
The University of Maine The University of Maine

DigitalCommons@UMaine DigitalCommons@UMaine

Electronic Theses and Dissertations Fogler Library

Fall 12-2021

Improving Model Finding for Integrated Quantitative-qualitative Improving Model Finding for Integrated Quantitative-qualitative

Spatial Reasoning With First-order Logic Ontologies Spatial Reasoning With First-order Logic Ontologies

Shirly Stephen
University of Maine, shirly.rock@gmail.com

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd

 Part of the Data Science Commons

Recommended Citation Recommended Citation
Stephen, Shirly, "Improving Model Finding for Integrated Quantitative-qualitative Spatial Reasoning With
First-order Logic Ontologies" (2021). Electronic Theses and Dissertations. 3537.
https://digitalcommons.library.umaine.edu/etd/3537

This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of
DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/etd
https://digitalcommons.library.umaine.edu/fogler
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3537&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3537&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/3537?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3537&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

IMPROVING MODEL FINDING FOR INTEGRATED

QUANTITATIVE-QUALITATIVE SPATIAL REASONING WITH

FIRST-ORDER LOGIC ONTOLOGIES

By

Shirly Stephen

B.S. - Anna University 2011

M.S. - University of Maine 2016

A DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

December 2021

Advisory Committee:

Dr. Torsten Hahmann, Associate Professor of Spatial Computing, Advisor

Dr. Kate Beard Tisdale, Professor of Spatial Computing

Dr. Roy Turner, Associate Professor of Computer Science

Dr. Silvia Nittel, Associate Professor of Spatial Computing

Dr. Sepideh Ghanavati, Assistant Prodessor of Computer Science

© 2021 Shirly Stephen
All Rights Reserved

ii

IMPROVING MODEL FINDING FOR INTEGRATED

QUANTITATIVE-QUALITATIVE SPATIAL REASONING WITH

FIRST-ORDER LOGIC ONTOLOGIES

By Shirly Stephen

Dissertation Advisor: Dr. Torsten Hahmann

An Abstract of the Dissertation Presented
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
(in Spatial Information Science and Engineering)

December 2021

Many spatial standards are developed to harmonize the semantics and specifications of

GIS data and for sophisticated reasoning. All these standards include some types of simple

and complex geometric features, and some of them incorporate simple mereotopological

relations. But the relations as used in these standards, only allow the extraction of qualitative

information from geometric data and lack formal semantics that link geometric representations

with mereotopological or other qualitative relations. This impedes integrated reasoning over

qualitative data obtained from geometric sources and “native” topological information –

for example as provided from textual sources where precise locations or spatial extents are

unknown or unknowable. To address this issue, the first contribution in this dissertation is

a first-order logical ontology that treats geometric features (e.g. polylines, polygons) and

relations between them as specializations of more general types of features (e.g. any kind of

2D or 1D features) and mereotopological relations between them. Key to this endeavor is

the use of a multidimensional theory of space wherein, unlike traditional logical theories of

mereotopology (like RCC), spatial entities of different dimensions can co-exist and be related.

However terminating or tractable reasoning with such an expressive ontology and potentially

large amounts of data is a challenging AI problem. Model finding tools used to verify FOL

ontologies with data usually employ a SAT solver to determine the satisfiability of the

propositional instantiations (SAT problems) of the ontology. These solvers often experience

scalability issues with increasing number of objects and size and complexity of the ontology,

limiting its use to ontologies with small signatures and building small models with less than

20 objects. To investigate how an ontology influences the size of its SAT translation and

consequently the model finder’s performance, we develop a formalization of FOL ontologies

with data. We theoretically identify parameters of an ontology that significantly contribute

to the dramatic growth in size of the SAT problem. The search space of the SAT problem is

exponential in the signature of the ontology (the number of predicates in the axiomatization

and any additional predicates from skolemization) and the number of distinct objects in

the model. Axiomatizations that contain many definitions lead to large number of SAT

propositional clauses. This is from the conversion of biconditionals to clausal form. We

therefore postulate that optional definitions are ideal sentences that can be eliminated from

an ontology to boost model finder’s performance. We then formalize optional definition

elimination (ODE) as an FOL ontology preprocessing step and test the simplification on a

set of spatial benchmark problems to generate smaller SAT problems (with fewer clauses

and variables) without changing the satisfiability and semantic meaning of the problem. We

experimentally demonstrate that the reduction in SAT problem size also leads to improved

model finding with state-of-the-art model finders, with speedups of 10-99%. Altogether,

this dissertation improves spatial reasoning capabilities using FOL ontologies – in terms

of a formal framework for integrated qualitative-geometric reasoning, and specific ontology

preprocessing steps that can be built into automated reasoners to achieve better speedups in

model finding times, and scalability with moderately-sized datasets.

DEDICATION

Dedicated to my parents who always encouraged me to never stop learning, growing, and

adapting.

iii

ACKNOWLEDGEMENTS

This dissertation is the culmination of the support, encouragement, and guidance from a

number of people. I would like to thank them all.

Firstly, I would like to thank my academic advisor, Dr. Torsten Hahmann, for his

mentoring, continuous support, constant encouragement, and whose expertise was invaluable

in bringing this dissertation to fruition. His never-ending patience to explain concepts and

clarify all the little details during the countless discussions helped me in the completion of

this work. I am also thankful to him for carefully reviewing and commenting on several

versions of this thesis.

I would like to acknowledge my deep sense of gratitude to the members on my thesis

committee (Dr. Kate-Beard Tisdale, Dr. Roy Turner, Dr. Silvia Nittel, and Dr. Sepideh

Ghanavati) for their support throughout my graduate career. Further, I would like to extend

my thanks to the National Science Foundation for aiding my research financially.

I thank all my friends and colleagues at the SIE department and at the University of

Maine for all the good times that made my graduate life a memorable one. In particular,

special thanks to Sabrina, Radowan, Sudheera, Phani, Siri, and Salomi. I am at lost for

words when expressing my gratitude to my beloved parents and siblings for their constant

encouragement, blessings, and cheering for me in all my academic and personal endeavours.

iv

TABLE OF CONTENTS

DEDICATION.. iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xii

ABBREVIATIONS . xiii

1. INTRODUCTION .. 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.2.1 Challenges . 3

1.2.2 Specific Objectives . 5

1.3 Contributions . 5

1.3.1 Spatial Representation for Integrated Reasoning . 6

1.3.2 Model Finding for Spatial Ontologies . 6

1.4 Overview . 7

2. PRELIMINARIES . 10

2.1 First-Order Logic Ontologies. 10

2.1.1 Syntax of First-Order Logic. 10

2.1.2 Semantics of First-Order Logic . 12

v

2.2 FOL Model Finding via Propositional SAT Solving. 12

2.2.1 Syntax and Semantics of Propositional Logic . 13

2.2.2 Model Finding via Translation to CNF and SAT .. 13

2.2.3 Decision Procedures for Determining Satisfiability . 16

2.2.4 The Davis Putnam Logemann Loveland (DPLL) Algorithm. 18

2.2.5 Improvements to DPLL. 18

2.3 Automated Reasoning for First-Order Logic . 21

2.3.1 Common Algorithms for Finite-Model Finding. 22

2.3.2 State-of-the-art Model Finders Employed in this Dissertation 25

2.4 Ontological Formalization of Space . 27

2.4.1 Qualitative Spatial Representations . 28

2.4.2 FOL Ontologies for QSR: CODI, RCC, INCH .. 30

2.4.2.1 COntainment DImension Ontology . 30

2.4.2.2 The RCC Ontology: . 33

2.4.2.3 The INCH Ontology . 34

3. RELATED WORK .. 36

3.1 Reasoning with FOL Ontologies . 36

3.1.1 Theorem Proving with FOL Ontologies . 37

3.1.2 Scalability of Model Finding for FOL Ontologies . 38

3.2 SAT-Based Model Finding for FOL Ontologies. 39

3.2.1 Studies on Tractability of Propositional SAT Solving . 40

3.2.2 Simplification Techniques for Propositional SAT Solving. 45

3.2.3 Simplification Techniques for FOL Problems . 49

vi

3.3 Reasoning with Spatial Ontologies . 52

3.3.1 Spatial Ontologies in Geospatial Ontology Standards . 52

3.3.2 Integrated Qualitative and Quantitative Spatial Reasoning 54

4. FORMAL QUALITATIVE SPATIAL AUGMENTATION OF THE SIMPLE

FEATURE ACCESS MODEL . 56

4.1 Preliminaries . 58

4.1.1 Semantics of Simple Feature Concepts and Spatial Relations 59

4.1.1.1 Semantics of Concepts (Classes) from Simple Features 59

4.1.1.2 Spatial Relations in Simple Features . 61

4.1.2 Dimensional Features and Qualitative Spatial Relations in CODIB 62

4.1.2.1 CODI . 62

4.1.2.2 CODIB. 63

4.1.2.3 Refined Spatial Region Concepts in CODIB . 63

4.2 Axiomatization of Simple Feature as an Extension of CODIB 65

4.2.1 Axiomatization of Simple Feature’s Simple Geometric Features 65

4.2.2 Axiomatization of Simple Feature’s Simple Feature Collections. 69

4.2.3 Axiomatization of Simple Feature’s Qualitative Spatial Relations 70

4.3 Logical Verification . 72

4.4 Discussion . 75

5. THE ROLE OF AN ONTOLOGY’S SIGNATURE IN SAT-BASED MODEL

FINDING.. 77

5.1 SAT-Based Model Finding for FOL Ontologies. 79

5.1.1 Size of the Clausified FOL Ontology . 79

5.1.2 Size of the Propositionalized FOL-CNF Ontology . 81

vii

5.2 SAT-Based Model Finding for FOL Ontologies with Data . 84

5.2.1 Assertion Box and Terminological Box. 84

5.2.2 The Size of SAT Problems for an FOL Ontology with an ABox 85

5.2.3 Significance of an FOL Ontology’s Signature Size for its SAT

Encoding . 87

5.3 Definition Elimination for Reducing the Size of the SAT Encodings of FOL

Ontologies . 89

6. THE IMPACT OF ODE ON THE SIZE OF THE SAT PROBLEM FOR FOL

MODEL FINDING .. 97

6.1 Design of Study . 98

6.1.1 Construction of TBoxes with Different Extents of ODE. 99

6.1.2 Constructing (r-d) ABoxes . 102

6.2 The Impact of ODE on the Size of the SAT Problem . 104

6.2.1 Growth in Propositional Variables with Different (r-d)ABoxes and

Different Definition Sets. 108

6.2.2 Growth in Propositional Clauses with Different (r-d)ABoxes and

Different Definition Sets. 114

6.3 Guiding Predicate Selection for ODE .. 117

6.4 Discussion and Conclusions . 118

7. EXPERIMENTAL STUDY OF THE EFFECT OF ODE ON MODEL

FINDING TIMES . 120

7.1 Design of Study . 121

7.1.1 Constructing (r-d) ABoxes . 121

7.1.2 Constructing Defined (r-d) ABoxes . 124

viii

7.1.3 Experimental Environment . 125

7.1.4 Statistical Analysis Methods. 125

7.2 Experimental Results . 126

7.2.1 Paradox and Vampire Results . 126

7.2.2 IProver Results . 133

7.3 Analysis . 134

7.3.1 Correlation Analysis between SAT Problem Size and Model Finding

Times . 134

7.3.2 Speedup in Model Finding through ODE.. 137

7.4 Discussion and Conclusion . 138

8. CONCLUSION.. 141

8.1 Future Work . 147

BIBLIOGRAPHY .. 148

APPENDIX A – SUPPLEMENTARY MATERIAL . 180

BIOGRAPHY .. 183

ix

LIST OF TABLES

3.1 Satisfiability threshold values for random k-SAT. 42

4.1 SFA’s mereotopological relations, their equivalent Egenhofer relations,

and the developed mappings to CODIB’s relations. The relations in

the bottom part are all defined in terms of the top five relations. 72

4.2 Overview of the employed consistency checking methods for the

verification of SF-FOL. 74

5.1 Example: FOL-CNF clauses for the three sentences in ORCC-s. 82

5.2 Example of an ontology O with a TBox and ABox, before and after

ODE. 94

6.1 Predicates (FOL literals) for each of the ontologies RCC, CODI and

INCH used in the theoretical study here and empirical analysis in

Chapter 7. 101

6.2 Quantitative summary of the TBoxes and the basic ABox for the

FOL-CNF formulas of the 13 cases experimented with in CODI. 103

6.3 Pv and Pc in the propositional formulas for different ABox sizes for

the 13 cases experimented within CODI. 105

6.4 Quantitative summary of the TBoxes, Aboxes and the FOL-CNF

formulas of the 7 cases experimented with in RCC.. 106

6.5 Quantitative summary of the TBoxes, Aboxes and the FOL-CNF

formulas of the 4 cases experimented with in INCH. 107

7.1 Content of the master ABox from which sample (r-d)ABoxes are

constructed for CODI, RCC and INCH. 123

x

7.2 Model finding time using Paradox for case 1 in CODI for d 90 to 120

(r = 5). 127

7.3 Correlation analysis results between runtime of three model finders

and size measures of the SAT problems for CODI, RCC, and INCH. 136

A.1 Mapping between SF-FOL terms and concepts in CODIB, RCC and

INCH ontologies. 180

xi

LIST OF FIGURES

1.1 Section of OpenStreetMap dataset relevant for the entities of interest.

The map highlights all the relevant features of interest mentioned in

the tweet, and connected spatial entities whose qualitative information

is needed for the query.. 2

4.1 Taxonomy of refined CODIB spatial region concepts classified based

on presence/absence of boundaries, connectedness, branching and parts 64

4.2 Hierarchy of SF-FOL indicating mapping within SFA concepts,

within CODI/CODIB concepts and between SFA and CODI/CODIB

concepts. 67

4.3 The relationships between the developed and reused axiomatic theories. 75

5.1 Steps involved in the translation of a first-order logic formula to a

propositional formula to generate a finite model. 82

5.2 Decision tree corresponding to the propositional instantiation of the

FOL definition of CODI’s PO.. 88

5.3 Dependency between defined predicates in the CODI ontology.. 89

6.1 Dependencies between defined predicates in the RCC, CODI and

INCH ontologies. 100

6.2 Variation in Pv and Pc with increasing r for constant domain size, d =

20, for RCC, CODI, and INCH calculus. 110

6.3 Number of propositional variables and clauses in preprocessed

OFOL-CNF formulas for each ontology (RCC, CODI and INCH)

including a TBox and ABox for different definition sets. 111

xii

6.4 Graph showing the variation of Pv for each case with increasing size

of terminology in the ontology. 112

6.5 Graph plotting Pv against r for d = 30. 113

6.6 Graphs indicating number of clauses with three or more FOL variables,

and with three or more FOL literals in the FOL-CNF representations

for CODI, RCC and INCH. 116

6.7 Graph showing the variation of Pc for each case with increasing size of

terminology in CODI, RCC, and INCH. 117

7.1 Geometric map about the critical habitat for lynx in Maine from

which the master dataset is constructed. 122

7.2 Model finding times for different problems for CODI (domain sizes 20

to 50) using Paradox and Vampire. 129

7.3 Model finding times for different d and r values for the different cases

of RCC using Paradox and Vampire. 130

7.4 Model finding times for different d and r values for the different cases

of INCH using Paradox and Vampire.. 132

7.5 Model finding times for different problems for CODI using iProver 133

7.6 Model finding times for different problems for INCH using iProver. 134

7.7 Percentage of reduction in low mean model finding time for different

domain sizes for CODI, RCC, and INCH. 139

A.1 Dependencies between model finding time of CODI and size measures

of the SAT problem. 181

A.2 Dependencies between model finding time of RCC and size measures

of the SAT problem. 182

xiii

A.3 Dependencies between model finding time of INCH and size measures

of the SAT problem. 183

xiv

LIST OF ABBREVIATIONS

ATP Automated Theorem Prover

BCE Blocked Clause Elimination

BCP Boolean Constraint Propagation

CADE Conference on Automated Deduction

CASC CADE ATP System Competition

CDCL Conflict-Drivern Clause Learning

CNF Clausal Normal Form or Conjunctive Normal Form

CODI COntainment-Dimension ontology

CODIB COntainment-Dimension-Boundary ontology

COLORE COmmon Logic Ontology REpository

DPLL Davis-Putnam-Loveland-Longland procedure

EPR Efficient Propositional fragment

FOL First-Order Logic

FOF First Order Form

GIS Geographic Information Systems

ODE Optional Definition Elimination

PPE Pure Predicate Elimination

QBF Quantitative Boolean Formula

QSR Qualitative Spatial Reasoning

RCC Region Connection Calculus

SAT SATisfiability problem

SFA Simple Feature Access model

TPTP Thousands of Problems for Theorem Proving

UDE Unused Definition Elimination

9-IM 9-Intersection Matrix

xv

CHAPTER 1

INTRODUCTION

1.1 Context and Motivation

Big data has revolutionized informed decision-making by allowing the extraction of

valuable insights and opportunities from a range of reliable data. The explosive growth of

geospatial data has made it a valuable commodity as there are major markets for it and

new opportunities (such as drone technology and unmanned vehicles) unfolding every day.

This has driven the development of many industrial and generic spatial standards to enable

the effective reuse of data and for the sharing of information and interoperability across

applications. Axiomatic representations enable reasoning consistent with common-sense

reasoning [94] in varying degrees. Although such standards and spatial representations cover

a broad range of data types, there are emerging spatial data reasoning tasks that are not

entirely supported. It concerns cases that require identifying locations from a set of qualitative

spatial constraints and qualitative information obtained from geometric and non-geometric

sources (e.g. a live twitter feed), as the vast majority of digital spatial data is available as

both geometric shapefiles and text. From a certain perspective, the input consists of a set of

formal qualitative assertions and a set of qualitative statements abstracted from geometric

datasets, and the expected output is either an entity’s name, or relationship between a set of

entities. Such requests that require integrated qualitative-geometric spatial reasoning, like

the example we describe below can occur in everyday life demands.

Example: Road segment search - We have an incident report about a broken gas pipeline

in the street between St.Johns hospital and Thomas HS from a live twitter feed ‘Gas pipe

broken between St.Johns and Thomas school #BangorGas’. We are looking for this specific

segment of a larger road that needs to be closed off to public due to this disaster. We

may not know the name or precise address, but we know a few spatial constraints about

1

where the road segment may be. Qualitative information about this road obtained from the

twitter report indicates it abuts St.Johns hospital and Thomas HS. In order to shut down

the power supply on that street, the control center at the utility management company needs

to identify the exact road segment in question, as the tweet does not mention the road(s) but

only implicitly refers to it. This information can easily be extracted from freely and readily

available geometric base maps. Figure 1.1 depicts the part of the OpenStreetMap dataset

relevant for the entities of interest.

Figure 1.1: Section of OpenStreetMap dataset relevant for the entities of interest. The map
highlights all the relevant features of interest mentioned in the tweet, and connected spatial
entities whose qualitative information is needed for the query.

1.2 Objectives

The scenario described above involves integrated reasoning over mixed spatial data:

qualitative relations between non-geometric entities and geometric objects and their relations

2

using first-order logic (FOL) ontologies – specifically through model finding. The overarching

objective of this dissertation is “to demonstrate that model finding over FOL ontologies of

qualitative space with small geometric datasets is feasible and can be used to externally verify

these ontologies". Broadly, the entire dissertation focuses on two details,

• the representational aspect that requires the development of an integrated framework

of qualitative and geometric concepts, and

• the reasoning aspect to test the feasibility of tractable reasoning using the spatial

ontology with medium-sized datasets in FOL.

1.2.1 Challenges

While trying to accomplish the underlying objective of this dissertation, which is to

enable joint qualitative reasoning over geometric and qualitative spatial information and to

demonstrate the feasibility of reasoning over medium-sized spatial datasets the following two

challenges arise.

1. Existing algorithms cannot extract meaningful information that combine geometric and

natural language based qualitative spatial descriptions, let alone reason and query with

the combined knowledge. The Simple Feature Access (SFA) model [151] is an OGC/ISO

standard that standardizes spatial operations and simple topological and mereotopological

relations over geometric features such as points, line segments, polylines, polygons, and

polyhedral surfaces. The SFA standard is of specific interest for the following reasons: (1)

it is implemented in common spatial databases such as ESRI ArcGIS and PostGIS for

accessing and storing spatial data, and it also forms the vector data basis for libraries such

as GDAL and the GeoJSON standard, (2) it is a widely used data interchange standard

used by many other OGC/ISO standards such as GeoSPARQL [220] and Observation and

Measurements [69], (3) its relations are based on the well-studied and commonly accepted

9-intersection relations and the RCC relations. But while SFA’s supplied relations enable

3

qualitative querying over the geometric features, the relations’ semantics are not formalized

and therefore have weak precision. The lack of formalization prevents further automated

reasoning – apart from simple querying – with the geometric data, either in isolation or

in conjunction with external purely qualitative information as one might extract from

textual sources, such as social media. Summarily, current specifications and standards do

not allow pure qualitative reasoning through the abstraction1 of qualitative information

from geometric and non-geometric data sources. To realize the kind of integration of

qualitative and geometric information described in the example in Figure 1.1, a formal

spatial representation that combines geometric and qualitative concepts, which will allow

integrated reasoning using FOL reasoning engines is needed in hand.

2. The main purpose of constructing a formal ontology for integrated spatial reasoning is to

enable efficient decision-making when combined with real-world domain data. However,

despite remarkable advances in the development of decision procedures and reasoning

engines, achieving terminating or tractable reasoning in FOL with large datasets remains a

challenging problem. Model finders, the class of automated tools to verify FOL ontologies

against datasets, traditionally translate the problem into an equivalent propositional

satisfiability (SAT) problem and then tackle it using a propositional SAT solver. Although

SAT is an NP-hard problem and thus generally intractable, through efficient heuristics

and simplifications many instances of propositional problems are easily solved in practice.

Unfortunately, SAT solvers often experience scalability issues when trying to construct

models for FOL ontologies in conjunction with even moderately sized datasets as the size

of the SAT problem exponentially increases with increasing number of objects and size

and complexity of the ontology (i.e. the axiomatization). There any no works currently

that clearly identify the key parameters that contribute to the exponential explosion of a

SAT problem when translated from FOL. When switching from (geometric) objects to

1This refers to spatial metric and coordinate information abstraction. For example, preserving the notion
that a road is a curve but without any additional numeric information.

4

(qualitative spatial) relations describing them, the amount of data to be considered is

subject to a combinatorial explosion. Let us assume, for simplicity, we are only interested in

contact C(x, y), then every pair of objects in a spatial dataset raises one qualitative relation

(positive or negated). Current model finding works for FOL ontologies has typically been

limited to small models with less than 20 objects, and available model finders, such as

Paradox [56] or Mace4 [200], have mostly been tested on relatively small axiomatizations

with very small signatures. Accordingly, one of the main challenges in FOL reasoning is

that of tractable reasoning with a complex spatial ontology and potentially large amounts

of data points (i.e. assertions).

1.2.2 Specific Objectives

Toward the overarching objective and the associated challenges, the dissertation specifically

addresses the following objectives, which will be discussed summarily in the next section:

O1. Explicitly formalize the semantics between qualitative and geometric spatial representations

to enable spatial reasoning and querying (1) of a mix of qualitative and geometric data,

(2) about purely qualitative information over geometric data.

O2. Develop a formal framework for size or complexity measures of ontologies with data for

FOL reasoning.

O3. Identify specific size measures that have the greatest impact on the hardness of FOL

model finding.

O4. Develop and evaluate a simplification method to limit the growth of the satisfiability

(SAT) search space for FOL model finding problems.

1.3 Contributions

The two main contributions made in this dissertation are (1) laying the representational

foundation that enables integrated qualitative reasoning over geometric and qualitative spatial

5

information thereby addressing O1 - Section 1.3.1; (2) analyzing how the terminology used

within an ontology influences model finder performance and present tests that depict how

the elimination of optional definitions help model finding to scale better in practice, thereby

addressing O2-O4 - Section 1.3.2.

1.3.1 Spatial Representation for Integrated Reasoning

We develop and encode an integrated semantics of spatial information – geometric

configurations and qualitative spatial relations – that reuses concepts from, but is also

schematically distinct from existing axiomatic representations and spatial data standards.

Specifically, we formalize the semantics of SFA’s geometric features and mereotopological

relations, called the SF-FOL, by defining or restricting them in terms of the spatial entity

types and relations provided by CODIB [128], a first-order logical theory from an existing

logical formalization of multidimensional qualitative space. The resulting spatial ontology (in

Chapter 4) allows using geometric and qualitative information for pure qualitative spatial

reasoning as well as mixed geometric-qualitative reasoning cases as illustrated in the example

in Section 1.1. The ontology is formalized in first-order logic, which allows reasoning using

first-order logic reasoners. Although this work specifically aims to enable reasoning over a

mix of information from geometric datasets and qualitative sources such as natural language

spatial text, we anticipate wider applications of the ontology. It can serve as a formal spatial

interoperability standard for FOL ontologies of spatial relations such as RCC [1] and INCH

[2], but also domain ontologies such as the GWML2 [133] and the National Map [271].

1.3.2 Model Finding for Spatial Ontologies

Because FOL is a very rich representation language, and computational reasoning with

anS axiomatization becomes quickly intractable in practice, and in the presence of data

is believed to be entirely infeasible, spatial reasoning with formal ontologies using model

finders is a task that is never undertaken. In the second part of the dissertation we make the

following specific contributions:

6

1. We develop a formalization of FOL ontologies with data, and present a study of various

measures that contribute to the size of the resulting SAT problems (Chapter 6).

2. We introduce optional definition elimination (ODE) as a preprocessing technique applied

to an FOL ontology and investigate its impact in generating smaller SAT problems (with

fewer clauses and variables) without changing the satisfiability and semantic meaning of

the problem (Chapter 5).

3. We implement ODE simplification on a set of spatial benchmark problems and conduct a

twofold study. First in Chapter 6, we show a theoretical calculation of size measures based

on the terminology of an ontology and the number of distinct objects described in the

data. Then through the experimental study we demonstrate how these measures correlate

to the size of the resulting SAT problem, which determines the size of the search space for

model finders in Chapter 7.

Results are reported from experiments with the benchmark problems using three state-of-the

-art model finders: Paradox, Vampire and iProver. We found that with ODE we were able

to solve problems that were previously intractable, and model finding times with the best

model finders decreased on average by 10% and sometimes up to 99%. The theoretical and

experimental developments presented in this dissertation can be used to implement specific

preprocessing steps that can be built into model finding tools. This will provide a small

step towards enhancing reasoning capabilities – in terms of better speedups in model finding

times, and scalability with data objects – a (extensively axiomatized) complex ontology such

as SF-FOL against moderately sized (spatial) real-world data.

1.4 Overview

The rest of the dissertation is organized as follows:

• Chapter 2 briefly reviews the syntax and semantics of first-order logic and propositional

logic. The most popular SAT procedure – the DPLL algorithm – is introduced along with

7

details of its modern implementation strategies. We introduce FOL model finding via SAT

solving and the key steps involved in converting an FOL ontology into a propositional

SAT problem. We then briefly review some ontologies of qualitative and geometric space

with specific focus on CODI, RCC, and INCH calculus, which are used as benchmark

ontologies for studying the scalability of model finding and potential improvements.

• Chapter 3 reviews some previous work upon which our research draws or that is related

in aim or methodology, and highlights their differences from this dissertation’s work and

their limitations. The related work includes work corresponding to the development of

formal qualitative spatial formalisms, and work related to SAT-based FOL model finding.

• Chapter 4 presents the formalization of the Simple Feature Access spatial concepts and

relations as an extension of CODI and CODIB in first-order logic. This chapter was

published in [256].

• Chapter 5 presents a formalization of the concepts of TBox, ABox and sets of removable

definitions for FOL ontologies. It studies how different measures of an FOL ontology

influence the size of the corresponding SAT problem. Then ODE is introduced as an FOL

preprocessing technique to dramatically reduce the size of the resulting SAT problem and

thereby to alleviate some difficulty during model finding.

• Chapter 6 analyzes the optional definition elimination technique developed in Chapter 5,

with respect to how it reduces key size attributes - especially the number of propositional

variables - in the resulting SAT problems and what side affects it has on other measures

(e.g. number of clauses, the length or complexity of clauses, etc.) on spatial benchmark

problems with different sized datasets.

• Chapter 7 experimentally analyses the performance of three model finders on the set

of spatial problems constructed in Chapter 6 with different degrees of ODE performed

and compares it to the runtimes without ODE. It then studies how the runtimes correlate

8

to the calculated size attributes in order to identify which size attribute may be used as

indicator to predict runtime via an automated preprocessing step.

• Chapter 8 summarizes the main ideas of this dissertation, and suggests directions for

future work.

9

CHAPTER 2

PRELIMINARIES

In this chapter, we will introduce the basic concepts of first-order logic as the language

in which the ontologies in this dissertation are represented and first-order logic ontology

verification that is fundamental to this dissertation. We will also overview the three ontologies

of qualitative spatial relations that are used as benchmarks for the studies conducted in

Chapters 6 and 7.

