenMP and MCFS it was important to limit overheads due to interference or

to make such overheads regular enough to be incorporated into scheduling analysis. One

major question is what kinds of adaptations could be made to a system like RT-OpenMP

in order to reduce overhead and thus become more competitive with a userspace system

like federated scheduling. Is the reliance on OS mechanisms simply too great, and poor

performance therefore should be expected? A concentrated e�ort here, potentially involving

the cooperation of the kernel, could be useful.

Looking to the future of parallel real-time systems development, two obvious directions

appear promising. The �rst is the extension to dynamic scheduling. Both the RT-OpenMP

and the federated scheduling systems rely on static scheduling of parallel real-time workloads

prior to runtime. Where dynamism is tolerated (e.g. mixed-criticality federated scheduling)

it is also analyzed and arranged prior to runtime, with the overall system only allowed

to exist in one of a set of previously arranged modes. Moving beyond statically arranged

systems could be done either by truly dynamic scheduling, such as with a dynamic scheduler

making all decisions at runtime (potentially with a parallel real-time aware scheduler at the

operating system level). An intermediate step might be a static schedule that is periodically

updated at runtime, for example in an admission control scenario. In both cases the system

constraints and objectives seen in the development of RT-OpenMP and MCFS appear to be

relevant. How threads are activated and managed, and what overheads are inherent to the

ability to call up or dismiss threads remain important considerations.

62

A second area for future work is the extension to hard real-time parallelism. Existing systems

have only tenuously explored this topic, since the predominant infrastructure for parallel real-

time computing is currently soft real-time. This future e�ort is likely to require signi�cant

dependence on a hard real-time kernel in order to manage sets of competing or even possibly

antagonistic teams of threads. The traditional Linux real-time OS architecture may not be

suitable in some such cases, and concepts presented here may require a greater degree of

control than Linux currently a�ords. The prospect of adding hard real-time performance

to a parallel computing platform also begs the question whether it makes sense to move

a full-featured concurrency platform down into the kernel, where the concurrency platform

itself can reason about and select from all tasks on the system, or to pull more things up into

userspace, where concurrency platform and userspace tasks can be more tightly integrated.

Lastly, more work is needed in the general area of parallel real-time concurrency and syn-

chronization mechanisms for parallel programming, such as [17]. Programmers expect to

have a variety of parallel programming primitives at their disposal, and the MCFS imple-

mentation, for example, only supports barrier synchronization. Unlike traditional real-time

synchronization mechanisms, where the rate of synchronization might be expected to be

roughly once per period per task, parallel synchronization methods are expected to manage

the many activities of a team of threads multiple times per period. This could mean syn-

chronizing multiple times per thread per period, which suggests that overheads may become

relevant quickly. At a minimum, testing is required to quantify the e�ects of these primitives

for more time-sensitive applications.

63

Chapter 4: CyberMech, A Concurrency Platform

for Real-Time Hybrid Simulation

This chapter discusses the design and implementation of the �rst concurrency platform for

Real-Time Hybrid Simulation (RTHS), called CyberMech, which allows for parallel code

execution in an RTHS context. The leading existing software platform for RTHS is a pro-

prietary real-time operating system designed to execute MATLAB and Simulink software in

real-time, called xPC Target. This product contains very limited support for parallel execu-

tion of code, and the �exible and e�cient parallel execution found in modern concurrency

platforms such as Cilk Plus or OpenMP is not possible with it. CyberMech also addresses

the needs of RTHS as a parallel real-time cyber-physical application, by managing multiple

communicating concurrent real-time processes and non-thread-safe data acquisition software.

4.1 Background on RTHS

Real-Time Hybrid Simulation (RTHS) reduces the e�ort and cost of structural validation and

experimentation in structural, earthquake, and mechanical engineering by replacing physical

structural elements with simulated specimens. This reduction in time and cost enables new

64

testing regimes which otherwise would be infeasible with full-scale structural validation.

RTHS also is advantageous in that it allows investigators to conduct more experiments and

conduct them more quickly. This is especially useful for validating modern smart structures

which are expected to survive greater and more varied threats and thus must be validated

under more scenarios. RTHS also permits experiments that previously were too costly or

di�cult to achieve. For example, full-scale destructive physical testing of entire large bridges

and skyscrapers may never be feasible, but RTHS allows a destructive physical test of select

elements of such structures while simulating the vast majority of the test structure.

Both of the traditional structural engineering validation methods, physical testing and sim-

ulation, have signi�cant limitations when used in isolation. Testing of physical specimens is

the gold-standard for any engineering validation, but is expensive as it requires creating a test

subject, instrumenting it with sensors and actuators, designing and validating controllers,

and setting up an experimental environment. These costs are multiplied in the event that

an experimental specimen is large or is part of a larger structure. For example, the Large

Outdoor Shake Table at the University of San-Diego (part of the NSF program for Natural

Hazards Engineering Research Infrastructure) is capable of performing full-scale structural

tests for multi-story buildings, but single tests require months to assemble and tremendous

expense to build. Such a testing environment presents unique challenges: testing a seismic

mass to collapse is dangerous to the test apparatus itself both due to the tremendous energies

involved as well as the risk of debris falling and striking the shake table. In such scenarios

structures must be supported by safety restraint towers designed to catch falling structures.

In contrast, structural simulation is far easier to run (needing only su�cient computational

resources), and with modern simulation methods is relatively easy to design and implement.

Moreover, once created, structural simulations can be designed and recon�gured much more

rapidly than physical specimens can be constructed. However, structural simulation cannot

65

be employed with high �delity when an accurate model of the entire structure does not exist,

even if only a small subset of the overall structure cannot be simulated.

RTHS, which integrates physical testing and simulation at physically realistic time scales,

combines the advantages of both approaches, and in doing so largely mitigates each method's

limitations. As such it is a useful technique in many validation scenarios, but the situation

described above is particularly common in earthquake engineering laboratories that develop

novel structural safety mechanisms. Structures are particularly prone to damage as a result

of low-frequency oscillations at or near the structure's vibrational modes, so new mechanisms

are being engineered to absorb or divert energy away from these particular frequencies. For

example, dampers of di�erent types can be used absorb structural energy, but doing so

can change the overall structural response in unexpected ways. Rather than testing a new

damper in isolation, it is far more e�ective to test it in the context of an actual structure, but

neither traditional validation method is suitable for this. Building a real structure (especially

a full scale structure) is prohibitively expensive, especially if the structure is large or may

be damaged. Simulating such a damper inside a structure is not feasible, since the damper

itself is a prototype. RTHS can remedy this situation by physically testing the damper and

simulating the rest of the structure, and then joining both physical and numerical parts

together in a way that is valid and realistic.

This combination of structural simulation and physical experimentation creates a hybrid

structure. Done correctly, this hybrid structure emulates the behavior of a full physical

structure with high �delity using only a fraction of the time and expense of a full physical

specimen. To conduct a hybrid simulation, the physical components of the test are con-

structed (the physical substructure), while other components are numerically simulated (the

numerical substructure). At test time, the hybrid structure can be subjected to experimen-

tal loading in either the physical or numerical parts, or both. The numerical simulation

66

calculates the e�ects of any numerical loading on the simulated structure as well as the

e�ect that the simulated structure has upon the physical specimen. These e�ects are then

applied to the physical specimen using a set of actuators, and the specimen's response is

recorded via a set of sensors. This physical response is then inserted back into the numerical

simulation, forming a feedback control loop. Such hybrid decomposition forms an explicit

cyber-physical boundary (structural elements that are connected to both the numerical simu-

lation and physical specimen), and the objective of any RTHS is to ensure that this boundary

is in equilibrium at all relevant points in time.

This is depicted in Figure 4.1. On the left, recorded earthquake ground motion acceleration

data are fed into a numerical simulation of a building. The e�ect on the physical components

of the building is calculated, and given to an actuator controller. The controller computes

the necessary actuation to apply the desired load and does so. Then, the result on the

structure is measured via sensors, which then is fed back into the numerical simulation. The

numerical simulation is typically highly amenable to parallelization, and often thus requires

the vast majority of processing power in any linear hybrid simulation.

The di�erence between hybrid simulation and real-time hybrid simulation is the timing

constraint placed upon the numerical model. In traditional hybrid simulation, it is not

uncommon to have a single simulation step take minutes or even hours of real world time

to compute. After each simulation step is computed the resultant forces are applied to the

physical structure, which is then allowed to settle into a state of equilibrium. Thus, this

technique is only able to capture the static e�ects of load on a structure. In RTHS, the goal

is to achieve a simulation that can be computed in real-time alongside a physical experiment,

which allows engineers to capture dynamic e�ects that can play a signi�cant role in structural

performance.

67

Numerical	
Simula,on	

Actuator	
Controller	 Actuators	

Sensors	

Cyber Physical

Real-Time Hybrid Simulation Execution Loop

Input	 Data	

Figure 4.1: The fundamental RTHS control loop. The results of a numerical simulation are
used to excite a physical specimen, and the measured response if fed back into the numerical
simulation. The inner and outer control loops may execute at di�erent speeds. In the case
of structural engineering, recorded earthquake ground acceleration is used excite a simulated
building.

68

Depending on the dynamics of a particular numerical simulation, it may be advantageous to

execute multiple numerical simulations at multiple rates or multiple resolutions. Rather than

using a single monolithic simulation, the simulated structure may be broken into regions of

varying interest as a way to allocate computational resources. If a section is of particular

interest or moves quickly it may be simulated at a higher periodic rate or with higher �delity

than elsewhere. If a section moves slowly or is uninteresting, it may be simulated at a slower

rate and with less �delity. The former technique is referred to as multi time-stepping while

the latter is multi-scale modeling. Both approaches add unresolved complications to the

overall parallel real-time cyber-physical system, and this work is primarily concerned with

single time-step, single scale RTHS. Moreover, theoretical methods for separating models

and coupling them in these ways is currently ongoing work.

A preliminary step in conducting an RTHS is to conduct a virtual RTHS, where the physical

specimens, actuators, and sensors are also simulated. This is useful for debugging simulation

and control code in a manner that is relatively safe. A reasonably accurate model of the

physical specimen is used to provide simulated sensor response, which provides rough data

to test the RTHS system prior to using a real specimen. Virtual RTHS does not provide

high quality test data, however, as complete numerical models for simulated physical speci-

mens are not generally available. Consequently at that stage the system cannot be entirely

validated in principle, but can be said to be free of obvious defects.

An illustrative example of an RTHS experiment is shown in Figure 4.2. In this instance the

bottom two �oors of a three story structure are simulated numerically, and the top �oor

is implemented on a shake table as a physical scale model. When the structure is at rest

the boundary conditions between the cyber and physical components of the building are

satis�ed. However, if we stimulate the bottom of the structure via a recorded earthquake

ground motion then the whole structure begins to move, resulting in a displacement of

69

Figure 4.2: A generic RTHS that decomposes a two-story structure into a real-time numerical
substructure coupled with a shake table experimental substructure.

each �oor of the building. The shake table slides back and forth to implement the third

�oor's displacement in the physical specimen, which induces swaying and acceleration in the

physical structure. Of course, each action has a reaction, and the movement in the third �oor

then imparts a force back upon the second �oor, so the top deck's acceleration is measured

via accelerometers, and those data are fed back into the simulation as forces acting on the

numerical structure. Experimentally this setup could test any mechanism or technique that

modi�es the motion of the structure's top story, for example passive or active dampers, or

even active control techniques designed to counteract structural motion.

4.1.1 Structural Simulation Methodology

It is the job of domain experts to identify the numerical simulation methodology most ap-

propriate for providing accurate experimental results. The distinguishing feature of RTHS

compared to traditional hybrid simulation is that the numerical update for each simulation

step must be reliably computed within a �xed timestep. This numerical update computes

the equations of motion� given the current position, velocity, and acceleration of each struc-

tural node at time t, the update computes the new position, velocity, and acceleration of

70

each node at time t+ ∆t. Traditional hybrid simulation is likely to employ iterative solvers

that can compute an exact solution, but must converge to that solution over time. Exact

solutions are used because there is an unbounded amount of time to compute each simulation

timestep update, and for that same reason the simulated structure can be arbitrarily large

and complex. The �xed timestep in RTHS requires a di�erent approach. Rather than using

iterative solvers, RTHS (thus far) employs explicit solvers that compute an approximate

solution rather than an exact solution, but execute a deterministic number of calculations

and therefore take a predictable amount of time. Further, due to the �xed timestep, the

size and complexity of numerical simulation is much more limited. Both of these factors

(size/complexity of simulation and accuracy of numerical update) introduce extra concerns

over simulation accuracy. From the perspective of the concurrency platform, parallelism

mitigates both sources of inaccuracy by allowing for more frequent timestep updates as well

as allowing for larger and more complex simulations within that �xed timestep.

The computations associated with the numerical substructure are conducted by expressing

it as a �rst-order state-space system. This method computes the following equations at each

timestep:

y(k) = Cx(k) + Du(k) (4.1)

x(k + 1) = Ax(k) + Bu(k), (4.2)

where k denotes the current simulation step, vector u(k) is the input to the system, vector

x(k) is the current state of the system, and vector y(k) is the output of the system. Matrices

A, B, C, and D describe the dynamic characteristics of the numerical substructure. For a

system with n states (displacement and velocity degrees of freedom), p input parameters,

and q output parameters, the sizes of these matrices and vectors are: A is n×n, B is n× p,

71

C is q × n, and D is q × p. Typically the number of inputs and outputs of the simulation

will be small relative to the number of states in the simulation.

The number of states is approximately equal to the number of structural elements in the

simulation times the ways in which they can move. For example, in a two-dimensional (cross-

sectional) simulation each structural element might be capable of moving in the horizontal

and vertical directions, as well as rotating about its center. In this case, the total number of

states is roughly the number of structural elements times three. Hence, the ability to compute

additional states while maintaining an adequate computational rate allows the domain expert

to either introduce additional structural elements, or to model those elements in more detail.

This representation has the bene�t, from the computational point of view, that it is embar-

rassingly parallel. This makes it particularly suitable to acceleration via parallel real-time

computing and there are well developed computational packages that can be used to imple-

ment this kind of computation.

4.1.2 Shake Table Hardware

The primary test apparatus used in this dissertation is a shake table, though the principles

may be applied to other testing scenarios as well. A shake table is capable of moving in one or

more dimensions, and some support rotation in up to three dimensions as well. They are used

in conjunction with a scale model bolted to the table. At test time, the table moves so as to

generate a desired structural input, such as recreating a recorded earthquake ground motion.

