15 research outputs found

    Query Answering with DBoxes is Hard

    Get PDF
    Data in description logic knowledge bases is stored in the form of an ABox. ABoxes are often confusing for developers coming from relational databases because an ABox, in contrast to a database instance, provides an incomplete specification. A recently introduced assertional component of a description logic knowledge base is a DBox, which behaves more like a database instance. In this paper, we study the data complexity of query answering in the description logic DL-Lite"F extended with DBoxes. DL-Lite"F is a description logic tailored for data intensive applications and the data complexity of query answering in DL-Lite"F with ABoxes is tractable (in AC^0). Our main result is that this problem becomes coNP-complete with DBoxes. In some expressive description logics, query answering with DBoxes also leads to a higher (combined) complexity than query answering with ABoxes. As a proof of concept, we relate query answering in ALCFIO, i.e., ALC with Functional and Inverse roles, and nOminals to the same problem in ALCFI with DBoxes. The exact complexity of the former is an open problem in the description logic literature. Here we show that query answering in ALCFIO and ALCFI with DBoxes are mutually reducible to each other in polynomial time. All the proofs in this paper are available in the appendix for the [email protected]? convenience

    The Data Complexity of Ontology-Mediated Queries with Closed Predicates

    Get PDF
    In the context of ontology-mediated querying with description logics (DLs), we study the data complexity of queries in which selected predicates can be closed (OMQCs). We provide a non-uniform analysis, aiming at a classification of the complexity into tractable and non-tractable for ontologies in the lightweight DLs DL-Lite and EL, and the expressive DL ALCHI. At the level of ontologies, we prove a dichotomy between FO-rewritable and coNP-complete for DL-Lite and between PTime and coNP-complete for EL. The meta problem of deciding tractability is proved to be in PTime. At the level of OMQCs, we show that there is no dichotomy (unless NP equals PTime) if both concept and role names can be closed. If only concept names can be closed, we tightly link the complexity of query evaluation to the complexity of surjective CSPs. We also identify a class of OMQCs based on ontologies formulated in DL-Lite that are guaranteed to be tractable and even FO-rewritable

    Living Without Beth and Craig: Definitions and Interpolants in Description Logics with Nominals and Role Inclusions

    Get PDF
    The Craig interpolation property (CIP) states that an interpolant for an implication exists iff it is valid. The projective Beth definability property (PBDP) states that an explicit definition exists iff a formula stating implicit definability is valid. Thus, the CIP and PBDP transform potentially hard existence problems into deduction problems in the underlying logic. Description Logics with nominals and/or role inclusions do not enjoy the CIP nor PBDP, but interpolants and explicit definitions have many potential applications in ontology engineering and ontology-based data management. In this article we show the following: even without Craig and Beth, the existence of interpolants and explicit definitions is decidable in description logics with nominals and/or role inclusions such as ALCO, ALCH and ALCHIO. However, living without Craig and Beth makes this problem harder than deduction: we prove that the existence problems become 2ExpTime-complete, thus one exponential harder than validity. The existence of explicit definitions is 2ExpTime-hard even if one asks for a definition of a nominal using any symbol distinct from that nominal, but it becomes ExpTime-complete if one asks for a definition of a concept name using any symbol distinct from that concept name.Comment: We have added results on description logics with role inclusions and an ExpTime-completeness result for the explicit definability of concept names. The title has been modified by adding role inclusions. This paper has been accepted for AAAA 202

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Application of Definability to Query Answering over Knowledge Bases

    Get PDF
    Answering object queries (i.e. instance retrieval) is a central task in ontology based data access (OBDA). Performing this task involves reasoning with respect to a knowledge base K (i.e. ontology) over some description logic (DL) dialect L. As the expressive power of L grows, so does the complexity of reasoning with respect to K. Therefore, eliminating the need to reason with respect to a knowledge base K is desirable. In this work, we propose an optimization to improve performance of answering object queries by eliminating the need to reason with respect to the knowledge base and, instead, utilizing cached query results when possible. In particular given a DL dialect L, an object query C over some knowledge base K and a set of cached query results S={S1, ..., Sn} obtained from evaluating past queries, we rewrite C into an equivalent query D, that can be evaluated with respect to an empty knowledge base, using cached query results S' = {Si1, ..., Sim}, where S' is a subset of S. The new query D is an interpolant for the original query C with respect to K and S. To find D, we leverage a tool for enumerating interpolants of a given sentence with respect to some theory. We describe a procedure that maps a knowledge base K, expressed in terms of a description logic dialect of first order logic, and object query C into an equivalent theory and query that are input into the interpolant enumerating tool, and resulting interpolants into an object query D that can be evaluated over an empty knowledge base. We show the efficacy of our approach through experimental evaluation on a Lehigh University Benchmark (LUBM) data set, as well as on a synthetic data set, LUBMMOD, that we created by augmenting an LUBM ontology with additional axioms