2.1 First-Order Logic Ontologies

First-order logic (FOL) also called predicate logic is widely used in formalizing semantics of

domain, application, and upper ontologies [256, 133, 49, 123, 124], mathematical theories [248,

42], software and hardware verification tasks [55, 217, 171, 242]. These formal axiomatizations

provide the background knowledge necessary to (1) prove conjectures, or in a computational

sense for query answering tasks, (2) interpret a dataset in the domain, (3) semantically

integrate different datasets or applications, or (4) make implicit assumptions in the domain

explicitly provable for decision-making. The definitions and notations of FOL mentioned here

are quite standard and mostly adopted from [29].

2.1.1 Syntax of First-Order Logic

An FOL ontology O is a set of FOL sentences σ using a particular language. The

non-logical symbols, i.e. all constants, function symbols, and predicates, mentioned in O form

its vocabulary or signature, denoted by λ(O) (cf. Def.1). For simplicity, we consider here

only ontologies with predicates and constants in their signatures, because each n-ary function

symbol can be encoded as a n+1-ary predicate symbol by adding axioms that capture its

functional nature1 .

1Because constants typically represent objects from the domain of interest, we include them to allow
specifying factual knowledge, i.e. data points.

10

Definition 1. The signature of an ontology O, λ(O) is a tuple σ = (P, a), where P is an

enumerable set of predicate symbols (or operators) and a : P → N is a function describing

the arity of the predicate symbols, with each predicate Ω ∈ P having the arity a(Ω) ≥ 0, and

constants have arity 0.

Sentences are built up recursively from terms, atoms (FOL literals), and formulae.

Definition 2. A term is simply an expression of the form Ω(t1, ..., tn) where Ω is a predicate

symbol described by a signature λ(O) of arity a and all ti are atoms.

Since we restrict ourselves to function-free signatures, atoms are either constants or

variables.

Definition 3. A FOL literal (often also called an atom) is a term or its negation ¬Ω(t1, ..., tn).

An FOL formula in O is constructed from L-atoms (or literals) using the logical connectives

∧,∨,→,↔ and ¬ and/or the quantifiers ∀ and ∃ over FOL variables. Such a formula F is

recursively constructed according to the following grammar:

F ::= Ω(t1, ..., tn) | ⊤ | ⊥ | (¬F) | (F1 ∧ F2) | (F1 ∨ F2) | (F1 → F2) | (F1 ↔ F2) |

(∀v : F) | (∃v : F)

An FOL sentence is a closed formula wherein no variables appear free, i.e. all variables

are within the scope of quantifiers. In the ontological sense, there are two primary types of

sentences: terminological sentences, which constitute the TBox, and the assertional sentences,

which form the ABox. Here we present a basic definition for an FOL ontology, and provide a

more accurate formalization of the TBox and ABox in Chapter 5.

Definition 4. An FOL ontology O is a set of FOL sentences (axioms and definitions) in a

language L(O) that only use non-logical symbols from λ(O).

A formula is ground if there are no occurrences of variables – free or bound, i.e. with

constants as the only terms. In a first-order specification, these terms typically represent

objects from the domain that we want to reason about. A theory also called an ontology is

any set of closed formulae.

11

2.1.2 Semantics of First-Order Logic

The semantics describe the meaning of, or how truth values are assigned to FOL formulae.

Each FOL ontology O admits a set of interpretations as defined in Def. 5 from [127] over a

nonempty domain D of individuals.

Definition 5. An interpretation of an ontology O is a tuple I = ⟨D,Φ,Ψ⟩ that assigns a

meaning to every symbol in the signature λ(O). D denotes a nonempty domain, Φ a mapping

of each variable in λ(O) to an individual in D, Ψ is a mapping of all n-ary predicates

Ω ∈ λ(O) to relations Ψ(Ω) : On → {True, False} where True means the relation holds and

False means the relation does not hold.

An interpretation I for which all sentences in O are true (i.e. all sentences are satisfied

in O) is called a model M , we write M |= O iff M |= ψ for every ψ ∈ O. An ontology is

consistent (or satisfiable) if it has some model.

Definition 6. An FOL sentence σ that uses only the nonlogical symbols from λ(O) and that

is true in every model of O is called a theorem of O, written as O |= σ. We then say the

ontology O logically implies, or entails such a sentence σ.

Because of the undecidability of FOL, we can eventually prove an ontology to be

unsatisfiable/inconsistent if it is so (i.e. a sentence that is False can be eventually proven to

be entailed), but we may never be able to prove that a satisfiable/consistent ontology is so

(i.e. a sentence that is False may never be disproved).

2.2 FOL Model Finding via Propositional SAT Solving

The propositional satisfiability problem (SAT) is the following: Given a propositional

formula F , does F have a satisfying assignment? And if there exists one find the actual

satisfying assignment (model). The SAT problem tries to determine that each clause should

have at least one literal that is true under the assignment in order to be satisfied. If there

is no assignment satisfying all clauses, the formula is said to be unsatisfiable. The tools to

12

answer this question are called satisfiability or SAT solvers, most of which which require the

input propositional formula in Conjunction Normal Form (CNF).

In this section we first review the syntax and semantics of propositional logic, the language

that is used to represent model finding instances for FOL ontology verification. We then

describe the basic SAT algorithm and popular SAT solver techniques for propositional formula

verification.

2.2.1 Syntax and Semantics of Propositional Logic

A propositional literal is a propositional (or boolean) variable v or its negation ¬v that

takes value in the set {True,False}. A propositional formula F is a logic expression defined

over variables using boolean operators (∧, ∨, →, ↔) using the following grammar:

F ::= v | (¬F) | (F1 ∧ F2) | (F1 ∨ F2) | (F1 → F2) | (F1 ↔ F2).

A propositional clause is a disjunction of a set of literals to state propositions, and a

conjunction of clauses form the formula F . A clause that contains only positive literals is

called a positive clause. Similarly, a clause that contains only negative literals is a negative

clause. A clause that contains at most one positive literal is called Horn. An assignment

(similar to an interpretation in FOL) for a formula F is a mapping from literals to truth

values σ : V → { True,False }. A satisfying assignment (i.e. similar to a model in FOL) for

F is an assignment σ such that F evaluates to TRUE under σ. Accordingly, F is satisfiable

if there exists a propositional assignment that satisfies F under the usual semantics for the

logical connectives.

2.2.2 Model Finding via Translation to CNF and SAT

To facilitate automated reasoning, including model finding, an FOL ontology is typically

converted to an equisatisfiable clausal normal form (which we call the FOL-CNF representation

and formalized as OFOL-CNF in Chapter 5) through the process of clausification. A formula is

in clause normal form or Conjunction Normal Form (CNF) if it is a conjunction of clauses

(cf. Def. 7), where variables in the clause may be universally quantified.

13

Definition 7. A FOL clause is a disjunction of literals L1 ∨ ... ∨ Ln, where n ≥ 0. When

n = 0, it is the empty clause, whereas if the clause contains a single literal, i.e. n = 1, it is

called a unit clause.

Finding a model of the FOL ontology can then be achieved by showing satisfiability of its

equivalent FOL-CNF problem through propositionalization. A detailed description of this

two-staged process is presented in Chapter 5, but we describe clausification in detail here.

Clausification - First-Order Formula Transformation to CNF. A formula in FOL

is translated to FOL-CNF through a 7-step process adopted from the Skolem’s algorithm

[29]. This is illustrated here using the FOL definition for contact σC from the CODI ontology

[128] as an example:

(σC) ∀x, y C(x, y) ↔ ∃z [Cont(z, x) ∧ Cont(z, y)] (CODI contact)

1. Standardize variables by renaming bound variables to ensure each quantifier uses a unique

variable. Unique variables are bound to quantifiers by default in σC .

2. Use logical equivalences to eliminate biconditionals and conditionals. First replace all

biconditionals ↔ by a conjunction of two implications – (a). Then replace implications by

logically equivalent disjunctions – (b).

(a)
[
∀x, y C(x, y) → ∃z

(
Cont(z, x)∧Cont(z, y)

)]
∧

[
∃z

(
Cont(z, x)∧Cont(z, y)

)
→ ∀x, y

C(x, y)
]

(b)
[
¬∀x, y C(x, y) ∨ ∃z

(
Cont(z, x) ∧ Cont(z, y)

)]
∧

[
¬∃z

(
Cont(z, x) ∨ Cont(z, y)

)
∨

∀x, y C(x, y)
]

3. Move ¬ (if any) inwards using de Morgans’s rule and simplify by moving all quantifiers

outside of negations.[
∃x, y ¬C(x, y) ∧ ∀z

(
¬Cont(z, x) ∨ ¬Cont(z, y)

)]
∧

[
∀z

(
¬Cont(z, x) ∧ ¬Cont(z, y)

)
∧

∃x, y ¬C(x, y)
]

– from the translation of (b)

14

4. Extract all quantifiers to the prefix of the sentence.

∃x∃y∀z ¬C(x, y)∧
[
¬Cont(z, x)∨¬Cont(z, y)

]
∧

[
(¬Cont(z, x)∧¬Cont(z, y))∧¬C(x, y)

]
5. Skolemization (cf. Def. 8) replaces each existential variable with a Skolem function. The

arity of the function depends on the number of quantified variables within which the

eliminated quantifier is nested.

∀x, y, z
[
¬C(x, y) ∨ Cont(f1(x, y), x)

]
∧

[
¬C(x, y) ∨ Cont(f1(x, y), y)

]
∧[

C(x, y) ∨ ¬Cont(z, x) ∨ ¬Cont(z, y)
]

Definition 8. Skolemization of a sentence σ replaces every existentially quantified

variable ∃x that is preceded with a set of universally quantified variables y1, . . . , yn by a

new n-ary function symbol, called the Skolem function. If there are no universal quantifiers

preceding ∃x, then x is replaced by a new constant (0-ary function) [29].

6. Universal quantifiers are dropped and all unbound variables in the formula are now

implicitly taken to be universally quantified.[
¬C(x, y) ∨ Cont(f1(x, y), x)

]
∧

[
¬C(x, y) ∨ Cont(f1(x, y), y)

]
∧

[
C(x, y) ∨ ¬Cont(z, x) ∨

¬Cont(z, y)
]

7. Apply distributive law for conjunctions and disjunctions and simplify the formula.[
¬C(x, y) ∨ Cont(f1(x, y), x)

]
∧

[
¬C(x, y) ∨ Cont(f1(x, y), y)

]
∧

[
C(x, y) ∨ ¬Cont(z, x) ∨

¬Cont(z, y)
]

– this is now an FOL-CNF formula with 3 clauses.

Conversion of FOL sentences to an FOL-CNF formula can lead to an exponential growth

in length (via the distributive rule in step 7) of the formula and may introduce functions

via skolemization of existential quantifiers. For example, if the original formula has (2 · n)

literals, the corresponding CNF can have upto 2n disjunctive clauses, each with n literals2 .
2Definitional CNF’s are alternative conversions to CNF that avoid this exponential growth. It introduces

a new proposition variable Ri for each conjunctive clause (Pi ∧ Qi). Then if M |= Ri, then Mj |= Pi and
Mj |= Qi. The resultant FOL-CNF is not significantly bigger than the original formula, but has more
propositional variables). However we use the regular CNF-conversion method to determine clause count in
FOL-CNF.

15

The FOL-CNF formula is then converted to a propositional SAT problem by instantiating

the formula with elements from a domain set D. Each FOL variable x, y, and z assumes objects

from D = {d1, d2, d3,, dn}. The formula from step [7] when instantiated for (x = d1, y = d2,

and z = d3) results in the following propositional formula: (p1 ∨p2)∧ (p1 ∨p3)∧ (¬p1 ∨p4 ∨p5).

Each grounded literal in the FOL-CNF formula now corresponds to a unique variable in the

SAT problem called a propositional variable (p1, p2, .., pn), which assumes truth values from

the set { True,False }. The FOL-CNF formula in [7] contains two binary predicates, which

when instantiated for a domain D of size d results in d2 · d2 propositional variables with a

search space of 22d2 (i.e. when d = 10, #propositional variables = 10,000 and search space =

2200). Thus in FOL there is combinatorial explosion of the search space based on the domain

size and the number of predicates.

2.2.3 Decision Procedures for Determining Satisfiability

SAT is a classic NP-complete problem [66], meaning there is no known deterministic

polynomial-time algorithm that can solve an arbitrary problem instance. The worst case

scenario for deciding SAT involves trying all 2n possible assignments for a formula with n

variables. Best current complete methods are polynomial (indeed linear time) for 2-CNF and

exponential for 3-CNF (SAT instances where all clauses have length 2 and 3 respectively).

The practical importance of SAT in the fields of automated reasoning and artificial intelligence

have led to the development of efficient decision procedures and algorithms that have been

implemented into SAT solvers. It is also common for first-order logic problems to be reduced

to propositional logic to determine their satisfiability using these solvers. In fact, we will

employ FOL model finders that do exactly these as described in more detail in Section 2.3.

As a consequence of a deeper understanding of sources of intractability, control measures to

avoid exponential growth in problem size, and the availability of more powerful computing

16

resources, it has been possible to develop solvers that handle industrial problems with millions

of variables and constraints3 as discussed in more detail in Section 2.2.5.

The literature distinguishes between two categories of decision procedures for satisfiability

checking:

• A complete decision procedure is one that takes an input formula and always finds a

solution (whether satisfiable or unsatisfiable), if it exists, in finite time. The first such

satisfiability algorithm proposed by Davis and Putnam in 1960 [75], and later improved by

Davis, Logemann, and Loveland (DLL) [74] is still the basic foundation of many modern

SAT solvers. Since complete methods aim at exploring the entire solution space, this

exhaustive search is too costly. Pruning techniques are therefore implemented to rapidly

determine and ignore regions that contain no solution, and simplify formula size (we will

discuss some of these simplification techniques in Section 3.2.2).

• An incomplete procedure is one that returns a solution when one is found, or returns

‘unknown’, when the search has run long enough without finding any solution. Such

procedures are usually based on stochastic local search methods [148, 147] that start

with an arbitrary truth assignment, make small changes to this assignment trying to

get closer to a solution by heuristics without exhaustively exploring the search space.

These algorithms are unable to determine the unsatisfiability of a formula. They are

more efficient than complete ones, however there is not a lot of work using them to solve

industrial problems. Several variants of the WalkSat algorithm [245] are some of the most

successful implementations of local search.

The semantics of propositional logic satisfiability can be defined in terms of logical

calculi and inference rules. Many inference systems have been defined for propositional logic

3However we remind the reader that this is the case for problems originating from propositional logic
and not FOL, where solvers are mostly intractable with moderately large and complex problems. This is
discussed in the context of related work in Chapter 3

17

(e.g.[204]), but the resolution rule is the most popular proof procedure (used in the DPLL

algorithm described in the next section) and is defined as follows:

Definition 9. Resolution: If two arbitrary clauses A and B have exactly one pair of

complementary literals a ∈ A and ¬a ∈ B, then the clause A ∨B is called the resolvent (or

consequence) of A and B.

(A ∨ a)(¬a ∨B)
A ∨B

The resolvent can be added to the formula without changing its satisfiability.

2.2.4 The Davis Putnam Logemann Loveland (DPLL) Algorithm

The Davis-Putnam-Logemann-Loveland or DPLL procedure [75] is a classic complete SAT

procedure that is still employed in modern SAT-solvers. DPLL is a later refinement of the

original Davis and Putnam (DP) algorithm [75], which used the resolution rule (Def. 9). Most

current complete SAT solvers extend the classic DPLL with three main features: branching, unit

propagation4 , and backtracking. In addition they incorporate many optimization strategies

such as branching heuristics for variable selection, functions for clause learning, conflict

analysis for pruning the search space, watched literals for efficient constraint propagation

and backjumping, all to overcome the exponential build-up of clauses and search space that

led to a very slow run time performance in original DP and DPLL procedures. In addition,

several preprocessing steps are performed to simplify the problem before branching and to

determine if the problem can be trivially satisfied before branching. These state-of-the-art

algorithms are called conflict-driven clause learning (CDCL) algorithms, and is discussed in

the upcoming section. Also note that DPLL requires the input as CNF formulae.

2.2.5 Improvements to DPLL

Over the past couple decades numerous improvements have been made to the DPLL

algorithm by combining techniques such as good decision heuristics, simplification, compact
4Or Boolean Constraint Propagation (BCP) is the process of using partial assignments in order to

iteratively fix (or assign) appropriate values to literals for a satisfying assignment for the formula.

18

data structures and conflict-driven learning techniques. This has led to the rise of SAT-Solvers

(such as CHAFF [209], MINISAT [90]) that can solve instances with thousands and even

millions of variables [43, 149], which make the use of SAT-solvers for verification of FOL

ontologies as studied in this dissertation possible at all. Here, we will discuss some popular

algorithmic improvements, and preprocessing techniques that simplify formula encodings is

reviewed in Section 3.2.2.

Conflict Analysis and Backtracking: The backtracking search algorithm starts from

an empty truth assignment and traverses the space of all truth assignments by maintaining a

decision tree. Each node in the decision tree specifies an assignment of a Boolean value (true

or false) to a variable. The search process extends the current assignment either by making

an assignment to an unassigned variable or by making assignments following the logical

consequences of the assignments made thus far. This deduction process may sometimes lead

to unsatisfied clause(s) implying a conflict. The search then undoes the current assignment

(i.e. backtracks), so that other assignments can be tried. This backtracking process is the

basic mechanism for retreating from regions of the search space that do not correspond to

satisfying assignments. The search terminates successfully if all clauses become satisfied;

otherwise if all possible assignments have been exhausted it terminates without success.

Heuristics: The choice of branching variables largely influences the portion of the decision

tree that needs to be explored. Over the years many different branching heuristics have

been proposed and evaluated [83, 197]. Heuristics for choosing variables are more or less

arbitrary, usually based on some obvious statistics such as clause-length5 , literal appearance

frequency etc. - for example introduced in GRASP [197]. In practice, the solver must search

the entire space one way or the other. Therefore, the main research focus on SAT branching

heuristics has been to discover conflicts as early as possible. Another principle guiding the

design of branching heuristics in SAT is the cost to evaluate a heuristic. Currently, the most

successful branching heuristics all have sublinear asymptotic time complexity about the size

5The number of literals in any clause in a propositional CNF formula. For an FOL ontology, we formalize
this measure as clause-width, and more generally as formula-width for an FOL-CNF formula.

19

of the formula. Variable State Independent Decaying Sum (VSIDS) implemented in CHAFF

[209] is a cheap and efficient branching heuristic. Several other heuristics [115, 235, 78] were

later introduced that performed competitively compared with VSIDS. Despite heuristics,

sometimes bad decisions can be made in selecting branching variables and this can make

the problem much harder to solve. Random restart resets the variable assignment and

starts search all over but keeps any previously learned information to guide future search.

Fine-tuned restart strategies have led to an increase in robustness of solvers.

Deduction and Pruning: The DPLL algorithm iteratively applies the resolution rule

among pairs of clauses until either: the empty clause is generated, in which case the original

set of clauses is unsatisfiable; or no more resolution inferences are possible, i.e. the problem

is saturated, which from theoretical results then means the problem must be satisfiable. At

the core of DPLL are two satisfiability-preserving resolution-type transformations to simplify

the formula so that it contains no trivial clauses6 .

• Unit literal rule or unit resolution is applied when the formula contains a unit clause,

i.e. a clause with only a single literal. Since the only way to satisfy such clause is to set

the adequate value to make that literal true, it is possible to remove all clauses where the

literal occurs (which are already satisfied) and remove every occurrence of its complement

(which are set to false and do not contribute to satisfy any clause). After applying unit

resolution, new unit clauses can be generated allowing the process to iterate and perform

even further simplifications. This iterated propagation is known as unit propagation and

performed until no unit clauses are left. If an empty clause is generated when performing

unit propagation, this is known as a conflict. If a conflict occurs during the preprocessing

stage, then the instance is unsatisfiable and we must backtrack. The process of doing

assignments in a chain using the unit resolution rule and of detecting conflicts is called

Boolean Constraint Propagation (BCP).

6Clauses that have a pair of contradicting literals.

20

• Pure literal rule is applied when a literal appears in the formula in only one phase

(i.e. always positive or always negative). Then it is possible to assign it the truth value

that will satisfy all the clauses where it occurs, effectively allowing us to remove all

those clauses. After applying this rule, the resulting formula is no longer equivalent, but

just equisatisfiable, to the original one. This is particularly important in the context of

incremental satisfiability solving, where new clauses added later might invalidate previous

applications of this rule. However, this is a costly process compared to any gains provided

by the simplification [207, 125] and therefore, most SAT solvers do not use pure literal

rules in the deduction process by default.

Equivalence reasoning is another deduction mechanism that uses additional data structures

to capture the information that two variables are equivalent to each other (i.e. they must

assume the same value to make the formula satisfiable). Li [181] incorporated equivalence

reasoning into the satz solver [182] and observed that it is effective on some classes of

benchmarks. Additional cases of resolution and simplification, such as subsumption and

variable elimination are possible and explained later in Section 3.2.2. Some rules are much

costlier to implement, so many researches are concerned with finding a good trade-off between

fast algorithms but sophisticated reasoning methods to compute deductions.

These improved DPLL heuristics allow solving SAT problems with very large number

of propositional variables but is still laborious when handling the magnitude of variables

that result from the translation of FOL ontologies to propositional logic. This motivates the

research undertaken in the latter portion of this dissertation, to study ontology measures

that influence the quick exponential build-up of variables and identifying a simplification

mechanism to slow this growth.

2.3 Automated Reasoning for First-Order Logic

Automated reasoners for FOL, often summarily referred to as Automated Theorem Provers

(ATPs) typically support one or more of three fundamental reasoning tasks for problems in

21

FOL: proving satisfiability, proving entailments (including unsatisfiability), and answering

queries. They fall into two categories:

1. Theorem provers prove unsatisfiability (inconsistency) of an ontology or, in a similar

fashion, prove theorems about an ontology. To prove unsatisfiability they either derive

a proof by contradiction or generate an empty clause via resolution. They are widely

employed for query answering tasks.

2. Model finders prove satisfiability (consistency) of an ontology by generating a finite

model if one exists, or report that none exists when it runs into intractability. Model

finding is useful to generate models of axiomatizations and countermodels of theorems,

which not only helps in consistency verification but often helps in developing interesting

mathematical insights [16]. Models are useful for answering questions via model checking,

as shown in [46, 40].

Our work in Chapters 5, 6 and 7 are concerned with model finding only, so we focus on

discussing model finding techniques and tools here.

2.3.1 Common Algorithms for Finite-Model Finding

There are three commonly adopted approaches to finite-model building for first-order

logic: (1) the Mace-style approach [199, 279, 269] works by converting the FOL formula into

propositional logic and handing them off to a SAT-solver, (2) the SEM/Falcon-style approach

[279, 269, 280, 281] builds a model directly via traditional search techniques, often pruning

the search by manipulating the given sentences to take the consequences of the partially built

model into account, (3) the Darwin-style approach [23] is similar to the Mace-style approach,

in that it reduces a given FOL formula into a problem in the EPR fragment (EPR - effectively

propositional logic also called the Bernays-Schönfinkel-Ramsey fragment of FOL [231], where

the formula contains no function symbols), a quantifier-free, function-free first-order logic,

and then decides satisfiability using a decision procedure. Finite-model finders of the first

22

and last kind build a sequence of translations incrementally7 over finite domain sizes 1, 2, . . .

and then test satisfiability.

Resolution-based as opposed to tableaux-based8 instantiation methods are commonly used

in tools (using the three kinds of model finding paradigms discussed above) that competitively

perform in ontology model finding tasks. Model finders that employ these methods convert the

ontology for increasing domain sizes to a decidable logic by maintaining a set of instantiated

clauses and analyzing it for satisfiability. Paradox [56] and Mace49 convert the problems

to propositional logic, essentially creating a series of SAT problems of increasing size until

a SAT model is found. Others, such as iProver [167] and Darwin-FM [23] use specialized

calculi that operate on a conversion to a more expressive function-free clause logic instead

of propositional logic. These avert the size and associated memory consumption issues

experienced in conversion to propositional logic and are claimed to significantly scale better

for higher-arity predicates and for larger domain sizes.

• The MACE-style method [199] used in Paradox [56], MACE4 [200], and Vampire [230]

transforms the FOL formula into a propositional logic clause set for increasing domain

sizes by introducing propositional variables representing the FOL literals. The resulting

clause set is then flattened and instantiated for increasing domain sizes, which is then

solved by a SAT-solver. Flattening converts a regular FOL clause set into clauses with

only shallow literals. A shallow literal does not contain a term that is a not a variable

(such a function) and is not of the form x ̸= y.

• Inst-Gen is an instantiation-based method [166] used in iProver [165] that uses instantiation

in conjunction with propositional satisfiability checking and redundancy elimination in a

modular fashion. Finite-model finding using this method is achieved through translating

the problem to the Efficient Propositional (EPR) fragment. The basic idea is the use of a

7MACE-style begins search with the lowest domain size d = 1, whereas the Darwin style approach begins
with an optimal lower bound d based on some analysis of the input clauses.

8Their differences are reviewed in [100].
9Mace4 propositionalizes the problem but applies a more specialized constraint satisfaction algorithm.

23

resolution kind inference rule on sets of instantiated premises [109] – a set of FOL clause

S is satisfiable iff its propositional abstraction S ⊥ is satisfiable. Unlike the resolution

rule, the Inst-Gen rule does not increase the number of literals in clauses but is also

restricted to select literals chosen through a semantic selection function. The number

of literals in the generated clauses is further reduced through simplifications such as

dismatching constraints, global and propositional subsumption (for both ground and

non-ground clauses), blocking non-proper instantiations [166]. The calculus also combines

resolution with instantiation to generate additional clauses, which are sometimes useful

for simplifications. This is used together with saturation to determine satisfiability or

unsatisfiability.

A saturation algorithm iteratively applies a set of inference rules to the input set of

CNF clauses S to derive new clauses that are added to S. If at some moment the empty

clause is obtained, then the input set of clauses is unsatisfiable. If saturation terminates

without generating the empty clause, S is satisfiable. If it runs until the system runs

out of resources, but without generating the empty clause, then it is unknown whether

S is unsatisfiable. Saturation will result in a rapid growth of search space, and this is

handled by simplification rules such as clause elimination techniques. Each time a new

clause is generated by an inference, the prover decides whether this clause should be kept

or discarded. Further inferences are made using only a subset of the kept clauses.

• Model Evolution (ME) calculus presented in [26] is a version of instantiation-based

methods that interleaves instantiation with propositional DPLL style reasoning and was first

implemented in the Darwin theorem prover [24]. It uses the FDPLL calculus [21], a variant

of DPLL simplifications rules to split, subsume and resolve clauses. It is like MACE-style

but differs in the nature of the input formula (function-free clauses vs propositional logic),

and the way the size of input clauses grows (linear vs exponential). E-Darwin, which

implements the extension of the ME calculus with equality [26], when tested on a TPTP

library of FOL formulae placed second after Vampire [25], and FM-Darwin, which converts

24

FOL formulae to function-free clauses sets was found to be more memory-efficient, but

was placed third after Paradox and Mace4 in SAT-based FOL model finding [23].

The ME calculus was found to work best on certain fragments of FOL that proves difficult for

other methods, specifically the EPR fragment10 . Other older or less-used instantiation-based

methods such as the Hyperlinking calculus (HL) [179], Ordered Semantic Hyperlinking

calculus (OSHL) [221], Confluent Connection Calculus (CCC) [22], disconnection calculus

are compared in [180].

2.3.2 State-of-the-art Model Finders Employed in this Dissertation

Far fewer model finders exist than theorem provers [279], as also evident from CADE’s

automated theorem proving competition (CASC)11 [262]. The CASC divisions relevant to

FOL model finding and their latest winners are:

• FNT - first-order non-theorems: 1st place - Vampire, 2nd place - iProver second (but not

so good with equality).

• EPR with EPS subcategory - effectively propositional non-theorems: 1st place - Vampire,

2nd place - iProver (for non-theorems: 1st place - iProver, 2nd place - Vampire). Previously

Paradox often won in this category.

• LTB - first-order theorems from large theories, but has no similar model finding category.

• SAT, the category with CNF really-non-propositional non-theorems (with and without

equality), is pretty old that was removed after 2009 and was last won by Paradox.

These leading model finders evaluated against benchmarks in CADE-ATP system competitions

are very effective for instances generated from formal verification problems where there are

almost no datasets involved [222], however we find that reasoning about complex ontologies

10See winners in the different categories/fragments at http://www.tptp.org/CASC/
11Overview: http://www.tptp.org/CASC/, Division descriptions: http://www.tptp.org/CASC/27/

Proceedings.pdf, Last results: http://www.tptp.org/CASC/27/WWWFiles/ResultsSummary.html

25

http://www.tptp.org/CASC/
http://www.tptp.org/CASC/
http://www.tptp.org/CASC/27/Proceedings.pdf
http://www.tptp.org/CASC/27/Proceedings.pdf
http://www.tptp.org/CASC/27/WWWFiles/ResultsSummary.html

(such as SFA-FOL that we introduce in Chapter 4) with real-world datasets has been quite

challenging using these tools. And provers that have won in the EPR category (which is

NEXT-TIME) are not the preferred choice of solvers for NP search problems - such as

finite-model computation – which typically uses solvers that are superior in the FNT category.