In RTHS, where structures are partitioned into a numerical and physical components, it is

common to numerically simulate the bottom of a structure (and its connection to the ground)

and then use a shake table to implement the top of the structure physically. It is possible to

72

use multiple shake tables to test larger structures, for example the multiple support columns

of a bridge, where each table implements a separate input to the test specimen.

In this work the primary focus is on a single axis electrically driven shake table, which is

designed to test a two dimensional cross section of a structure. Control over the table itself is

achieved by sending positive and negative voltages to the shake table motor, which directly

controls the speed at which the motor turns. The shaft of the motor is rigidly connected

to a worm gear, which drives the tabletop along a set of linear rails. Thus, the angular

speed of the motor controls the linear speed of the table, and the table naturally operates

via velocity control. The motor itself is also instrumented with an angular encoder capable

of measuring the angular displacement of the motor in 1000 �ne grained (less than a degree)

increments. Furthermore, one rotation of the motor corresponds to a linear movement of one

centimeter, meaning that the linear displacement of the table can be measured accurately to

0.01 millimeters. Direct control over the table's positioning is accomplished via PID control

based on this angular displacement sensor and the table's velocity. Data is gathered from

the shake table specimen via a set of accelerometers, from which the specimen's velocity and

position can be estimated. This setup is depicted in Figure 4.3

A variety of other hardware exists that may be incorporated in di�erent or future exper-

iments. Structural engineers commonly use hydraulic actuators to test larger structures

because of the larger forces required to be exerted, and hydraulic actuators are also used

to drive larger multi-axis shake tables which then require the tight cooperation of many

separate actuators to correctly recreate a single desired motion of the table. Other sensing

methodologies are used in addition to, or instead of, accelerometers as well, such as force-

sensing load cells. The speci�c choice of hardware for a particular experiment will be driven

by the physical requirements and the magnitude of the forces involved, as well as the exper-

imental setup. Where the position and velocity of the physical specimen is paramount then

73

Figure 4.3: The electronic shake table used for experimental evaluations in this chapter.

74

encoders and accelerometers are likely to be used. Where the speci�c forces imparted to

and from the specimen are important then load cells will be used. All of these methods use

a variation on the PID control scheme above, where a directly controlled physical quantity

(e.g., the displacement of a piston) can be used to induce a desired physical condition in

real-time (e.g., the force imparted to a structural element).

4.2 RTHS Challenges for CyberMech

RTHS, as an engineering discipline, represents a larger challenge than the simple tradeo�

between computational resources and experimental �delity.

RTHS involves validating structural components and scale models under conditions nor-

mally considered dangerous (i.e. earthquakes, blasts, or other destructive events), so the

equipment must necessarily be powerful and capable of recreating potentially dangerous

conditions. Thus, there is special concern over safety. The primary safety concern during a

RTHS experiment is that actuators are not commanded beyond their design limits, either

intentionally or accidentally. If this happens at a high velocity the machine comes to a crash-

ing halt, but even at low speed has the potential to destroy the test apparatus or physical

specimen.

One potential cause of these crashes is control instability. At each timestep the RTHS

software needs to compute an actuator command update so the continually evolving physical

situation matches what is desired. In the single-axis shake table these actuator commands

are computed with the proportional di�erence control method by subtracting the table's

desired location and the table's current location, multiplying by a constant, and treating the

resultant value as the voltage supplied to the shake table motor. For example, if the table is

1cm to the left of the desired setpoint and the control constant is 2, then this would result

75

in a positive two volt actuator command. If the control distance is twice as far then the

control voltage doubles, and if the distance is three times farther then the control voltage

triples. Instability occurs when the di�erence between the desired location and the perceived

location of the table generates excessive commanded motion, and then overshoots the desired

set point by a margin greater than the original di�erence, resulting in an even more excessive

commanded motion. This could initiate a cycle of increasingly aggressive motor commands,

each cycle overshooting slightly farther, until eventually the actuator reaches it's mechanical

limit (typically at a high velocity).

The second cause of commanding an actuator beyond its design limit is general programming

errors. An experiment designer may unknowingly construct a scenario that causes this to

happen (e.g. replicating an earthquake that causes a too-large ground displacement), or may

accidentally (e.g., due to an uninitialized variable) send an explicit out-of-bounds command.

This is exacerbated by the control system� as described in Section 4.1.2 it is common for

the directly controlled system variable (e.g., voltage) to di�er from the safety-critical system

variable (e.g., position). In the shake table setup described previously the table velocity is the

directly controlled system parameter, but the safety constraint is expressed in as upper and

lower bound of the table's displacement. Thus, it is insu�cient to simply bound the control

output of the system. If the safety question could be resolved merely by excluding certain

control outputs then it would be generally safe to assume that any control system that is

functional enough to send control outputs is also functional enough to check to see whether

a commanded output falls into the excluded category and handle that event appropriately.

The separation between the system input and safety criteria is especially problematic when

considering how a system might recognize hardware or software errors and come to a safe

halt. Traditional approaches to fault tolerance in hard real-time systems (and indeed cyber-

physical systems in general) are less suitable for RTHS, where testing is conducted in a labo-

76

ratory environment and so hazards need only be contained rather than eliminated. Moreover,

a major purpose of RTHS is to make structural validation easier and more a�ordable. Two

key approaches to hardware fault tolerance, replication and state estimation, require multi-

ple redundant sensors which adds cost and complexity, and also consumes additional data

acquisition resources. For similar reasons, approaches to software fault redundancy such as

N-version programming are unsuitable. One cannot make a completely general statement to

this e�ect, but RTHS occupies a cyber-physical design space where safety is important, but

safety features perhaps should be implemented in software rather than hardware whenever

possible. This is also true of other cyber-physical systems (perhaps more safety critical) that

simply cannot a�ord add additional hardware due to system constraints (e.g., lightweight

aerial drones).

4.3 Computational Architecture for RTHS

CyberMech combines a parallel real-time concurrency platform with support for executing

RTHS experiments, which enables both RTHS and virtual RTHS experiments with inter-

and intra-task parallelism. In particular, this platform provides support for running multiple

parallel real-time numerical substructures, an inter-process communication mechanism for

multiple periodic tasks via a shared memory mechanism, and a dedicated hardware con-

trol task so as to utilize non-thread-safe software for the purpose of sending and receiving

signals with external hardware. This section describes both the high-level details of the

computational platform, and the methodology used to integrate it with physical apparatus.

The implementation described in this work is built atop Linux with the RT-PREEMPT

patch, and is written in C. This allows for numerical simulation and control algorithms to

be written using C/C++, gives access to a wide range of Linux services, and allows parallel

77

programs to use general parallel environments such as OpenMP [5] or Cilk Plus [18]. As a

concurrency platform, a central component is the federated scheduling system [13], which

enables parallel real-time behavior. As described in Chapter 3, the federated scheduling al-

gorithm partitions tasks onto processors prior to runtime depending on each tasks' processor

utilization. High utilization tasks are those with utilization greater than one (which therefore

must exploit intra-task parallelism to meet their deadlines). These are given exclusive use

of a suitably large set of processors and as a result experience no contention or interference

from any other tasks on the system. Low utilization tasks have utilization less than one,

do not require parallelism to meet their deadlines, and are executed sequentially on the re-

maining non-exclusive processors with rate monotonic scheduling. This work does not claim

any novelty in the theory of scheduling parallel real-time tasks, but rather we extend the

work in [13] with a platform that enables actual RTHS experiments to be run e�ciently via

a clean interface.

A system overview involving this RTHS platform is given in Figure 4.4. The computational

portion of the system consists of several tasks which are either numerical simulation models

or control tasks. The �gure illustrates two important modi�cations that adapt a general

purpose real-time concurrency platform for conducting RTHS experiments: (1) enabling

thread-safe hardware access, and (2) inter-process communication between multiple parallel

real-time tasks.

4.3.1 Specifying RTHS Computations

This section describes the programming interface of the CyberMech system. The computa-

tional tasks that run on CyberMech (numerical simulations and control tasks) are programs

written in C or C++. These tasks are periodic programs and must conform to a particular

pattern that supports the notion of periodic execution. A programmer must implement each

78

Parallel	 Real-‐Time	 Hybrid	 Simula2on	 Overview	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Computa2onal	 Infrastructure	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Thread(s)	
Reserved	 for	 OS	

Model	 1	
	

Parallel	 Task	

Model	 2	
	

Parallel	 Task	

Model	 3	
	

Parallel	 Task	

DAQ	 Hardware	

Actuators	 Shared	 Memory	

Sensors	

Physical
Specimen

Hardware	 I/O	
	

Sequen2al	 Task	

Figure 4.4: An overview of the CyberMech platform with three numerical models and a
dedicated hardware I/O task. Using federated scheduling, CyberMech clusters contiguous
groups of processors and devotes each group to a speci�c task. The hardware I/O process
interprets simulation results and drives physical actuators via data acquisition hardware,
which generates and receives analog and digital signals. Communication between computa-
tional tasks and the I/O task is accomplished via writing to shared memory. One processor
is reserved for the host operating system.

79

task in three sections: init, run, and finalize. The init and finalize portions are

executed in a non-real-time fashion before and after real-time execution, respectively. This

allows a program to perform costly one-time operations such as allocating and deallocating

memory without interfering with real-time performance. The run function is executed pe-

riodically in real-time. When the platform executes a set of tasks, meaning a set of C or

C++ programs that have de�ned the init, run, and finalize entry points, the platform

guarantees that all tasks will complete their init block before any task proceeds to executing

its run block, and likewise will ensure that all tasks have �nished all periodic executions of

the run block before any task proceeds to executing its finalize block.

To create a task set, a list of tasks is given to the system with each one's desired real-time

parameters: the periodic execution rate, how long they should execute, as well as the work

and the span of each task. When a set of such tasks is given to the system, the system will

schedule these tasks on a desired set of processors. The scheduling method is described in

Chapter 3, and provides a utilization bound of 50%, meaning that any task set with total

system utilization less than or equal to 50% will be guaranteed schedulable. In the event

that the scheduling algorithm cannot guarantee schedulability, the platform will still provide

a best-e�ort schedule by assigning all high-utilization tasks to their dedicated processors and

using the remainder to execute low-utilization tasks. In practice, task sets with much higher

utilization still may work under this best-e�ort approach, as in [8], but the system cannot

make a theoretical assurance as to their performance.

It is hard to overstate the convenience of one feature of the federated scheduler� it makes

no assumption about the dependency structure of parallel tasks, and thus it allows for

the use of any existing parallel programming language. In order to apply parallelism to

a real-time task, one can use existing parallel languages such as OpenMP or Cilk Plus to

insert parallel statements anywhere in the real-time task code, or one can use a library that

80

provides parallelization, such as parallel linear algebra libraries. The inclusion of such non-

real-time software or runtimes necessarily places this system in the soft-real-time category,

but the bene�t of drawing upon the extensive development of such libraries for parallel

programming is enormous. However, if inclusion of such code is not desired then the end

user may use other parallel scheduling software. The federated scheduler only assumes that

the underlying parallel scheduler is work conserving, so any parallel scheduler with these

characteristics will comply with the theoretical analysis of the federated scheduler (modulo

scheduling overheads). The evaluations described more fully in Chapter 5 show that both

OpenMP and Cilk Plus are reasonable for tasks executing at periodic rates of up to several

thousand Hertz.

4.3.2 Thread Safe Hardware I/O

One challenge in executing parallel computations for cyber-physical systems is interfacing

with hardware that was not designed for use with parallel or even multi-threaded programs.

The data acquisition device drivers for the shake table setup explicitly state that they are

not thread safe, and in independent evaluation we found this to be true [19]. Attempting to

access a hardware device from multiple threads (even on the same processor) can result in a

variety of problems, such as data corruption, intermingling of return values, and segmentation

faults.

As 4.4 illustrates, in order to solve this problem, a simple mechanism (�rst developed in [19])

is used where all hardware requests are routed though a single thread that is pinned to a

reserved processor. All tasks request data from this thread, and this thread polls the data

acquisition cards to get the requested data. This design also has the advantage that it

reduces the overheads of reads and writes in the parallel tasks themselves and moves it to a

separate process. This solution is adequate for the one-axis shake table with a small number

81

of sensors and tasks. Undoubtedly this centralized sequential component will not scale for

a large number of independent data acquisition tasks. However, it is not obvious how to

resolve this tension at a large scale without sacri�cing communication latency or overhead.

Further investigation without data acquisition hardware/software capable of interacting with

multiple threads simultaneously there is apparently little that can be done.

It is important to note that when sampling should occur depends greatly on the control-

theoretic assumptions made by the RTHS control algorithm. This mechanism allows the

decoupling of periodic execution from sampling, but whether or not this approach still meets

the needs of a speci�c simulation is application-dependent. Use of this technique in future

RTHS will require careful co-design of the sampling scheme and control algorithms.

The single-axis shake table platform contains two National Instruments data acquisition

cards (NI-m6259) capable of sending and receiving analog and digital signals. Accessing these

signals through data acquisition devices involves a variety of overheads including calling a

proprietary driver with unknown runtime characteristics, and represents a signi�cant blind

spot for the purpose of building real-time software. These overheads can be measured by

recording the time it takes to complete hardware access driver calls. In this system the

relevant measure of hardware I/O overhead and latency is the time it takes for a read or

write to occur in response to a software event in the system. The the time it takes to

perform an actual operation in hardware (i.e. to utilize the analog-to-digital or digital-to-

analog converters) is negligible: the NI-m6259 is capable of 1.25 million samples per second

at maximum sampling rate. However, the time it takes for the data acquisition system to

react to an event as a whole, which includes the much lengthier process of invoking the driver

software via the OS kernel, is much longer. This is essentially the amount of time it takes for

the data acquisition system to arbitrarily recon�gure itself in response to a software event.

82

Min. (µs) Avg. (µs) Max. (µs)
Analog Write 110 113 155
Analog Read 111 115 170
Digital Read 53 55 100

Table 4.1: Observed analog read/write and digital read communication overheads for the
electric shake table.

For context, the single-axis shake table uses each of these operations to execute an experi-

ment. Analog reads are used to measure accelerometers. Analog writes are used to control

the motor, and digital reads are used to record the table's position (via the angular encoder).