    Exact query reformulation over databases with first-order and description logics ontologies

    Get PDF
    We study a general framework for query rewriting in the presence of an arbitrary first-order logic ontology over a database signature. The framework supports deciding the existence of a safe-range first-order equivalent reformulation of a query in terms of the database signature, and if so, it provides an effective approach to construct the reformulation based on interpolation using standard theorem proving techniques (e.g., tableau). Since the reformulation is a safe-range formula, it is effectively executable as an SQL query. At the end, we present a non-trivial application of the framework with ontologies in the very expressive ALCHOIQ description logic, by providing effective means to compute safe-range first-order exact reformulations of queries

    Improving Model Finding for Integrated Quantitative-qualitative Spatial Reasoning With First-order Logic Ontologies

    Get PDF
    Many spatial standards are developed to harmonize the semantics and specifications of GIS data and for sophisticated reasoning. All these standards include some types of simple and complex geometric features, and some of them incorporate simple mereotopological relations. But the relations as used in these standards, only allow the extraction of qualitative information from geometric data and lack formal semantics that link geometric representations with mereotopological or other qualitative relations. This impedes integrated reasoning over qualitative data obtained from geometric sources and “native” topological information – for example as provided from textual sources where precise locations or spatial extents are unknown or unknowable. To address this issue, the first contribution in this dissertation is a first-order logical ontology that treats geometric features (e.g. polylines, polygons) and relations between them as specializations of more general types of features (e.g. any kind of 2D or 1D features) and mereotopological relations between them. Key to this endeavor is the use of a multidimensional theory of space wherein, unlike traditional logical theories of mereotopology (like RCC), spatial entities of different dimensions can co-exist and be related. However terminating or tractable reasoning with such an expressive ontology and potentially large amounts of data is a challenging AI problem. Model finding tools used to verify FOL ontologies with data usually employ a SAT solver to determine the satisfiability of the propositional instantiations (SAT problems) of the ontology. These solvers often experience scalability issues with increasing number of objects and size and complexity of the ontology, limiting its use to ontologies with small signatures and building small models with less than 20 objects. To investigate how an ontology influences the size of its SAT translation and consequently the model finder’s performance, we develop a formalization of FOL ontologies with data. We theoretically identify parameters of an ontology that significantly contribute to the dramatic growth in size of the SAT problem. The search space of the SAT problem is exponential in the signature of the ontology (the number of predicates in the axiomatization and any additional predicates from skolemization) and the number of distinct objects in the model. Axiomatizations that contain many definitions lead to large number of SAT propositional clauses. This is from the conversion of biconditionals to clausal form. We therefore postulate that optional definitions are ideal sentences that can be eliminated from an ontology to boost model finder’s performance. We then formalize optional definition elimination (ODE) as an FOL ontology preprocessing step and test the simplification on a set of spatial benchmark problems to generate smaller SAT problems (with fewer clauses and variables) without changing the satisfiability and semantic meaning of the problem. We experimentally demonstrate that the reduction in SAT problem size also leads to improved model finding with state-of-the-art model finders, with speedups of 10-99%. Altogether, this dissertation improves spatial reasoning capabilities using FOL ontologies – in terms of a formal framework for integrated qualitative-geometric reasoning, and specific ontology preprocessing steps that can be built into automated reasoners to achieve better speedups in model finding times, and scalability with moderately-sized datasets

    Living Without Beth and Craig: Definitions and Interpolants in Description and Modal Logics with Nominals and Role Inclusions

    Get PDF
    The Craig interpolation property (CIP) states that an interpolant for an implication exists iff it is valid. The projective Beth definability property (PBDP) states that an explicit definition exists iff a formula stating implicit definability is valid. Thus, the CIP and PBDP reduce potentially hard existence problems to entailment in the underlying logic. Description (and modal) logics with nominals and/or role inclusions do not enjoy the CIP nor the PBDP, but interpolants and explicit definitions have many applications, in particular in concept learning, ontology engineering, and ontology-based data management. In this article we show that, even without Beth and Craig, the existence of interpolants and explicit definitions is decidable in description logics with nominals and/or role inclusions such as ALCO\mathcal {ALCO} , ALCH\mathcal {ALCH} and ALCHOI\mathcal {ALCHOI} and corresponding hybrid modal logics. However, living without Beth and Craig makes these problems harder than entailment: the existence problems become 2ExpTime-complete in the presence of an ontology or the universal modality, and coNExpTime-complete otherwise. We also analyze explicit definition existence if all symbols (except the one that is defined) are admitted in the definition. In this case the complexity depends on whether one considers individual or concept names. Finally, we consider the problem of computing interpolants and explicit definitions if they exist and turn the complexity upper bound proof into an algorithm computing them, at least for description logics with role inclusions. </jats:p
    corecore