Therefore, we exclusively focus on experimental results from Paradox, iProver and Vampire

in Chapter 7, as these ATPs have had fairly consistent success in the verification of FOL

ontologies (see, e.g. [127, 169, 168, 239]). These are also the solvers that have won the SAT

and EPR categories in the CADE ATP competitions several times [266, 261]. In this section

we briefly introduce model finders that are part of state-of-the-art automated reasoners12 .

We use it because it has shown promise in preliminary work [127] and has repeatedly won

the SAT division until it was no longer part of the CASC.

Paradox:13 is a MACE-style finite model finder [56] that employs the MiniSat solver14

[89] for propositional reasoning. Paradox upgrades the traditional MACE method using four

techniques: (1) variable reduction using term definitions, (2) incremental SAT that reuses

information such as learned clauses and other heuristic scores for incremental model sizes, (3)

static symmetry reduction to eliminate search in isomorphic parts of a search space by adding

symmetry breaking formulae, and (4) sort inference for more refined symmetry reduction.

This solver uses incremental SAT solving, which was first introduced in the CHAFF SAT

solver[15].

iProver:15 is an instantiated-based solver for classical first-order logic with equality.

It is implemented in OCaml and also integrates MiniSat. It is based on a version of

the Inst-Gen calculus, DSInst-Gen [166] and uses a combination of superposition and

instantiation [82]. iProver encodes the problem in the EPR fragment and passes it to

the MinSat solver. The solver is tuned to implement different simplification steps at various

12However it is important to note that all these tools are also use for theorem proving tasks. While
Paradox is only a model finder, Vampire and iProver function as theorem provers in their default mode, and
as a model finder using the casc-sat mode

13https://github.com/c-cube/paradox
14It also allows the integration of any other state-of-the-art SAT solver.
15http://www.cs.man.ac.uk/Ëœkorovink/iprover/

26

https://github.com/c-cube/paradox
http://www.cs.man.ac.uk/˜korovink/iprover/

stages such as forward and backward subsumption, tautology elimination, subsumption

resolution, global subsumption for clauses with variables that are semantically guided by

literal selection after restarts. It also features state-of-the-art techniques such as indexing,

redundancy elimination based on dismatching constraints, blocking non-proper instantiations,

and predicate elimination preprocessing. To improve theorem proving performance with large

theories, iProver implements an abstraction-refinement mechanism [137] that selects relevant

axioms to prove a conjecture based on their syntactic or semantic relationship.

Vampire:16 [172] uses the superposition calculus (proof search by saturation) for

first-order theorem proving, symbol elimination for identifying program properties, and

several theory functions on integers, real numbers, arrays and strings (capable of sort and

arithmetic) which make it a useful reasoning tool with theories and quantifiers. It also

implements a MACE-style finite model builder like Paradox. But while Paradox constructs

SAT problems in an incremental fashion and solves them, the SAT solver in Vampire is set

to work non-incrementally [230]. This setting helps the use of variable elimination techniques

more efficiently. In addition, a superposition-based architecture called AVATAR [273] is

incorporated, which helps make ’splitting decisions’ for clauses to reduce the search space.

Unlike the CASC competition, we do not intend to compare model finders against each

other, instead through theoretical and experimental evaluation we try to get a better sense of

general bottlenecks and scalability of model construction for FOL ontologies with data.

2.4 Ontological Formalization of Space

Ontologies of space formalize spatial concepts and relations that describe an object’s

location with respect to its surrounding space and to other objects. This includes: (1)

topological (e.g. connected) and mereological relations (e.g. inside), (3) absolute location

(e.g. geometry with coordinates) (4) orientation (e.g. south, southwest), (5) distance from

other objects, (6) fuzzy relations (e.g. close, far) and so on. These relations may capture

16https://vprover.github.io/

27

https://vprover.github.io/

qualitative (which includes mereological or/and topological) information or quantitative

(metric) information. Human spatial expressions often rely on qualitative more than

quantitative spatial information. Ontologies with spatial relations are traditionally modeled

from a linguistic perspective [174] or a formal perspective or a combination of both17 .

Linguistically motivated spatial relations focus on prepositions and are modeled from a

reference frame relative to the user. They do not provide spatially explicit, computational

semantics for the relations and are open to multiple possible spatial interpretations, for

example the relations in and on from [68], and relations in the GUM-Space ontology. Formal

spatial relations are based on some mathematical formalism such as a calculus, - e.g. Double

cross calculus to represent orientation relative to axis [243], Du’s logic of near and far

(LNF) to represent proximity [81], and RCC to represent connectivity between regions

[63]. Mereotopological relations are among the most common qualitative spatial relations,

and include purely topological relations such as contact/connection or disconnection, and

purely mereological relations such as parthood, containment, or inside, as well as relations

that describe the interaction of topology and mereology such as overlap (i.e. contact via

sharing a part). Many of these relations have also been incorporated into virtually all upper

ontologies such as BFO [120], DOLCE [198], GFO [20], Cyc [72], although they may not

fully axiomatize the detailed semantics. Besides questions about an object’s mereological and

topological relations, other concerns that are addressed by these ontological formalizations

are questions concerning the relationships between spatial geometries and physical entities,

composition/material of the entity. Some detail on the ontological arguments about these

formalizations is available in [17]. Refer [132] for mereotopological theories and relations.

2.4.1 Qualitative Spatial Representations

Within spatial information science, there are several approaches to the formalization

of qualitative spatial representation (QSR). Qualitative calculi (based on some constraint

17Note that topological relations can be linguistic or formal.

28

satisfaction criteria) such as the Region Connection Calculus, RCC proposed by Randell,

Cui & Cohn [226] and others in [44, 62] categorize space as a set of n-dimensional regions;

topological constraints are based on point-set intersections such as 9-intersection relations

[57, 59, 91, 92, 203]. The 9-intersection method [91, 92], its dimension-extended refinement

(DE-9I) [57] and extensions thereof [60, 202, 238] determine mereotopological relations between

geometric data by computing a matrix of values that indicate the pairwise intersections of

two object’s interior (◦), boundary (∂), and complement (′). Each of the nine pairs have

either Boolean values – empty nor non-empty intersection – as in the original 9-intersection

framework [91], or have dimensional values – either -1 (empty intersection), 0, 1, or 2 – as in

the dimension-extended method.

Then there are axiomatic treatments of mereotopology (refer to Section 5 in [132]),

which constrain the interpretations of one or two primitive relations, such as contact and/or

parthood, and define other relations, such as overlap or external contact, in terms of the

primitive ones [52]. These ontologies formalize relations between geometric entities that have

the same dimension [20, 52, 65, 223, 227, 251], and some others between multidimensional

spatial entities that can coexist. Geometry in multidimensional theories is defined entirely in

terms of mereotopological relations, including work by Galton [107], Gott’s INCH Calculus

[118], and the CODI ontologies [128]. CODIB builds on and extends the theory CODI (which

doesn’t include any notion of boundaries) [130, 128] by the additional relation of boundary

containment. Unlike other multidimensional theories [107, 251], CODI and CODIB allows

entities of lower dimensions to exist independent of entities of higher dimension, similar to

how such entities (e.g. polylines or points) are used in geometric data standards. [107, 251]

require each line or curve to be part of the boundary of some 2D region and each point to

be the endpoint of some curve in a model. The INCH calculus [118], on the other hand,

does not model boundaries at all. Another alternative formalization of multidimensional

mereotopology is provided by the GFO space ontology [20] that is part of the General Formal

Ontology (GFO). However, GFO space is primarily concerned with physical, phenomenal space

29

(i.e. the space of material objects), which is different from the kind of abstract, extensional

space that geometric data models describe18 [127, 20].

2.4.2 FOL Ontologies for QSR: CODI, RCC, INCH

Axiomatic ontologies of mereotopological relations combine mereological relations (i.e.

parthood) and topology (i.e. connectedness), which allows defining finer spatial relations

such as incidence (i.e. 1D and 2D region connected via a shared part). The utilized primitive

relations include Parthood, Connection, Simple-Region, Congruence in [44]; Connection, Part,

Convex hull in [225]; Part, Boundary, Located-at in [253]; Containment, EgDim, LessDim,

ZEX in [128]. RCC is the most popular unidimensional theory [227], while CODI and INCH

are multidimensional theories, which motivated us to choose these formalizations for our

model finding experiments. Moreover, CODI is already verified and used, which is why we

extend CODI with Simple Features in Chapter 4. In this section we present an overview of

the COntainment-Dimension (CODI) ontology [130, 128], the RCC-FOL ontology [1], which

is a bare formalization of the RCC-8, and finally we discuss the INCH calculus [118]. We

introduce only those FOL-predicates (concepts and relations) that we use for the formalization

of the Simple Feature standard in Chapter 4 and those included for the theoretical and

empirical analysis of SAT-based FOL model finding presented in Chapters 5 and 6. The

variety of existing axiomatic theories are more thoroughly reviewed in [132].

2.4.2.1 COntainment DImension Ontology

Here we review CODI axioms that are generically used in model finding experiments

in Chapter 6 and used in formalizing Simple Features in Chapter 4. We discuss additional

details of CODIB (the boundary-extended version of CODI) in Chapter 4, where it is more

relevant. CODI axiomatizes mereotopological relations in a dimension-independent way

using two primitive relations: (1) the mereological notion of containment, Cont(x, y), and a

18For example, in phenomenal space, any road would be a 3D object, whereas in abstract space it is
typically modeled as a 1D spatial feature.

30

relation ≤dim (x, y), read as “x has the same or a lower dimension than y”, to compare the

dimension of two entities [128, 130]. In addition, the primitive unary predicate S(x) is used

to denote spatial regions, which captures mathematical regions of space whose existence is

independent of whether an actual physical object occupies a spatial region or not. Cont is

reflexive, symmetric, and transitive (Cont-A1–A3) and allows defining the zero (i.e. null)

region denoted by the unary predicate ZEX (ZEX-D). Containment requires the contained

entity to be of the same or a lower dimension than the entity it is contained in (CD-A1).

The relative dimension ≤dim (x, y) alone can define additional relations of equal dimension

=dim (x, y), lesser dimension <dim (x, y), minimal dimension MinDim(x) (i.e. the dimension

of a point; D-D6), and next-lower dimension ≺dim (x, y) (D-D7). The relation ≤dim (x, y) is

axiomatized to form a discrete (i.e. there is a next-lower dimension for every non-minimal

entity) and bounded (i.e. a lowest and highest dimension exists) pre-order over all spatial

regions (axioms Dif-A2, Dif-A3a–c, Dif-A4 in [128], but are omitted here because they are not

used in our study). This also implies that every spatial region must be of uniform dimension,

i.e. all components (i.e. parts) thereof are of the same dimension, precluding objects such as a

region consisting of a 2D region and a separate, isolated point or linear feature. Spatial regions

can still contain lower-dimensional entities (e.g. a 2D region containing 1D features and

points). Using the relative dimension of the involved entities, containment is specialized to

parthood (i.e. equidimensional containment; EP-D) and proper parthood (EPP-D). Minimal

spatial entities have no proper parts (ME-D2), that is, they are indivisible. There can be

minimal entities within each dimension. See [128] for the full details of the axiomatization.

(Cont-A1) S(x) ∧ ¬ZEX(x) ↔ Cont(x, x)

(containment is reflexive for all nonzero spatial regions)

(Cont-A2) Cont(x, y) ∧ Cont(y, x) → x = y (containment is antisymmetric)

(Cont-A3) Cont(x, y) ∧ Cont(y, z) → Cont(x, z) (containment is transitive)

(ZEX-D) ZEX(x) ↔ S(x) ∧ ∀y[¬Cont(x, y) ∧ ¬Cont(y, x)] (zero region)

31

(CD-A1) Cont(x, y) → x ≤dim y (interaction between Cont and ≤dim)

(D-D6) MinDim(x) ↔ ¬ZEX(x) ∧ ∀y [¬ZEX(y) → x ≤dim y] (minimal-dimensional entities)

(D-D7) x ≺dim y ↔ (≤dim y ∧ ¬(y ≤dim x) ∧ ∀z [z ≤dim x ∨ y ≤dim z] (next-lower dimension)

(EP-D) P (x, y) ↔ Cont(x, y) ∧ x =dim y (parthood: equidimensional containment)

(EPP-D) PP(x, y) ↔ P (x, y) ∧ x ̸= y (proper parthood)

(ME-D2) Min(x) ↔ ¬ZEX(x) ∧ ∀y [¬PP(y, x)] (minimal entities within a dimension)

Contact, C(x, y), as the most general topological relation is definable as x and y sharing

some contained object (C-D) and is provably reflexive and symmetric. Specialized types

of contact can be distinguished based on the relative dimension: partial overlap PO(x, y)

holds only between entities of equal dimension and requires them to share a part (PO-D);

incidence Inc(x, y) holds between entities of different dimension and requires a part of

the lower-dimensional entity to be shared with the higher-dimensional entity (Inc-D); and

superficial contact SC (x, y) requires the shared entity to be of a lower dimension than both

of the entities in contact (SC-D).

(C-D) C(x, y) ↔ ∃z[Cont(z, x) ∧ Cont(z, y)] (contact)

(PO-D) PO(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)] (overlap in a part)

(Inc-D) Inc(x, y) ↔ ∃z[(Cont(z, x) ∧ P (z, y) ∧ z <dim x) ∨ (P (z, x) ∧ Cont(z, y) ∧ z ≺dim y)]

(incidence)

(SC-D) SC (x, y) ↔ ∃z[Cont(z, x)∧Cont(z, y)]∧∀z[Cont(z, x)∧Cont(z, y) → z ≺dim x∧z ≺dim y]

(superficial contact)

While CODI does not distinguish different primitive types of entities, they can be defined:

PointRegions (which encompass individual points and sets of points) are of minimal dimension,

Curves are of next higher dimension, and so forth [129]. All of these primitive classes specialize

the class S of abstract spatial regions.

32

(PR-D) PointRegion(x) ↔ S(x) ∧ MinDim(x) ∧ ¬ZEX(x) (point sets)

(Point-D) Point(x) ↔ PointRegion(x) ∧ Min(x) (individual points)

(Curve-D) Curve(x) ↔ S(x) ∧ ∀y[PointRegion(y) → y ≺dim x] (curves as 1D entities)

(AR-D) ArealRegion(x) ↔ S(x) ∧ ∀y[Curve(y) → y ≺dim x] (areal regions as 2D entities)

Clarification: Axioms about the mereological operators (intersection, difference, complement

and sum of entities) from [128] are not included in our experiments in Chapters 5 and 6.

2.4.2.2 The RCC Ontology:

The axiomatization of the Region-Connection Calculus (RCC) theory by Randell, Cui

and Cohn [227] uses the primitive connectedness relation, C(x, y), which is a reflexive and

symmetric relation (RCC:A1,A2) as the basic element to define a set of mereotopological

relations between pairs of equi-dimensional regions. RCC-8 contains eight jointly exhaustive

pairwise disjunct (JEPD) binary relations, but the axioms in the ontology used in our work

only formalizes five of these relations (P , PP, O, EC , NTPP): P (x, y) - ‘x is a part of y’

(RCC:D1); PP(x, y) - ‘x is a proper part of y’ (RCC:D2); O(x, y) - ‘x overlaps y’ (RCC:D3);

EC (x, y) - ‘x is externally connected with y’ (RCC:D4); NTPP(x, y) - ‘x is a non-tangential

proper part of y’ (RCC:D5). The axioms stating the relational operations sum, product,

universal element and complement are not included in model finding experiments in this

dissertation. These axioms are available in the COLORE repository19 . Although the RCC’s

DC relation is not formalized, we can easily represent this notion as negated connectedness

(¬C), as we will use this to represent disconnected objects when we write data assertions for

datasets used in Chapters 5 and 6.

(RCC:A1) C(x, x) (connected is reflexive)

(RCC:A2) C(x, y) → C(y, x) (connected is symmetric)

19https://github.com/gruninger/colore/tree/master/ontologies/mereotopology/

33

(RCC:D1) P (x, y) ↔ ∀z[C(z, x) → C(z, y)] (parthood)

(RCC:D2) PP(x, y) ↔ P (x, y) ∧ ¬P (y, x) (proper parthood)

(RCC:D3) O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)] (overlap)

(RCC:D4) EC (x, y) ↔ C(x, y) ∧ ¬O(x, y) (external connection)

(RCC:D5) NTPP(x, y) ↔ PP(x, y) ∧ ¬existsz[EC (z, y) ∧ EC (z, y)]

(non-tangential proper parthood)

2.4.2.3 The INCH Ontology

The INCH ontology [130] is based on the INCH calculus initially formalized in [118], and

has five primitive relations: a dimension-independent mereological primitive: INCH (x, y),

with the intended meaning ‘x includes a chunk of y’ is a more expressive version of RCC’s C

(I:PA7); CH (x, y), where a chunk denotes an equi-dimensional part (I:D4); CS(x, y) denotes

x as a constituent of y if they INCH a common spatial extent (I:D4); ZEXI (x) denotes the

region x with zero extent (I:D6); GED(x, y) denotes that the dimensionality of x is at least

that of y. The dimensional primitive GED(x, y) is defined such that y is a zero-region or

using the containment relation INCH (x, y) to indicate x is greater or of equal dimension to y

(I:D7). In addition INCH contains two other predicates defined using the primitives: OV (x, y)

denotes that the two extents x and y INCH each other (I:D2); CO(x, y) denotes that the

two extents x and y are connected (I:D3) – this is similar to partial overlap and incidence in

CODI. [130] provides a formalization of the INCH calculus using mereotopological primitives

from CODI (Cont and P).

The ontology includes axioms formalizing the properties of transitivity, reflexivity and

extensional properties for INCH and GED (I:PA1-PA6). We refer the reader to the COLORE

repository20 for these additional axioms.

(I:D1) CS(x, y) ↔ ∀z[INCH (x, z) → INCH (y, z)] (constituent)

20https://github.com/gruninger/colore/tree/master/ontologies/inch

34

(I:D2) OV (x, y) ↔ ∀INCH (x, y) ∧ INCH (y, x) (overlap)

(I:D3) CO(x, y) ↔ ∀z[¬ZEXI (z) ∧ CS(z, x) ∧ CS(z, y)] (contact)

(I:D4) CH (x, y) ↔ ∀INCH (x, y) ∧ ∀z[(INCH (x, z) ∧ INCH (z, x)) → (INCH (y, z) ∧ INCH (z, y))]

(chunk - equidimensional part)

(I:D6) ZEXI (x) ↔ ¬INCH(x, x) (zero region - no entity is contained in ZEXI)

(I:D7) GED(x, y) ↔ ZEXI (y) ∨ ∃z[INCH (x, z) ∧ INCH (z, y)] (greater or equal dimension)

(I:PA7) INCH (x, y) ↔ ∃z[CS(z, x) ∧ CH (z, y)] (requires a chunk of x to overlap with y)

2.4.2.4 Summary of Formalizations used in our Model Finding Studies

Ontology Signature
Number of relations Total axioms

(including definitions)Unary Binary

CODI

Cont, Leq, S, ZEX, Lt, Gt, Geq, EqDim,

Covers, P, MinDim, MaxDim, PointRegion,

Point, Curve, ArealRegion, PP, PO, Inc, SC

8 13 31

RCC C, P, PP, O, EC, NTPP - 6 8

INCH INCH, GED, ZEXI, CH, CS, CO, OV 1 6 16

Table 2.1: Summary that explicitly lists the signature, and contains a statistic of the number

of relations (unary, binary), and axioms included, for CODI, RCC, and INCH that are used

in our model finding experiments.

35

CHAPTER 3

RELATED WORK

The two overarching contributions of this dissertation are: firstly, enabling integrated

and stand-alone geometric-qualitative spatial reasoning, secondly, improving the scalability

of model finding using FOL ontologies with moderately-sized datasets. Through extensive

literature review we identified the gaps and inadequacies existing in current state-of-the-art

tools and methods, which also inspired us to embark on this work. In this chapter we

present some of this relevant work, which sets the context for, and motivates the rest of this

dissertation.

In Section 3.1 we give an account of work conducted in reasoning with FOL ontologies -

for verification and other purposes, with a focus on reasoning tasks commonly undertaken,

scalability achieved, and limitations of current tools. We also briefly review how our work

differs from related research that has studied the tractability of SAT solving mostly with

original propositional logic problems in Section 3.2, but does not touch on the hardness of

SAT solving on FOL problems. We present a survey of some of existing formula simplification

techniques for general SAT in Section 3.2.2 and those specific to FOL in Section 3.2.3. Finally

in Section 3.3, we discuss work that has been done for performing qualitative and quantitative

spatial reasoning using formal ontologies. It must be noted that the list of related work given

in this chapter is not an exhaustive one as the field is a rapidly evolving one, and new tools

with advanced algorithms and heuristics, are developed on an ongoing basis.

3.1 Reasoning with FOL Ontologies

Extensive development of formal ontologies has generated considerable research in

advancing automated reasoning techniques and tools called ATPs (theorem provers and model

finders – cf. Section 2.3) that help with reasoning tasks such as query answering, proving

theorems and ontology consistency checking. Theorem provers determine the unsatisfiability

of an ontology either by deriving a proof by contradiction or generating an empty clause via

36

resolution. In a similar fashion, they can be used to prove theorems about an ontology, and

for query answering tasks. Model finders prove satisfiability of an ontology by generating

a finite model if one exists [16, 46, 40]. However, the expressiveness of the FOL language

combined with the complexity of SAT reasoning often impedes efficient reasoning, model

finding having been found in practice to scale even less than theorem proving, most often

quickly becoming intractable once moving beyond very small domain sizes. In this section

we discuss some of the existing work on studying the practical limits of reasoning with FOL

ontologies.

3.1.1 Theorem Proving with FOL Ontologies

Much work in first-order reasoning has focused on theorem proving. Even within theorem

proving, most works use small axiomatizations that contain very few functions or predicates

– such as theories in mathematics [248, 42], axiomatizations for software and hardware

verification [55, 217, 171], and software design [242]. Similar lines of work include evaluation

of Vampire extended with Boolean sorts (Vampire with FOOL) on theorem proving based

verification problems [169], verifying properties of cloud networks using Vampire as a theorem

prover [168], theorem proving for data model verification in FOL using Spass and Z3 [41].

All these works use little to no data/facts. There are also the kind of benchmark problems

that are included in the TPTP library1 [260, 264, 263] that theorem provers are evaluated

against in the annual automated theorem proving competition (CASC)2 . Query answering

with larger vocabularies again mostly employ theorem provers rather than model finders, for

example: comparison of Darwin, Vampire, Epilog in [145], theorem proving using Vampire

with SUMO, a large ontology containing about 1000 terms and 4000 sentences [218], theorem

proving using Vampire, SPASS and E for query answering on the first-order version of Cyc

KB containing 1,253,117 sentences [224], using OTTER theorem prover in developing expert

medical reasoning systems, though on relatively small problems [190].

1tptp.org
2http://www.tptp.org/CASC/

37

tptp.org
http://www.tptp.org/CASC/

Most ATPs combine theorem proving and model finding capabilities. Evaluation of these

competitive tools is essentially done through comparison analysis of their theorem proving

performance. For example, the strength of Vampire, a consistent top winner in the CASC

ATP competitions since 2000 is evaluated primarily through proving theorems as discussed

in [270, 212]. In rare cases, when the model finding performance of ATPs are evaluated,

datasets are not used, for instance experimental assessment of Paradox, the consistent winner

of the SAT category until 2000 compared in [232].

3.1.2 Scalability of Model Finding for FOL Ontologies

General first-order satisfiability is undecidable, but with efficient heuristics modern ATPs

can build finite models for small-sized problems [239, 46]. The major hurdle for improving

this scalability with larger decidable problems is intractability because available algorithms

to solve them have exponential time complexity [110, 206]. Existing SAT solvers are typically

good at determining unsatisfiability [241], but when a problem is theoretically satisfiable,

many solvers cannot find a solution, i.e., a model, either because the algorithm fails to find a

solution, or due to hardware limitations, where the system runs out of time or memory, which

typically results from an extremely large search space. Theorem provers scale rather badly

with large problems, but the challenge for model finders is even higher. ATPs that perform

SAT-based FOL reasoning incorporate state-of-the-art standalone SAT solvers. While many

works claim the impressive performance of SAT solvers on industrial problems containing

millions of variables [39, 272], this success has been facilitated by the fact that SAT has very

simple syntax and semantics. Unfortunately, SAT provides a poor modelling language, and

many domains such as geosciences, require a more expressive formalization in first-order logic

using predicates and functions and not just propositional variables. Reduction of an FOL

problem to a SAT problem drastically increases the complexity of the problem through the

addition of additional variables and predicates during the process of clausification, flattening

38

and skolemization, and an exponential increase in search space based on the number of

individuals in the domain.

So far, in practice, off-the-shelf model finders haven’t been able to generate models with

domain sizes larger than about 20 [46] – tested with Paradox and MACE 2.0, which effectively

is a limitation in domains such as GIS where even with a very small dataset, the domain

size in the ABox is very high. In the absence of ground facts (i.e., the ABox), model finding

can be efficient for very large ontologies [218], but is only aimed at finding the smallest

model and does not serve the purpose of tasks such as data-driven ontology verification or

identifying datasets that satisfy an axiomatization set. The performance of model finders

Paradox (generated models of upto size 5) and Darwin (timed out for most cases) was found

to be considerably lower compared to the promising results exhibited by Vampire and iProver

for theorem proving experiments conducted on the FOL translation of OWL2’s Full semantics

(consisting of 558 axioms) with a test datasets [239]. Other ATPs such as FM-Darwin that

use more efficient theory translations such as function-free clause logic3 also does not scale

to generate models larger than 20. The comparison study in [23] showed FM-Darwin capable

of constructing models upto size 10, while Mace4 failed at size 7, and Paradox became

intractable from size 7 onwards for the same problems in SAT with more than 8 · 105 variables

and 5 · 104 clauses. Moreover, model finders are almost always evaluated against the TPTP

problem library [260, 264, 263], the standard benchmark problems used in the CADE-ATP

competitions, which do not reflect the scale and complexity of reasoning encountered in

data-driven model finding using spatial ontologies such as CODI, RCC and INCH.

3.2 SAT-Based Model Finding for FOL Ontologies

Propositional SAT solvers are employed in many FOL theorem provers (Otter and Prover9)

and model finders (Paradox, Vampire), mainly reasoners that adopt the MACE-style approach.

The significance of the SAT problem in studying complexity and for industrial reasoning tasks

3Problem size grows much slower compared to the exponential growth in propositional logic and therefore
does not require as much memory as solvers that translate to SAT.

39

has spurred many SAT algorithm optimizations and hardware acceleration to handle the

large amount of computation involved. Current SAT solvers exhibit impressive performance

on many industrial problems containing millions of variables [39, 272]. The performance

improvement of these solvers based on hardware is still limited based on two factors[250]:

first complex algorithms built to handle large and complex SAT problems in the real-world

require large RAM and advanced processors, secondly the scale of model finding problems

increases exponentially with domain size. Large-scale industrial SAT problems generally have

millions of variables, and ten millions of clauses. Therefore, the storage of these variables

and clauses has become a resource-intensive bottleneck for SAT solvers that use complete

decision procedures4 .

3.2.1 Studies on Tractability of Propositional SAT Solving

Given a CNF formula F , it is called a k-SAT formula if each clause in F contains exactly

k literals and contains unique variables and literals within each clause. Several researchers

have investigated the relationship between variables, clauses and algorithmic properties of

the random k-SAT search space [53, 215, 85, 5]. Results have led to efficient heuristics

such as efficient variable assignment [114] and clause simplification strategies (discussed in

Sections 3.2.2 and 3.2.3). SAT is considered exponential in the number of variables [73, 158],

i.e., O(2n) time, where n is the number of variables in the given formula. While 1-SAT and

2-SAT are both solvable in polynomial time, from 3-SAT onwards the complexity becomes

exponential [116]. The worst-case 3-SAT algorithm runs in O(2n ∗ t) time (improved to

O(1.5045n ∗ t) in [175]), since each of the 2n possible truth assignments to n variables requires

at most t time to check.

SAT Phase Transition: Numerous studies [53, 206, 205, 4, 84, 3, 104] show the

relationship between the empirical hardness and satisfiability of random k-SAT problems

to its clause density r (clauses-to-variables ratio), based on experiments conducted on

4If the problem is unsatisfiable, then given enough time and space the solver will eventually find a
refutation - widely used in all CDCL solvers.

40

problems following uniform random distributions. This is explained as the ‘satisfiability

phase transition’ phenomenon [195, 71, 61, 53, 117, 136] that divides the solution space of

satisfiability problems into three regions that follow an easy-hard-less-hard runtime pattern.