At a minimum, the simplest RTHS experiment will involve one call of each type each period:

a digital read to determine the current motor position, an analog write to update the motor

speed, and an analog read to measure the impact on the structure. These overheads are

given in Table 4.1. For our target of 1KHz operation, a single threaded application will

automatically loose at least 28% of its compute time to hardware I/O under average-case

assumptions, or 43% of its compute time under worst-case assumptions. This also motivates

our decision to separate all hardware I/O onto a separate thread running on a separate

processor. When not busy, this separate thread continually updates sensor information so

that there is recent data always available and computational threads do not have to block

(or queue) for those results. Conversely, hardware write requests can be merely registered

with the I/O thread and the computation thread can then continue on its way. In this way,

a larger portion of each period can be reserved for computation within the computational

tasks.

4.3.3 Interaction Between Tasks

Federated scheduling theory assumes that all tasks are independent. However, tasks in an

integrated RTHS experiment must communicate simulation results and sensor data. This

83

communication between tasks is provided for via Linux's inter-process shared memory mech-

anism. In general, this communication happens once per period: the fundamental execution

cycle is that all tasks read data from shared memory, execute their periodic iteration, and

then wait for all other tasks to �nish execution. At the end of each period all tasks write their

new data into the pool, wait for all other tasks to �nish writing, and then begin executing

their next periodic iteration, which starts with reading the previously written data. This

procedure is adequate for multiple simulations that all run at the same rate.

For communication between di�erent computational models, there is a choice of various

forms of synchronization: semaphores, barriers, and queues. These di�erent methods may

introduce varying degrees of overhead as they were each designed to perform slightly di�erent

tasks. Thus, the overhead of communication between concurrent tasks was measured in

order to determine which mechanism was most suitable in this context. All were found to

have roughly comparable performance, and the barrier is ultimately used as having the best

combination of e�ciency and semantics for this platform.

Measuring these overheads in a meaningful context for RTHS was done by determining

which method best enabled a computational task to execute a numerical substructure. In

this experiment there were two tasks: Task 1 (with 1 ms period) and Task 2 (with 2 ms

period) which communicate with each other every 2 ms. Task 1 is �xed at the state size of

350 and we vary the state size of Task 2. Task 2 always writes data and Task 1 always reads.

Table 4.2 shows the number of states achievable by Task 2 before inducing a deadline miss

in Task 1.

In the semaphore method, a semaphore controls access to the shared read/write space. At

the start of every period, the writer(s) grabs the semaphore and writes data. It releases the

semaphore when it's done, and the small task grabs the semaphore to read. In the barrier

method, the writer writes to shared memory while the reader(s) block on a barrier. The

84

Size (bytes) Control Semaphore Barrier Queue
8 1100 1100 1100 1100
80 1075 1075 1075 1075
800 1075 1075 1075 1075
8000 1075 1075 1075 1075
80000 1075 1075 1075 1075
800000 1000 950 1000 1000

Table 4.2: Achievable state sizes as in�uenced by communication sizes and synchronization
type. Our speci�c application uses double width �oating point values, which on our machine
are 8 bytes, so the �rst row relates the transfer of one data value, while the last row relates
the transfer of 100,000 data values.

writer then releases the reader(s) when done. This does not require the writer to acquire a

lock or to block on readers. In the queue method, the writer writes to a circular bu�er and

the reader(s) race to keep up. This does not require the writer to block on readers unless

they fall so far behind that they saturate the bu�ers, and readers can fall behind somewhat if

they need to. In the control method, the reader(s) and writer do not synchronize at all. This

does not provide correct behavior, but places an upper bound on performance. Table 4.2

indicates that the type of method used and the total volume of communication had little

e�ect on the performance of the experiment for tasks with periodic rates in the 1ms range.

Current RTHS numerical substructures use state sizes that are far smaller than the largest

value given in this table.

4.3.4 RTHS Repeatability on CyberMech

One outstanding challenge in the �eld of RTHS is the comparison and validation of the di�er-

ent test apparatus in di�erent RTHS labs across the country. The current state of the art in

RTHS is an ad-hoc system where each laboratory has constructed its own simulations, con-

trol software, hardware, and physical specimens. The result is that even though two RTHS

environments may claim to implement the same test scenario, for example to implement a

85

speci�c ground motion on a shake table, it is not known how to compare the di�erences in

the results between two separate RTHS setups, as possible di�erences in measurement may

stem from any of the four components listed previously. Thankfully, validating CyberMech

as a new software platform for RTHS does not require solving this larger problem of cross-site

validation, and one can rule it out as potential source of measurement error by �xing two

of the variables above� the actuation hardware and physical specimen� and comparing

the results of the same experiment executed on both CyberMech and the existing standard

platform for RTHS: xPC Target.

The CyberMech platform is signi�cantly di�erent than the current popular choice, xPC Tar-

get, which is a purpose-built operating system designed speci�cally for real-time hardware

sensing and actuation such as that found in RTHS. In contrast, CyberMech is built upon

a general-purpose operating system (Linux) with support for real-time operation added by

the RT-PREEMPT patch set. These di�erent methodologies yield fundamentally di�erent

software platforms, in everything from the real-time scheduling theory behind system opera-

tion, to the software architecture and interfaces, to the computational hardware that drives

software timing. Despite signi�cant di�erences in system operation, both systems are de-

signed to achieve the same goal, and one can verify that the CyberMech platform is able to

reproduce existing results from sequential RTHS on xPC.

Evaluation of sequential performance of RTHS is a�ected primarily by three sources of error:

experimental sources, numerical integration, and model idealization. In RTHS (and more

generally in seismic engineering), experimental sources of error can be subdivided into two

parts � epistemic errors (due to scienti�c uncertainty) and aleatoric errors (due to natural

randomness). Sources of epistemic errors are systematic, such as transfer system dynamics,

computational delays, communication delays, sensor limitations, and sensor mis-calibration.

On the other hand, sources of aleatoric errors are random, such as measurement noise and

86

quantization errors associated with truncations in the analog-to-digital (AD) conversions of

signals. Errors due to explicit or implicit numerical time integration schemes can a�ect the

stability and accuracy of RTHS. Most commonly, explicit schemes are employed in RTHS

because of their ability to advance the state of the system based only on the knowledge of

its current state and the input excitation. Moreover, unlike implicit schemes that sometimes

require time-consuming iterations, explicit schemes compute the solution in a single iteration,

which leads to predictability in the amount of time required for computations, a necessity

for RTHS. Finally, modeling error arises from any discrepancies between the response of the

actual (real) substructure modeled as a numerical substructure and the response acquired

from its model. These discrepancies result from the underlying assumptions of the numerical

model and from errors in the measured responses of the actual structure that are used to

calibrate the model.

The CyberMech platform is �rst validated against xPC using a simulated two-story moment-

resisting frame, with the bottom story being the numerical substructure and the top story

being the physical component, as is illustrated in Figure 4.5. The frame elements are con-

structed out of aluminum and have rectangular cross-sections of 4.25 inches × 1/16 inch

oriented along the weak axis. The columns are 19.75 inches tall and the beams are 12 inches

long. The frame is mounted atop a shake table that is driven with an electromagnetic motor.

The numerical model for the bottom story of the frame is assumed to have a single-degree-

of-freedom i.e. a mass, a spring, and a damping component, where each of these properties

is identi�ed experimentally. As described in Section 4.1.2 an explicit state-space integrator

is used to advance the numerical model in time and PID control is used to drive the motor

based on the command signals received from the numerical substructure. To minimize the

e�ect of epistemic errors, an identical RTHS was chosen to be executed on both the Cy-

berMech and xPC platforms using the same numerical model and time integration scheme.

Further, to ensure that aleatoric errors such as measurement noise do not impact the RTHS

87

(a) Reference system (b) Real-time hybrid simulation

Figure 4.5: Two-story frame validation RTHS for CyberMech and xPC.

signi�cantly, 100 RTHS runs were conducted on each platform (xPC and CyberMech) for a

total of 200 runs in all. To the author's knowledge, this is the �rst time that the exact phys-

ical performance of two di�erently implemented but otherwise identical RTHS experiments

have been compared in such a way.

As a preliminary check, we �rst examined the transfer system performance as an epistemic

source of error, in order to evaluate the e�ectiveness of the shake table controller on each

platform. Figure 4.6 indicates that the performance of both transfer systems is similar.

Furthermore, the impact of modeling idealization error and epistemic experimental error

on each set of runs was studied. We compute the average of the displacement response

obtained for the 1st �oor across all of the 100 runs at each point in time to cancel out random

variations in both sets of runs. This is plotted against a reference solution, obtained from a

pure numerical simulation of the two-story frame, as shown in Figure 4.7. The normalized

88

−0.5 0 0.5
−0.5

0

0.5

Command displacement [cm]

M
ea

su
re

d
di

sp
la

ce
m

en
t [

cm
]

Experimental case
Ideal case

(a) Transfer system performance: xPC

−0.5 0 0.5
−0.5

0

0.5

Command displacement [cm]

M
ea

su
re

d
di

sp
la

ce
m

en
t [

cm
]

Experimental case
Ideal case

(b) Transfer system performance: CyberMech

Figure 4.6: Comparison of transfer system performance.

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

D
is

pl
ac

em
en

t [
cm

]

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

E
rr

or
 [%

]

Reference response
Mean response
Normalized response error

(a) xPC platform

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

D
is

pl
ac

em
en

t [
cm

]

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

E
rr

or
 [%

]

Reference
Mean Value
Normalized Error

(b) CyberMech platform

Figure 4.7: Normalized error in displacement of 1st �oor resulting from modeling idealization
and epistemic experimental sources of error.

error in displacement for the CyberMech and xPC platforms is then calculated as

Normalized Error(ti) =
|RTHSavg(ti)−REF (ti)|

max(REF (ti))−min(REF (ti))
× 100. (4.3)

where the max and min operations pick out the maximum positive displacement and the

minimum negative displacement of the reference solution respectively. We also investigated

the impact of aleatoric errors for both sets of runs by computing the standard deviation at

each point in time for both platforms, as shown in Figure 4.8.

89

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

D
is

pl
ac

em
en

t [
cm

]

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

S
ta

nd
ar

d
de

vi
at

io
n

[c
m

]

Mean Value
Standard deviation

(a) xPC platform

0 10 20 30 40 50 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

D
is

pl
ac

em
en

t [
cm

]

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

S
ta

nd
ar

d
de

vi
at

io
n

[c
m

]

Mean Value
Standard deviation

(b) CyberMech platform

Figure 4.8: Standard deviation in displacement response of the 1st �oor for both sets of runs
as a function of time.

0 10 20 30 40 50 60
−2

−1

0

1

2

time [sec]

N
or

m
al

iz
ed

 D
iff

er
en

ce
 [%

]

Figure 4.9: Normalized di�erence of the average displacement response of the 1st �oor
between CyberMech and xPC.

It is clear from Figures 4.7 and 4.8 that the di�erence between the xPC and CyberMech runs

is very small, demonstrating the fact that the CyberMech platform introduces little to no

quantitative di�erence into the experiment, even though the software platform driving the

experiment is quite di�erent than xPC. We show this di�erence explicitly in Figure 4.9 by

subtracting the average displacement between CyberMech and xPC at each point in time.

At all points the di�erence is less than 2%.

Over a course of 200 sequential RTHS trials, we used xPC and CyberMech to investigate

the impact of platform choice on errors stemming from modeling idealization, epistemic,

90

experimental, and aleatoric sources. The results demonstrate that both platforms perform

comparably in the sequential case.

4.4 Further Challenges

There are various additional challenges and room for improvement. CyberMech so far only

has been applied to a single cyber-physical application (RTHS), and broader experience

supporting diverse cyber-physical systems seems bene�cial. However, there are also speci�c

future challenges in RTHS that need to be addressed as well. This section examines these

challenges in greater detail.

4.4.1 Application to General Cyber-Physical Systems

There is little general experience or knowledge of using parallelization in cyber-physical

systems, but RTHS appears to be an excellent exemplar of a large class of cyber-physical

applications. Considering Figure 4.1, at an abstract level, this type of operation seems

common to any application that involves physical actuation of objects in the world. The

essential sequence of events in any agent trying to e�ect the world is to �rst decide what to

do, then decide how to implement that decision in the real world, then send some control

signal to actualize the desired outcome, and �nally to measure the actual e�ect. This process

actually de�nes cyber-physical systems as a subset of all systems but are distinguished in

that they behave and make decisions in this manner, a concept explored alternately through

the lens of the Observe, Orient, Decide, Act (OODA) loop that was the subject of a keynote

speech at CPS Week 2018 [20]. In this light, the numerical simulation of RTHS can be

thought of as a decision making process, the motor controller decides how to implement

the desired action given its available actuators and then performs the actuation, and �nally

91

High-‐Level	
Decision	 Making	

Decision	
Implementa7on	 Actuators	

Sensors	

Cyber Physical

General Cyber-Physical Execution Loop

System	
Parameters	

Figure 4.10: Figure 4.1 transformed into a generalized decision making procedure for cyber-
physical applications. The decision implementor is not parallelizable in RTHS, but could
conceivably be so in other applications. As before, the inner control loop and outer control
loop may execute at di�erent rates.

the sensors measure that e�ect and incorporate the results back into the decision making

process. This generalized concept is shown in Figure 4.10.

For example, is di�cult to envision a system such as the one described in [21] that would not

have some variation of the process depicted in 4.10. Thus, RTHS is an excellent candidate

for experimentation in the realm of parallel real-time systems and cyber-physical systems

design.

In this view any two cyber-physical systems di�er mainly in how they make decisions and

then how they decide to implement those decisions. In RTHS the general objective is to

maintain equilibrium of forces between the cyber and physical portions of the structure (this

92

in fact was the gist of the CPS Week keynote [20]). If we accurately know the dynamics of the

physical and numerical structures then the decision is simply computing a control input that

brings those forces closer to equilibrium, and as a practical matter this is accomplished by

matching one or two physical dimensions such as displacement or acceleration. In contrast,

the decision making process in other cyber-physical systems may be much more complex

in some respects, e.g., consider a car trying to identify all possible obstacles. The self

driving car might be simpler in other respects� in RTHS the physical structure itself reacts

to the stimulus (which in turn perturbs the desired equilibrium) leading to second-order

or non-linear e�ects. A self-driving car does not modify the roadway around itself when

it implements a decision (though it may modify the behavior of tra�c around itself, so

perhaps this just illustrates that sometimes the system designer has the option of whether

to incorporate such second order e�ects or not).

4.4.2 Challenges in RTHS for CyberMech

CyberMech has provided support for RTHS practitioners to perform basic and intermediate-

complexity experiments, but much work remains to be done. Some of these challenges are

simply ancillary projects not on the critical path of supporting immediate RTHS experi-

mentation and have been passed by for now. Other challenges require a deeper integration

of parallel real-time computing with advanced RTHS practice to more deeply explore the

design space of truly generalizable and adaptable RTHS.