This pattern is characterized by the constrainedness of the problem, represented by the clause

density. The low-density region constitutes the under-constrained problems with a small

number of constraints (or clause set), which in the random case appear to be easy. Because

they generally have many solutions, search algorithms have a higher probability of finding

a solution and typically have a polynomial running time. The over-constrained problems

(typically with a density above 4.6) are problems with a very large number of constraints

that also appear to be easy, because intelligent algorithms will generally be able to quickly

find a contradiction in the form of an empty, i.e., unsatisfiable clause. Traditional DPLL

tends to have fast (some times polynomial) performance on SAT instances of these regions.

The critically-constrained problems are the hard problems typically with a density ranging

from 3.8 upto 4.6. They have few solutions but lots of partial solutions and has exponential

runtime performance. This point is referred to as the crossover point [246, 207], where solver

performance is the worst. [205] provides a calculation of the satisfiability threshold ratios5

rk for different k values (cf. Table 3.1) obtained from random k-SAT problems. It is also to

be noted that most of this empirical research has been performed with randomly generated

SAT problems, which focus on uniform random distributions, where each variable takes part

in a clause with the same probability, and clauses are uncorrelated. However SAT instances

that result from the compilation of real-world problems hardly satisfy the pattern of uniform

random distributions. Instead, [159] studied easy-to-hard transition in problem hardness

as their constrainedness is varied when clauses are dependent as they are typically with

real world instances. However, phase transition phenomenon is also solver dependent – for

example [50, 105, 208] show linear median running time for problems in the low-density

region, and [70] shows the SAT solver Tableau having an exponential runtime for the density

5The ratio around which satisfiability problems transitions from easy to hard to easy.

41

k 1 2 3 4 5
rk 4.267 9.931 21.117 43.37 87.79

Table 3.1: Satisfiability threshold values for random k-SAT.

4.26. [210] found Reduced Ordered Binary Decision Diagrams (ROBDDs) to perform very

well on over-constrained problems. Survey propagation algorithms6 performed considerably

better than DPLL when clause density ranged from 4.7 - 5.5 [255], based on experiments

conducted on randomly generated problems. In practical FOL ontology reasoning tasks, it

is hard to constrain the clause-variable ratio (as we find in our experiments in Chapters 6

and 7, rather we can constrain the signature of the ontology or limit the number of distinct

individuals and assertions between them), nor is it very predictive of the performance, rather

hardness depends on the absolute values of the number of variables and clauses.

These complexity studies, while they provide interesting insights of specific measures

of problem hardness, do not supply any mitigating measures to improve tractability for

practical model finding tasks that originate from real ontologies and associated data. Such

as, to verify the consistency of a dataset of domain size d against a theory, it is impossible

to appropriately control the number of clauses and variables in order to make it easy for a

solver. Furthermore, problems with exceedingly large absolute number of clauses may be

theoretically easy with appropriate r values but may still be practically infeasible because

there is much more redundancy in these clauses as compared to random SAT problems..

Other SAT Heuristic Measures: In addition, in propositional SAT, there are works

that exploit domain-specific knowledge to help prune search spaces. For example, signal

correlation between nodes of a Boolean circuit has been used to derive good branching and

learning heuristics for verification of logic circuits [189]. In SAT, the theory of parametrized

complexity [98, 67] attempts measuring the complexity not only by the size of the input, but

also in terms of a numerical parameter that depends on the input in some way – for example

structural graph parameters such as tree-width, branch-width, and clique-width [267]. Other

6Heuristic SAT techniques that incorporate a message passing algorithm [48].

42

structural properties of the formula, ususally captured through a graph7 , and length of the

formula (as measured by the number of literals in the formula) are well-studied measures

for characterizing problem hardness and for developing efficient heuristics for decomposing

and pruning the SAT search tree [126, 31, 87]. The number of acceptable or satisfiable

solutions for a SAT-problem [228] is another relevant factor that determines the hardness of

the problem, since SAT instances with few solutions are likely to be harder to solve (i.e., to

find any solution at all) than those with a large number of solutions. Practically, the number

of solutions to an instance of a SAT problem can vary greatly, and again this correlates

closely with the clause-variable ratio [3]. For small ratios, there are many solutions and for

large values - from where the typical phase transition occurs - there are few, or even none.

To overcome the space-time overhead caused by depth-first traversal and backtracking in

the search tree, improvements made to classic DPLL-solvers include search space pruning

techniques such as early termination [36], unit clause heuristic [182], pure literal heuristic [37],

and use of efficient data structures [191, 8]. The process of backtracking search adds clauses

to the formula in order to block searching in subspaces that are known to contain no solution.

These additional clauses, called blocking clauses (also called learnt or conflict clauses), block

solutions that were already found. However, while the addition of blocking clauses prevents

repetitions in solution creation, it also significantly inflates the size of the overall number of

clauses that need to be tracked and propagated at each step of the search. Thus, the solver

slows down in accord with the number of blocking clauses that are added. Eventually, if too

many clauses are kept, the solver may exhaust the available memory and terminate. This

led to the development of memory efficient algorithms (such as the reachability algorithm

implemented in Chaff [122]) without adding blocking clauses, thereby minimizing the space

requirements of a solved instance.

Empirical evaluation of different SAT algorithms on a comprehensive suite of benchmarks

(with variable count ranging from 10 to 106, and clause count ranging from 102 to 107)

7For example, constraint and variable redundancy [216], modularization of the axiomatization
[201],symmetry [7] to name a few.

43

from a range of different application domains showed that conflict-driven clause learning

(CDCL) solvers can generally handle problem instances with several million variables and

clauses [160, 27, 196, 249]. Many off-the-shelf FOL ATPs employ solvers that follow the

CDCL architecture – the default SAT solver in Vampire, Paradox and iProver is MiniSat,

which is CDCL based. However, modern solvers still fail, unpredictably, on many practical

problem instances. Sources of intractability arising from translating an FOL ontology to a

propositional SAT problem is something that is typically not studied in work analyzing the

hardness of SAT solving. In particular, SAT heuristics are usually not concerned with the

arity of ‘FOL-literals’, which in practice lead to an exponential increase in the number of

propositional variables for the resulting SAT problems.

Graph representations for SAT problems: SAT solvers use graph based representations8

of the CNF formula to solve a problem instance. The efficiency of determining satisfiability

depends on the decompositional parameters for the graph such as treecut-width, tree-depth

and pathwidth [108, 186], clique-width [144], branchwidth [185]. Most SAT algorithms have

a running time exponential in the tree-width of the graph of the CNF formula, that runs in

exponential space or best case polynomial space [13, 6, 77, 103, 237]. For SAT instances the

tree-width of a CNF formula is the smallest width for which the clauses in the formula can be

arranged in the form of leaves of a rooted binary tree [234]. A rudimentary graph structure

has vertices as variables and the edges are representative of clauses – thus the connectivity is

determined by the set of clauses and their width. The notion of tree-width is defined via

tree decompositions (refer [38, 126] for more information on tree decomposition heuristics).

The depth of every decomposition is the largest number of nodes on a path between a root

and a leaf. The tree-depth is the minimum depth over all possible tree decompositions of

the SAT problem. In saturation-based proof search we’re trying to assign truth values to

each variable, thus eliminating options from clauses until we either get an empty clause –

which indicates a conflict since this particular clause is not satisfiable – or a solution - a

8Different graph representations of SAT instances have been proposed in the literature, e.g., incidence
graph, primal graph [268], resolution graphs [106] or implication graphs.

44

complete assignment of truth values to all variables in the propositional CNF formula. The

combination of clause selection and variable selection steers this process. The standard

backtracking algorithm explores partial variable assignments in a depth first manner to search

for a satisfying assignment. This search process is influenced by the heuristics9 employed

for choosing a clause and a variable therein and how efficiently the search tree is pruned

or short learnt clauses are remembered. We are unable to find any existing studies that

compare the size of an axiomatization (and its sentences) to the tree-width of its SAT-graph

structure, while in our work we try to study the study the impact of the complexity of the

axiomatization on the increase in size of its CNF translation and the resulting SAT problem,

and identify a way to bypass this to some degree.

3.2.2 Simplification Techniques for Propositional SAT Solving

SAT solvers have reached a high level of maturity during the two last decades primarily

through efficient heuristics and CNF simplification strategies. The size of CNF formulas in

the context of formal verification for typical industrial and real-world SAT problems is often

very large, and in practice, the runtime of a SAT solver is very much related to the size of

this formula. Clause learning implemented in modern CDCL solvers has clear advantages,

but also affects scalability when the learnt clause set is large, taking up memory. To push the

limits of tractability, modern solvers often use dedicated simplification methods to reduce

the search space, and also minimize the number of backtracks. Simplification techniques

include preprocessing methods [146, 161, 14, 12, 259, 112, 157, 88] performed before search or

inprocessing methods [156] performed during search, for a substantial decrease in size of the

CNF formula. Simplification techniques for CNF formulas is well explored [139] and has been

successfully integrated into several SAT solvers such as MiniSat [90], Chaff [209], Glucose

[11], and Lingeling [35]. Some well implemented preprocessing techniques include addition or

elimination of redundant clauses, clause subsumption and its variants, variants of bounded

9Modern SAT solvers use heuristics to select decision variables, the variables that result in highest number
of unit propagations.

45

variable elimination, formula partitioning [194]. They aim mostly at pruning the number of

clauses, literals and variables in the input formula.

Clause elimination procedures [14, 33, 47, 88, 192] are special class of resolution-based

CNF simplification techniques to remove redundant clauses from CNF formulas resulting

in satisfiability-preserved formulas. Implemented at different levels in all winners of the

SAT competitions10 , these procedures have proven to effectively improve solver efficiency

[141, 54, 259]. A redundant clauses is either a tautology11 , a blocked clause12 or a subsumed

clause13 . Refer [156] for notions and more on types of redundant clauses. Some of the most

popular clause reduction procedures include:

• Subsumption involves eliminating a larger clause from a formula when it subsumes another

smaller clause. A clause A is said to subsume another clause B, iff all the literals in A

also occur in B (i.e., A ⊆ B). The subsumed clause, B in this case, is redundant and can

be removed from the formula. Detection of subsumed clauses is costly, but there are some

efficient techniques such as the signature-based algorithm [244].

• Self-subsumption is resolution (see Def. 9) with subsumption, applied when a clause A

almost subsumes another B, in the sense that all the literals in A are in B except for one.

Then their resolvent, R(A,B) is a subset of A, and we can replace A with R(A,B).

• Bounded resolution adds all resolvents of size bounded by some function of the formula

parameters.

• Bounded variable elimination [88, 259] first chooses a variable to eliminate and then

removes all clauses containing this variable from the formula while adding to the formula

all resolvents of those clauses with respect to the variable chosen. To prevent exponential

10http://www.satcompetition.org/
11It contains two complimentary literals L and ¬L.
12A clause C is blocked in a formula F if all resolvents upon one of its literals are tautologies.
13There exists another clause D and a substitution λ such that Dλ ⊆ C.

46

http://www.satcompetition.org/

blow-up of the formula, variables are only eliminated if the number of new clauses is less

than the number of removed clauses.

• Pure Predicate Elimination (PPE) [146] eliminates a predicate symbol P in a formula F

if all occurrences of literals with predicate symbol P are of the same polarity.

• Unused Definition Elimination (UDE) [146] is a preprocessing method that removes

so-called unused predicate definitions from general formulas (i.e., formulas that are not

necessarily in CNF).

• Blocked Clause Elimination [155] removes blocked clauses from a CNF formula. A blocked

clause is redundant in the sense that neither its deletion from nor its addition to F affects

the satisfiability or unsatisfiability of F . If a clause C contains a literal L with the pure

predicate symbol P , then there are no resolvents of C from L, hence it is vacuously blocked.

Therefore, blocked clause elimination removes all clauses that contain pure predicates and

thus simulates PPE, and, under some conditions, also UDE.

• Blocked Clause Decomposition (BCD) [142] splits a CNF formula into two parts that is

then solved via blocked-clause elimination.

• Newer techniques that elimate different variants of covered clauses14 such as explicit,

hidden, and asymmetric clauses are introduced in [140] and found to be more powerful

than standard BCE [141].

• HypBinRes, a rule for inferring binary clauses[14] prunes the search space using specialised

versions of graph traversal algorithms. However the effect of this preprocessing varies for

different problem classes and was found to be best effective for constraint satisfaction

problems (CSP) [79], and relatively an ineffective preprocessing algorithm in SAT solvers

due to its interaction with the branching heuristic used by the solver.

14Given a CNF formula F , a clause C ∈ F is covered if R(F, C, l) (the resolvent of C w.r.t l) is blocked
w.r.t. F [140].

47

• [139] presents an implementation of clause elimination procedures that are variants of older

strategies such as tautology elimination, subsumption elimination, and blocked clause

elimination, in MiniSat 2.0 showing significant performance gains, although it is not shown

to have tractability of previously intractable ones.

More details on the strengths of different types of clause elimination strategies and their

successful implementations can be found at [141, 88, 141, 140, 155, 188]. One of the principal

challenges is to achieve a good balance between the time that is spent in preprocessing and the

real benefits provided by the simplification. Some clause eliminations techniques are complex

and some works have provided improved procedures. For example, identifying blocked clause

in polynomial time in [163], and an improved algorithm to identify subsumed clauses in [88].

It is also true that shorter and simpler formulae are not always the ones which are easier

to solve [193]. Sometimes having redundant clauses (i.e., clauses that follow as a logical

consequence of the rest of the formula) are helpful to more quickly discover conflicts and

prune the search space. It is not unusual, in fact, to find instances that become harder after

being treated with a preprocessor. Moreover, techniques that “enrich” a formula by adding

redundant clauses have been sometimes found useful [192]. Clause addition procedures, the

dual of clause elimination procedures, add to CNF formulas clauses that are redundant [156].

The most notable examples of these are Blocked Clause Addition (BCA) and clause learning.

[156] reveals that the addition of certain small blocked clauses has shown to be useful when

performed in a careful manner. Clause learning is implemented during conflict-analysis

to prune the search space and to skip redundant decisions, but algorithms that effectively

minimize the number of learned clauses to reduce memory usage and boost solving time is

now widely implemented in solvers [254].

Variable elimination with BCE is a simplification technique shown to be very effective

in SAT solving - [155, 141, 161].[88] empirically demonstrates the effectiveness of variable

elimination, subsumption, subsumption resolution, self-subsumption and definitional subsumption

on industrial SAT problems. Their implementation in the SatELite preprocessor which, in

48

combination with the MiniSat solver [90], won all three industrial categories of the SAT 2005

competition [176]. Variable elimination led to a significant redution in number of clauses

– upto 74% in the NiVER solver [259]. Many other ideas for formula preprocessing have

been proposed in the literature [80, 192, 14, 47], but only a few of them have actually been

successful.

In addition to preprocessing, some solvers implement inprocessing rules [34] interleaving

simplification and CDCL search or during incremental SAT solving each time a solver is

called [95]. Inprocessing using additional deduction rules (Lingeling uses four inference

rules LEARN, FORGET, STRENGTHEN, and WEAKEN presented in [156]) was found to

improve existing preprocessing techniques such as clause elimination/addition procedures

(clause vivification [275, 183], on-the-fly subsumption removal [135, 134, 282]), variable/literal

elimination (hidden literal elimination [143], removing redundant literals [28, 254]). There

are conflicting reports as well where empirical studies [277] have found inprocessing not

as effective as preprocessing. There are other sophisticated prepreprocessing techniques

[177, 214, 173], but they do not apply to CNF.

All CNF simplification techniques discussed here work for all SAT problems, independent

of whether they have been generated from an original propositional or an FOL problem and

independent of the domain. Therefore they can be used in conjunction with optimizations

that are FOL - or domain - specific.

3.2.3 Simplification Techniques for FOL Problems

Instantiation-based model finding procedures, specifically the MACE-style method discussed

in Section 2.2.2 requires propositional instantiation, which leads to an explosion of variables

and clauses. This problem can be alleviated by techniques that specifically deal with FOL

problems. Many of the propositional simplification techniques, such as the clause elimination

techniques discussed in the previous section are lifted to deal with FOL problem without

affecting its satisfiability or unsatisfiability. For example, [162] introduces the principle of

49

implication modulo resolution, which lifts clause-elimination techniques from propositional

SAT to FOL. Typical FOL-CNF clause elimination techniques involve the elimination of

redundant clauses (tautology, blocked or subsumed), which is undecidable in FOL. Implication

modulo resolution provides efficient criteria to identify certain kinds of redundant clauses for

elimination. Variable elimination for CNF simplification [33, 88, 259, 75] is generalized as the

predicate elimination technique in [161], and implemented in iProver. Predicate elimination

is based on two rules: flattening, where all terms are abstracted from P-literals, and flat

resolution, where the flattened predicates are resolved. This procedure may or may not lead to

the reduction in the number of clauses but will lead to the generation of a different set of clauses.

[161] illustrates that iProver with predicate elimination performed extremely well on TPTP

problems that standard iProver was unable to solve. iProver’s NSR-Pred-Elim algorithm

also performs clause simplification based on equality substitution, tautology elimination,

subsumption, subsumption resolution and global subsumption. Vampire [172] lifts some

propositional redundancy eliminations techniques for FOL through an improved clausification

algorithm [146, 161], and also implements a generalization of blocked-clause elimination

as a preprocessing step [163]. Experimental results proved that blocked-clause elimination

helped Vampire, iProver and CVC4 solve new satisfiable problems that previously could not

be solved [163]. However, we show that we can achieve better performance with Vampire

and, sometimes, with iProver using our proposed definition elimination technique (results

presented in Chapter 7).

Alternatively, the instantiation-based procedure implemented in Darwin prover, the model

evolution calculus [24] simplifies an FOL formula to function-free clause logic (not SAT) which

leads to an almost linear increase in size of formula wrt to domain size unlike propositional

logic which is exponential. However based on experimental results presented in [23], the

average time used by Darwin to solve satisfiable problems from the TPTP problem set was at

least 35% greater than Paradox’s runtime, although FM-Darwin claims to scale much better

with larger domain sizes compared to Paradox. It is clear from CADE-ATP competition

50

results that solvers are very dependent on the kind of problems – Paradox beat FM-Darwin in

the SAT division whereas FM-Darwin performed really well in the EPR division15 [212, 23].

The nature of the FOL ontologies is not well aligned with EPR and thus Darwin is not

expected to perform well on our ontologies.

Other heuristic techniques exploited in incremental SAT model finding tools include

(1) re-using pre-constructed interpretations as initial values to improve MACE-style finite

model finding in Paradox [56], (2) identifying and removing unnecessary axioms for a specific

reasoning task [46], (3) symmetry breaking in CNF graphs to prune the search space [113],

(4) non-ground splitting [240] (implemented in the program eground and adopted in E – an

instantiation based prover) to reduce number of variables in a clause – this applies only to

near-propositional CNF formulae, whose signature does not have any function symbols, (5)

principled addition of redundancy to formulas for efficient grounding algorithms [276]. Some

other techniques specific to theorem proving include (1) pseudo-splitting for saturation-based

theorem proving in Vampire [233], (2) contraction techniques such as generalization inference

rule to discard or simplify instances [211, 276] specific for resolution on EPR formulas, (3)

using answer set programming (ASP) such as SATGRND [111].

Except simplification proposed in [46] to minimise the amount of information given to

the model builder, the rest of the discussed preprocessing techniques are either applied

to a propositional logic, or CNF representations of FOL problems and not on the FOL

problem itself. Some of the complexity of preprocessing can be reduced if simplification

can be performed much cheaply at the FOL level before its translation to FOL-CNF or

propositional-CNF when the size of the problem increases polynomially or exponentially.

Optional definition elimination that we introduce in Chapter 5 allows to us to simplify the

FOL problem directly, which can then be still subjected to any of the preprocessing or

inprocessing techniques that work on the CNF and SAT representations.

15SAT division contains problems in propositional logic; EPR division contains problems in effectively
propositional logical also called the Bernays-Schönfinkel-Ramsey fragment of FOL, where the problem contains
no function symbols

51

3.3 Reasoning with Spatial Ontologies

This section presents a review of spatial representations for managing and reasoning of

spatial information in Geographic Information Systems (GIS), and spatial ontologies that

support automated reasoning about the semantics of spatial information, in particular with a

combination of qualitative and geometric information.

3.3.1 Spatial Ontologies in Geospatial Ontology Standards

While many spatial ontologies have been developed [252, 121, 127], only few of them

actually axiomatize spatial semantics to a degree that is sufficient to support automated

reasoning with and not just querying of spatial information. We briefly introduce some

standards in which most spatial data are represented or stored (they only provide a high-level

conceptual framework of spatial concepts with minimal semantics, axiomatic relations or

ontological commitments) and then highlight upon a few comprehensive axiomatic qualitative

ontologies – and this guides the selection of ontology we want to integrate the standards with

for an integrated reasoning.

Foundational ontologies: SUMO [213], DOLCE [198], the BFO-SNAP ontology [121]

and GFO [19] either contain too few, only high-level spatial concepts and relations to support

any specific spatial reasoning, or the relations are not at all or only sparsely axiomatized. In

addition, without a mapping to geometric ontologies reasoning with the available geometric

data is impossible.

Geospatial domain ontologies: Most geospatial ontologies only represent geometric

objects, such as points (the classical representation for location, making use of the latitude

and longitude properties defined in RDF in the W3C Geo vocabulary16), regions and curves

(represented by a collection of points such as in OpenGIS standard used in LinkedGeoData [9]

and GeoLinkedData [18]), allowing access to only geometric data, but include no qualitative

spatial relations. W3C Geo is a widely used vocabulary for geometric objects, and Ordnance

16http://www.w3.org/2003/01/geo/wgs84_pos

52

http://www.w3.org/2003/01/geo/wgs84_pos

Survey (OS)17 for spatial relations. Ordnance Survey Spatial Relations Ontology18 includes

topological operators, in addition to properties for describing metric location (easting and

northing), while the NeoGeo spatial ontology is restricted to topological relations, but neither

ontologies axiomatize them and thus does not afford the capability of reasoning over pure

qualitative information or even extract qualitative information from geometric data. Some

standards, like GeoSPARQL19 defines top-level RDFS/OWL classes for geometric object

types from OpenGIS Simple Features – the standard that we will formalize using CODI

in Chapter 4, and includes mereotopological relations from the 9-intersection, but only for

querying geometric datasets. They do not include an axiomatization of these relations

that support qualitative reasoning. [257] presents an ontology of 0-2 dimensional geometric

configurations. Its relations pertaining to topology (RCC5), distance (LNF) [81], orientation

[58, 86], direction relations [119], adjacency (wordnet), collocation and object parthood are

made available for SQL querying – although no axiomatization is available. Moreover any

kind of qualitative reasoning available using these standards relies on underlying geometric

data for inferencing rather does not allow pure qualitative spatial reasoning. And pure

FOL-based extensively axiomatized qualitative ontologies (e.g., RCC or CODI by itself) do

not support using geometric data for reasoning.

Systems (such as Ontop-spatial [30]) have been designed to answer queries on top of

geospatial data that reside in RDF stores, such as Parliment, uSeekM, Virtuoso, Stardog

etc. Querying in these cases is offered by OGC standards such as GeoSPARQL [220], stRDF,

stSPARQL [178]. But as highlighted, these basic standards are still essentially taxonomies

and provide a hierarchy of geometric objects such points, lines and areas and a set of spatial

relations but contains no semantic formalization between entities and relation. They therefore

offers very minimal support in terms of any kind of advanced spatial reasoning beyond the

extraction of subclass-hierarchy.

17http://data.ordnancesurvey.co.uk/ontology/spatialrelations
18http://data.ordnancesurvey.co.uk/ontology/spatialrelations/
19http://www.opengeospatial.org/standards/geosparql

53

http://data.ordnancesurvey.co.uk/ontology/spatialrelations
http://data.ordnancesurvey.co.uk/ontology/spatialrelations/
http://www.opengeospatial.org/standards/geosparql

3.3.2 Integrated Qualitative and Quantitative Spatial Reasoning

Simple mereotopological relations included in popular geospatial data standards used in

GIS systems such as OGC Simple Features employed in ArcGIS mostly use the 9-intersection

method [91, 92], its dimension-extended refinement (DE-9I) [57] and extensions thereof

[60, 202, 238]. These standards determine qualitative spatial relations from an underlying

geometric representation with associated operations for determining their boundary and

interior, for all involved objects. Moreover, the semantics of the mereotopological relations,

especially their interaction (e.g., parthood specializes overlap or a whole is in contact with

everything any of its parts is on contact with), are never explicitly captured (e.g., as axioms)

and thus not available for qualitative reasoning with the underlying data. And therefore

these relations cannot be used for reasoning where geometric data models are not the only

source of qualitative information. This is in sharp contrast with axiomatic treatments of

mereotopology such as the RCC [226], which axiomatically constrain the interpretations of

qualitative spatial relations, such as contact and/or parthood, and define other relations,

such as overlap or external contact [52]. By explicitly formalizing relationships between

the relations, axiomatic frameworks permit spatial reasoning with qualitative information

even in the absence of geometric information. However, axiomatic theories of mereotopology

have, in the philosophical tradition of Whitehead, been often married to strict region-based

conceptualizations of space wherein extended spatial entities – typically called regions – are the

only first-class entities of the domain, while points and other lower-dimensional entities are not

entities in the domain [127]. A hybrid reasoning system utilizing a constraint network reasoning

approach for reasoning with both geometric and qualitative information has been presented

in [96]. Our work in Chapter 4 goes a step further by explicitly formalizing the semantics

relationships between the two types of information for reuse with any logic-based reasoner.

We accomplish this by taking a qualitative axiomatic theory and connecting it to geometric

data models in order to permit joint qualitative-geometric reasoning. But the limitation to

make this realization is the use of regions of only one dimensionality in traditional axiomatic

54

theories which make them incompatible with the geometric data models. This prevents full

integration with geometric data standards, such as Simple Features, that permit entities of

different dimensions. The idea of multidimensional mereotopology [107, 118, 130, 251] aims

to overcome this restriction by axiomatically formalizing mereotopological relations not just

between entities of equal dimensions but also between entities of different dimensions. CODIB

[130, 128, 127] as one such multidimensional axiomatic theory allows entities of different

dimensions to coexist similar to how such geometries are used in spatial data standards,

and therefore can be used to qualitatively generalize geometric data models. To enable the

kind of joint and stand-alone qualitative and quantitative spatial reasoning that we aim

to achieve, we therefore use CODIB as the foundational framework for formalizing Simple

Feature Access schema’s semantics in Chapter 4. Then, we use geometric data in conjunction

with this combined qualitative-geometric ontology to test external ontology verification as

one particular kind of hybrid qualitative-geometric reasoning task.

Qualitative spatial calculi (see the overview in [64]) are yet another approach to qualitative

spatial reasoning, but they can only incorporate qualitative information and cannot make

use of geometric information without first translating it to qualitative information, and thus

is also incapable to achieve the kind of integrated reasoning we aim for.

55

CHAPTER 4

FORMAL QUALITATIVE SPATIAL AUGMENTATION OF THE SIMPLE

FEATURE ACCESS MODEL

The need to share and integrate the large amounts of heterogeneous geospatial data

has resulted in the development of geospatial data standards, such as OGC’s GeoSPARQL

[220], and the shared OGC/ISO standards Geography Markup Language (GML) [152] and

Simple Feature Access [151]. All of these standards include some types of simple and complex

geometric features – often simply referred to as geometries – for representing geographic

objects. The most commonly used features include points, line segments and aggregations into

polylines, and polygons and aggregations into polyhedral surfaces. Primarily concerned with

interoperability across spatial databases and geographic information systems, these standards

also prescribe a number of common spatial operators, e.g. for calculating intersections,

differences, buffers, or distances between features. Many of these standards have further

incorporated a number of simple mereotopological relations (with Boolean values), such

as intersects, contains, overlaps, meets, or crosses. These are based on results from the

Region Connection Calculus (RCC) [226] and the almost equivalent topological relations

defined by the 9-intersection method [91, 92] and its dimensionally extended refinements

(DE-9I) [57, 60] and further extensions [202, 238]. However, these relations are provided

as query operators only, allowing one to access geometric data in a more natural way1 .

But without formalizing the relationships between geometric representations and qualitative

relations, these approaches cannot support qualitative reasoning over the queried information.

Moreover, storing “native” topological information – for example as provided from textual

sources where precise locations or spatial extents are unknown or unknowable – is currently

not possible without having to invent geometric objects. For example, the spatial content of

the two statements “Lot A is for sale and abuts Broadway.” and “Lot B that does not border

1Most GIS support the RCC or DE-9I relations, with recent progress on storing the computed relations
more efficiently [187]. There has also been a call to extend this to a larger set of qualitative relations [99].

56

Broadway is not for sale.” cannot be represented in GIS without assigning geometries to the

named objects.

Frameworks for qualitative spatial representation and reasoning (see, e.g. the overview

in [64]) such as the RCC support direct reasoning about topological and other kinds of

qualitative spatial information (e.g. direction), but cannot easily mix geometric data sources

(e.g. the precise location of “Broadway”) and qualitative information (the fact that “Lot A”

and Broadway are connected) to infer which lots on a property map may be for sale. Similar

interpretation of qualitative spatial information on a geometric dataset is needed during

natural disasters, when interpreting human reports (e.g. from social media or news reports)

on road networks, elevation data, and hydrological data, to help answer simple queries, such

as “is any part of the historic center flooded?”.

Towards objective 1 (O1 in Section 1.2.2) of this dissertation, we develop a first-order

logical ontology that treats geometric features (e.g. polylines, polygons) and relations between

them as specializations of more general types of features (e.g. any kind of 2D regions or 1D

features) and mereotopological relations between them. Key to this endeavour is the use of a

multidimensional theory of space wherein, unlike traditional logical theories of mereotopology

(including the RCC), spatial entities of different dimensions can co-exist and be related. We

choose the theory CODIB (based on CODI [130, 128] with an extension by boundary/interior

distinctions [127]) as the suitable multidimensional theory of qualitative space and test to what

extent geometric features from SFA [151] can be treated as specializations of CODIB’s more

general non-geometric spatial feature types from CODIB. For example, SFA’s line segments or

polylines should specialize the general one-dimensional spatial features, called “curves”, from

CODIB. Specifically, we want to leverage the detailed formal semantics encoded in CODIB

to capture the semantics of SFA’s various geometric feature types and mereotopological

relations in greater detail. Currently, much of these semantics are described in natural

language and mathematical notation in the standard, but are not accessible to automated

reasoning. Wherever possible, we logically define SFA’s geometric features in terms of

57

CODIB’s spatial concepts and, where that is not possible, treat them as specializations with

suitable constraints.

Our specific contributions are: (1) developing a first-order logic axiomatization, called

SF-FOL, of SFA; (2) in the process, show that all of the geometric feature types from SFA

specialize or map to types of spatial entities definable in CODIB; (3) fully define SFA’s

mereotopological relations in CODIB and thus provide computer-interpretable semantics

of these qualitative relations; and (4) verify the consistency of SF-FOL. This makes both

SFA’s and CODIB’s mereotopological relations applicable to geometric and qualitative data

alike and allows using automated first-order logic theorem provers (ATPs) for integrated

mereotopological reasoning over combinations of qualitative and geometric data from any

sources that adhere to the SFA standard.

4.1 Preliminaries

We now review and formalize the relevant aspects of the SFA standard, namely its classes

of geometric features and its qualitative relations. In particular, Section 4.1.1 formalizes the

intrinsic semantics of the UML subclass hierarchy from the standards document in first-order

logic as a starting point for its semantic enhancement. Subsequently, Section 4.1.2 reviews

key relations and concepts from the CODI and CODIB ontologies and provides definitions of

novel concepts that are necessary to draw some of the distinctions that SFA makes. These

concepts and relations will be used as basis for elaborating the SFA semantics and making

its geometric features available for integration with purely qualitative information and for

general qualitative reasoning.

All logical sentences throughout our exposition are assumed to be universally quantified.

They are labeled in the format ‘[ontology]-[type][number]’ (e.g. SFC-T1) where the first

letter(s) indicate the ontology (e.g. SFC=simple features concept, SFR=simple features

relation, PO=partial overlap, D=dimension), while the type distinguishes axioms (A),

definitions (D: defining a concept or relation), theorems (T: a property provable from

58

the axioms and definitions), and mappings (M: an axiom that establishes some relationship

between SFA and CODIB). All axioms, definitions and theorems for SF-FOL are available in

modularized form in the Common Logic syntax from the COLORE repository2 .

4.1.1 Semantics of Simple Feature Concepts and Spatial Relations

Simple Features Access (SFA) [138], is an OGC and ISO standard for vector-based

encoding of 0-2D geometric data that aims to facilitate interoperability across GIS and spatial

databases. For example, SFA is at least partially implemented by ArcGIS, PostGIS, and the

spatial extensions of MySQL, Oracle, and IBM Db2. Other standards, like GeoSPARQL

[220] and GeoJSON, build on it.

4.1.1.1 Semantics of Concepts (Classes) from Simple Features
At the core of the SFA lies a set of simple geometries – called simple features – such as

individual points (sf_point), polylines (sf_line_string: a sequence of straight line segments),

and polyhedral surfaces (sf_polyhedral_surface: a connected, possibly non-planar 2D area

obtained by stitching polygons together). Sf_line_string and sf_polyhedral_surface specialize

the abstract, non-instantiable classes sf_curve (which may include non-straight segments) and

sf_surface (which may include 2D areas with non-straight boundary segments), respectively

(SFC-A1,A2), that capture 1D and 2D spatial objects more generally3 . In addition to the

three classes of simple features, collections of simple features can be modeled using the

sf_geometry_collection class. All four specializations of the abstract class sf_geometry are

mutually disjoint (SFC-A3-A6) and jointly exhaustive (SFC-D1).

(SFC-D1) sf _geometry(x) ↔ sf _point(x) ∨ sf _curve(x) ∨ sf _surface(x) ∨

sf _geometry_collection(x)

(SFC-A1) sf _line_string(x) → sf _curve(x)

2In https://colore.oor.net/. Note that all of axioms are specified using only the classical first-order
logic syntax of Common Logic and without use of any of Common Logic’s specialized features such as
restricted module import or use of sequence markers. This allows easy translation to pure first-order logic
representations such as the TPTP format [264] supported by many theorem provers and model finders.

3Throughout our formalization, axioms are always assumed to be universally quantified.

59

https://colore.oor.net/

(SFC-A2) sf _polyhedral_surface(x) → sf _surface(x)

(SFC-A43) sf _point(x) → ¬sf _curve(x) ∧ ¬sf _surface(x) ∧ ¬sf _geometry_collection(x)

(SFC-A4) sf _curve(x) → ¬sf _point(x) ∧ ¬sf _surface(x) ∧ ¬sf _geometry_collection(x)

(SFC-A5) sf _surface(x) → ¬sf _point(x) ∧ ¬sf _curve(x) ∧ ¬sf _geometry_collection(x)

(SFC-A6) sf _geometry_collection(x) → ¬sf _point(x) ∧ ¬sf _curve(x) ∧ ¬sf _surface(x)

Sf_line_string is further specialized by sf_line (SFC-A7), which represents a single

straight line segment, and sf_linear_ring (SFC-A9), a linear feature that is closed, that is,

its start and end points are identical and thus its boundary is empty. Note that while we

review here the intended semantics of these concepts, we – for now – formalize only what

can be expressed using SFA’s terminology. The intended semantics are more fully formalized

by the mapping to CODIB concepts developed in Section 4.2.1. For example, SFC-M3, M4,

M8, and M9 together with CODIB’s formalization (including the definitions AtomicS-D,

SimpleS-D, BranchedS-D, ConS-D and the formalization of the predicate ICon from [127])

entail that any sf_line is a connected curve with two distinct end points. Likewise, sf_polygon

is a specialization of sf_polyhedral_surface (SFC-A9), capturing a planar 2D area with a

single closed polyline as exterior boundary4 . Another specialization of sf_polyhedral_surface

is sf_tin (SFC-A10), a triangulated irregular network (TIN), which should only consist of

triangles. A single triangle, described by sf_triangle, is a polygon and the simplest kind

of TIN (SFC-D2). It must be bounded by a closed polyline (i.e. a sf_linear_ring) that

consists of exactly three line segments (i.e. sf_line), which will be formalized by SFC-M13 in

Section 4.2.1.

(SFC-A7) sf _line(x) → sf _line_string(x)

(SFC-A8) sf _linear_ring(x) → sf _line_string(x)

(SFC-A9) sf _polygon(x) → sf _polyhedral_surface(x)

4SFA models sf_polygon and sf_polyhedral_surface as separate specializations of sf_surface, but permits
polyhedral surfaces to consist of a single polygon, in which case it is spatially a polygon.

60

(SFC-A10) sf _tin(x) → sf _polyhedral_surface(x)

(SFC-D2) sf _triangle(x) ↔ sf _polygon(x) ∧ sf _tin(x)

Sf_multi_point, sf_multi_curve and sf_multi_surface are special types of sf_geometry_

collections (SFC-A11) that are aggregations of only sf_points, sf_curves, or sf_surfaces,

respectively. Sf_multi_curve and sf_multi_surface are again abstract classes in SFA, with

only the specializations sf_multi_line_string (SFC-A12) and sf_multi_polygon (SFC-A13)

being instantiable. The latter two consist only of sf_line_strings and sf_polygons, respectively

– cf. Section 4.2.2.

(SFC-A11) sf _multi_point(x) ∨ sf _multi_curve(x) ∨ sf _multi_surface(x) →

sf _geometry_collection(x)

(SFC-A12) sf _multi_line_string(x) → sf _multi_curve(x)

(SFC-A13) sf _multi_polygon(x) → sf _multi_surface(x)

4.1.1.2 Spatial Relations in Simple Features

In addition to many geometric/quantitative spatial operations (e.g. buffer, intersection,

convexHull), which are only well-defined on geometric features (e.g. polygons rather than

general surfaces), SFA includes eight named qualitative spatial relations based on the

dimension-extended 9-intersection method [57] that equally apply to generalizations of

geometric features such as general curves and surfaces. These include the five primitive

relations disjoint, touches, within, overlaps, and crosses. Three additional relations contains

(inverse of within), intersects (negation of disjoint), and equals (conjunction of within and

contains) are defined. These are defined in terms of the interior, boundary, and exterior of the

objects in question as documented in the SFA standard [151]. Three dimensional constraints

are explicitly mentioned in SFA: touches does not apply to points (or sf _multi_points),

overlaps requires the involved entities to be of equal dimension, and crosses is not applicable

to two surfaces (or sf _multi_surfaces). Later, we show that these constraints are provable

as theorems of our CODI-based formalization of these spatial relations.

61

4.1.2 Dimensional Features and Qualitative Spatial Relations in CODIB

This work utilizes the multidimensional mereotopology CODIB [130, 128, 127], which has

been specifically developed to qualitatively generalize geometric data models, as basis for

formalizing SFA’s semantics. This subsection reviews CODIB, whose core is CODI (already

reviewed in Section 2.4.2.1 in Chapter 2), and then the additional relation of boundary

containment. A computer-readable encoding of the axioms are provided in the Common

Logic syntax in the COLORE repository5 to facilitate automated verification and reasoning.

4.1.2.1 CODI

Core to CODIB is the theory CODI of containment - Cont(x, y), and relative dimension -

≤dim (x, y). The relations Cont and C (C(x, y) - where x and y share a contained object) in

CODI are the qualitative generalization of SFA’s contains and intersect relations. While CODI

does not distinguish different primitive types of entities, they can be defined: PointRegions

(which encompass individual points Point and sets of points) are of minimal dimension, Curves

are of next higher dimension, and so forth [129]. These primitive classes are a specialization

of spatial region S from [198], which represents abstract nonzero space occupied by any

physical object. One further pertinent classification of spatial entities is based on internal

connectedness (ICon-D), which requires each proper part y to be connected to its complement

x− y such that the shared entity (denoted by the intersection of y and x− y) is of exactly one

dimension lower than x6 . For example, two polygons that share a line segment as boundary

are internally connected, but if they only share a point, they are not.

(PR-D) PointRegion(x) ↔ S(x) ∧ MinDim(x) ∧ ¬ZEX(x) (point sets)

(Point-D) Point(x) ↔ S(x) ∧ Min(x) ∧ MinDim(x) (points)

(Curve-D) Curve(x) ↔ S(x) ∧ ∀y[PointRegion(y) → y ≺dim x] (curves (1D entities))

(AR-D) ArealRegion(x) ↔ S(x) ∧ ∀y[Curve(y) → y ≺dim x] (areal regions (2D entities))

5Various strengths of the theories can be found at colore.oor.net/multidim_mereotopology_codi and
colore.oor.net/multidim_mereotopology_codib

6See [128] for the full axiomatization of the intersection and complement operations in CODI.

62

colore.oor.net/multidim_mereotopology_codi
colore.oor.net/multidim_mereotopology_codib

(ICon-D) ICon(x) ↔ ∀y[PP(y, x) → C(y, x − y) ∧ y · (x − y) ≺dim x] (internally connected)

4.1.2.2 CODIB

CODIB is a logical extension of the the theory CODI, meaning that is adds additional

axioms. Most importantly, CODIB utilizes an additional primitive relation of boundary

containment, BCont(x, y). BCont specializes containment and incidence (BC-A1) and is

irreflexive, asymmetric and transitive with respect to containment. While a boundary-contained

entity must be of a lower dimension than the containing entity, it is not necessarily of the

next-lower dimension. For example, an areal (i.e. 2D) region can contain both curves and

points in its boundary. Note that BCont is a primitive because it cannot be defined in CODI,

meaning that in some models of CODI it cannot be determined whether a contained entity is

actually contained in the boundary or interior of some containee.

(BC-A1) BCont(x, y) → Cont(x, y) ∧ Inc(x, y)

4.1.2.3 Refined Spatial Region Concepts in CODIB

CODIB refines spatial regions based on whether and how their parts are connected,

resulting in the subclass hierarchy of spatial regions with different properties that is shown

in Figure 4.1. A connected region (ConS-D) is internally-connected, while its complement

is a multipart region (MS-D). A simple region has proper parts that are connected but are

non-branched (Simple-D). A connected region that contains at least three non-overlapping

proper parts that share an entity of lower dimension is called a branched region (BranchedS-D).

An atomic region is a simple region without any proper parts (Atomic-D).

(ICon-D) ICon(x) ↔ ∀y[PP(y, x) → C(y, x − y) ∧ y · (x − y) ≺dim x] (internally connected)

(ConS-D) Connected_S(x) ↔ S(x) ∧ ICon(x) (connected spatial region)

(MS-D) Multipart_S(x) ↔ S(x) ∧ ¬Connected_S(x) (multipart spatial region)

63

Figure 4.1: Taxonomy of refined CODIB spatial region concepts classified based on
presence/absence of boundaries, connectedness, branching and parts

(BranchedS-D) Branched_S(x) ↔ Connected_S(x) ∧ ∃p, q, r, s[PP(p, x) ∧ PP(q, x) ∧ PP(r, x) ∧

¬PO(p, q) ∧ ¬PO(p, r) ∧ ¬PO(q, r) ∧ s ≺dim p ∧ s ≺dim q ∧ s ≺dim r ∧ Cont(s, p) ∧ Cont(s, q) ∧

Cont(s, r)] (A branched spatial region is a connected region that has three distinct

non-overlapping parts p, q, r that all share a common lower-dimensional entity s.

For example, a branched curve has three non-overlapping segments that all share

a point.)

(SimpleS-D) Simple_S(x) ↔ Connected_S(x) ∧ ¬Branched_S(x) (simple spatial region)

(AtomicS-D) Atomic_S(x) ↔ Simple_S(x) ∧ Min(x) (an atomic spatial region is a simple

spatial region that is minimal, i.e. has no proper parts)

These properties are now used to define specialized classes of curves and areal regions.

(SCS-D) SimpleCurveSegment(x) ↔ Curve(x) ∧ Simple_S(x) ∧ ∃p, q[BCont(p, x) ∧

BCont(q, x) ∧ p ̸= q] (Simple curve segment has two distinct end points)

(SLC-D) SimpleLoopCurve(x) ↔ Curve(x) ∧ Simple_S(x) ∧ ∀y[Point(y) → ¬BCont(y, x)]

(Simple loop curve is closed: it does not contain any point in its boundary)

64

(ACS-D) AtomicCurveSegment(x) ↔ SimpleCurveSegment(x) ∧ Atomic_S(x)

(ALC-D) AtomicLoopCurve(x) ↔ SimpleLoopCurve(x) ∧ Atomic_S(x)

(SAR-D) SimpleArealRegion(x) ↔ ArealRegion(x) ∧ Simple_S(x)

(MC-D) Multipart_Curve(x) ↔ Curve(x) ∧ Multipart_S(x)

(MAR-D) Multipart_ArealRegion(x) ↔ ArealRegion(x) ∧ Multipart_S(x)

4.2 Axiomatization of Simple Feature as an Extension of CODIB

In this section we present the core of our formalization that elaborates the semantics

of the concepts in the skeleton axiomatization of SFA from Section 4.1.1 using qualitative

concepts and relations from CODI(B). This results in two new ontologies that logically extend

SFC-Core and CODIB: SFC-FOL, which includes the more detailed axiomatization of SFA’s

concepts, and SFR-FOL, which axiomatizes SFA’s mereotopological relations. Figure 4.2

summarizes the taxonomic relationships between the SFA and CODI(B) concepts, but the

real contribution are the detailed axiomatic mappings.

4.2.1 Axiomatization of Simple Feature’s Simple Geometric Features

The base geometry class sf_geometry is a specialization of spatial region S (SFC-M1)

from [198]. The elementary geometry classes sf_point, sf_curve, sf_surface, and sf_geometry

_collection are disjoint and exhaustive subclasses of sf_geometry. Sf_point and sf_surface are

specializations of CODI’s Point and ArealRegion (SFC-M2,C6) respectively. CODI’s Curve is

a generalization of curves that are open, closed and infinite, whereas sf_curve only includes

simple curve segments and loop curves (SFC-M3). Since the description for sf_curve requires

additional axioms to constrain its meaning, SFC-M3 is an axiom (using implication instead of

bi-conditional) rather than a definition. A sf_curve that is a SimpleCurveSegment has a start

and end point that are distinct (SFC-M4). A sf_curve that is a SimpleLoopCurve has start

and end points that are identical (SFC-M5). It also does not contain any point in its boundary

65

(SFC-T1). SFA’s definition of curve rules out branching curves. Sf_geometry_collection is

either a multipart or branched spatial region that places no constraints on its elementary

geometric parts. Subclasses of sf_geometry_collection have restricted membership (it only

allows parts of identical dimension) with additional constraints on the degree of spatial

overlap between individual elements. The axioms SFC-M1 to C7 suffice to tie in most

simple geometric features to the qualitative ontology CODI and CODIB to perform simple

consistency checking and mereotopological reasoning over simple geometric features.

(SFC-M1) sf _geometry(x) ↔ S(x) (sf_geometry is equivalent to DOLCE’s Spatial

Region)

(SFC-M2) sf _point(x) ↔ Point(x) (sf_point is equivalent to CODI Point)

(SFC-M3) sf _curve(x) → SimpleCurveSegment(x) ∨ SimpleLoopCurve (sf_curve is either

CODIB’s SimpleCurveSegment or SimpleLoopCurve)

(SFC-M4) sf _curve(x) ∧ SimpleCurveSegment(x) → ∃p1, p2[sf _point(p1) ∧ sf _point(p2) ∧

sf _start_point(p1, x) ∧ sf _end_point(p2, x) ∧ BCont(p1, x) ∧ BCont(p2, x) ∧ p1 ̸= p2]

(A sf_curve that is a curve segment has distinct start and end points that are

boundary contained)

(SFC-M5) sf _curve(x) ∧ SimpleLoopCurve(x) →
[
∃p1, p2[sf _point(p1) ∧ sf _point(p2) ∧

sf _start_point(y, x) ∧ sf _end_point(z, x)]
]

→ y = z (A sf_curve that is a loop curve

has the same start and end point)

(SFC-T1) sf _curve(x) ∧ SimpleLoopCurve(x) → ¬∃y[sf _point(y) ∧ BCont(y, x)]

(A sf _curve that is a loop curve does not contain any point in its boundary)

(SFC-M6) sf _surface(x) ↔ ArealRegion(x) (sf_surface is equivalent to CODI

ArealRegion)

(SFC-M7) sf _geometry_collection(x) → Multipart_S(x) ∨ Branched_S(x)

66

Figure 4.2: Hierarchy of SF-FOL indicating mapping within SFA concepts, within
CODI/CODIB concepts and between SFA and CODI/CODIB concepts.

(sf_geometry_collection is a specialization of either CODIB’s multipart or a

branched spatial region)

At the secondary level the notions of connectedness, open/closed and atomic/simple

(non-atomic)/ branched are used to distinguish more refined geometric concepts. Curve in

CODIB is (a) atomic if it has exactly one start point and one end point, and (b) closed when

its two end points are be identical. Sf_line is an AtomicCurveSegment that has exactly 2

points (SFC-M9) contained in its boundary. The boundary of a topologically closed Curve

is empty, which means its start point is the same as its end point and this point is not

boundary-contained (¬BCont). Sf_linear_ring is both an atomic and closed curve (SFC-M10).

Sf_line_string is a simple curve with linear interpolation between points (SFC-M8) with

minimal parts that are AtomicCurveSegments. We can infer that sf_line_string generalizes

sf_line and sf_linear_ring (SFC-A8,A9) as theorems (from SFC-M8-C10).

67

(SFC-M8) sf _line_string(x) ↔ sf _curve(x)∧∀y[PP(y, x)∧Min(y) → AtomicCurveSegment(y)]

(sf_line_string is an sf_curve whose minimal parts are CODIB’s

AtomicCurveSegments)

(SFC-M9) sf _line(x) ↔ AtomicCurveSegment(x) (sf_line is equivalent to CODIB

AtomicCurveSegment)

(SFC-M10) sf _linear_ring(x) ↔ sf _line_string ∧ AtomicLoopCurve(x) (sf_linear_ring is

equivalent to sf_line_string and AtomicLoopCurve)

Sf_surface is a 2-dimensional geometric object that may be an atomic (associated with

one ‘exterior boundary’) or a simple (non-branching) areal region. Sf_polygon is a simple

areal region (SFC-M11), and each interior boundary defines a hole in the polygon. The

boundary of a sf_surface is the set of closed curves (sf_linear_rings) that make up its

exterior and interior boundaries (SFC-T1). A sf_polyhedral_surface is a simple areal region

formed by ‘stitching’ together sf_polygons along their common boundaries (SFC-M12). Such

surfaces in a 3-dimensional space may not be planar as a whole, depending on the orientation

of their planar normals. If all the polygons are in alignment (their normals are parallel),

then the whole stitched polyhedral surface is co-planar and can be represented as a single

polygon if it is connected. If a sf_polyhedral_surface is closed, then it bounds a solid. No two

rings in the boundary of a sf_surface cross and the rings in the boundary of a polygon may

intersect at a point but only as a tangent. A sf_triangle is a sf_polygon (SFC-M13) with 3

distinct, non-collinear vertices and no interior boundary. The exterior boundary defines the

‘top’ of the surface which is the side of the surface from which the exterior boundary appears

to traverse the boundary in a counter clockwise direction. The interior boundary will have

the opposite orientation, and appear as clockwise when viewed from the ‘top’. Sf_tin is a

sf _polyhedral_surface whose minimal parts are sf _triangles (SFC-M14) .

(SFC-M11) sf _polygon(x) → SimpleArealRegion(x) ∧ ∃y, z[BCont(y, x) ∧ ICon(y) ∧

Closed(y) ∧ boundary(z) = y ∧ P (x, z)] (sf_polygon specializes CODIB’s

68

SimpleArealRegion and some part y of its boundary – the exterior boundary – is

internally connected and closed and bounds a region z of which x is part. This

construct is necessary to accommodate polygons with holes bounded by parts of

their boundary. For polygons without holes z=x can be chosen, and then z is the

entire boundary of x.)

(SFC-T2) sf _polygon(x) ∧ BCont(y, x) → sf _linear_ring(y) (The boundary of sf_polygon

is a sf_linear_ring)

(SFC-M12) sf _polyhedral_surface(x) ↔ SimpleArealRegion(x)∧ICon(x)∧∀y[P (y, x)∧Min(y) →

sf _polygon(y)] (sf_polyhedral_surface is equivalent to CODIBs SimpleArealRegion

that is internally-connected and is an aggregation of sf _polygons)

(SFC-M13) sf _triangle(x) ↔ sf _polygon∧∃p, q, r[p ≠ q∧p ̸= r∧q ̸= r∧sf _line(p)∧sf _line(q)∧

sf _line(r) ∧ BCont(p, x) ∧ BCont(q, x) ∧ BCont(r, x) ∧ ∀s(sf _line(s) ∧ BCont(s, x) → s =

p ∨ s = q ∨ s = r)] (sf_triangle is a sf_polygon with three linear edges)

(SFC-M14) sf _tin(x) ↔ sf _polyhedral_surface ∧ ∀y[Min(y) ∧ PP(y, x) → sf _triangle(y)]

(sf_tin is an aggregation of sf_triangles)

4.2.2 Axiomatization of Simple Feature’s Simple Feature Collections

Sf_multi_point is equivalent to CODI’s PointRegion (SFC-M15) and is an aggregation of

sf _points. Sf_multi_curve is equivalent to CODIB’s Multipart_Curve whose minimal parts

are sf _curves (SFC-M16), and it generalizes sf _multi_line_string that has sf _line_strings

as its minimal parts (SFC-M18). A sf _multi_surface is equivalent to CODIB’s Multipart_

ArealRegion and is an aggregation of sf _surfaces (SFC-M17). Its specialization sf_multi_

polygon aggregates sf _polygons (SFC-M19). A sf _multi_curve or sf _multi_surface is

simple if and only if all of its elements are simple, but it can also be branched where

intersections occur between more than two elements along a common boundary.

(SFC-M15) sf _multi_point(x) ↔ PointRegion(x) ∧ ∀y[PP(y, x) → sf _point(y)]

69

(sf_multipoint is equivalent to CODI ’s PointRegion)

(SFC-M16) sf _multi_curve(x) ↔ Multipart_Curve(x) ∧ ∀y[P (y, x) ∧ Min(y) → sf _curve(y)]

(sf_multicurve is equivalent to CODIB’s MultipartCurve whose minimal parts are

sf_curves)

(SFC-M17) sf _multi_surface(x) ↔ Multipart_ArealRegion(x) ∧ ∀y[P (y, x) ∧ Min(y) →

sf _surface(y)] (sf_multisurface is equivalent to CODIB Multipart_ArealRegion

whose minimal parts are sf_surfaces)

(SFC-M18) sf _multi_line_string(x) ↔ sf _multi_curve(x) ∧ ∀y[P (y, x) ∧ Min(y) →

sf _line_string(y)] (sf_multilinestring is a sf_multicurve with minimal parts that

are sf_linestrings)

(SFC-M19) sf _multi_polygon(x) ↔ sf _multi_surface(x)∧∀y[P (y, x)∧Min(y) → sf _polygon(y)]

(sf_multipolygon is a sf_multisurface with minimal parts that are sf_polygons)

The axioms of SFC-Core together with the mappings SFC-M1 to SFC-M18 form the

ontology SFC-FOL7 . The theorems SFC-T1 to SFC-T2 can be proved from SFC-FOL.

4.2.3 Axiomatization of Simple Feature’s Qualitative Spatial Relations

So far we have focused on elaborating the semantics of SFA’s feature types using CODIB.

But SFA’s mereotopological relation can, likewise, be expressed using CODIB’s relations as

summarized in Table 4.1, similar to the mapping between the DE-I9 relations and CODI [131].

All SFA relations, except for sf _disjoint, are specializations of contact (C). Sf_disjoint is

the negation of contact (SFR-M1), which places no dimensional restriction on the involved

entities. The relation sf _touches relates two connected features who share parts of their

boundaries (i.e. ∂x ∩ ∂y ̸= ∅) but no parts of their interiors (x◦ ∩ y◦ = ∅). This specializes

CODIB’s superficial contact relation SC that holds for objects that are in contact but do not

share a part of either object. But SC is not sufficient as it allows the lower-dimensional entity

7Available from https://colore.oor.net/simple_features.

70

https://colore.oor.net/simple_features

to share part of its interior with the higher-dimensional entity (e.g. a curve segment tangential

to a region). Instead, sf _touches needs to express that any shared entities are boundary

contained in both of the participating entities (SFR-M2). Then, SC becomes provable from

it (SFR-T1). From the definition of SC it can further be inferred that sf _touches applies to

entities of any dimension except between two points (SFR-T2).

Sf_crosses is a specialization of one of two of CODIB’s relation: (1) incidence Inc for two

entities of different dimension, where a part of the lower-dimensional entity is contained in

the higher-dimensional one (e.g. a curve being incident with a polygon by a segment of the

curve being contained in the polygon), or (2) superficial contact SC for two entities of equal

dimension that share only a lower-dimensional entity (e.g. two curves intersecting in a point)

(SFR-M3).

Sf_overlaps is a stronger contact relation that only applies to two equidimensional entities

and is equivalent to CODIB’s partial overlap PO when neither entities is a part of the other

(SFR-M4). Full containment of an entity inside another entity of the same spatial dimension

is represented in CODI by its primitive containment relation, which maps to sf _contains

(SFA-M5) and to sf _within for its inverse (SFR-M6). The special case of spatial equality is

captured by sf _equals (SFR-M7). sf _intersects is the negation of sf _disjoint (SFR-M8),

which means it generalizes sf _touches, sf _crosses, sf _overlaps, sf _contains, sf _within,

and, indirectly, sf _equals (SFR-T6) and is logically equivalent to CODIB’s contact relation

(SFR-T7). sf _relate describes any of SFA’s mereotopological relations (SFR-M9), which

maps to any pair of spatial entities in CODIB no matter how they are spatially related

(SFR-T8).

The axioms of SFC-FOL together with the mappings SFR-M1 to SFR-M9 form the

ontology SFR-Core8 . The theorems SFR-T1 to SFR-T8 can be proved from SFR-FOL.

8Available from https://colore.oor.net/simple_features.