First, the CyberMech platform has been validated against the prior state of the art for a

sequential RTHS experiment. Truly exploring the limitations and abilities of this architecture

requires larger experiments in two senses. In the hardware context for CyberMech has so

far only implemented RTHS experiments with one actuator and one to four sensors. This

is suitable for many RTHS that practitioners would like to implement, but many more

93

larger scenarios require multiple actuators and many more sensors. The sequential nature of

current hardware input and output, even when separated into a dedicated I/O task, is likely

to be a limiting factor. Even with improved software support from DAQ device vendors,

key hardware devices are inherently sequential and so hardware overhead will play a role in

implementing larger sensing and actuation loops. In the software context the CyberMech

system has not yet been used to compute larger parallel computations alongside physical

hardware. The vRTHS conducted with large parallel numerical simulations suggests that

CyberMech behaves as expected, but a comparable full RTHS experiment has not been

performed.

Second, the question of how to use computational power will only become more pertinent as

parallelism greatly expands the amount of computational work that can be achieved. Ex-

isting numerical simulation techniques using bulk-parallel decomposition can easily outstrip

processor performance increases simply by increasing the size or level of detail of simula-

tions. Techniques such as using high resolution meshes in areas of greater numerical error,

or increasing the simulation rate also in regions of high error are potentially useful ways to al-

locate computational capacity to areas that need it most, and is currently being researched in

the RTHS community (referred to as multi-scale or multi-timestep simulation, respectively).

These techniques are most useful when the system can dynamically react to areas of high

numerical error during an experiment and reallocate computational e�ort on demand. From

a parallel real-time systems perspective we have a few building blocks that could contribute

to such a system (e.g., the mode-aware barrier from Section 3.1), but the mechanisms and

trade o�s involved with accomplishing this during an active RTHS experiment are as yet

open problems.

Finally, a truly capable platform for RTHS requires a rigorous speci�cation, implementation,

and evaluation of what is meant by experimental generalizablility. The most meaningful goal

94

of CyberMech is to allow experimenters to rapidly implement and iterate structural validation

experiments. Currently, a substantial amount of e�ort goes into testing and validation of

each individual experiment before integration of the experimental apparatus is a whole. For

example, as yet there is no default-safe con�guration or catchall safety criteria that would

convince RTHS practitioners that their expensive hardware and specimens can be trusted to

the platform with no further thought. Similarly, each individual experiment is constructed

around a speci�c set of hardware that has been tested and calibrated prior to use. If the

system were able to inspect itself and determine whether it can meet a certain experimental

pro�le as an automatic process it would be a boon to researchers.

95

Chapter 5: Parallel Computing Tradeoffs In

Statically Determined Cyber-Physical Systems

Cyber-physical systems (CPS) are becoming increasingly complex through the interaction

of computationally demanding workloads and physical control systems. For example, as

we saw in Chapter 4, the output of a Real-Time Hybrid Simulation (RTHS) controller is

directly in�uenced by the computation of arbitrarily large numerical simulations, and there

is (almost by de�nition) no simple model that dictates how control system inputs relate to

system outputs. In addition, the fact that the control algorithm exists alongside a larger

system running diverse parallel real-time workloads increases the di�culty of certifying the

timing behavior of critical physical interactions such as data acquisition input and output.

Then, ultimately, parallelism in�uences both of these individually di�cult problems: it may

be used to change the numerical model being computed, or it may be used to in�uence

timing in the system. This leads to the conclusion in the most general case that parallelism

is not a simple upgrade that can be applied to a system, but that e�ective implementation

of parallelism in CPS demands a cyber-physical co-design process.

Cyber-physical systems tend to present unique constraints unlike those found in traditional

parallel computing or real-time systems. Traditional parallelism research focuses on maxi-

96

mizing speed or throughput, but real-time systems only require computational performance

that is su�cient to satisfy desired timing constraints. Once a real-time system is able to meet

all deadlines, it is deemed correct and no further improvement is necessarily justi�ed. A key

goal of cyber-physical systems is similarly to provide a su�cient level of physical �delity,

after which further improvement may not be strictly necessary but may be bene�cial (e.g.,

a faster control rate to reduce tracking error).

For this reason the process of allocating limited computational resources has a di�erent

character in cyber-physical systems than it does in either pure parallel systems or in pure

real-time systems. For throughput-oriented systems (pure parallel systems) there is usually

a question of how processors are allocated to a computation with complex dependencies, but

there usually isn't a question of whether all processors will be allocated. For parallel real-

time systems there is a question of how many processors are necessary to guarantee timing

behavior, after which no improvement is possible. For a cyber-physical system, however, we

have both the question of minimum su�cient physical �delity as well as the possibility of

signi�cant marginal improvement beyond that. If there are two competing computational

tasks we must �rst satisfy the physical characteristics of the system (i.e., through certifying

the real-time behavior of the tasks), but excess capacity may then be allocated to further

improve the system in some way.

A general statement of principle in how cyber-physical computational resources should be

allocated is not yet possible, but reasonably broad statements may be made once the cyber-

physical domain is su�ciently restricted. This work concerns only static RTHS systems,

whose numerical components are static (no structural elements are created, modi�ed, or

destroyed during runtime) and whose physical components are static (physical apparatus

and control algorithms do not change during runtime). In e�ect, the entire time-history

of a computational load can be accurately predicted prior to runtime. Although these are

97

Table 5.1: Categories of RTHS Explored in This Work

Static Numerical Dynamic Numerical
Static Physical This work Future work
Dynamic Physical Future work Future work

signi�cant restrictions, in practice many meaningful cyber-physical systems will fall into this

category. This chapter examines case studies of such static RTHS computations and draws

broader conclusions about the tradeo�s inherent in static real-time parallel cyber-physical

systems.

5.1 Linearity of RTHS determines proportion of paral-

lel/serial computation

First we describe more precisely in what ways the numerical and physical components of

RTHS are said to be static. Generally, this means that during an individual execution of the

system that the structure of these computations does not change, the real-time constraints

of these computations do not change, and the make-up of the physical apparatus and control

computations do not change.

The RTHS numerical substructures that may be considered static are those that:

� Are constant in size and con�guration, meaning that the number of degrees of freedom

is constant, as well as the structural mass and structural interactions (i.e., sti�ness and

damping) of each node in the structure.

� Have constant real-time constraints, meaning that the RTHS timestep interval ∆t does

not change over time.

98

� Are solved using explicit methods (rather than implicit, convergence-based methods),

meaning that the quantity of computation in each timestep is known and constant.

These numerical substructures simulate and predict the physical quantities of a structure

over time (displacement, velocity, and acceleration at each node) in evenly spaced timestep

intervals ∆t. The basic equation used in this context is the second law of motion: f = m×a.

At each timestep the mass of each structural element is known, and the forces applied can

be computed (potentially with input from the physical structure), so one can compute the

acceleration of that element. Once the acceleration is known, then the structural velocity

and displacement can be computed by integrating those quantities over the duration of each

timestep. The computation of each node's acceleration from m and f is the dominating

calculation in the current generation of RTHS.

f = m× a (5.1)

In the simple case of a single physical object Equation 5.1 would be su�cient, but there

are two complications. First, each individual structural element in a simulation may have

multiple degrees of freedom (DOF), which corresponds to the element's ability to move

in multiple dimensions. In a two dimensional simulation it is common for each node to

have three degrees of freedom: horizontal motion, vertical motion, and rotation. Thus,

we would need to solve Equation 5.1 multiple times for each node in order to come up

with displacement, velocity, and acceleration values for each direction of motion (degree

of freedom) for each node. Second, the elements of a structure in�uence each other, and

this must be accounted for. These connections are modeled as springs, so between any two

degrees of freedom of a structure there may be a sti�ness and damping value that determines

their relationship. In practice the state space representation technique is used to pack all of

99

these values (the mass of each element, as well as the sti�ness and damping between degrees

of freedom) into a large matrix M , which is a square matrix that has as many rows and

columns are there are total degrees of freedom in the simulation.

F = M × A (5.2)

The computational approach used in Equation 5.2 is analogous to the one used in Equa-

tion 5.1, where M is a combination of the simulated structure's physical description, F is

a vector containing the force acting on each degree of freedom, and A is a vector contain-

ing the acceleration at each degree of freedom. The procedure to advance each timestep is

conceptually the same. The values of F are derived from the previous timestep's results

(where simulated elements exert force on one another) as well as the physical input to the

system (where physical elements exert force on a simulated element). The values of A are

computed from F and M either through direct solution as a system of equations or by way

of the matrix inverse with the formula given in Equation 5.3, where the solution is obtained

through simple matrix multiplication of M−1 with F . In either case, the result is the accel-

eration of each degree of freedom, which is then integrated through ∆t time units to obtain

the displacements and velocities of each degree of freedom for the next timestep.

A = M−1 × F (5.3)

Obtaining the vector A is the dominating computationally intensive part of current RTHS,

and the ability to compute this vector depends primarily on the characteristics of M . If the

matrixM is static then obtaining the vector A is embarrassingly parallel. This is becauseM

can be pre-inverted prior to runtime, so the computation reduces to matrix multiplication

M−1×F , where only the values of F change from timestep to timestep. Matrix multiplication

100

Table 5.2: 723-DOF RTHS Serial and Parallelizable Work

Serial Work (µs) Parallel Work (µs)
Dynamic Num. Substructure 880 1576

Static Num. Substructure 0 2364

is exceedingly parallelizable, meaning that static RTHS is limited only by the ability of a

machine and parallel platform to churn through computations up to the limit of the hardware.

In contrast, the matrix M may need to change during an experiment, in which case it is

dynamic, and the ability to compute RTHS in this same manner is dramatically limited. This

happens when any of the three constituent parts ofM change during an experiment: the mass

of any element, or the sti�ness and damping that connect any two elements. It also happens

if the number of elements or degrees of freedom (i.e., the size of M) were to change during

an experiment. In this case, either Equation 5.2 or Equation 5.3 can be used to compute the

vector A, but doing so is not embarrassingly parallel. In the former case the computation

proceeds as the direct solution of a system of equations (e.g., through factorization, row

reduction and back substitution), in the latter case matrix M must be inverted and then

matrix-multiplication with F gives the desired vector. Neither of these techniques is easily

parallelizable, and the result is that roughly a third of the computational work each period

would be sequential rather than parallelizable, which would in turn dramatically reduce the

e�ect of parallelism on achievable simulation sizes.

The proportion of serial and parallelizable work in the numerical substructure was measured

in a 723 degree of freedom virtual RTHS and the results are shown in Table 5.2. In the

static case the matrixM was pre-inverted and the runtime calculation performed was matrix

multiplication as shown in Equation 5.3. In the dynamic case the matrix M was explicitly

solved through back substitution and row reduction each timestep. The remainder of the

101

work in both situations was solution of displacements and velocities at each node through

integration. In this representative case the cost of having a non-static numerical substructure

is the conversion of a 100% parallelizable workload into a 64% parallelizable and 36% serial

workload. This is a heavy price indeed for a parallel system� using an Ahmdahl's Law

argument the dynamic RTHS numerical substructure will be limited to approximately three

times speedup, while the static workload can be accelerated up to the limit of the machine

and concurrency platform.

However, this is a worst-case scenario for parallelism where the numerical substructure may

change as frequently as every timestep. In reality one can envision many RTHS scenarios

where numerical substructures may change at a less frequent pace, such as once per ex-

periment, on a �xed but long-duration schedule, or triggered by physical or experimental

mode changes where mode changes happen infrequently relative to the pace of computation.

Depending on the particulars of such a dynamic RTHS many software strategies could be

employed to mitigate the costs of dynamic numerical substructures. For example, if the

number and con�guration of all numerical substructure modes are known prior to the ex-

periment (i.e., if there are a known number and con�guration of M matrices) then all such

matrices can be pre-inverted prior to runtime and switched between for only the cost of

cache invalidation. If the future con�guration of M is not known prior to runtime then the

question may be how quickly a new matrix M may be assembled and pre-inverted alongside

a running experiment, and then the system consideration is the latency with which such

mode switches may be done and the e�ect of that latency on the physical characteristics of

the cyber-physical interaction.

102

5.2 Parallel Real-time Computation of Static RTHS

Computation time is a constrained resource in RTHS experimentation, but knowing how

to allocate this resource is not a settled question. More parallel computation allows a real-

time numerical simulation to execute faster or to be larger, leading for example to better

physical control or higher �delity models respectively. Even in entirely static RTHS there

is a con�guration and design problem: where and how to allocate parallel computational

e�ort. At the design stage we can trade computational capacity for larger models or faster

periodic rates, and if an experiment includes multiple numerical substructures we can trade-

o� computational capacity among them. Even after experiment design we may still wish to

tweak the periodic rates of various numerical substructures by adding parallel computation,

potentially at the expense of other substructures.

In this section we explore the con�guration space of static RTHS through a single numer-

ical substructure connected to a single hydraulic actuator, where communication with the

physical specimen is achieved via a single analog write and digital read each period. Al-

though simpli�ed, this situation allows us to construct a model of how such a single RTHS

computation behaves in isolation, and as an exemplar can be the starting point for more

complicated experimental design discussions that must be had prior to any code being writ-

ten or specimens being constructed. We will �nd that the "cyber-physical response" of this

simple system is not simple or predictable in the face of implementation on a real system.

This model will be of particular importance when designing RTHS experiments that must

trade o� computational e�ort between multiple models. It also allows an analysis of the

computational bene�t of parallelism in the embarrassingly parallel case presented in Equa-

tion 5.3.

103

Figure 5.1: Ten degree of freedom numerical substructure.

The starting point for this experiment is a two-story structure with 10 degrees of freedom

(pictured in Fig 5.1), where the four nodes de�ning the �rst and second stories are allowed

to move horizontally and rotate (providing eight degrees of freedom), and the two nodes

attaching the structure to the ground are only allowed to rotate (providing two degrees of

freedom). In this analysis the four vertical columns of the structure are evenly subdivided into

a speci�ed number of segments in order to provide a numerical simulation of approximately

arbitrarily desired degrees of freedom. This is a realistic thing to do as the columns are

the primary load bearing elements of the structure. That re�nement in turn allows these

columns to simulate bending under a load where the 10 degree of freedom model cannot,

which allows the simulation to capture higher vibrational modes than the original 10 degree

of freedom structure. In practice the limit to useful re�nements would be dictated by the

maximum observable vibrational mode of the structure, but we may exceed this practical

limit without sacri�cing the integrity of the computational workload.