71

https://colore.oor.net/simple_features

SFA 9IM Definition in terms of CODIB relations and additional theorems
disjoint disjoint (SFR-M1) sf _disjoint(x, y) ↔ S(x) ∧ S(y) ∧ ¬C(x, y)
touches meet (SFR-M2) sf _touches(x, y) ↔ S(x)∧S(y)∧∀z[Cont(z, x)∧

Cont(z, y) → BCont(z, x) ∧ BCont(z, y)]
(SFR-T1) sf _touches(x, y) → SC (x, y)
(SFR-T2) sf _touches(x, y) → sf _point(x) ∧ ¬sf _point(y)

crosses - (SFR-M3) sf _crosses(x, y) ↔ S(x) ∧ S(y) ∧
[
[Inc(x, y) ∧

¬Cont(x, y) ∧ ¬Cont(y, x)] ∨ ∀z[Cont(z, x) ∧ Cont(z, y) →
Curve(x)∧Curve(y)∧ (z <dim x∧z <dim y ∧¬BCont(z, x)∧
¬BCont(z, y)]

]
(SFR-T3) x <dim y ∧ sf _crosses(x, y) → Inc(x, y) ∧
¬Cont(x, y)
(SFR-T4) x =dim y ∧ sf _crosses(x, y) → SC (x, y)
(SFR-T5) sf _crosses(x, y) ∧ sf _curve(x) ∧ sf _curve(y) →
SC (x, y)

overlaps overlap (SFR-M4) sf _overlaps(x, y) ↔ S(x) ∧ S(y) ∧ PO(x, y) ∧
¬P (x, y) ∧ ¬P (y, x)

contains contains/
covers

(SFR-M5) sf _contains(x, y) ↔ S(x) ∧ S(y) ∧ Cont(x, y)

within inside/
coveredBy

(SFR-M6) sf _within(x, y) ↔ sf _contains(y, x)

equals equal (SFR-M7) sf _equals(x, y) ↔ sf _contains(x, y) ∧
sf _within(x, y)

intersects ¬ disjoint (SFR-M8) sf _intersects(x, y) ↔ ¬sf _disjoint(x, y)
(SFR-T6) sf _intersects(x, y) ↔ sf _touches(x, y) ∨
sf _crosses(x, y) ∨ sf _overlaps(x, y) ∨ sf _contains(x, y) ∨
sf _within(x, y)
(SFR-T7) sf _intersects(x, y) ↔ S(x) ∧ S(y) ∧ C(x, y)

relate
(any)

- (SFR-M9) sf _relate(x, y) → sf _intersects(x, y) ∨
sf _disjoint(x, y))
(SFR-T8) sf _intersects(x, y) ↔ S(x) ∧ S(y)

Table 4.1: SFA’s mereotopological relations, their equivalent Egenhofer relations, and the
developed mappings to CODIB’s relations. The relations in the bottom part are all defined
in terms of the top five relations.

4.3 Logical Verification

Our primary tool for evaluating the developed first-order ontology SF-FOL are different

variants of consistency checking summarized in Table 4.2. In its simplest form, consistency

checking verifies that an ontology is free of internal contradiction. This typically involves

72

constructing some small finite model using a finite model finder. A known problem with this

approach is that it aims to construct the smallest models, which are often trivial in the sense

that the extension of many classes and relations therein are empty or universal. For example,

one trivial model for CODIB consists of a set of isolated points, but without any curves or

areal regions. Moreover, most of the CODIB relations, such as BCont, SC , or Inc, may not

be used at all in a trivial model whereas other relations, such as Cont or P , may relate objects

only to themselves. Such a model does not prove that all classes may indeed be instantiated

(i.e. some curve, areal region, or more specialized defined subclasses such as a branched

curve) and all relation may apply to pairs of distinct entities. One can force the creation of

non-trivial models by adding existential axioms of the form ∃xP (x) and ∃x, y[R(x, y)∧x ≠ y]

to the ontology. This approach has been implemented in the Macleod suite of tools9 and

previously been utilized to prove CODI’s and CODIB’s nontrivial consistency with the help

of the finite model finder Paradox [56]. Here, the same approach is used to prove SF-FOL’s

nontrivial consistency.

An additional way to verify an ontology is to prove its consistency with some sample

datasets. Rather than constructing an arbitrary model that satisfies certain constraints,

this external verification ensures that the ontology is actually consistent with the kind of

model encountered in the domain. This has not been done previously for CODI or CODIB

as real-world purely qualitative information is hard to come by. However, by mapping SFA

concepts to CODIB as a qualitative generalization thereof, we can now exploit the abundance

of geometric data already stored in GIS or geospatial databases.

In this work SF-FOL is verified internally, nontrivially and externally with Paradox.

Proving nontrivial consistency of SF-FOL ensures that instantiation of all the axiomatically

defined or restricted Simple Feature types and SFA’s mereotopological relations is possible and

the new mappings and axioms do not contain any contradictions. In addition, we employed

small subsets of data, consisting of samples of 20 to 40 geometric features, to externally

9https://github.com/thahmann/macleod

73

https://github.com/thahmann/macleod

Type Task Description

Internal
verification

Consistency
checking

Ascertains the ontology is free of
internal contradictions

Non-trivial
consistency
checking

Ascertains that a model exists that
instantiates each class and each
relation positively and negatively
by pairs of distinct objects

External
verification

Consistency
checking with data

Ascertains that the ontology is
consistent with a set of assertions
describing a dataset

Table 4.2: Overview of the employed consistency checking methods for the verification of
SF-FOL.

verify SF-FOL. The data is extracted from publicly hosted shapefiles10 that includes polygon

representations of counties and subdivisions, polyline representations of major roads, and

point representations of schools and other civic buildings within the state of Maine. Only the

type of geometry and the SFA relations to other, nearby geometries are stored as assertions.

The extracted assertions (i.e. the ABox) were added to SF-FOL (i.e. the TBox) and

handed to the model finder to construct a model (external verification results are provided in

Chapter 7). As an additional step, we encoded sample queries, such as ’What are the areal

regions within Penobscot county that intersect I-95?’, which can be expressed logically in

CODIB as ArealRegion(s) ∧ sf _within(s,′ PenobscotCounty′) ∧ sf _intersects(x,′ I95′). This

allows retrieving possible instantiations of x, which were manually inspected to identify any

unintended models, such as schools being returned as possible solutions, that helped refine

the axiomatization.

Generally, the utilized ontology verification techniques are somewhat similar to software

testing techniques: they can help identify problematic models of an ontology that require

changing or adding axioms but do not prove that the ontology is fully correct. This would

require a full representation theorem describing the structure of all the models of SF-FOL,

10https://www.maine.gov/megis/catalog/

74

https://www.maine.gov/megis/catalog/

Figure 4.3: The relationships between the developed and reused axiomatic theories.

which is beyond the scope of this work. The completeness of SF-FOL is not verified as this

would require alternative characterization of all models.

4.4 Discussion

A core component of many geospatial data models and standards used to store and analyze

conventional GIS data are taxonomic classifications of geometric feature types and basic

mereotopological relations to support qualitative querying of the geometric data. However,

the semantics of the mereotopological relations are not explicitly formalized and thus not

accessible for further automated reasoning. Because of this limitation, purely qualitative

spatial information, i.e. spatial information that relates objects for which no geometric

information is available in the data store, cannot be easily reasoned over in conjunction

with existing geometric data. To address this challenge, this chapter presents a semantically

augmented formalization, SF-FOL, of the basic geometric feature types (axiomatized in

SFC-FOL) and qualitative spatial relations (axiomatized in SFR-FOL) of the Simple Features

Access (SFA) standard. This augmented formalization is provided as an extension of the

CODIB theory, a qualitative axiomatization of mereotopological space in first-order logic.

The relationships between the developed theories is illustrated in Figure 4.3.

It is shown that all of SFA’s geometric features specialize the more general, only

dimensionally-constrained, classes of spatial entities from CODIB and its subtheory CODI.

75

The distinctions between “straight line segments” and “curve segments” and, analogously,

between “fully bounded regions” and “polygons” are the only ones that are not fully definable

in CODIB because they are inherently geometric11 . But because these distinctions are

irrelevant to mereotopological relations, all of CODIB’s spatial relations can be evaluated

over geometric features in SF-FOL. Likewise, all of SFA’s mereotopological relations are fully

defined in the SFR-FOL module of SF-FOL and thus can be employed for querying over both

geometric and qualitative data.

11One cannot distinguish a straight line from a curve without a metric in the space that defines the shortest
segment between two points, see the discussion of such issues in [45, 132]

76

CHAPTER 5

THE ROLE OF AN ONTOLOGY’S SIGNATURE IN SAT-BASED MODEL

FINDING

More and more FOL ontologies are becoming available, ranging from upper ontologies

such as DOLCE or GFO to ontologies for space, processes, and the geosciences including the

axiomatization of qualitative and geometric space presented in Chapter 4. Such ontologies are

developed with the intention to enable automated reasoning tools to efficiently infer reliable

information with data for decision making, or in the absence of data to prove theorems or

lemmas within the domain. Ontology verification through internal consistency checking, and

ontology validation through external consistency checking with real-world data are key to

making accurate inferences. For consistency checking, traditional model finders (e.g. Paradox

[56] or Vampire [172]) translate the FOL problem into an equivalent propositional satisfiability

(SAT) problem in Clausal Normal Form (CNF) and then use a SAT solver to determine

satisfiability through the generation of a model. To search for models, these model finders

instantiate the CNF formula corresponding to the ontology with (an increasing number of)

individuals to produce a series of SAT problems, whose size (as measured in the number

of propositional variables and clauses) grows exponentially with the number of individuals

in the model and the size of the ontology’s terminology (number and arity of predicates).

While SAT solvers have been found to capably handle large SAT problems, they often

experience scalability issues when trying to construct models for FOL ontologies. Available

model finders, such as Paradox [56] or Mace4 [200], have been mostly tested on relatively

small axiomatizations with few nonlogical symbols (i.e. predicate and function symbols), as

commonly found in mathematical conjectures but not representative of ontologies. But even

for FOL ontologies with relatively modestly sized terminologies, the results reported in the

literature [239, 23, 46] are rather discouraging, with models rarely exceeding 20 individuals,

because the program either runs out of memory or never terminates.

77

Extremely important to SAT solver efficiency are mechanisms that reduce the size of the

input CNF formula in order to reduce the time and memory used. Traditional methods of

complexity computation of SAT algorithms [215, 101] have relied on measuring the required

amount of resources as a function of the input problem’s size, specifically the number of

clauses and variables [53, 247, 215]. But almost all these studies focus on original SAT

problems and not SAT translations of FOL problems. Secondly, as pointed out in [236] there

is often a vast discrepancy between theoretical performance and practical performance of SAT

solvers, due to the fact that complexity is determined solely based on the general structure of

the problem [93], but ignore other structural properties, which may arise from the nature of

the domain but also the language – for example concepts in certain FOL axiomatizations

may be structured like a list, whereas in some they may assume a tree structure with a

root and dependent concepts. SAT solvers are usually considered to be black boxes – when

a first-order logic problem is translated to a CNF formula for SAT-based model finding,

most of its axiomatization-based structure is already lost, for example dependency between

predicates. Therefore, intuitions about the problem domain are no longer accessible to help

solve the resulting SAT problem. Research studying the correlation between the signature

of an ontology and the hardness of SAT solving is scarce. In particular, SAT heuristics

are usually not concerned with the arity of ‘FOL-literals’, which is shown in this chapter

to contribute to an exponential search space in FOL-CNF formulas1 . There is also no

existing work that studies how certain structural dependencies within an FOL ontology can

be exploited to simplify an FOL ontology with data leading to a reduction in the size of

its SAT translation to improve the scalability of model finding. To bridge these gaps, this

chapter develops a formal treatise of ontologies with data, and their CNF translations, and

techniques for reducing their size.

Towards the overarching objective of this dissertation, which is to enable integrated spatial

reasoning with datasets, and specifically towards objective 2 (O2 in Section 1.2.2) of this

1From here on, an FOL-CNF ‘formula’ refers to the CNF translation of an entire FOL ontology,

78

dissertation, in this chapter we study the hardness of model finding of data-incorporated

FOL ontologies and make the following contributions:

1. Develop a formal account of FOL ontologies with data and define various ‘size’ measures

on its corresponding CNF and SAT translations.

2. These formalized terms are used to illustrate the growth in size of the FOL-CNF and SAT

representations with the ontology’s signature, which is identified as a key contributing

factor to the dramatic growth of the resulting SAT problems.

3. Develop and define a simplifying heuristic called Optional Definition Elimination - ODE,

that eliminates select predicates from an FOL ontology before their translation to SAT.

ODE is a variant of definition inlining implemented in VAMPIRE’s clausfier [229]. We

formalize this formula simplification ODED (D is the set of optional definitions for elimination)

in this chapter and implement it as an FOL preprocessing technique in Chapters 6 and 7,

where we test the following hypothesis “removal of additional defined terms from an FOL

ontology can significantly improve SAT model finding performance in practice.”

5.1 SAT-Based Model Finding for FOL Ontologies

The Mace-style finite-model building approach [200, 56, 269] used in popular automated

theorem provers (ATPs) such as Paradox [56], Vampire [172] and iProver [165] works by

converting a first-order logic ontology into a set of propositional logic sentences and handing

them off to a SAT-solver. Thus, FOL model finding is a two-staged process as shown in

Figure 5.1.

5.1.1 Size of the Clausified FOL Ontology

Through applying Skolem’s algorithm from [29] an FOL formula can be translated to a

quantifier-free formula in CNF. This translation converts the formula to existential-quantifier-free

(universally quantified and so the outside quantifiers can be removed), function-free FOL

79

formula through (1) the elimination of conditionals and biconditionals, (2) pushing negations

inwards, (3) standardizing and renaming variables, (4) skolemization, (5) eliminating quantifiers,

and (6) distributing disjunctions using De Morgans laws (described in detail in Section 2.2.2).

This resulting FOL-CNF formula may introduce additional constants and functions and

therefore is not equivalent but equi-satisfiable with the original FOL formula. The FOL-CNF

formula corresponding to an ontology O is defined in Def. 10 as OFOL-CNF.

Definition 10. Let O be an FOL ontology. Then we call its FOL-CNF formula obtained

through the 7 clausification steps from [29] OFOL-CNF. This FOL-CNF representation is in

clausal normal form (CNF) whose variables are all universally quantified.

The size of the signature of OFOL-CNF is defined in terms of the number of predicates of

each arity as follows:

Definition 11. Let OFOL-CNF be an ontology’s FOL-CNF representation. Then

• sf a=n denotes the set of n-ary Skolem functions introduced by skolemization2 . If treated

as predicates, the set sf a=n(OFOL-CNF) adds that many (n+ 1)-ary predicates to OFOL-CNF.

• Ωa=n(OFOL-CNF) = {Ω ∈ λ(O) | a(Ω) = n)} ∪ sf a=n−1(OFOL-CNF) defines the set of

predicates of arity n, which includes the n-ary predicates from O as well as any newly

introduced (n− 1)-ary Skolem functions.

The size of OFOL-CNF itself is defined in terms of its number of clauses aand other measures

defined as follows:

Definition 12. Let OFOL-CNF be an ontology’s FOL-CNF representation treated as set of

clauses. Then,

• for any single clause C ∈ OFOL-CNF, the clause-width w(C) is the number of FOL literals

therein.
2In our work, n is at most 2, However, depending on the number of nested quantifiers of the original

ontology, Skolem functions of higher arity may be introduced.

80

• the formula-width of OFOL-CNF is the maximal clause-width of all clauses in OFOL-CNF,

defined as W (O) = max {w(C)|C ∈ OFOL-CNF}.

• for any single clause C ∈ OFOL-CNF, the variable-density is the distinct number of FOL

variables therein.

• the maximal variable-density of all clauses in OFOL-CNF is given by v∗.

The translation of a first-order logic formula to an FOL-CNF formula is demonstrated by

the following example.

Example 1. Consider a small ontology ORCC-s with three sentences (1 axiom and 2

definitions), this is a subset of the FOL axiomatization of the RCC and the signature λ(ORCC-s)

= {C,P,PP} denoting contact C(x, y), parthood P (x, y), and proper parthood PP(x, y).

(σC) C(x, y) → C(y, x)

(σP) P (x, y) ↔ ∀z[C(z, x) → C(z, y)]

(σPP) PP(x, y) ↔ P (x, y) ∧ ¬P (y, x)

Following clausification, the FOL-CNF formula for ORCC-s has seven clauses (C = 7)

where 2 clauses have width w = 3 and 5 clauses have width w = 2 each (see Table 5.1), where

the width denotes the number of FOL literal in a clause (as defined in Def. 12). Skolemization

introduces one additional binary function - f , resulting in a total of 3 binary and 1 ternary

predicate (|Ωa=3| = 1, |Ωa=2| = 3) in the FOL-CNF representation.

Note: For conceptual simplicity each n-ary function symbol is treated as an n + 1-ary

predicate symbol. Therefore following skolemization each unique Skolem constant is treated

as a unary predicate, each unique unary function is treated as a binary predicate and so on.

5.1.2 Size of the Propositionalized FOL-CNF Ontology

The second step in propositionalization involves instantiating all variables within the

FOL-CNF clauses over all combinations of individuals from a fixed domain. This first requires

81

Clause 1 ¬c(x, y) ∨ c(y, x).

Clause 2 ¬p(x, y) ∨ ¬c(z, x) ∨ c(z, y).

Clause 3 p(x, y) ∨ c(f(x, y), x).

Clause 4 p(x, y) ∨ ¬c(f(x, y), y).

Clause 5 ¬pp(x, y) ∨ p(x, y).

Clause 6 ¬pp(x, y) ∨ ¬p(y, x).

Clause 7 pp(x, y) ∨ ¬p(x, y) ∨ p(y, x).

Table 5.1: FOL-CNF clauses for the three sentences in ORCC-s. Clauses are separated by
conjunctions.

fixing the domain size (i.e. the number of distinct individuals) [279]. If the domain size is not

known in advance, the model finder starts with domain size 1 and incrementally increases it

each time the search space is exhausted. If, for example, the smallest model has 8 individuals,

then the model-finder will run 7 SAT instances that are proved to be unsatisfiable and an

8th one that is satisfiable. The propositional representation of an ontology O instantiated for

a domain d is defined in Def. 13.

Figure 5.1: Steps involved in the translation of a first-order logic formula to a propositional
formula to generate a finite model.

Definition 13. Let O be an ontology and OFOL-CNF is the FOL-CNF representation, then

the propositional instantiation of the ontology with a domain of d individuals is called OCNF-d.

Every n-ary predicate symbol from the signature of the original ontology will be instantiated

into dn propositional variables. For example, the sentence Inc(x,y) ∨ ¬Lt(z,x) ∨ ¬Cont(z,x) ∨

82

¬P (z, y) contains four predicates, and each binary literal, e.g. Inc(x,y), leads to d2 propositional

variables. This is formally captured by the following lemma:

Lemma 1. Let OFOL-CNF, be the CNF form of an FOL ontology with maximum arity a∗.

Now, the number of propositional variables in its propositional instantiation OCNF-d over a

domain with d individuals is

Pv =
a∗∑

i=1

(
di · |Ωa=i|

)

The number of all propositional clauses (as defined in Section 2.2.1) in OCNF-d is denoted

by Pc, also referred to as formula-length. Likewise, for a domain size d, each FOL-CNF

clause leads to an exponentially growing number dv of propositional clauses, where v is the

number of (implicitly universally quantified) variables in each FOL-CNF clause, because

every variable can be independently instantiated with any of the d individuals.

Lemma 2. Let OFOL-CNF be an FOL-CNF ontology where Cv denotes the subset of clauses

with v distinct FOL variables per clause, and v∗ is the maximal number of variables in any

clause in OFOL-CNF. Then for a domain size d, OCNF-d the number of propositional clauses is

given by:

Pc =
v∗∑

i=0

(
di · |Cv=i|

)

Thus, the ‘size’ of the propositional instantiation OCNF-d can be jointly described using

Pc and Pv: their ratio r = Pc

Pv
describes its clause density.

Note: Throughout the rest of this dissertation we adopt this naive approach to calculate Pv

and Pc, which are therefore worst-case measures. However, preprocessing techniques built into

modern ATPs such as non-ground splitting and symmetry reduction techniques implemented

in Paradox, and formula renaming are meant to control the exponential blowup of search

space. Nevertheless, our findings will show that these measures are closely correlated to the

experimental runtimes of model finders that are presented in Chapter 6.

83

5.2 SAT-Based Model Finding for FOL Ontologies with Data

For simply proving the consistency of an FOL ontology, no data (ground facts) are needed.

However, to prove that an ontology is consistent with a given dataset, we need to take the

size of a dataset into account when estimating the size of the resulting SAT problem. To

investigate how the size of OCNF-d changes with different amounts of data in the ontology, we

adapt the notions of Terminological Box (TBox), Relations Box (RBox), and Assertion Box

(ABox) from Description Logic (DL) ontologies [76, 150]. The TBox captures terminological

axioms which constrain the interpretations of concepts (i.e. unary predicates), while the

RBox constrains the interpretation of roles (i.e. binary predicates). We will not distinguish

between them, but draw the distinction between the TBox (for all terminological axioms) and

the ABox, the latter of which captures assertions about individuals, i.e. ground statements

about an individual being an instance of a particular concept or being related to another

individual via a particular relation.

5.2.1 Assertion Box and Terminological Box

An FOL ontology can mix structural knowledge and assertions about individuals, even in

a single sentence. Because the conversion to FOL-CNF tends to separate those at least to

some degree, we define an ontology’s ABox in terms of the ground formulas in its FOL-CNF

version.

Definition 14. Let O be an FOL ontology with signature λ(O) and let OFOL-CNF be its

corresponding set of FOL-CNF clauses. Then the assertion box ABox(O) is the subset of O’s

sentences that only yield ground clauses in OFOL-CNF that only use symbols from λ(O)3 .

While an ABox may contain disjunctive knowledge – reflected in ground clauses with

multiple literals – many clauses are so-called unit clauses consisting of only a single literal,

which intuitively are facts. In the experiments conducted in Chapter 6, we limit the ABox to

3Clauses that are ground but use newly introduced Skolem constants or functions are not considered part
of the ABox as the Skolem symbols arise from existential quantifiers.

84

such unit clauses. For simplicity, we further require that the ABox itself, and not just its

clausal conversion, is represented as a set of ground clauses. In other words, the ABox is the

dataset we want to verify an ontology against.

Definition 15. An ABox(O) is called factual iff it contains only unit clauses.

The spatial ontologies CODI, RCC and INCH contain, like many ontologies, only unary

and binary predicates. If the ABox for such an ontology is factual, it consists of three types

of assertions:

• Class Assertions express membership of an individual in a certain class, e.g. ArealRegion(

‘penobscotCounty’).

• Relational Assertions ascertain two or more individuals to be in a certain relation, e.g.

Inc(‘i95’, ‘penobscotCounty’).

• Distinctness Assertions ensure that distinct constants denote distinct individuals, e.g.

(“i95” ̸= “penobscotCounty”).

An FOL ontology’s TBox captures its structural, i.e. non-factual knowledge. We define it

indirectly via the sentences that are not contained in the ABox.

Definition 16. Let O be an FOL ontology and ABox(O) its ABox. Then its terminology box

is defined as TBox(O) = O \ ABox(O).

For an ontology with a factual ABox, the TBox will not contain any ground clauses except

possibly ones involving Skolem symbols.

5.2.2 The Size of SAT Problems for an FOL Ontology with an ABox

In the following example we demonstrate calculating the number of propositional variables

and propositional clauses for a OCNF-d formula.

85

Example 2. Consider the ontology ORCC-s with signature λ(O) = {C,P,PP} from Example 1.

The FOL-CNF version of ORCC-s contains 7 clauses with 4 nonlogical symbols, which in

addition to the 3 predicates from ORCC-s includes one binary Skolem function which is logically

representable as a ternary predicate. Propositionalizing the ontology for domain size d = 20

yields

Pv = |Ωa=2| · d2 + |Ωa=3| · d3 = 3 · 202 + 1 · 203 = 9, 200 propositional variables.

Out of the 7 clauses, one clause has 3 FOL variables (clause 7 in Table 5.1) while the other

six all have 2 FOL variables4 .

Thus the number of propositional variables in the SAT representation is largely dependent

upon the number and arity of predicates: each predicate of arity a results in da propositional

variables for domain size d. This number determines the search space of the propositional

SAT problem, which consists (without using any heuristics) of 2Pv possible interpretations.

For example, a simple ontology with b binary and u unary predicates (and no other predicates)

then yields (2b)d2 · (2u)d interpretations, which is exponential in both the number of binary

predicates (and more generally the number of predicates of highest arity) and the domain size

d. While modern SAT solvers employ effective strategies to drastically prune the search space

and are thus able to deal with thousands of variables and tens of thousands of clauses [116],

the growth in Pv and Pc quickly exceeds a million even for ontologies having a modest-sized

signature where no predicate has an arity greater than 2 and only a handful of binary

predicates included. But this also suggests that improvements can be realized by reducing

the total number of predicates, especially those of highest arity. Definition elimination, as

formalized in Section 5.3, can achieve this for ontologies with a large number of defined

predicates, which can be easily dispensed off before model finding and can be added back in

afterwards. But we first look more closely at how the ABox impacts the size of the resulting

SAT problem.

4Note that FOL variables in different clauses are considered as different variables.

86

Example 3. Consider a minimal ABox(O) with exactly one relational assertion, namely

PP(′m′,′ n′). This adds exactly one ground clause (with no FOL variable) to the FOL-CNF

formula in Example 2.

Then for domain size 20 the propositional version OCNF-20 contains

Pc = |C(v=3)| ∗ d3 + |C(v=2)| ∗ d2 + |C(v=1)| ∗ d1 + |C(v=0)| ∗ d0

= 1 · 203 + 6 · 202 + 0 · 201 + 1 · 200 = 10, 401 propositional clauses.

Note: A more general expression for calculating Pv and Pc resulting from an ABox

with domain size d and specific number of relational assertions is presented in Lemma 3 in

Chapter 6.

5.2.3 Significance of an FOL Ontology’s Signature Size for its SAT Encoding

The search space of a SAT problem is often presented as a decision tree, and this space is

exponential in (O(|Ω||D|a
∗
) propositional variables, Pv, for |Ω| predicates of maximum arity

a∗ and |D| individuals for every FOL ontology. A standard decision tree5 has 2Pv leaves –

Figure 5.2 represents the basic decision tree for the definition of PO from CODI. The width

of the tree is therefore bound by the number of propositional variables in OCNF-d, and each

propositional variable in the SAT problem is a potential choice point. Pv in OCNF-d is large

if and only if OFOL-CNF contains large number of predicates (mostly with arity ≥ 2). SAT

solving by itself is exponential already (that is, the size of the problem grows exponentially

with Pv) but with an FOL-SAT problem Pv also grows exponentially with the size of the

FOL signature - which significantly worsens the tractability.

The search performance of a SAT solver is also bound by the number and width of the

clauses in OCNF-d. However, merely the number of clauses is a bad proxy for determining

tractability of model finding, as the number of satisfying assignments for a problem is

unrelated to the number of clauses. In general, a formula consisting of more clauses will

5A binary tree having 2Pv leaves, where the nodes are partial assignments and every leaf is a full
assignment.

87

Figure 5.2: Decision tree corresponding to the propositional instantiation of the FOL definition
of CODI’s PO. To search the space of all truth assignments systematically, both partial and
complete, we can instantiate the variables one at a time. The search space is then denoted
by: 2d2 · 2d2 · 2d2 (since there are three binary predicates in the definition of PO)

.

lead to more conflicts and thus to more frequent backtracking. But at the same time, this

backtracking also means potentially more aggressive pruning of the search tree (as for each

conflict, a subtree can be pruned). A better measure to predict model finding performance

is the width of clauses w(C) in the CNF-formulas, as defined in Def. 12. Specifically, the

median width of clauses in OCNF-d determines the length of traversal along the node of a tree

until a conflict is detected. Each time a propositional variable is assigned, a certain number

of clauses are shortened down to unit clauses and eventually empty clauses that represent

88

conflicts. If the average or median length of clauses is higher, it typically will take longer

until conflicts are detected.

So, a large ontology signature (predicates and functions) determines the complexity of the

problems, and the number and (median) width of clauses determines how fast the saturation

algorithm terminates – which is the tractability of the solver. Because of the importance of the

size of the decision tree, the tree width and depth of a SAT problem’s graph representation,

it is very natural to ask about mechanisms to control these parameters for an FOL-CNF

formula. Minimizing Pv reduces the search space and, thus, worst-case time for model-finding

(since the search space grows exponentially with Pv, a small reduction in the number of

predicates – say even by 1 or 2 – can amount to one or several orders of magnitude reduction

in Pv). While we anticipate that problems with a higher median width of clauses will also

take, at least on average longer than comparably-sized problems with a lower median width

of clauses, this is tested in more detail in Chapter 7.

5.3 Definition Elimination for Reducing the Size of the SAT Encodings of FOL

Ontologies

Figure 5.3: Dependency between defined predicates in the CODI ontology.