For the purpose of assessing computational infrastructure (e.g., CyberMech) described else-

where in this work, this ability to arbitrarily re�ne an accurate RTHS numerical model

allows three analyses: �rst, what sizes of models are achievable in a given system at a de-

sired periodic rate; second, a rough estimate of the additional utility provided by parallelism

in the case of an embarrassingly parallel single simulation with a uniform timestep; and

104

third, a speci�c estimate of the required computational capacity for this particular model

on these particular experimental systems. The 10 degree of freedom model was re�ned to

approximately every multiple of 100 degrees of freedom from 106 DOF to 1602 DOF and

per-period execution times were measured when only executing with a speci�ed number of

processor cores. The results are the longest average execution times over ten separate trials of

the RTHS experiment, each of which ran for approximately 35 seconds. This constitutes an

RTHS capability graph which allows an RTHS designer to easily trade o� between simulation

size, periodic rate, and number of processors.

The data presented in Figures 5.2 and 5.3 are from a 16-core machine using two Intel E5-

2687W Xeon processors. These processors each have a 3.10 GHz clock and a 20,480KB

L3 cache. The machine ran Linux kernel 3.0.80 with the RT_PREEMPT real-time patch

version rt108 installed. In general, core 0 was reserved for the operating system, and these

experiments were run on cores 1-15.

The timing results of this investigation are shown in Figure 5.2 and Figure 5.3. The �rst of

these two graphs indicates the actual per-period average execution time, while the second of

these two graphs converts that data into an achievable periodic rate. Together, these graphs

indicate what size numerical models are achievable under certain processor allocations and

time constraints. Graphs such as these show an RTHS practitioner exactly what kind of nu-

merical models are at their disposal under the static RTHS assumption. More importantly,

this allows one to rapidly hypothesize di�erent experiments of varying sizes, real-time con-

straints, and numbers of numerical substructures at the design stage. In particular, the unit

of simulation size, the degree of freedom, is an abstract unit of computational demand that

may describe an arbitrary node in a simulation that is moving and interacting in an arbitrary

manner.

105

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

1
3

5
7

9
1

1
1

3
1

5

Average Period Time (us)

P
ro

ce
ss

o
r

C
o

re
s

P
e

r-
P

e
ri

o
d

 T
im

in
g

b
y

M
o

d
e

l S
iz

e

1
6

0
2

 D
O

F

1
5

0
6

 D
O

F

1
4

0
2

 D
O

F

1
3

0
6

 D
O

F

1
2

0
2

 D
O

F

1
1

0
6

 D
O

F

1
0

0
2

 D
O

F

9
0

6
 D

O
F

8
0

2
 D

O
F

7
0

6
 D

O
F

6
0

2
 D

O
F

5
0

6
 D

O
F

4
0

2
 D

O
F

3
0

6
 D

O
F

2
0

2
 D

O
F

1
0

6
 D

O
F

1
0

2
4

H
z

Li
m

it

F
ig
u
re

5.
2:

O
ve
ra
ll
p
er
-p
er
io
d
ti
m
es
,
in
cl
u
d
in
g
b
ot
h
co
m
p
u
ta
ti
on

an
d
h
ar
d
w
ar
e
co
m
m
u
n
ic
at
io
n
ti
m
es
,
b
y
m
o
d
el
si
ze

an
d

n
u
m
b
er

of
p
ar
al
le
l
co
re
s

106

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

1
3

5
7

9
1

1
1

3
1

5

Average Periodic Rate (Hz)

P
ro

ce
ss

o
r

C
o

re
s

A
ve

ra
ge

 P
e

ri
o

d
ic

 R
at

e
 b

y
M

o
d

e
l S

iz
e

1
0

6
 D

O
F

2
0

2
 D

O
F

3
0

6
 D

O
F

4
0

2
 D

O
F

5
0

6
 D

O
F

6
0

2
 D

O
F

7
0

6
 D

O
F

8
0

2
 D

O
F

9
0

6
 D

O
F

1
0

0
2

 D
O

F

1
1

0
6

 D
O

F

1
2

0
2

 D
O

F

1
3

0
6

 D
O

F

1
4

0
2

 D
O

F

1
5

0
6

 D
O

F

1
6

0
2

 D
O

F

1
0

2
4

H
z

Ta
rg

e
t

2
0

4
8

H
z

Ta
rg

e
t

4
0

9
6

H
z

Ta
rg

e
t

F
ig
u
re

5.
3:

O
ve
ra
ll
ac
h
ie
va
b
le
p
er
-p
er
io
d
ra
te
s
b
y
m
o
d
el
si
ze

an
d
n
u
m
b
er

of
p
ro
ce
ss
or

co
re
s.
D
as
h
ed

re
d
li
n
es

gi
ve

th
re
e

co
m
m
on

ta
rg
et

ra
te
s
fo
r
R
T
H
S
:
10
24
H
z,
20
48
H
z,
an
d
40
96
H
z

107

For example, in Figure 5.3 one can imagine the level curves along lines of constant model

size (which are the solid lines) or instead the level curves along constant periodic rate (which

are the dotted lines). It becomes simple to estimate the capability of the system in this way-

for example, for a �xed model size of (approximately) 1106 DOF the experiment designer

knows they can achieve 1024Hz operation with 7 cores or they can achieve 2048Hz operation

with 13 cores. To the RTHS practitioner the distinction between using 7 or 13 cores may

be irrelevant, but the distinction between 1024Hz and 2048Hz may represent a substantial

improvement in physical performance via doubling the control rate. From a con�guration

space view this represents a de�nite tradeo� to the experiment designer: they can settle for

1024Hz and have enough excess computational capacity for a second similarly sized workload,

or they can achieve a 2048Hz control rate and fully utilize the machine. Similarly, if the

experimental designer �rst decides on a required control rate of 2048Hz they know they can

achieve any model size which has any data points above the 2048Hz line, but they can also

trace across the 2048Hz line to see the tradeo� between numbers of computational cores and

model size.

Figure 5.3 demonstrates one particular aspect of the bene�t of parallelism for this experiment.

Orange lines are those able to achieve 1024Hz rate with a single processor, blue lines are

those able to achieve the rate with multiple processors, and green lines are those not able

to achieve 1024hz no matter how many processors. Thus, if the target operational rate of

an experiment were 1024Hz (as is common) then the blue lines represent the capability gain

due to parallelism, or to be speci�c, parallelism allows the experimental designer to expand

their models from approximately 800 DOF to approximately 1200 DOF, or a 50% increase in

simulation size. Similarly, for a 2048Hz control rate, parallelism yields an improvement from

approximately 500 DOF to approximately 1100 DOF� a 120% improvement in simulation

size. And again for 4096Hz, parallelism yields an improvement from approximately 300 DOF

to approximately 500 DOF� a 66% improvement in simulation size.

108

The other aspect of parallel improvement is the increase in periodic rate for a given model

size, which is not shown here through color. If an experimental designer had a �xed model

of, for example, approximately 1000 DOF, then they could observe that just one processor

core is capable of running that simulation at roughly 500Hz. However, following that line

the designer can see a gradual improvement to as high as 3500Hz for the given model size,

and can quickly know approximately what range of periodic rates is available.

The coloring of Figure 5.2 represents a di�erent aspect of experimental planning. The purple

lines exhibit unpredictable performance degradation which is not uncommon in parallel com-

puting when the overheads of adding more cores or more threads to a computation outweigh

the added bene�t of additional computational resources. Empirical evaluation is useful here

as this phenomena is rather di�cult to predict analytically. In a general-purpose scenario

where a computation is performed seldomly this e�ect is minor and can be ignored: the

performance degradation pictured in the purple lines is on the order of milliseconds. How-

ever, if a real-time computation for RTHS is performed repeatedly, and a delay of fractions

of a millisecond may mean the di�erence between success and failure.This graph illustrates

this pitfall. In particular, the blue lines represent a single-plateau performance regime,

where there are diminishing returns for additional parallelism but more cores are not ma-

jorly detrimental. The green lines represent a double-plateau performance regime, where

there are diminishing returns up to 7 cores (which represents a socket boundary between

the two processors on this experimental machine), and above 7 cores performance resumes

improving until a second plateau is hit. The purple lines show a performance "hockey-stick"

where parallel performance improves up to the �rst plateau inside a single socket, but in the

second socket additional processor cores introduce signi�cant overhead that is related to the

problem size. Due to this size-correlation, in addition to some basic back-of-the-envelope cal-

culations, we suspect that the size of the L3 cache is the dominant driver of this hockey-stick

behavior.

109

In order to verify that the behavior seen in the previous �gures is sensible, Figures 5.4

and 5.5 disentangle the time spent executing the numerical substructure and the time spent

invoking the hardware driver to send and receive signals through the data acquisition system.

As can be seen, computational timing dominates and largely follows the trends that would

be expected, indicating that the concurrency platform itself is performing well. However,

the behavior of the data acquisition system was somewhat unexpected and indicates there

are unwanted interactions between the communication subsystem of CyberMech and the

primary computational concurrency platform. In Figure 5.5 the lines are color-ordered along

the light spectrum by computational size. Smaller computational models communicate with

approximately constant time no matter how many processors participate in the system.

However, as the model size increases the communication time increases, which was not

expected. The physical substructure (sensors and actuator apparatus) does not change with

model size and the communication subsystem is not doing any additional work for these larger

models. One hypothesis is that contention on a shared cache is responsible for degrading

the performance of this component: as the computational model grows in size so does the

working set size of the computation, and the cached data belonging to the data acquisition

system is evicted. More troubling is the communication behavior of large models across the

processor socket boundary for systems using between seven and nine cores. Communication

time increases with model size, but at a certain point the communication cost becomes erratic

after the jump from seven to nine cores. Fortunately, the overall maximum communication

time is relatively low and can be accounted for.

5.3 Further Challenges and Future Work

As was discussed at the beginning of this chapter, this work explores RTHS scenarios in

which the numerical substructure and physical substructures are static. This yields a highly

110

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

1
3

5
7

9
1

1
1

3
1

5

Average Period Time (us)

P
ro

ce
ss

o
r

C
o

re
s

C
o

m
p

u
ta

ti
o

n
 T

im
e

 v
s.

 M
o

d
e

l S
iz

e

1
6

0
2

 D
O

F

1
5

0
6

 D
O

F

1
4

0
2

 D
O

F

1
3

0
6

 D
O

F

1
2

0
2

 D
O

F

1
1

0
6

 D
O

F

1
0

0
2

 D
O

F

9
0

6
 D

O
F

8
0

2
 D

O
F

7
0

6
 D

O
F

6
0

2
 D

O
F

5
0

6
 D

O
F

4
0

2
 D

O
F

3
0

6
 D

O
F

2
0

2
 D

O
F

1
0

6
 D

O
F

N
o

te
: C

o
lo

rs
 m

at
ch

 t
h

o
se

 o
f

th
e

"P
er

io
d

Ti
m

in
gs

"
gr

ap
h

 f
o

r
co

m
p

ar
is

o
n

F
ig
u
re

5.
4:

S
ta
ti
c
R
T
H
S
n
u
m
er
ic
al
si
m
u
la
ti
on

co
m
p
u
ta
ti
on

ti
m
in
gs

b
y
m
o
d
el
si
ze

an
d
n
u
m
b
er

of
p
ro
ce
ss
or

co
re
s

111

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

1
3

5
7

9
1

1
1

3
1

5

Average Communication Time (us)

P
ro

ce
ss

o
r

C
o

re
s

D
A

Q
 C

o
m

m
u

n
ic

at
io

n
 T

im
e

 b
y

M
o

d
e

l S
iz

e
 a

n
d

 P
ro

ce
ss

o
r

C
o

re
s

1
6

0
2

 D
O

F

1
5

0
6

 D
O

F

1
4

0
2

 D
O

F

1
3

0
6

 D
O

F

1
2

0
2

 D
O

F

1
1

0
6

 D
O

F

1
0

0
2

 D
O

F

9
0

6
 D

O
F

8
0

2
 D

O
F

7
0

6
 D

O
F

6
0

2
 D

O
F

5
0

6
 D

O
F

N
o

te
: 1

0
6

-4
0

2
 D

O
F

m
o

d
el

s
w

e
re

 e
xt

re
m

el
y

si
m

ila
r

to
 t

h
e

5
0

6
 D

O
F

m
o

d
el

N

o
te

: T
h

e
h

ar
d

w
ar

e
I/

O
 d

ri
ve

r
is

, t
o

 o
u

r
kn

o
w

le
d

ge
, e

n
ti

re
ly

 s
eq

u
en

ti
al

F
ig
u
re

5.
5:

S
ta
ti
c
R
T
H
S
H
ar
d
w
ar
e
co
m
m
u
n
ic
at
io
n
ti
m
e
b
y
m
o
d
el
si
ze

an
d
n
u
m
b
er

of
p
ro
ce
ss
or

co
re
s.
M
o
d
el
si
ze
s
u
n
d
er

50
6
D
O
F
ar
e
n
ot

sh
ow

n
as

th
ey

w
er
e
ex
tr
em

el
y
si
m
il
ar

to
th
e
50
6
D
O
F
d
at
a

112

parallelizable system able to take full advantage of a real-time parallel concurrency platform,

and is realistic in practice for all known RTHS currently being conducted. Thus, this work

is relevant despite its limiting assumptions. It is also relevant for the class of upcoming

but still static class of RTHS experiments that push beyond a single numerical substructure

and single physical substructure, such as using multiple numerical simulations or multi-rate

(multi-timestep) RTHS to target computational e�ort more and more exactly at areas of

high simulation error.

However, the obvious extension to dynamic numerical and physical components still remains

open, and many challenges would need to be addressed in this area. Some of the interest in

numerical substructures is driven by a desire to use implicit integration schemes, which are

convergence-based and whose timing characteristics are less well understood than explicit

schemes assumed in the static context. These integrators are crucial for the jump from lin-

ear numerical simulations to non-linear simulations, which are capable of simulating a much

wider range of structural elements. General dynamic RTHS numerical and physical compo-

nents are also not available and are an ongoing area of research both within the computer

science and structural engineering community. The easy extension to dynamic numerical

substructures in Section 5.1 is achievable, but would limit parallel speedup dramatically by

introducing serial computation on the critical path. Getting the most out of a real-time

parallel concurrency platform for a dynamic numerical substructure requires improved par-

allelization of real-time numerical simulation strategies.

More generally, the work in this section represents a step towards a more complete under-

standing of cyber-physical systems engineering through the lens of RTHS. This understanding

is far from complete. The data presented here would allow an RTHS practitioner to greatly

accelerate their search of the possible RTHS con�guration space, but it does not constitute a

full design methodology for RTHS, much less CPS systems in general. Such a methodology

113

would allow a designer to �x a system's control rate, computational capacity allocation, and

physical parameters in a uni�ed and principled manner. Analyzing this problem in the full

scope of cyber-physical systems engineering would require a much deeper understanding of

the cyber-physical interactions that occur in the general design space. One must wonder if

such a thing as a general cyber-physical systems methodology exists, and if it does exist in

some form, just how descriptive could it be?

Further questions arise at the intersection of cyber-physical systems design and parallel

computing. How does parallelism �t into a general framework for CPS? Can the whole

bene�t of parallelism be described in terms of computation sizing and control rates, or is

there a deeper interplay between large computational capacities and well-engineered systems?

One argument is that it does: suppose we don't know at the outset of a time-constrained

computation where the critical path actually lies- parallelism allows us to much more rapidly

and asynchronously explore the space of on-line system choices where a sequential system

might have to assume it makes the worst choice every single time. Lastly, an important

unexplored question is parallelism in a hard real-time safety-critical context. What exactly

are the guarantees a hard real-time concurrency platform can make? Does there exist a

method to transform known-safe sequential programs into known-safe parallelized programs,

or will the shift to multi-cores and parallel processing require manual reinvention everywhere?

114

Chapter 6: Related Work and Other Soft

Real-Time Platforms on Linux

6.1 Concurrency Platforms and Parallel Programming

Parallel programming can be signi�cantly more di�cult than sequential computing. Modern

operating systems have been explicitly designed to provide the process abstraction, which

allows programmers to write most sequential programs without concern for when, where,

or how their programs execute on the system. All of the complexity inherent in running

multiple processes concurrently is hidden from the user and handled entirely in the operating

system through the scheduling interrupt and context switching mechanisms. All of the

complexity of process blocking and synchronization necessary to access shared resources

(such as hard drives, network connections, etc.), is hidden from the programmer through

cooperation between the operating system and system standard libraries (such as the C

standard library). In e�ect, it is easy for it to appear that, from the perspective of a

sequential program, it is the only program executing on a system as long as it is willing to

deal with two possible complications: (1) the wall clock (real-world clock) will appear to

115

progress erratically when the process is swapped out or made to block, and (2) the state of

shared resources (such as the �le system) may be modi�ed unexpectedly.

Many sequential programs can get away with ignoring these complications. Dealing with

the �rst complication by devising a method for time-sensitive sharing of the processor is

essentially the domain of sequential real-time programs, and can be adequately addressed in

many ways. Dealing with the second complication is what is called concurrent programming.

At its heart, concurrent programming deals with the fact that timing of events in modern

systems is largely unpredictable, and therefore it is very di�cult to make concrete guaran-

tees about how a program will execute. Even on a single core machine, external hardware

interrupts, scheduling interrupts, and blocking system calls will cause a sequential program,

in practice, to start and stop executing at unpredictable times.

This may lead to all manner of race conditions, which occur when the state of executing soft-

ware depends on the speci�c ordering of events in a system. There are many manifestations

of such behavior, in fact too many to list fully here. As a simple example, consider a single

variable that is initialized to zero. Two processes may race on this variable, with one process

attempting to read the value of the variable and the other process trying to set the value of

the variable to be one. Depending on which process succeeds �rst, the �nal value delivered

to the reading process will be zero or one, but saying de�nitively what the �nal value will be

is impossible without adding additional constraints. Potentially more hazardous is that race

conditions may occur when breaking up a sequence of instructions. For example, consider

two processes trying to push a node onto a linked list. The �rst process executes to the point

of �nding the tail of the linked list, and is then interrupted. The second process �nds the

same tail and pushes a new node to the list by modifying the next pointer. Then, the �rst

process resumes executing and overwrites the same tail node's next pointer, which results in

a loss of the node that was pushed by the second process.

116

Of course, concurrent programming is also done on machines with more than one processor.

In this case, multiple sequential processes may run simultaneously. This can greatly exac-

erbate the likelihood of race conditions happening, but does not create an inherently more

complex programming model. A good concurrent program makes no assumption about the

rate at which it executes relative to any other program on the system, and it is conceiv-

able that a pernicious concurrent system could try to switch between processes at the exact

moments in time that would cause race conditions.

In contrast, parallel computing is using multiple threads in a single process to accelerate an

individual computation. This su�ers from the same vulnerabilities as concurrent programs,

but now individual programs' internal threads may interfere with each other as well. Thus

the di�erence should be apparent: writing correct and e�cient concurrent programs is an

exercise in dealing with external interference, while parallel programming must deal with

both external and internal interference. The essential di�culties have not changed from a

system correctness point of view, but writing parallel programs is dramatically more di�cult.

Concurrent programs are sequential programs where the realities of execution on modern

multi-process systems must occasionally be handled where shared resources are concerned.

Threads in parallel programs inherently share- when multiple threads execute inside a process

then the entire process memory space is a shared resource.

Moreover, parallel programming is explicitly about accelerating programs and getting good

performance, where concurrent programming is generally about sharing resources. Very

simple and heavy-handed solutions to concurrent programming exist, such as Linux's (now-

removed) Big Kernel Lock that simply prevented any two sensitive areas of code from execut-

ing concurrently anywhere on the system, regardless of whether those two code sections were

actually interfering. This was correct but often degraded performance, since it prevented

simultaneous execution even when such concurrency was allowable. A parallel program that

117

employed such a strategy would be a poorly designed one, since performance is an inherent

metric. Thus, good parallel performance requires employing sophisticated scheduling and

synchronization techniques to maximize the amount of simultaneous work that is being done

at any given point in time. Furthermore, good performance often requires adapting parallel

programs for speci�c hardware architectures. As a result, writing good parallel programs

from �rst principles was for a long time exclusively the domain of expert parallel program-

mers who could simultaneously reason about scheduling, synchronization, and architectural

and hardware level �ne-tuning.

However, it was realized that much of what was laborious and di�cult about writing good

parallel programs could be systematized and automated. A properly designed concurrency

platform would alleviate much of the burden of scheduling, resource management, and thread

coordination. An appropriately designed interface would allow an application programmer

to focus on parallel algorithm design by identifying opportunities for parallelism rather than

having to think about how to implement parallelism. Expert performance-oriented program-

mers could devote themselves to understanding how to execute a given parallel structure

most e�ectively, independent of the actual computations being performed. Many such con-

currency platforms have been developed over time: MIT Cilk [4], Intel's Cilk Plus [18],

OpenMP [5], and Intel's Thread Building Blocks [22] are major examples.

These platforms de�ne new parallel programming languages that are implemented on top of

existing programming languages such as C and C++. For example, a common element of

almost every concurrency platform is the parallel-for loop, which operates like a traditional

for-loop except that every iteration of the loop is allowed to execute simultaneously with every

other iteration of that same loop. A middleware runtime layer (the concurrency platform

itself) is responsible for implementing the machinery of parallelism during program execution:

118

thread creation and management, scheduling and work allocation, and the synchronization

necessary for those functions.

These platforms are a major departure from previous parallel programming approaches,

which generally used pThreads [23] or Java threads [24] directly. These previous approaches

force the programmer to trade o� between implementation di�culty and e�ciency. Manual

thread management means either using a simple on-demand threading model, where new

threads are created when needed and destroyed when no longer necessary, or it requires a

more complicated persistent threading model, where a single set of threads is created at system

initialization and then is managed throughout the life of the program. Thread creation is

not free, so on-demand threading is comparatively ine�cient (versus persistent threads) and

does not scale well, but conversely persistent threads do not adapt well to changes in system

architecture. For example, a program designed around four persistent threads will be unable

to take advantage of a �fth processor becoming available, while multiplexing four threads

onto three processors can be highly ine�cient [25]. As a result, writing adaptable, scalable

parallel programs with persistent threads naturally motivates thread management with a

job scheduler, which itself motivates the modern notion of automatic thread management

within a concurrency platform.

Concurrency platforms are just as important for the way they modify the parallel program-

ming task as they are for addressing the thread management problem. These platforms

provide a strong separation between the way that parallel programs are written and the

way that they are executed: put simply, they separate the implementation of parallelism

from the instantiation of parallelism. This is radically di�erent from the traditional thread-

ing approaches provided by pThreads and Java threads. Consider for example the call to

pthread_create(), which simultaneously creates a thread and provides a starting point for

the thread to begin executing. Here, the thread is created and the parallel work it is to per-

119

form is speci�ed in the same stroke, and separation is impossible. In contrast, a high-level

identi�cation that a for-loop can be turned into a parallel-for loop is the identi�cation of

parallelism opportunities by the parallel programmer, and such a parallel program can be

executed in whatever way provides su�cient performance.

The subsequent independence of implementation then naturally gives rise to the question of

what sorts of general parallel scheduling strategies are useful. The general parallel scheduling

problem is formulated as the dynamic unfolding of directed acyclic graphs (DAGs) [4, 26, 27,

28], where each node in a DAG represents a computation, and edges represent dependencies

between nodes. A node is ready to execute when all of its predecessors have been executed,

and the scheduling decision is to decide which of the available ready nodes should be executed

during each unit-time execution window.

There are two basic metrics for such jobs. The work T1 of a job is the total number of nodes

in a DAG, which is intuitively the amount of time such a parallel program would take to

execute on a single processor. The critical path or span T∞ is the longest chain of nodes in

the DAG, which is intuitively the amount of time it would take to execute such a program

on an in�nite number of processors.

Both of these metrics form lower bounds for the execution time of a parallel program under

all situations. Clearly a program cannot execute faster than T∞ under any condition, since

the critical path of length T∞ takes at least that many time units to execute. A program can

execute faster than T1 if more than one processor is applied, but if a given execution machine

has P processors, then the value T1/P is a lower bound that represents perfect division of

work across all processors. The �rst bound will dominate for programs with many long

sequential chains and limited opportunities for parallelism, while the second bound will

dominate for embarrassingly parallel programs with very few dependencies.

120

Thus, the optimal execution time of a parallel program under any scheduler is at least the

maximum of T∞ and T1/P . There are two common schedulers used in concurrency plat-

forms. The greedy scheduler (sometimes called work-conserving) simply executes as many

DAG nodes as possible during each unit-time execution window, or more formally speci�es

that there is never an execution window where some processors sits idle if there is an eligible

(ready) node to execute. The greedy scheduler approach gives a job completion time of

T1/P + T∞ [12, 29] (a factor of two versus optimal). The second scheduler is the random

work stealing scheduler. The randomized work stealing scheduler allows idle processors to

randomly select a candidate victim processor and attempt to steal work in order to �nd

something to do. This does not guarantee that processors are always busy when there is

work to do, as the greedy scheduler does, but it guarantees that idle processors will �nd

work within a very short amount of time. The randomized work stealing scheduler gives

job completion times of O(T1/P + T∞) [4] (within some constant factor of optimal). In

practice, most concurrency platforms use some form of randomized work stealing, including

Cilk, Cilk Plus, and Intel's Thread Building Blocks. A notable exception is OpenMP- since

OpenMP is a speci�cation rather than a speci�c parallel programming language, speci�cation

implementers are free to use scheduler they desire. At least one mainline OpenMP imple-

mentation, GNU's OpenMP, uses a centralized queue scheduler [30] that can be considered

to be a "near-greedy" scheduler.

6.2 Multi-processing vs. Parallel Processing

Multi-core real-time systems researchers have developed models, theory, and software to sup-

port inter-task parallelism, where workloads consist of a collection of independent sequential

tasks, and multiple processors or multi-core processors allow multiple sequential tasks to

execute at once. While these systems allow many tasks to execute simultaneously, they do

121

not allow an individual task to run any faster on a multi-core machine than on a single-core

machine. This is called real-time multiprocessing.

The focus of this work goes farther, concentrating on parallel real-time processing systems,

where real-time tasks can have intra-task parallelism in addition to inter-task parallelism.

In these systems, workloads consist of a collection of independent parallel tasks, but each

individual parallel real-time task is allowed to execute on multiple (potentially overlapping)

cores. This capability allows parallel real-time processing systems to execute a strictly larger

class of programs than real-time multiprocessing systems. In particular, when the opportu-

nity for parallel execution exists, it allows for the execution of individual tasks with tighter

timing constraints or higher computational loads within a given timing constraint. This can

lead to improved execution of computation-heavy real-time systems such as those for video

surveillance, computer vision, radar tracking, and real-time hybrid structural testing, whose

stringent timing constraints can be di�cult to meet through traditional multiprocessing.

Many of these applications are highly parallelizable, and supporting intra-task parallelism

can allow real-time systems to run more demanding programs.

6.3 Soft Real-Time vs. Hard Real-Time

The broader �eld of parallel real-time concurrency platforms is still in its infancy, and this

work restricts itself to soft real-time systems that are implemented atop the Linux operating

system. These soft-real time systems do not make absolute worst-case timing guarantees

under all circumstances, instead aiming to provide predictable real-time behavior most of

the time. To contrast more speci�cally, hard real-time systems are those that are validated

and certi�ed to have correct timing behavior under all foreseeable operating conditions, based

on (often) extremely pessimistic models of system behavior and workload performance (i.e.,

122

worst case execution time). This requires speci�c design for real-time behavior at every level:

hardware, operating system, system libraries, and application programs. For the purpose of

achieving hard real-time parallel performance, we would also include a hard real-time parallel

concurrency platform in that list as well.