Now that we have established that the number of predicates with highest arity has an

outsized influence on the number of propositional variables in the resulting propositional SAT

problem, we illustrate how Pv can be reduced by eliminating defined predicates – and thus

reducing the signature overall – before clausifying and propositionalizing an FOL ontology.

89

We then introduce a formula simplification strategy that exploits the dependency between

predicates arising from the manner in which they are formalized to eliminate sets of predicates

from an FOL ontology – e.g. Figure 5.3 shows the dependency between defined predicates in

the CODI ontology. This simplification strategy is then empirically tested using select spatial

ontologies that are at the core of this work in Chapter 6. We identify (1) optional definitions as

ideal candidate terms for elimination, thereby reducing the size of the propositional formula;

(2) axiomatizations that contain many definitions lead to large number of propositional

clauses that are generated by converting biconditionals to clausal form, and postulate that

by bypassing this we can improve model finding.

The following example shows how reducing the signature of an ontology alters the size of

its SAT representation.

Example 4. We reuse the TBox from Example 1, where λ = {C,P,PP} and one binary

Skolem function (analogous to a ternary predicate) is introduced by clausification. Its

propositional version contains 68, 800 and 531, 200 propositional variables for domain sizes

40 and 80, respectively. Now consider adding another binary predicate O (overlap) to the

signature, which is explicitly defined by

(σO) O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)]

When adding O, in the FOL-CNF version, the number of binary predicates increases to 4

and the ternary ones to 2 (via another binary Skolem function resulting from the existential

quantifier in the definition of O). Then Pv increases to 134, 400 and 1, 049, 600 for d = 40

and 80.

The number of FOL-CNF clauses also increases from 7 to 10, with one of the new clauses

containing 3 variables. Then the number of propositional clauses increases from 73, 600 and

550, 400 for d = 40 and 80 to 640, 000 and 5, 120, 000, respectively. Note that these measures

correspond simply to a TBox in the absence of any relational assertions. In the presence of

an ABox, the set of propositional clauses will increase much more.

90

In this particular example the addition of just one binary predicate almost doubles Pv

while Pc increases eight-fold6 . But the added predicate O is explicitly defined and thus can

be removed before model finding without changing the satisfiability, and its interpretation

can be reconstructed for any model later on.

We first define optional definitions, then the DBox as a maximal set of optional definitions

that can be easily removed from an ontology, and finally optional definition elimination

(ODE). Detailed theoretical characterization and empirical evaluation of the effect of ODE

on the size of propositional SAT problems arising from FOL model finding is studied in

Chapter 6.

Definition 17. A substitution is a mapping α : V → T from variables (in a term or a

formula) to terms.

• Term substitution is the result of substituting term t in term s for a term x, denoted by

s[t/x] and is defined recursively as follows: y[t/x] = if y ̸= x then y else t, when s is a

variable y; c[t/x] = c, when s is a constant c, called ground substitution; ft1...tn[t/x] =

ft1[t/x]...tn[t/x], when s is a term ft1...tn.

• Formula substitution F [t/x] can be defined similarly for a formula F to replace all free

occurrences of t with x in the formula F.

An explicit definition [32] of a predicate is a special type of TBox sentence

Definition 18. Let O be an ontology with signature λ(T). Then an explicit definition of an

n-ary predicate Ω ∈ λ(O) in an ontology O is a sentence σ ∈ TBox(O) of the form

∀x1, . . . , xn[Ω(x1, . . . , xn) ↔ α(x1, . . . , xn)]

wherein α is a formula with x1 to xn as only free variables and with λ(T) \ Ω as the only

nonlogical symbols. Then Ω is said to be explicitly defined in T .

6This variation is based on the nature of the axiomatization. Depending on the complexity of newly
added formulas, the increase can be moderate or exceptionally large.

91

Optional definitions are explicit definitions of predicates that are not used in other

sentences of the ontology’s TBox:

Definition 19. An explicit definition σ ∈ TBox(O) of a symbol Ω ∈ λ(O) is an optional definition

in O iff Ω does not appear in any sentence in TBox(O) \ σ.

Now we can recursively define larger definitions sets, with the maximal one being referred

to as the ontology’s DBox:

Definition 20. A definition set of an ontology O is defined recursively as:

B. The set of all optional definitions in TBox(O) forms a definition set;

R. For any definition set D of O and for any optional definition σ of Ω in D, the set D′

defined as follows is a definition set: D′ = D′ ∪ σ|σ ∈ D,

that is, D′ is constructed recursively by adding σ as a new definition to the set.

Definition 21. For an ontology O, DBox(O) is a definition set such that no optional

definition exists in TBox(O) \ DBox(O).

Ω ∈ λ(T) is optionally defined in O iff Ω does not appear in TBox(O) \ DBox(O).

To study how removing optionally defined predicates impacts the size of the SAT

representation, we also need to substitute the eliminated predicates in the ABox without

changing the ontology’s semantics. This is achieved by replacing assertions that use optionally

defined predicates by defined assertions.

Definition 22. Let O be an ontology and D some definition set of O.

Then ABoxD(O) = ABox(O)
[⋃

σi∈D[Ωi(x1, . . . , xn)/αi(x1, . . . , xn)]
]
.

Any sentence σ ∈ ABoxD(O) with σ /∈ ABox(O) is called a defined assertion.

In other words, ABoxD(O) is O’s ABox with all occurrences of predicates Ωi that are

optionally defined by some definition in D (which typically would be the entire DBox of O)

substituted by their definiens αi. Note that an ABox with defined assertions may no longer

92

only contain only ground unit clauses. Defined assertions may contain variables introduced

during the substitution. For example, a fact O(‘i95’, ‘295w’) would result in the defined

assertion ∃z[P (z, ‘i95’) ∧ P (z, ‘295w’)] if O is substituted by the definition from Example 4.

By how we remove optional definitions only and substitute their occurrences in the ABox ,

the satisfiability of the ontology remains unchanged. This follows directly from the well-known

relationship between explicit and implicit definability (Beth’s definability theorem [32]) and

is captured by the following theorem:

Theorem 1. Let O be an FOL ontology and D be a definition set of O. Then there is a

bijection between the models of
(
TBox(O) \D

)
∪ ABoxD(O) and the models of TBox(O) ∪

ABox(O), that is, every model of
(
TBox(O) \D

)
∪ ABoxD(O) can be uniquely expanded into

a model of TBox(O) ∪ ABox(O).

Proof. Note that from the construction of ABoxD(O) in Def. 22, D∪ ABoxD(O) ≡ ABox(O).

Further note that D explicitly defines the set of symbols in λ(O) but not used in
(
TBox(O) \

D
)

∪ ABoxD(O). Then
(
TBox(O) \D

)
∪ ABoxD(O) ∪D ≡ TBox(O) ∪ ABox(O).

We can then apply Beth’s definability theorem [32], which established a correspondence

between explicit definability of a term in FOL and implicit definability of the same terms in a

structure. Since here the predicates defined by D are explicitly definable in
(
TBox(T) \D

)
∪

ABoxD(T), they are implicitly definable in its models, which become models of TBox(T) ∪

ABox(T) by the logical equivalence of the two theories.

The DBox captures the maximal set of optional definitions that can be easily removed

without altering the ontology’s semantics.

Corollary 1. Let D = DBox(O). Then there are bijections between the models of O =

TBox(O) ∪ ABox(O) and
(
TBox(O) \ D

)
∪ ABoxD(O). And therefore, O = TBox(O) ∪

ABox(O) is satisfiable iff
(
TBox(O) \D

)
∪ ABoxD(O) is satisfiable.

93

The model are not the same because they use different signatures, but there is a mapping

between them. This idea forms the basis of our strategy for improving model finding

because
(
TBox(T) \ DBox(T)

)
has a smaller signature than O ≡ TBox(O) ∪ ABox(O) but

is equi-satisfiable. These formal results (Theorem 1 and its corollary) inform ODE as a

technique.

Definition 23. Let O be an FOL ontology, with a factual ABox(O), and let D be a definition

set of O. D could be the equal to DBox(O) or D ∈ DBox(O). Then ODE can be applied to

obtain an equi-satisfiable ontology O′ in the following way:

• For every σd ∈ D, all sentences σa ∈ ABox(O) that use Ω of σd is replaced with its defined

assertion and then σd is removed from TBox(O).

The new ABox, ABoxD(O) is called an ODE derived ABox.

Such an ABox may be non-factual and disjunctive. In addition |ABoxD(OF OL−CNF)| ≥

|ABox(OF OL−CNF)|, i.e. the number of FOL-CNF clauses in the ABox increases after ODE.

However this increase will mostly be counteracted by the reduction of FOL-CNF in the TBox

from the removal of definitions. This will be examined in more detail in the next chapter.

The following example illustrates the effect of ODE on the size of the resulting SAT

problem.

Ontology before ODE Ontology after removing PP

TBox(O) ≡ DBox(O) TBox(O) ≡
(
DBox(O) \σPP

)
σP : P (x, y) ↔ ∀z[C(z, x) → C(z, y)]

σP P : PP(x, y) ↔ P (x, y) ∧ ¬P (y, x)

σP : P (x, y) ↔ ∀z[C(z, x) → C(z, y)]

σP P : Removed

ABox(O) ABoxD(O)

β: PP(‘exit193′, ‘i95′) β′: P (‘exit193′, ‘i95′) ∧ ¬P (‘i95′, ‘exit193′)

Table 5.2: Example of an ontology O with a TBox and ABox, before and after ODE.

94

Example 5. Consider the ontology ORCC-s from Example 1. DBox(ORCC-s) contains two

predicates, namely PP and P that are optionally defined, but we use the definition set

containing PP to eliminate. Further assume that its ABox still contains β as only assertion

(cf. Table 5.2). Now applying ODE only on PP removes σPP from the TBox and substitutes

all occurrences of PP in the ABox with its defined assertion P (x, y) ∧ ¬P (y, x). β will

become β′. After ODE, the ontology only has two instead of three binary predicates. For the

example domain size 20, the propositional problem now contains 2 ∗ 202 + 1 ∗ 203 = 8, 800

propositional variables instead of 3 ∗ 202 + 1 ∗ 203 = 9, 200 as previously. Likewise, the number

of propositional clauses is reduced from 10, 400 to 10, 000. Much larger decreases can be

realized by eliminating syntactically more complex definitions, such as the definition of P

that contains an existential quantifier. Removing it would eliminate the ternary predicate and

lead to a SAT representation with only 2 ∗ 202 = 800 propositional variables arising from its

TBox7 .

5.4 Discussion and Conclusion

In this chapter we have presented a formalization of FOL ontologies with data and have

identified important parameters for quantifying the size of their FOL-CNF representation:

number of predicates and their arity, number of clauses, formula-width, and variable density,

thereby addressing objective 2 (O2 in Section 1.2.2) of the dissertation. We then proceeded to

demonstrate how the SAT search space, which is bound by the set of propositional variables

in the ontology’s SAT translation is exponential in the number of predicates of highest arity

and domain size. The number of propositional clauses grows polynomially with respect to

the number of FOL-CNF clauses but grows exponentially with respect to the highest number

of variables in any clause of the FOL-CNF formula and domain size. We have identified these

measures as the primary sources of the limitations for model finding with FOL ontologies with

larger signatures. We have introduced optional definition elimination technique to eliminate

7The number would be larger if the ABox heavily uses the eliminated predicate, as that would reintroduce
some variables via Skolemization.

95

sets of optionally defined predicates from an ontology to reduce the dramatic growth in size

of its SAT problem during model finding with increasing domain sizes. In the following two

chapters, we will use ODE as FOL preprocessing technique to simplify ontologies and curb

the otherwise very quick growth in the size of their SAT translations with increasing sized

datasets and subsequently verify their improved model finding in practice.

96

CHAPTER 6

THE IMPACT OF ODE ON THE SIZE OF THE SAT PROBLEM FOR FOL

MODEL FINDING

In Chapter 5 we identified two measures that – independent of a particular model finder —

have an outsized impact on the size of the SAT translations of data-integrated FOL ontologies.

They are: (1) the number of predicates of highest arity in the ontology, (2) the domain size

of the ABox, i.e. the number of distinct named entities. Using examples we illustrated that

the search space of the SAT problem determined by the number of propositional variables is

exponential in the domain size of the dataset and the number of distinct predicates in an

ontology, but double exponential in the highest arity of these predicates. The great majority

of domain and application ontologies use unary and binary predicates (classes and relations) –

in fact the language of more restricted ontology languages (DL-based, like OWL) is limited to

those. However, when FOL ontologies are translated to SAT, existentially-quantified variables

get skolemized introducting additional, mostly binary and ternary (and sometimes higher

arity) predicates. This increase in signature during clausification of the ontology to FOL-CNF

negatively influences solver performance. To overcome this drawback, we introduced in

Chapter 4 Pv and Pc of the SAT representation as quantitative measures contributing to the

hardness of model finding and Optional Definition Elimination (ODE) as an FOL formula

simplification technique for specifically lowering Pv. In this chapter we address objective 3

(O3 in Section 1.2.2) of this dissertation to understand how specific size measures have the

greatest impact on the hardness of model finding from a theoretical perspective. We study

in more detail how ODE affects the size of the SAT problems resulting from different sized

data-integrated ontologies. ODE reduces Pv by removing defined predicates of highest arity

from an ontology. This reduction is performed before the FOL formula is clausified, and

when judiciously applied to an ontology leads to a smaller SAT problem (with fewer clauses

and variables) without changing its satisfiability and semantic meaning.

97

Through the systematic construction of different versions for a set of three sample

ontologies, we analyze how removing different definition sets and replacing ground facts with

defined assertions in the ABox correlate with the size of the resulting SAT problem. We

hypothesize that in most cases, aggressive ODE on predicates of highest arity will yield

a significant reduction in the number of propositional variables, but this reduction may

sometimes be coupled with an increase in propositional clauses depending on the nature

of formalization of the eliminated predicates. We present the theoretical implications of

this assumption on the constructed sample ontologies by specifically trying to answer the

following question: how does the elimination of optional predicates from an FOL ontology

O have any bearing on the size of the resulting SAT problem as measured in terms of the

three identified parameters1 : the number of propositional variables, number of propositional

clauses in the SAT problem OCNF-d, and (maximal and median)-width of the intermediary

clausified formula OFOL-CNF.

6.1 Design of Study

Our own experience tells us that there is a lot of variability in the performance of model

finders with FOL ontologies that arise from seemingly minor syntactic differences (names

of relations, style of writing axioms, inclusion or exclusion of lemmas, etc.). To eliminate

such factors, for each ontology (CODI, RCC and INCH) we construct sets of equivalent

axiomatizations that differ in the inclusion or exclusion of additional definitions and the

substitution of ground facts by defined assertions to keep the number of possible models

constant regardless of whether extra definitions are present or not2 . Optional Definition

Elimination as introduced in Section 5.3 allows the removal of sets of definitions from the

DBox of an ontology (with or without an ABox) without altering its semantic meaning. Using

1Many previous works focus on clauses-to-variables ratio as an indicator of the complexity or hardness of
the problem [153, 51, 206, 247], but here we study the implications of their absolute values besides other
measures.

2The number of models can be thought of as a hardness criteria as more models increase the chance to
encounter a model early during the SAT solving process, thus leading to faster runtimes on average.

98

this technique we can reduce the number of propositional variables and clauses in its SAT

translation – OCNF-d, for more efficient model finding.

6.1.1 Construction of TBoxes with Different Extents of ODE
In order to construct sets of ontologies (TBox and ABox) that admit equivalent models

(apart from the defined predicates that can be reconstructed), we first construct sub-TBoxes

for each of the three spatial ontologies: CODI, RCC and INCH. These ontologies are ideal for

our study because: (1) they are about the right extent in terms of their size as measured in

terms of the length and number of variables in the generated FOL-CNF clauses, (2) they have

sets of binary defined predicates available for ODE, (3) model finding using them is difficult

making them effective for our studies in understanding their hardness, (4) real datasets are

readily available for these qualitative spatial ontologies – any spatial dataset from GIS can

be accessed using terminology from the SFA-FOL formalization provided in Chapter 4. A

secondary reason is that we simultaneously verify these ontologies3 against real datasets,

thus improving our confidence in the ontologies themselves and testing the feasibility of joint

qualitative-geometric spatial reasoning as outlined in [256]. The different TBoxes that we

construct – which we refer to as cases – differ only in the inclusion or exclusion of one or

more definitions from its DBox. Details of the definitions included in each TBox is provided

in Tables 6.1.2, 6.1.2 and ??. For each theory we have a default case, which takes the

original unaltered axiomatization of the theory (case 13, 7, and 4 for CODI, RCC, and INCH,

respectively that contain (|Ωa=1|, |Ωa=2|)4 = (8,13), (0,6), (0,7) predicates). In addition, we

remove one or multiple definitions of binary predicates at a time5 , resulting in a total of

13/7/4 cases for the three ontologies, with case 1 being the TBox with the least definitions

included ((|Ωa=1|, |Ωa=2|) = (8,8), (0,1), (0,5) predicates for case 1 in each of the theories).

The definitions that we chose for elimination are only some of the optional definitions. For

example, case 1 for CODI still contains some defined predicates, as well as the ontologies’

3External verification of SFA-FOL is also made possible through a similar process.
4Number of unary and binary predicates in each theory.
5The terminologies of the studied ontologies primarily consist of binary predicates, but also some unary

predicates. Only definitions for binary predicates are removed.

99

primitive predicates6 . Table 6.1 provides the list of primitives, defined predicates (some are

optional) that are not touched during ODE, and the optional predicates that are removed in

some of the TBoxes for the three ontologies.

Simplification using ODE is expected to be most relevant to ontologies that meet the

following necessary requirements: (1) have many explicit definitions, i.e. with a large DBox,

(2) the explicit definitions build on top of each other and do not contain cyclic dependencies7

, or taxonomic hierarchies.

Figure 6.1 shows the dependency graphs between predicates in CODI, RCC, and INCH

ontologies, e.g. PP in CODI is defined using P in the definiens, but P itself is defined in terms

of two primitives (Cont and EqDim). Then a simple ground fact using PP can recursively

undergo ODE as follows:

Original sentence PP(‘segment1103’, ‘road_I95’)

After removing PP P (‘segment1103’, ‘road_I95’) ∧ (segment1103’ ̸= ‘road_I95’)

After removing P
Cont(‘segment1103’, ‘road_I95’) ∧ EqDim(‘segment1103’, ‘road_I95’) ∧

(segment1103’ ̸= ‘road_I95’)

Figure 6.1: Dependencies between defined predicates in the RCC, CODI and INCH ontologies.
They show the recursive structure of the defined predicates. For example, in CODI, PP is
recursively defined using Cont.

6The primitives in an ontology are not defined and not available for ODE.
7For example, CODI, RCC, INCH, non-cyclic nature of dependencies, as observed from Figure 6.1

100

CODI
Terms included in all cases
Primitive binary terms Cont, Leq
Primitive unary terms S, ZEX
Defined binary terms Lt, Gt, Geq, EqDim, Covers, P, PP, C, PO, Inc, SC
Defined unary terms MinDim, MaxDim, PointRegion, Point, Curve, ArealRegion
Optionally defined terms that are removed in some cases
PP(x,y) ↔ P (x, y) ∧ x ̸= y

C(x,y) ↔ ∃z[Cont(z, x) ∧ Cont(z, y)]
PO(x,y) ↔ ∃z[P (z, x) ∧ P (z, y)]

Inc(x,y) ↔ ∃z[Lt(z, x) ∧ Cont(z, x) ∧ P (z, y)] ∨ ∃z[Lt(z, x) ∧ Cont(z, x)∧
P (z, y)]

SC(x,y) ↔ ∃z[Cont(z, x) ∧ Cont(z, y)] ∧ ∀z[Cont(z, x) ∧ Cont(z, y) →
Lt(z, x) ∧ Lt(z, y)]

RCC
Terms included in all cases
Primitive binary terms C, PP, O, EC, NTTP
Defined binary terms P, PP, O, EC, NTPP
Optionally defined terms that are removed in some cases
P(x,y) ↔ ∀z[C(z, x) → C(z, y)]
PP(x,y) ↔ P (x, y) ∧ ¬P (y, x)
O(x,y) ↔ ∃z[P (z, x) ∧ P (z, y)]
EC(x,y) ↔ C(x, y) ∧ ¬O(x, y)
NTTP(x,y) ↔ PP (x, y) ∧ ¬∃z[EC(z, y) ∧ EC(z, y)]

INCH
Terms included in all cases
Primitive binary terms INCH, GED
Primitive unary terms ZEXI
Defined binary terms CH, CS, CO, OV
Optionally defined terms that are removed in some cases
CS(x,y) ↔ ∀z[INCH(x, z) → INCH(y, z)]

CH(x,y) ↔ INCH(x, y) ∧ ∀z[(INCH(x, z) ∧ INCH(z, x)) →
(INCH(y, z) ∧ INCH(z, y))]

CO(x,y) ↔ ∀z[¬ZEXI(z) ∧ CS(z, x) ∧ CS(z, y)]
OV(x,y) ↔ ∀INCH(x, y) ∧ INCH(y, x)

Table 6.1: Predicates (FOL literals) for each of the ontologies RCC, CODI and INCH used in
the theoretical study here and empirical analysis in Chapter 7.

101

6.1.2 Constructing (r-d) ABoxes

The composition of ABoxes can vary widely: it may contain a handful or thousands of

facts, and some predicates may be used much more than others. In the extreme case, many

predicates may only rarely or not at all be used in an ABox. To study the impact of the

ABox in a more systematic way, we need to carefully control its size and makeup. Thus we

have designed the study to control two parameters: (1) the domain size d of a model which

corresponds to the number of distinct spatial objects (i.e. individuals in ontology parlance)

in a sample ABox, and (2) the assertion density r, which indicates how many assertions for

each binary optional predicate in the default ontology are included. More precisely, for a

given r, we aim to include the same number of (r) positive and (r) negative assertions for

each binary predicate in the DBox. Such an ABox is called an (r-d)ABox defined as follows:

Definition 24. Let O be an ontology and D a domain of individuals. ABox(O) is called a

(r-d)ABox iff it contains the following assertions:

1. For each Ω ∈ λ(O) with arity a(Ω) ≥ 2, ABox(O) contains exactly r ground positive

assertions (i.e. of the form Ω(d1, d2, . . .)) and exactly r ground negated assertions (i.e. of

the form ¬Ω(d′
1, d

′
2, . . .) where di, d

′
i ∈ D;

2. ABox(O) contains at most one sentence of the format Ω(d) for each d ∈ D where Ω is a

unary predicate (i.e. Ω ∈ λ(O) and a(Ω) = 1)8 ;

3. Distinctness assertions of the form di ̸= dj ∈ABox(O) for each pair (di, dj) ∈ D with

di ̸= dj.

8This criteria captures the idea that each individual in the domain can be asserted to be a member of
some class; but this restriction does not significantly impact the overall size of the ABox or the resulting SAT
problem, which is dominated by the number of assertions of the first kind.)

102

T
B

ox
B

as
ic

A
B

ox
(i

.e
.

r
=

1)

|C
T
|w

ith
v

FO
L

va
ria

bl
es

|C
T
|

w
ith

W
≥

3

|C
A

|

w
ith

v
va

ria
bl

es

|C
A

|w
ith

w
id

th
w

C
as

e
D

efi
ne

d
P

re
di

ca
te

s

in
cl

ud
ed

|Ω
a

=
1|

|Ω
a

=
2|

|C
T
|

v
=

3
v
=

2
v
=

1
v
=

0
-

|sf
a

=
1|

|sf
a

=
2|

|sf
a

=
3|

|C
A

|
v
=

1
v
=

0
w

=
4

w
=

3
|sf

a
=

1|

1
-(

al
lc

as
es

in
cl

ud
e

22
ot

he
r

pr
ed

ic
at

es
)

8
8

65
3

32
29

1
31

1
5

1
27

10
17

1
6

6

2
PP

8
9

68
3

35
29

1
33

1
5

1
26

9
17

1
6

6

3
C

8
9

68
4

34
29

1
33

1
5

2
25

8
17

1
6

5

4
C

+
PP

8
10

71
4

37
29

1
35

1
5

2
25

8
17

1
6

5

5
PO

8
9

68
4

34
29

1
33

1
5

2
26

8
18

1
6

5

6
PO

+
PP

8
10

71
4

37
29

1
33

1
5

2
25

8
17

1
6

5

7
PO

+
PP

+
C

8
11

74
5

39
29

1
35

1
5

3
24

7
17

1
6

4

8
In

c
8

9
76

5
41

29
1

43
1

5
3

18
7

11
1

4
4

9
In

c
+

PP
8

10
79

5
44

29
1

43
1

5
3

17
7

10
1

4
4

10
In

c
+

PP
+

C
+

PO
8

12
85

7
48

29
1

45
1

6
4

15
5

10
1

4
2

11
SC

8
9

72
8

34
29

1
36

1
5

3
22

4
18

0
2

4

12
SC

+
PP

8
10

75
8

37
29

1
38

1
5

3
21

4
17

0
2

4

13
SC

+
PP

+
C

+
PO

+
In

c
8

13
92

12
50

29
1

51
1

5
7

10
0

10
0

0
0

Ta
bl

e
6.

2:
Q

ua
nt

ita
tiv

e
su

m
m

ar
y

of
th

e
TB

ox
es

,t
he

FO
L-

CN
F

fo
rm

ul
as

of
th

es
e

TB
ox

es
,a

nd
th

e
ba

sic
A

Bo
x

fo
rt

he
13

ca
se

se
xp

er
im

en
te

d
wi

th
in

C
O

D
I.

Ea
ch

ro
w

re
pr

es
en

ts
on

e
ca

se
,i

nd
ica

tin
g

th
e

in
clu

de
d

op
tio

na
ld

efi
ni

tio
ns

,a
nd

st
at

ist
ics

of
th

e
re

su
lti

ng
FO

L-
CN

F
on

to
lo

gi
es

.
Th

e
ab

br
ev

ia
tio

ns
de

no
te

:
Ω a

=
2,

Ω a
=

1:
bi

na
ry

an
d

un
ar

y
pr

ed
ica

te
s;
C

:
FO

L-
CN

F
cla

us
es

;v
:

va
ria

bl
es

in
a

FO
L-

CN
F

cla
us

e;
w

:
lit

er
al

s
in

a
FO

L-
C

N
F

cl
au

se
;s

f a
=

1,
sf

b
-u

na
ry

an
d

bi
na

ry
sk

ol
em

fu
nc

tio
ns

in
tr

od
uc

ed
in

th
e

co
nv

er
sio

n
to

FO
L-

C
N

F;
|C

T
|:

nu
m

be
r

of
FO

L-
C

N
F

cl
au

se
s

fro
m

th
e

T
Bo

x;
|C

A
|:

nu
m

be
r

of
FO

L-
C

N
F

cl
au

se
s

fro
m

a
Ba

sic
A

Bo
x

(t
ha

t
is,

fo
r

an
A

Bo
x

w
ith

r
=

1)
.

103

6.2 The Impact of ODE on the Size of the SAT Problem

In this section we investigate the following dependencies between specifications of a OCNF-d

problem: (1) variation in propositional variables (Pv) and propositional clauses (Pc) with

increasing use of ODE, (2) variation in Pv and Pc with increasing domain size and number of

relational assertions – Pv vs. d, r and Pc vs. d, r.

Graph 6.3 shows the trends for Pv and Pc for CODI, RCC and INCH across the cases

when ODE is applied at various degrees (various sets of defined predicates being removed) for

increasing domain sizes d or increasing r values. The graphs clearly show that Pv increases

polynomially with increasing d, while r has a lesser impact. These changes are analyzed

further in Section 6.2.1. But the differences between the cases in the graphs also show that

Pc also significantly grows with an increasing number of predicates in the TBox as further

analyzed in Sec 6.2.2. Pv and Pc for different (r-d) values are calculated from size measures

of the clausified TBox and a basic ABox9 .

Building on Lemmas 1 and 2, the size of the SAT problem resulting from an (r-d)ABox

can now be calculated as follows:

Lemma 3. Let O be an FOL ontology with ABox(O) being an (r-d)ABox thereof. |Ωa=i| is

the set of predicates in OFOL-CNF with maximum arity denoted by a∗. Let v∗ be the maximum

number of FOL variables in a single clause in OFOL-CNF.

Then the resulting propositional SAT problem contains

• Pv =
a∗∑

i=1
di · |Ωa=i| + r ·

a∗∑
i=1

di · |sf A,a=i| propositional variables; and

• Pc =
v∗∑

i=0
di · |CT,v=i| + r ·

v∗∑
i=0

di · |CA,v=i|) propositional clauses.

The last terms in each of these formulas capture the ABox’s contribution – in terms of

the number of assertions – to the size of the SAT problem. But it becomes clear that for

factual ABoxes (and without any definition elimination), this contribution is negligible: Pv

9An ABox that contains exactly one positive and one negated assertion for each of the optionally defined
terms in the theory.