Hard-real-time systems su�er, in practice, from strict workload restrictions that can prohibit

the use of up to 50% of available processing capacity. Soft-real-time systems seek to claw back

some of this capacity in exchange for tolerating occasional deadline misses under certain con-

ditions, representing a tradeo� between timeliness and processor utilization. Deterministic

models of soft-real-time behavior exist: for example, bounded tardiness (or lateness), where

a job may miss its deadline by a speci�ed amount, may be permissible in some applications

where a certain timing behavior is desired but a relaxed timing behavior may be accept-

able. Bounded tardiness can be provided by otherwise traditional hard-real-time scheduling

methods such as Earliest Deadline First (EDF), but can also be provided by speci�cally

soft-real-time scheduling algorithms such as the class of Pfair algorithms. Stochastic models

also exist: for example, a periodic task with a varying workload, called a semi-periodic task,

may be described by a probability distribution that describes the likelihood of any given

job's actual computational requirement. A soft-real-time approach may certify the behavior

of the system up to but not exceeding a maximum computational demand, which together

with a tasks' probability distribution describes the probability that the timing requirement

for each job from such a task will be satis�ed. Other task models may allow job arrival time,

or even both job arrival and workload, to �uctuate stochastically. Lastly, time-valued tasks

may be described by a utility function that describes the utility of �nishing a soft-real-time

computation over time. This allows a system to derive maximum value from �nishing a task

by its deadline, and gracefully degrade the usefulness of the computation over time until it

is no longer worthwhile. A detailed survey of soft-real-time task models, as well as speci�c

analysis of the bounded tardiness model, may be found in [31]

123

This dissertation uses scheduling theory that would be suitable for hard-real-time systems,

but uses an operating system (Linux with the RT_PREEMPT patchset applied) and concur-

rency platform (OpenMP) that are not hard-real-time software, and thus cannot reasonably

make any claim toward providing hard-real-time performance. Furthermore, no hard-real-

time concurrency platforms exist, and:

1. Hard real-time parallel systems will likely need to solve most or all of the challenges

addressed in the design of soft real-time parallel systems, but also will have further

challenges beyond that. Thus, soft real-time parallel systems are a natural stepping

stone towards hard real-time parallel systems.

2. Soft real-time and hard real-time systems are both valid system models that have

particular strengths and weaknesses in di�erent design contexts, and both deserve

thorough exploration in their own design space. Since soft real-time systems do not

make strong guarantees of system behavior, it is likely that future researchers will

see soft real-time parallel systems as performance-oriented systems that are especially

suitable for applications where the potential for injury to humans or property is minimal

(e.g., physically small systems or systems in highly controlled settings). In contrast,

hard real-time parallel systems will provide a lesser degree of performance increase but

will be suitable for safety-critical applications where the penalty for failure is large.

Moreover, achieving hard-real-time performance is a di�cult task that goes beyond having

appropriate scheduling theory and a hard-real-time compatible software architecture. There

are many second-order e�ects that must considered, and either accounted for or mitigated,

to make a claim to having credible hard-real-time performance. All forms of contention

that exist within computer hardware, and in particular cache e�ects, are possible sources

of interference when enforcing hard-real-time behavior. These second order e�ects are not

generally mitigated in multiprocessing systems to a large degree, let alone parallel processing

124

systems: the current recommendation by the Federal Aviation Administration, the United

States government agency in charge of aviation safety, is to disable cache on multi-core

processors due to the unknown risk it poses to real-time system operation, favoring instead

degraded but predictable performance. The addition of parallel computing to the real-

time computing landscape only increases the opportunities for and likelihood of interference

occurring, since parallel tasks may have multiple threads on multiple processors a single such

task is then capable of in�uencing multiple tasks on multiple other processors.

6.4 Parallel Real-Time

Real-time systems are those that must satisfy real-world timing constraints in order to be cor-

rect, and provide strong assurances of predictable system behavior under adverse conditions.

Such requirements are common where computer systems must control physical objects or

monitor physical phenomena, and the requirements themselves are usually derived from the

physical behavior of the system in question. For example, an earthquake engineer may wish

to subject a test structure to a previously recorded earthquake loading. However, moving

seismic masses against one another inevitably invokes Newton's Third Law (for every action

there is an equal and opposite reaction) and the control of such a test must incorporate a

feedback-control loop to account for this. Here, the rate at which actuation commands can

be sent to the test apparatus will determine how accurately the recorded earthquake load-

ing can be recreated, and the rate at which sensor data can be taken o� the test specimen

determines the possible test accuracy. The physical requirements of the test in fact drive

the entire system design: the engineer �rst must decide what physical �delity is su�cient

to evaluate the phenomena they're interested in, and then select a computational platform

that is capable of providing a su�cient level of computational performance.

125

In some domains, such as Real-Time Hybrid Simulation, performance is limited by the ability

to execute large simulations or control-loop computations in real-time and at a fast enough

rate in order to be useful. These systems can easily generate computational workloads that

far outstrip the capabilities of sequential processors and demonstrate an increasing demand

for high-performance (parallel) real-time computing. There are many systems where it is

easy to see that high-performance real-time computing is either a limiting factor or obviously

useful to further development: autonomous vehicles, mobile robotics, real-time classi�cation

and machine learning, etc.

Unfortunately, recent history suggests that the slowing growth of sequential processor ca-

pability is unlikely to change. Instead, processors have increasingly incorporated multiple

processing cores per chip� so much so that single-core chips are di�cult to purchase, and

processors with two, four, eight, or more processing cores are abundant. This necessitates

a paradigm shift for real-time application designers who desire more computational power,

as existing approaches to real-time processing have been largely sequential in nature. In

doing so, they must be willing to take the plunge into parallel programming. Such a shift

requires extensions throughout real-time systems, from theoretical foundations to the design

and implementation of real-time software.

There has been much recent interest in parallel real-time computing. A variety of theoretical

results analyze scheduling algorithms and task models for both soft real-time [32, 33], and

hard real-time settings [34, 3, 35, 2, 1, 15, 21, 36, 37, 38]. There has been comparatively

little work, however, on building systems capable of executing such parallel real-time com-

putations. In [21] a proprietary system was used in an autonomous vehicle for near-term

route planning, and it was shown that parallelism could provide a more comfortable ride (less

sharp accelerations). Two other systems [8, 14] examined Linux-based strategies for imple-

menting parallel real-time execution platforms and were validated on synthetic benchmarks,

126

while [16] provided a platform for use with a special real-time operating system (Fork/Join

OS, or FJOS) and showed good parallel speedup in real-time for a number of important

numerical computations.

There has been signi�cant work on multiprocessor real-time scheduling prior to (and along-

side) parallel real-time scheduling [39].

6.5 Real-Time Hybrid Simulation (RTHS)

Real-Time Hybrid Simulation combines numerical simulation alongside physical experimen-

tation to simulate structures in the lab that would otherwise be infeasible or impossible to

test otherwise. This dissertation considers RTHS as an exemplary parallel real-time cyber-

physical application, as it requires meeting appropriate real-time constraints alongside large

parallel workloads and tightly-coupled physical apparatus.

Early work in what is now RTHS began as quasi-static [40] and pseudo dynamic (PSD) [41]

testing, simulating dynamic responses without aiming for real-time execution, or substructur-

ing of the specimen physically. As the �eld developed, research expanded to also investigate

how to best meet the objectives in such an experiment. Existing integration schemes were

modi�ed to enable more complex testing [42] , and error propagation was examined to fa-

cilitate e�ective testing techniques [43]. Real-time hybrid testing is a natural evolution of

PSD, as the best dynamic response is obtained from real-time tests with strict timing con-

straints [44]. RTHS was also recognized as a good way to demonstrate and evaluate the

capabilities of structural control systems - adding structural components that attempt to

control the dynamic response of a structure [45]. Recently, [46] has studied di�erent control

algorithms through e�ective use of RTHS techniques.

127

Several non-parallel software packages have been designed speci�cally for real-time hybrid

simulation. For system support, Linux-based systems [47, 48] can provide a �exible, reusable

middleware architecture for connecting computational and physical components of an RTHS.

For simulation and modeling support, real-time packages [49] provide algorithms suitable for

real-time operation.

In practice there are a number of platforms on which RTHS is currently conducted. The

most prevalent is Matlab's xPC system. Matlab and Simulink code is written on an xPC host

machine, and then sent to an xPC target to execute the computations and interface with the

physical components of the RTHS. During execution, all of the xPC target's computational

power is devoted solely to the RTHS. xPC does not currently support parallel processing (as

de�ned earlier), so all computations on this system must be performed sequentially. There

is some research into using multiple xPC targets to increase computational resources [50],

but this approach only supports simultaneous execution of multiple sequential codes, which

does not achieve the goals of parallel programming as described at the top of this chapter.

The authors in [51] has also developed Mercury, which is a closed source C++ platform that

allows for the use of more advanced �nite element models in RTHS.

128

Chapter 7: Conclusion

Parallelism was a natural and foreseeable evolution for real-time systems, but it has taken

decades to apply the fruits of parallel computing research to the �eld of real-time computing.

As has been demonstrated, the engineering of a parallel real-time computing concurrency

platform is non-trivial, and the allocation of this capacity introduces new tradeo�s among a

task's speed, computational requirement, and �delity.

Two approaches were tested to explore the engineering of a parallel real-time concurrency

platform. The �rst approach, RT-OpenMP, explicitly schedules all runnable code at a very

�ne-grained level. This strategy used static partitioning to processors according to a demand

bound function, which gives a high degree of control over when and where code executes,

but ultimately su�ers from high overhead which limits the maximum periodic rate to ap-

proximately 500Hz. The second approach, federated scheduling, treats the parallel runtime

system as a black box and makes only the minimal assumption that the parallel runtime

must have a (nearly) greedy scheduler. This allows the use of existing parallel runtime sys-

tems, which are e�cient but o�er little control over how programs are executed. Extensive

testing demonstrates that this approach is suitable for many workloads, but is a strictly soft

real-time approach. The design and e�ciency of these systems are driven at a deep level

by the speci�c real-time assurances each wants to make: RT-OpenMP strives for arbitrary

129

preemptability and little to no priority inversion, while federated scheduling side-steps that

issue by simple isolating parallel tasks onto di�erent hardware.

A novel infrastructure, CyberMech, has been used to evaluate the performance of parallel

real-time computation and the mixed-criticality federated scheduler using Real-Time Hybrid

Simulation as an exemplar for more general cyber-physical applications. This software man-

ages multiple communicating concurrent parallel real-time processes and enables the access

of multiple threads and processes to a non-thread-safe data acquisition software. Taken all

together, CyberMech allows the execution of RTHS experiments using federated scheduling

in a soft real-time manner on general Linux platforms, which brings parallel computation to

RTHS experimentation for the �rst time and eliminates any need for proprietary computer

hardware or software beyond data acquisition devices.

Lastly, these experiences have been used to draw broader conclusions about the engineering

of parallelism in statically determined cyber-physical systems� those that �x computational

workloads and timing constraints prior to system execution. One speci�c RTHS experiment

was benchmarked exhaustively and it was shown how system designers can translate rea-

soning about cyber-physical properties (such as a target control rate) into management of a

parallel workload.

Taken as a whole, this dissertation represents a thorough investigation of the engineering of

parallel real-time systems where the computational workload and computational resources do

not change through program execution. The associated software allows a real-time systems

developer or su�ciently trained domain expert (such as a structural engineer) to implement

their own parallel real-time workloads in real cyber-physical systems.

130

7.1 Future Parallel Real-Time Platforms

Current parallel real-time concurrency platforms have two primary limitations from a real-

time developer's point of view: they are statically determined and cannot �exibly modify

themselves at runtime, and they are soft real-time systems. Both RT-OpenMP and the

Federated Scheduling Service perform rely on a static partitioning of system resources prior

to runtime in order to function correctly, which is required by the theoretical analysis of these

systems. In RT-OpenMP tasks were partitioned at the �ne-grained level of strands, while

in the Federated Scheduling Service high-utilization tasks were partitioned onto processors.

As a result, these systems are computationally in�exible, and cannot naturally deal with

dynamic workloads that are quite common in the cyber-physical domain (e.g., when reacting

to unexpected physical changes). The suboptimal solution is over provisioning. The mixed-

criticality version of the federated scheduling system provides some degree of dynamism, but

the current work only supports switching between a �nite set of static operating modes and

would thus deal with arbitrary combinations of dynamic events poorly.

Moving towards more dynamic systems would seem to require either (1) getting rid of par-

titions or (2) allowing partitions to be recon�gured at runtime. The former approach would

suggest an approach akin to global earliest deadline �rst scheduling, where a single work

queue is used to prioritize all outstanding work in the system. However, a global work queue

is known to be non-scalable in a parallel computing context due to the overhead of global

synchronization. Allowing partitions to be arbitrarily recon�gured at runtime would be a

hybrid solution, which would not require a global work queue but would require an enhanced

theory of operation so as to make assurances about satisfying timing constraints as both the

computational workload and computational resources for a workload may vary unpredictably

in time.

131

Taking dynamism one step further to cyber-physical systems would also require a model of

how physical output of the system varies according to workload and computational resources,

so that physical behavior can be predictably managed as the underlying computational

substrate changes dynamically.

Moving to hard real-time parallel computing poses a di�erent challenge. The existing parallel

concurrency platforms such as Cilk and OpenMP were not built for real-time behavior,

and tend to optimize throughput for large computations rather than predictable system

execution. A popular strategy for parallel scheduling, called randomized work stealing, is

used in both Cilk and OpenMP and is unsuitable for hard real-time execution since the

basic scheduling action involves a randomized process. Randomized work stealing is used

because it distributes overhead throughout the system and in practice scales well regardless

of what the parallel workload looks like. Thus, any hard real-time parallel real-time execution

platform will need to be created from scratch, and the techniques it uses may or may not be

techniques that are popular in the general parallel computing domain. Basic versions of such

systems could simply implement a non-scalable, high-overhead platform with the knowledge

that this is the price to pay for high predictability. However, in the long term a more elegant

solution is likely to be needed, as the whole purpose of parallel programming is to maximize

the use of computational resources.

Future parallel real-tiime systems are likely to incorporate features such as dynamic com-

putational and timing requirements that make the strict partitioning and separation of par-

allel tasks used in federated scheduling less feasible, and hybrid mixed-criticality federated

scheduling is one such example of that. However, the RT-OpenMP system demonstrates that

a large degree of OS involvement and subsequent overheads may not be feasible while also

achieving a high degree of parallel performance, and the existing high performance parallel

systems do not support basic real-time primitives such as work prioritization or preemption.

132

Future parallel real-time systems, that require dynamic, recon�gurable behavior are either

going to need a new parallel scheduling and execution strategy that can be implemented

in userspace but also support these real-time primitive, or they are going to need to work

cooperatively and e�ciently with the OS kernel in a thus far not devised manner.

7.2 Future of RTHS Infrastructure

The current infrastructure for RTHS, CyberMech, meets the current desires of �rst-generation

parallel RTHS, but already there are enhancements that are required for future planned

RTHS experiments. Having been built on the Federated Scheduling Service the CyberMech

system is designed to handle statically determined computational workloads. This rules out

a large class of experiments where computational capacity needs to be allocated in response

to changing physical situations, and there are speci�c examples that motivate every aspect

of the computational execution platform. A simulation that must respond to unexpected

physical damage motivates both dynamic mesh re�nement, a technique where a structure

would be modeled in high �delity around unanticipated physical damage, and dynamic tim-

ing constraints, where a structure may be modeled at a varying periodic rate according to

local conditions. Re�nement of a numerical structure would also motivate the ability to split

numerical simulations and dynamically increase the number of separate computational tasks

executing on a system, which in turn requires a computational task model that allows for

tasks to be put online and o�ine as needed during program execution, rather than arrang-

ing everything statically prior to execution. Of course, all of these proposed features would

require principled strategies to hand-o� computational responsibility and resources in a way

that ensures the �delity of the overall experiment.

133

Even within the static domain, however, there are further RTHS experiments that could be

done to stress the current system. All RTHS experiments conducted to date have been linear

systems with a �xed per-period execution time. A larger class of non-linear structural simu-

lations exist that depend on iterative algorithms that must converge to a solution at runtime.

The static nature of the current system means that these would have to be dealt with by

over-provisioning, but there would be interesting questions of how much over-provisioning

is necessary, and would be a fertile bed for investigating the e�ect of deadline misses, jitter,

and computational latency on the �delity of the overall experimental system. Addition-

ally, larger structural simulations could better stress the parallel capacity of CyberMech.

This work contains structural models that can be scaled up to be arbitrarily computation-

ally intensive through subdivision. This makes sense mathematically but at a certain point

it becomes unrealistic from an experimentalist's point of view, so larger but still realistic

models could more properly validate the results in this work. Unfortunately some models

are very small, designed with real-time execution in mind, and some models are very large

(pseudodynamic simulations where individual time steps can take minutes or hours of com-

putation time), but not much is known between these extremes. One last bit of low-hanging

fruit would be to implement an RTHS on CyberMech with multiple physical subdomains,

but this has proven di�cult more on the structural engineering side of developing adequate

controllers that can manage two physical structures and the interactions between them.

Lastly, CyberMech should be used to investigate into how such RTHS experiments are con-

structed and speci�ed from both a computational and structural engineering point of view,

so that students in structural engineering courses can implement their own non-trivial RTHS

and investigate it as an alternative testing strategy alongside pure experiment and pure sim-

ulation. The current interface is still very much that of a prototype system, with several

operations being rather exacting and laborious: speci�cation of structural simulations, spec-

i�cation of physical elements, and then speci�cation of how these are connected. Also, there

134

are a wide variety of existing structural engineering tools for simulation, but these do not

often support real-time simulation much less parallel real-time simulation. Part of construct-

ing a good interface for CyberMech will probably also involve capturing good work�ows for

structural engineers to develop RTHS experiments and then integrating CyberMech with

those tools.

7.3 Future of Cyber-Physical Parallelism

Current e�orts to integrate parallelism into cyber-physical systems are entirely ad-hoc. This

works for highly engineered systems that are (so far) loosely regulated, such as self-driving

car systems, but not elsewhere. On one end of the spectrum there are small developers

or researchers who may want extra computational capacity in a small system, for example

doing parallel computing with a Raspberry Pi on board a $500 drone, who do not have

the knowledge or resources to do so successfully. Such persons may be able to perfectly

adequately phrase their cyber-physical problem in a domain-speci�c language ("Running

OpenCV to track objects in front of my drone causes the periodic control rate to drop too

low.") but not be able to translate their concepts into the scheduling and implementation of

a parallel workload in such a way that computational tasks minimally interfere. For these

people there needs to be a more principled way to talk about the cyber-physical interactions

of their physical platform, their computational resources, and the computational workloads

they are running� these people shouldn't need to be real-time or parallel systems engineers

to predict whether or not their desired computational workload is feasible and what elements

of that workload are elastic and inelastic. On the other end of the spectrum there are

developers (such as aircraft designers) who need to be able to design large, complex, but safe

systems and the convey that assurance in a way that is understood and trusted (such as to

regulators).

135

A signi�cant need is to develop a principled approach to understanding and modeling the

impact of computational variance in cyber-physical systems. All computational tasks expe-

rience some degree of latency and jitter, for example, which will manifest itself as physical

behavior. Understanding the e�ects that these have on a system, especially in a complex

system where a single event can have multiple knock-on e�ects, will be a major step towards

a more generalized understanding of the engineering of cyber-physical systems, and would

give a much clearer indication to future systems designers of how and where to allocate

parallelism to improve computational performance. Current practice is to build systems

slowly and to test frequently, but intuition suggests that at a certain size and scale that this

approach will become unworkable.

Ultimately the goal of this �eld of research is to be able to con�dently build powerful (and

thus potentially dangerous) systems, with con�dence grounded in a robust system of analysis

that catches and prevents dangerous conditions from occurring. It is likely there will be

a strong demand for highly complex cyber-physical and autonomous systems to become

increasingly prevalent in our world as their bene�ts are recognized (e.g., if self-driving cars

were to cause a signi�cant reduction in fatal accidents). Selling these systems to the public

and to regulators will require an e�ective and understandable way to demonstrate strong

assurances that catastrophic behavior cannot result from system operation. Failure to do

so will limit the reach of these technologies to small and isolated systems which cannot do

much harm even in the event of catastrophic behavior, and consequently limit the bene�ts

that we could otherwise derive.

136

Chapter 8: Bibliography

[1] K. Lakshmanan, S. Kato, and R. R. Rajkumar, �Scheduling parallel real-time tasks on

multi-core processors,� in RTSS '10.

[2] S. Kato and Y. Ishikawa, �Gang EDF scheduling of parallel task systems,� in RTSS '09.

[3] S. Collette, L. Cucu, and J. Goossens, �Integrating job parallelism in real-time schedul-

ing theory,� Inf. Process. Lett., vol. 106, no. 5, pp. 180�187, 2008.

[4] R. D. Blumofe, Executing Multithreaded Programs E�ciently. PhD thesis, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts, Sept. 1995. Available as MIT Laboratory for Computer

Science Technical Report MIT/LCS/TR-677.

[5] �OpenMP speci�cation,� January 2015. http://openmp.org/wp/

openmp-specifications/.

[6] �Message Passing Interface speci�cation,� January 2015. http://www.mpi-forum.org/

docs/.

[7] Cyber-Physical Systems Program Solicitation NSF 17-529. National Science Foundation,

2017. https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.htm.

137

[8] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, �A real-time scheduling

service for parallel tasks,� in RTAS '13.

[9] N. Fisher, S. Baruah, and T. P. Baker, �The partitioned scheduling of sporadic tasks

according to static-priorities,� in ECRTS '06.

[10] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, �Multi-core real-time scheduling for gen-

eralized parallel task models,� in RTSS '11.

[11] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, �Multi-core real-time

scheduling for generalized parallel task models,� Real-Time Systems Journal, 2012.

doi:10.1007/s11241-012-9166-9.

[12] R. L. Graham, �Bounds for certain multiprocessing anomalies,� The Bell System Tech-

nical Journal, vol. 45, pp. 1563�1581, Nov 1966.

[13] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, �Analysis of federated

and global scheduling for parallel real-time tasks,� in 2014 26th Euromicro Conference

on Real-Time Systems, pp. 85�96, July 2014.

[14] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu, �Mixed-criticality feder-

ated scheduling for parallel real-time tasks,� in 2016 IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), pp. 1�12, April 2016.

[15] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, �Multi-core real-time scheduling for gen-

eralized parallel task models,� in RTSS '11.

[16] Q. Wang and G. Parmer, �Fjos: Practical, predictable, and e�cient system support

for fork/join parallelism,� in 2014 IEEE 19th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pp. 25�36, April 2014.

138

[17] S. Dinh, J. Li, K. Agrawal, C. Gill, and C. Lu, �Blocking analysis for spin locks in real-

time parallel tasks,� IEEE Transactions on Parallel and Distributed Systems, vol. 29,

pp. 789�802, April 2018.

[18] �Intel CilkPlus.� http://software.intel.com/en-us/articles/intel-cilk-plus.

[19] K. Kieselbach, �A parallel real-time platform using federated scheduling and a thread-

safe shake table control system to enable cyber-physical applications,� Master's thesis,

Washington University in St. Louis, 2013.

[20] F. Allgower, �From rags to riches - distributed economic model predictive control in

industry 4.0,� 4 2018. Remarks by Dr. Allgower as a keynote speaker at Cyber-Physical

Systems Week 2018, Porto, Portugal [Accessed: 2018 06 21].

[21] J. Kim, H. Kim, K. Lakashmanan, and R. Rajkumar, �Parallel scheduling for cyber-

physical systems: Analysis and case study on a self-driving car,� in ICCPS '13.

[22] J. Reinders, �Intel threading building blocks: Out�tting c++ for multi-core processor

parallelism,� 2007.

[23] I. of Electrical and E. Engineers, �Information technology - portable operating system

interface (posix) - part 1: System application program interface (api) [c language],�

1996.

[24] J. Goslin, B. Joy, G. Steele, and G. Bracha, �The java language speci�cation,� 2000.

[25] R. D. Blumofe and D. Papadopoulos, �The performance of work stealing in multipro-

grammed environments,� tech. rep., Austin, TX, USA, 1998.

[26] R. D. Blumofe and C. E. Leiserson, �Scheduling multithreaded computations by work

stealing,� Journal of the ACM, vol. 46, no. 5, pp. 720�748, 1999.

139

[27] G. E. Blelloch and J. Greiner, �A provable time and space e�cient implementation of

nesl,� in Proceedings of the First ACM SIGPLAN International Conference on Func-

tional Programming, ICFP '96, (New York, NY, USA), pp. 213�225, ACM, 1996.

[28] G. E. Blelloch, P. B. Gibbons, and Y. Matias, �Provably e�cient scheduling for lan-

guages with �ne-grained parallelism,� J. ACM, vol. 46, pp. 281�321, Mar. 1999.

[29] R. P. Brent, �The parallel evaluation of general arithmetic expressions,� J. ACM, vol. 21,

pp. 201�206, Apr. 1974.

[30] J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill, and C. Lu, �Randomized work stealing

for large scale soft real-time systems,� in 2016 IEEE Real-Time Systems Symposium

(RTSS), pp. 203�214, Nov 2016.

[31] U. C. Devi, Soft Real-Time Scheduling on Multiprocessors. PhD thesis, Department

of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North

Carolina, 2003.

[32] C. Liu and J. Anderson, �Supporting soft real-time parallel applications on multicore

processors,� in RTCSA '12.

[33] L. Nogueira and L. M. Pinho, �Server-based scheduling of parallel real-time tasks,� in

International Conference on Embedded Software, 2012.

[34] W. Y. Lee and H. Lee, �Optimal scheduling for real-time parallel tasks,� IEICE Trans.

Inf. Syst., vol. E89-D, no. 6, pp. 1962�1966, 2006.

[35] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, �A new approach for scheduling

of parallelizable tasks in real-time multiprocessor systems,� Real-Time Syst., vol. 15,

no. 1, pp. 39�60, 1998.

140

[36] S. Baruah, V. Bonifaciy, A. Marchetti-Spaccamelaz, L. Stougiex, and A. Wiese, �A

generalized parallel task model for recurrent real-time processes,� in RTSS '12.

[37] J. Li, K. Agrawal, C.Lu, and C. Gill, �Analysis of global edf for parallel tasks,� in

ECRTS '13.

[38] L. Becchetti, M. Dirnberger, A. Karrenbauer, and K. Mehlhorn, �Feasibility analysis in

the sporadic dag task model,� in ECRTS '13.

[39] R. I. Davis and A. Burns, �A survey of hard real-time scheduling for multiprocessor

systems,� ACM Comp. Surv., vol. 43, pp. 35:1�44, 2011.

[40] P. Shing and S. Mahin, �Computational aspects of a seismic performance test method us-

ing on-line computer control,� Earthquake Engineering & Structural Dynamics, vol. 13,

no. 4, pp. 507�526, 1985.

[41] P. Pegon and A. Pinto, �Pseudo-dynamic testing with substructuring at the elsa lab-

oratory,� Earthquake engineering & structural dynamics, vol. 29, no. 7, pp. 905�925,

2000.

[42] O. Bursi and P. Shing, �Evaluation of some implicit time-stepping algorithms for pseudo-

dynamic tests,� Earthquake engineering & structural dynamics, vol. 25, no. 4, pp. 333�

355, 1996.

[43] B. Pui-shum and S. Mahin, �Experimental error e�ects in pseudodynamic testing,�

Journal of Engineering Mechanics, vol. 116, no. 4, pp. 805�821, 1990.

[44] M. Ahmadizadeh, G. Mosqueda, and A. Reinhorn, �Compensation of actuator delay

and dynamics for real-time hybrid structural simulation,� Earthquake Engineering &

Structural Dynamics, vol. 37, no. 1, pp. 21�42, 2008.

141

[45] T. Soong and B. Spencer, �Supplemental energy dissipation: state-of-the-art and state-

of-the-practice,� Engineering Structures, vol. 24, no. 3, pp. 243�259, 2002.

[46] X. Gao, N. Castaneda, and S. J. Dyke, �Real time hybrid simulation: from dynamic

system, motion control to experimental error,� Earthquake Engineering & Structural

Dynamics, vol. 42, no. 6, pp. 815�832, 2013.

[47] T. Tidwell, X. Gao, H.-M. Huang, C. Lu, S. Dyke, and C. Gill, �Towards Con�g-

urable Real-Time Hybrid Structural Testing: A Cyber-Physical Systems Approach,�

in International Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC), 2009.

[48] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke, �Cyber-physical systems

for real-time hybrid structural testing: a case study,� in ICCPS '10.

[49] N. E. Castaneda, Development and Validation of a Real-Time Computational Frame-

work For Hybrid Simulation of Dynamically-Excited Steel Frame Structures. PhD thesis,

Purdue University, West Lafayette, IN 47907, December 2012. https://engineering.

purdue.edu/IISL/Publications/DSc_Dissertations/Nestor_Castaneda.pdf.

[50] Y. Chae, S. Tong, T. M. Marullo, and J. M. Ricles, �Real-time hybrid simulation studies of com-

plex large-scale systems using multi-grid processing,� in Analysis and Computation Specialty

Conference, pp. 359�370, 2012.

[51] V. Saouma, G. Haussmann, D.-H. Kang, and W. Ghannoum, �Real time hybrid simulation of

a non ductile reinforced concrete frame,� Journal of Structural Engineering, vol. 140, no. 2,

2013.

142

	Washington University in St. Louis
	Washington University Open Scholarship
	Summer 8-15-2018

	Concurrency Platforms for Real-Time and Cyber-Physical Systems
	David Ferry
	Recommended Citation

	tmp.1536177619.pdf.E9J2h