104

A
B

ox
fo

r
r

=
5

(T
ot

al
of

40
re

la
ti

on
al

as
se

rt
io

ns
)

A
B

ox
fo

r
r

=
10

(T
ot

al
of

80
re

la
ti

on
al

as
se

rt
io

ns
)

P
v

P
c

P
v

P
c

S.
N

o
D

efi
ne

d
pr

ed
ic

at
es

in
cl

ud
ed

d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50

1
-(

al
lc

as
es

in
cl

ud
e

22
ot

he
r

pr
ed

ic
at

es
)

13
98

0
39

87
0

86
36

0
15

94
50

37
90

6
11

14
16

24
53

26
45

76
36

14
58

0
40

77
0

87
56

0
16

09
50

38
99

1
11

30
01

24
74

11
46

02
21

2
PP

14
38

0
40

77
0

87
96

0
16

19
50

39
00

6
11

39
66

24
99

26
46

48
86

14
98

0
41

67
0

89
16

0
16

34
50

39
99

1
11

54
01

25
18

11
46

72
21

3
C

22
28

0
67

62
0

15
17

60
28

67
00

46
50

6
13

99
16

31
21

26
58

71
36

22
78

0
68

37
0

15
27

60
28

79
50

47
39

1
14

12
01

31
38

11
58

92
21

4
C

+
PP

22
68

0
68

52
0

15
33

60
28

92
00

47
70

6
14

26
16

31
69

26
59

46
36

23
18

0
69

27
0

15
43

60
29

04
50

48
59

1
14

39
01

31
86

11
59

67
21

5
PO

22
28

0
67

62
0

15
17

60
28

67
00

46
51

1
13

99
21

31
21

31
58

71
41

22
78

0
68

37
0

15
27

60
28

79
50

47
40

1
14

12
11

31
38

21
58

92
31

6
PO

+
PP

22
68

0
68

52
0

15
33

60
28

92
00

47
70

6
14

26
16

31
69

26
59

46
36

23
18

0
69

27
0

15
43

60
29

04
50

48
59

1
14

39
01

31
86

11
59

67
21

7
PO

+
PP

+
C

30
98

0
96

27
0

21
87

60
41

64
50

56
40

6
17

12
66

38
39

26
72

43
86

31
38

0
96

87
0

21
95

60
41

74
50

57
19

1
17

24
01

38
54

11
72

62
21

8
In

c
30

18
0

94
47

0
21

55
60

41
14

50
57

17
6

17
30

36
38

70
96

72
93

56
30

58
0

95
07

0
21

63
60

41
24

50
57

93
1

17
41

41
38

85
51

73
11

61

9
In

c
+

PP
30

58
0

95
37

0
21

71
60

41
39

50
58

37
1

17
57

31
39

18
91

73
68

51
30

98
0

95
97

0
21

79
60

41
49

50
59

12
1

17
68

31
39

33
41

73
86

51

10
In

c
+

PP
+

C
+

PO
39

58
0

12
47

70
28

55
60

54
59

50
75

77
1

23
30

31
52

58
91

99
63

51
39

78
0

12
50

70
28

59
60

54
64

50
76

32
1

23
38

31
52

69
41

99
76

51

11
SC

30
18

0
94

47
0

21
55

60
41

14
50

78
11

1
24

73
21

56
73

31
10

86
14

1
30

58
0

95
07

0
21

63
60

41
24

50
78

60
1

24
80

11
56

82
21

10
87

23
1

12
SC

+
PP

30
58

0
95

37
0

21
71

60
41

39
50

79
30

6
25

00
16

57
21

26
10

93
63

6
30

98
0

95
97

0
21

79
60

41
49

50
79

79
1

25
07

01
57

30
11

10
94

72
1

13
SC

+
PP

+
C

+
PO

+
In

c
63

38
0

20
54

70
47

71
60

92
04

50
11

60
71

36
90

81
84

80
91

16
25

10
1

63
38

0
20

54
70

47
71

60
92

04
50

11
61

21
36

91
31

84
81

41
16

25
15

1

Ta
bl

e
6.

3:
P

v
an

d
P

c
in

th
e

pr
op

os
iti

on
al

fo
rm

ul
as

fo
rd

iff
er

en
tA

Bo
x

siz
es

fo
rt

he
13

ca
se

se
xp

er
im

en
te

d
wi

th
in

C
O

D
I.

Ea
ch

ro
w

re
pr

es
en

ts
on

e
ca

se
,i

nd
ic

at
in

g
th

e
in

cl
ud

ed
op

tio
na

ld
efi

ni
tio

ns
,a

nd
ex

am
pl

e
st

at
ist

ic
s

of
th

e
re

su
lti

ng
pr

op
os

iti
on

al
iz

ed
ve

rs
io

ns
fo

r
sa

m
pl

es
siz

es
20

,
30

,4
0,

an
d

50
.
d
:

do
m

ai
n

siz
e

(i.
e.

di
st

in
ct

in
di

vi
du

al
s

in
th

e
A

Bo
x

sa
m

pl
es

),
an

d
r

va
lu

es
5,

10
.

105

T
B

ox
B

as
ic

A
B

ox
(i

.e
.

r
=

1)

C
as

e
D

efi
ne

d
pr

ed
ic

at
es

in
cl

ud
ed

|Ω
a

=
2|

|C
T
|

|C
T
|w

ith
v

FO
L

va
ria

bl
es

|C
T
|

w
ith

w
≥

3
|sf

a
=

3|
|C

A
|

|C
A

|w
ith

v
va

ria
bl

es

|C
A

|w
ith

w
id

th
w

|sf
a

=
1|

|sf
a

=
2|

v
=

3
v
=

2
v
=

1
v
=

3
v
=

2
v
=

1
v
=

0
w

=
6

w
=

5
w

=
4

w
=

3

1
C

1
2

0
1

1
0

0
45

4
16

20
5

4
16

4
8

7
10

2
C

+
P

2
6

1
4

1
2

1
20

0
0

8
12

0
0

6
2

3
2

3
C

+
P+

PP
3

9
1

7
1

3
1

18
0

0
8

10
0

0
4

2
3

2

4
C

+
P+

O
3

9
2

6
1

3
2

15
0

0
1

14
0

0
1

4
1

0

5
C

+
P+

PP
+

O
4

12
2

9
1

4
2

13
0

0
1

12
0

0
1

0
1

0

6
C

+
P+

PP
+

O
+

EC
5

15
2

12
1

5
2

10
0

0
1

9
0

0
0

0
1

0

7
C

+
P+

PP
+

O
+

EC
+

N
T

PP
6

19
3

11
1

8
2

8
0

0
0

8
0

0
0

0
0

0

A
B

ox
fo

r
r

=
5

(T
ot

al
of

40
re

la
ti

on
al

as
se

rt
io

ns
)

A
B

ox
fo

r
r

=
10

(T
ot

al
of

80
re

la
ti

on
al

as
se

rt
io

ns
)

P
v

P
c

P
v

P
c

S.
N

o
D

efi
ne

d
pr

ed
ic

at
es

in
cl

ud
ed

d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50

1
C

21
10

0
46

95
0

83
00

0
12

92
50

19
44

25
61

59
25

14
13

62
5

27
07

52
5

41
80

0
93

00
0

16
44

00
25

60
00

38
84

50
12

30
95

0
28

25
65

0
54

12
55

0

2
C

+
P

13
10

0
38

25
0

83
80

0
15

57
50

10
46

0
31

86
0

72
06

0
13

70
60

17
40

0
47

70
0

10
04

00
18

15
00

11
32

0
33

12
0

73
72

0
13

91
20

3
C

+
P+

PP
13

50
0

39
15

0
85

40
0

15
82

50
11

65
0

34
55

0
76

85
0

14
45

50
17

80
0

48
60

0
10

20
00

18
40

00
12

50
0

35
80

0
78

50
0

14
66

00

4
C

+
P+

O
17

30
0

56
85

0
13

30
00

25
77

50
18

57
0

59
62

0
13

78
70

26
53

20
17

40
0

57
00

0
13

32
00

25
80

00
18

74
0

59
84

0
13

81
40

26
56

40

5
C

+
P+

PP
+

O
17

70
0

57
75

0
13

46
00

26
02

50
19

76
0

62
31

0
14

26
60

27
28

10
17

80
0

57
90

0
13

48
00

26
05

00
19

92
0

62
52

0
14

29
20

27
31

20

6
C

+
P+

PP
+

O
+

EC
18

10
0

58
65

0
13

62
00

26
27

50
20

94
5

64
99

5
14

74
45

28
02

95
18

20
0

58
80

0
13

64
00

26
30

00
21

09
0

65
19

0
14

76
90

28
05

90

7
C

+
P+

PP
+

O
+

EC
+

N
T

PP
26

40
0

86
40

0
20

16
00

39
00

00
28

44
0

90
94

0
20

96
40

40
25

40
26

40
0

86
40

0
20

16
00

39
00

00
28

48
0

90
98

0
20

96
80

40
25

80

Ta
bl

e
6.

4:
Q

ua
nt

ita
tiv

e
su

m
m

ar
y

of
th

e
T

B
ox

es
,F

O
L-

C
N

F
fo

rm
ul

as
of

th
es

e
T

B
ox

es
,t

he
ba

sic
A

B
ox

,a
nd

(r
-d

)-
A

B
ox

es
of

th
e

7
ca

se
s

ex
pe

rim
en

te
d

w
ith

in
R

C
C

.E
ac

h
ro

w
re

pr
es

en
ts

on
e

ca
se

,i
nd

ic
at

in
g

th
e

in
cl

ud
ed

op
tio

na
ld

efi
ni

tio
ns

,a
nd

st
at

ist
ic

s
of

th
e

re
su

lti
ng

FO
L-

C
N

F
on

to
lo

gi
es

.
Th

e
ab

br
ev

ia
tio

ns
de

no
te

:
Ω a

=
2,

Ω a
=

1:
bi

na
ry

an
d

un
ar

y
pr

ed
ica

te
s;
C

:
FO

L-
CN

F
cla

us
es

;v
:

va
ria

bl
es

in
a

FO
L-

CN
F

cla
us

e;
w

:
lit

er
al

s
in

a
FO

L-
C

N
F

cl
au

se
;s

f a
=

1,
sf

b
-u

na
ry

an
d

bi
na

ry
sk

ol
em

fu
nc

tio
ns

in
tr

od
uc

ed
in

th
e

co
nv

er
sio

n
to

FO
L-

C
N

F;
|C

T
|:

nu
m

be
r

of
FO

L-
C

N
F

cl
au

se
s

fro
m

th
e

T
Bo

x;
|C

A
|:

nu
m

be
r

of
FO

L-
C

N
F

cl
au

se
s

fro
m

a
Ba

sic
A

Bo
x

(t
ha

t
is,

fo
r

an
A

Bo
x

w
ith

r
=

1)
.

106

T
B

ox
B

as
ic

A
B

ox
(i

.e
.

r
=

1)

|C
T
|w

ith
v

FO
L

va
ria

bl
es

|C
T
|

w
ith

w
≥

3

|C
A

|w
ith

v
va

ria
bl

es

|C
A

|w
ith

w
id

th
w

C
as

e
D

efi
ne

d
pr

ed
ic

at
es

in
cl

ud
ed

|Ω
b
|

|C
T
|

v
=

3
v
=

2
v
=

1
-

|sf
a

=
3|

|C
A

|
v
=

3
v
=

2
v
=

1
v
=

0
w

=
4

w
=

3
|sf

a
=

1|
|sf

a
=

2|
|sf

a
=

3|

1
IN

C
H

+
C

S+
C

H
5

33
10

21
2

19
7

42
10

21
3

8
4

16
1

0
7

2
IN

C
H

+
C

S+
C

H
+

O
V

6
36

10
24

2
20

7
44

10
24

3
7

4
17

1
0

7

3
IN

C
H

+
C

S+
C

H
+

C
O

6
39

11
24

4
20

8
44

11
24

2
7

5
15

0
0

8

4
IN

C
H

+
C

S+
C

H
+

C
O

+
O

V
7

42
11

27
4

21
8

45
11

27
2

5
5

16
0

0
8

A
B

ox
fo

r
r

=
5

(T
ot

al
of

20
re

la
ti

on
al

as
se

rt
io

ns
)

A
B

ox
fo

r
r

=
10

(T
ot

al
of

40
re

la
ti

on
al

as
se

rt
io

ns
)

P
v

P
c

P
v

P
c

S.
N

o
D

efi
ni

ti
on

s
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50
d
=

20
d
=

30
d
=

40
d
=

50

1
IN

C
H

+
C

S+
C

H
58

10
0

19
36

50
45

62
00

88
77

50
88

54
0

28
90

90
67

38
40

13
02

79
0

58
20

0
19

38
00

45
64

00
88

80
00

88
68

0
28

92
80

67
40

80
13

03
08

0

2
IN

C
H

+
C

S+
C

H
+

O
V

58
50

0
19

45
50

45
78

00
89

02
50

89
73

5
29

17
85

67
86

35
13

10
28

5
58

60
0

19
47

00
45

80
00

89
05

00
89

87
0

29
19

70
67

88
70

13
10

57
0

3
IN

C
H

+
C

S+
C

H
+

C
O

66
40

0
22

14
00

52
16

00
10

15
00

0
97

63
5

31
86

35
74

24
35

14
35

03
5

66
40

0
22

14
00

52
16

00
10

15
00

0
97

67
0

31
86

70
74

24
70

14
35

07
0

4
IN

C
H

+
C

S+
C

H
+

C
O

+
O

V
66

80
0

22
23

00
52

32
00

10
17

50
0

98
83

0
32

13
30

74
72

30
14

42
53

0
66

80
0

22
23

00
52

32
00

10
17

50
0

98
86

0
32

13
60

74
72

60
14

42
56

0

Ta
bl

e
6.

5:
Q

ua
nt

ita
tiv

e
su

m
m

ar
y

of
th

e
T

B
ox

es
,F

O
L-

C
N

F
fo

rm
ul

as
of

th
es

e
T

B
ox

es
,t

he
ba

sic
A

B
ox

,a
nd

(r
-d

)-
A

B
ox

es
of

th
e

4
ca

se
s

ex
pe

rim
en

te
d

w
ith

in
IN

C
H

.E
ac

h
ro

w
re

pr
es

en
ts

on
e

ca
se

,i
nd

ic
at

in
g

th
e

in
cl

ud
ed

op
tio

na
ld

efi
ni

tio
ns

,a
nd

st
at

ist
ic

s
of

th
e

re
su

lti
ng

FO
L-

C
N

F
on

to
lo

gi
es

.
Th

e
ab

br
ev

ia
tio

ns
de

no
te

:
Ω a

=
2,

Ω a
=

1:
bi

na
ry

an
d

un
ar

y
pr

ed
ica

te
s;
C

:
FO

L-
CN

F
cla

us
es

;v
:

va
ria

bl
es

in
a

FO
L-

CN
F

cla
us

e;
w

:
lit

er
al

s
in

a
FO

L-
C

N
F

cl
au

se
;s

f a
=

1,
sf

b
-u

na
ry

an
d

bi
na

ry
sk

ol
em

fu
nc

tio
ns

in
tr

od
uc

ed
in

th
e

co
nv

er
sio

n
to

FO
L-

C
N

F;
|C

T
|:

nu
m

be
r

of
FO

L-
C

N
F

cl
au

se
s

fro
m

th
e

T
Bo

x;
|C

A
|:

nu
m

be
r

of
FO

L-
C

N
F

cl
au

se
s

fro
m

a
Ba

sic
A

Bo
x

(t
ha

t
is,

fo
r

an
A

Bo
x

w
ith

r
=

1)
.

107

will not change at all (because ground unit clauses do not yield any Skolem functions), while

Pc includes exactly as many extra clauses as are contained in the ABox. Even for ABoxes

with thousands of facts, this is relatively small compared to the number of clauses that are

generated from the TBox for growing domain sizes. This shows that the size of the ABox

in terms of r is not really a problem for model finding, but the signature of the TBox and

domain size are.

For example, Pv and Pc for the default cases for CODI, RCC, and INCH for domain

size d = 20 and r = 1 are (26,400, 28,408), (63,380, 116,031), and (66,800, 98,806). For

the same domain size, when r = 20, Pv and Pc are (26,400, 28,560), (63,380, 116,221), and

(66,800, 98,920), but when the domain size is doubled (i.e. d = 40), they yield the following

values: (201,600, 209,760), (477,160, 848,241), and (523,200, 747,320). This informs that any

differences or significant increase in Pv and Pc (that will influence model finding) arises from

the first terms in the formulas – the number of predicates in the TBox and their arity, and

domain size.

6.2.1 Growth in Propositional Variables with Different (r-d)ABoxes
and Different Definition Sets

Reiterating from Chapter 5, the search for a model for OCNF-d has the worst-case complexity

O(Pv) = O(|Ωa=a∗| · da∗) where a∗ is the highest arity of all predicates in OFOL-CNF. This

search space, which is set by Pv is exponential in the size of the terminology of the ontology.

Influence of ODE (with different sets of eliminated definitions): Overall, Pv

decreases with an increased number of definitions being removed, though the reduction is

minimal in some cases (e.g. removing the comparatively simple definition of PP from CODI’s

case 2 decreases Pv only between 1-4% for different r-d values), and sometimes the decrease

is substantial when the removed definition is longer or more complex (e.g. removing SC

from CODI’s case 12 decreases Pv between 50-60% for different r-d values). The elimination

of the five binary predicates SC , Inc,PO,PP and C from CODI (from case 13 to case 1)

108

reduces the number of propositional variables to roughly one-third even though 9 other binary

predicates are still maintained (i.e. only 67% of all predicates are kept). Then there are the

cases where elimination of nested-defined predicates (e.g. a definition using in its definiens

other defined predicates slated for elimination) leads to the addition of Skolem functions10

that get translated to predicates of higher arity. This is seen in RCC’s case 1, whose DBox

has 0 optional predicates (eliminating the five optional predicates P , PP , O, EC and NTPP),

however clausification results in a larger signature mostly contributed from the ABox (7 unary

and 10 binary Skolem functions are added from a basic ABox) leading to very large values

for Pv. But cases 2 and 4 in RCC demonstrate a significant decrease from the default case,

where the removal of 4 and 3 optional predicates (but not removing P and O), respectively,

decreases Pv from 390,000 (case 7) to 207,250 (case 2) and 209,750(case 3), approximately

47% decrease for d = 50 and r = 15. The trends of Pv for INCH seem relatively flat, because

any decrease in signature from ODE gets counteracted by new predicates being added as the

result of skolemization of the TBox and ABox. Still the removal of even a single definition

moderately reduces Pv, although the values still remain very large even for very small r-d

values. For d = 20 and r = 5, the removal of two binary predicates CO and OV in INCH

(from case 4 to case 1) reduces Pv by 13% from 66,800 to 58,100.

Influence of domain size: Pv is only really dependent on the number of distinct

predicates in an ontology, their arity, and d. In general for CODI, RCC, and INCH Pv

increases polynomially (in d3 since a∗ = 3 for all three ontologies) with increasing domain

size for any case. For example, in CODI, Pv for (case 1, case 13) (i.e. the minimal case

containing 8 unary + 8 binary predicates and the default case containing 8 unary + 13 binary

predicates) is (13,980, 63,380), (39,870, 205,470), (86,360, 477,160), (159,450, 920,450) for

d = 20, 30, 40 and 50 respectively (for r = 5, cf. Table 6.1.2).

10Skolem constants and Skolem functions operate just like any other FOL predicate of the next higher
arity.

109

Fi
gu

re
6.

2:
Va

ria
tio

n
in
P

v
(g

ra
ph

s
on

th
e

lef
t)

an
d
P

c
(g

ra
ph

s
on

th
e

rig
ht

)w
ith

in
cr

ea
sin

g
r

fo
rc

on
st

an
td

om
ai

n
siz

e,
d

=
20

,f
or

ea
ch

of
th

e
on

to
lo

gi
es

,R
C

C
,C

O
D

I,
an

d
IN

C
H

ca
lc

ul
us

.

110

Figure 6.3: Number of Pv and Pc in preprocessed OFOL-CNF formulas (for RCC, CODI and INCH)
including a TBox and ABox starting from domain size 20 to 50 in increments of 10, and r ranging
from 5 to 15 in increments of 5. The horizontal axis represents cases for different definition sets in the
ontology. The primary vertical axis gives the absolute number of Pv (solid lines) and the secondary
vertical axis gives the absolute number of Pc (dashed lines) in each CNF formula on a log10 scale.

111

Figure 6.4: Graph showing the variation of Pv for each case with increasing size of terminology

in an ontology with d = 20, r = 5 for CODI, RCC and INCH. The x-axis is the number of

ternary predicates, the y-axis Pv, and the cases are shown as dots along with the number

of unary and binary predicates included in them. The number of predicates are from the

clausification of the TBox and a basic ABox (i.e. for r = 1). Intuitively, points closer to the

origin are the ones that are deemed the easiest.

Pv increases between 6 - 8 folds for both case 1 and case 13 when d doubles (i.e. going

from d = 20 to d = 40). Similarly, in RCC for case 7 containing 6 binary predicates, when

r = 5, Pv increases from 26,400 for d = 20 to 201,600 for d = 40. This is an increase of atleast

one order of magnitude. INCH ontology shows a quicker, almost exponential growth in Pv

with increasing d, and this is due to the presence of many additional ternary predicates from

skolemization. The decrease in number of ternary predicates in INCH is minimal post-ODE

(8 in case 4 to 7 in case 1), and therefore even with the empty DBox, Pv is still large (as

compared to CODI and RCC with similar domain sizes) for the smallest r-d values tested.

Influence of number of relational assertions: Unlike for d, there does not seem

to be a similar exponential growth in Pv with increasing r for any of the three ontologies.

For instance Graph 6.2 shows Pv growing slowly for CODI, by 4%, for r ranging from 5 to

20 in increments of 5, for a constant domain size d = 20. Any change of Pv across r for a

case depends on any additional predicates included in the problem from the skolemization

of assertions in the ABox. This occurs in cases where we remove predicates during ODE,

thereby replacing assertions with sentences that may contain existential quantifiers whose

112

variables are bound by universal quantifiers. All three ontologies introduce Skolem functions

in their ABoxes, but while CODI only introduces unary functions (column 19 in Table 6.1.2),

RCC introduces binary (column 20 in Table 6.1.2) and INCH introduces ternary predicates

(column 19 in Table 6.1.2). This addition influences the comparatively quicker growth of

Pv across r for RCC and INCH (cf. Graph 6.2). For example in RCC, the removal of the

predicate O in case 2 adds two new unary Skolem functions in the basic ABox (i.e. for

r = 1) – and therefore two additional binary predicates in the ontology. When the domain

size increases from 40 to 50 (a 25% increase), with low r values (r = 5), Pv increases by 85%,

but with larger r (r = 20), Pv almost doubles (increases by 98%). This increase although not

exponential still significantly contributes to problem hardness. Cases - 1,2,3 in RCC introduce

(10,2,2) binary predicates in their basic ABoxes. The large number of binary predicates in

RCC’s case 1 leads to the peaking of Pv, which is also noticeable by its significantly increasing

values across r in Graph 6.2 - RCC-Pv. In INCH, cases - 1,2 add 7 ternary predicates and

cases - 3,4 add 8 ternary predicates in their basic ABoxes. These cases in RCC and INCH

are the ones whose Pv values are significantly affected by r.

Figure 6.5: Graph plotting Pv (y-axis) against r (x-axis) for this d = 30. The legend shows

the % increase in Pv when r doubles, i.e. going from r = 5 to r = 10, and then from r = 10

to r = 20.

113

The analysis of the growth in Pv shows that the feasibility of ontology verification against

data is constrained by a large signature in the TBox (mostly binary defined predicates),

and an increasing domain size. But eliminating appropriate definitions from an ontology

inhibits this exponential growth in Pv, which will allow us to reason over ontologies with

larger datasets.

6.2.2 Growth in Propositional Clauses with Different (r-d)ABoxes and

Different Definition Sets

In Chapter 5 we have hypothesized that scalability of model finding also depends on the

number of propositional clauses and (median) width of FOL-CNF clauses, as it determines

how quickly the saturation algorithm terminates. Lemma 3 shows that Pc is influenced by

the number of FOL-CNF clauses from the TBox and ABox and the domain size. Now we

will take a closer look at the growth in Pc by studying ontologies constructed from different

TBoxes and (r-d)ABoxes.

Influence of ODE (with different sets of eliminated definitions): Pc is polynomial

in the number of FOL-CNF clauses, and exponential in the highest number of FOL variables

in any clause in the formula, given by v∗. All cases in the three ontologies have formulas

with an average of 2 variables in their FOL-CNF clause set, but even a single clause with

3 variables increases Pc significantly. Graph 6.6 shows that DBoxes with more optional

definitions have v∗ (max. number of variables) at most 3. Moreover case 7 in RCC, cases

10-12 in CODI, and cases 3-4 in INCH have more clauses with width ≥ 3. ODE reduces the

number of FOL-CNF clauses in the TBox. Though with increasing number of definitions

being eliminated, the ABox is no more factual i.e, a set of ground clauses, but has longer

FOL sentences that produce more FOL-CNF clauses (high formula-length). This increase is

much greater when the degree of nesting of predicates in definiens sentences in the ABox

post-ODE is high, e.g. in RCC, with a default ABox, the number of FOL-CNF clauses in

case 7 (having only ground clauses) is only 8, whereas case 1 (having at least two sentences

114

with 6 universally quantified and 3 existentially quantified sub-formulas) is 45. Pc for case 1

in RCC is thus exceedingly high. And therefore the most eager definition elimination that is

theoretically possible is not always necessarily desirable. In CODI and INCH any increase in

FOL-CNF clauses in the ABox resulting from ODE is mostly counteracted by a decrease in

clauses in the TBox. But generally ODE still decreases Pc, as it results in formulas with a

lower v∗ (≤ 2). For example, in CODI, going from case 13 to case 1, the number of clauses

with v ≥ 3 decreases from 12 to 3, leading to a reduction of Pc from 1,625,101 to 457,636 for

d = 50 and r = 5 – amounts to one order of magnitude reduction.

Influence of domain size: Similar to Pv, Pc also increases polynomial with increasing

domain size (polynomial in d3 since a∗ = 3 for all three ontologies), but does not grow similar

to Pv w.r.t number of predicates in the ontology, rather more Pc depends on the length and

complexity of the sentences of these predicates. In all the three ontologies, Pc increases

proportional to Pv (since both the highest arity - a∗, and highest variable-density - v∗ are

3), the growth is more with lower domain sizes (e.g. in CODI Pc increases by 3 times when

going from d = 20 to d = 30, while Pc doubles when going from d = 40 to d = 50). Case 1

in RCC is the exception, where the ontology has a substantially larger clause set (a larger

number of clauses is somewhat expected when replacing definitions with their definiens) while

the number of propositional variables decreases. For example, when r = 5, (Pv, Pc) for case

1 (0 optional predicates) and case 7 (5 optional predicates) take values (21,100, 194,425)

and (26,400, 28,440) respectively for d = 20, and (129,250, 2,707,525) and (390,000, 402,540)

respectively for d = 50. In other words when d doubles (going from d = 20 to 40), in case 7

(without ODE), there is a 7 times increase in both Pv and Pc, whereas in case 1 (removing

5 definitions), Pv only increases 4-fold, but Pc increases 7-fold. Removing the 5 optional

predicates in RCC (case 1) results in 22% and 66% decrease in Pv for d = 20, 50, but also

leads to a 7-fold increase in Pc (the pattern of growth/reduction in the number of variables

and clauses is the same across domain sizes). In this situation, it is ideal to remove some

but not all optional predicates from the formula, since the goal is to reduce Pv while also

115

avoiding an explosion of Pc
11 , which happens with case 2 in RCC, with 3-times reduction in

Pc across increasing domain sizes.

Figure 6.6: Graphs indicating number of clauses with three or more FOL variables (i.e. v ≥

3), and with three or more FOL literals (i.e. w ≥ 3) in the FOL-CNF representations for

CODI, RCC and INCH. |CT | and |CA| represent the number of clauses from the TBox and a

basic ABox (r = 1) respectively. Numbers for |CA| increases with increasing r-values.

Influence of number of relational assertions: For a specific domain size, Pc increases

polynomial with respect to v∗, and linearly with r – but by a small factor – for example in

INCH starting with r = 5, as r doubles, the % increase in Pv doubles but minimally in both

the default case (0.03%) and case 1 (0.15%). In CODI, although Pv remains constant, Pc

increases with growing r across d, but this growth is still very minimal. For d = 20, in case 1,

Pc increases by 3% when we go from r = 5 to 10, and for case 13 this increase is negligible

(∼0.04%). For the RCC ontology Pc has a growth pattern similar to Pv. When r increases

from 5 to 10, Pv doubles for case 1 (for d = 20 from 21,100 to 41,800), and Pc increases by a

similar amount (for d = 20 from 194,425 to 388,450), whereas in case 7, where Pv remains

unchanged Pc grows only by a trivial number (∼0.1%). This is revealed in Lemma 3, i.e. the

significant growth of Pc is due to the effect of ODE on the ABox that results in a longer

FOL-CNF formula – FOL-CNF formulas for case 1 (with aggressive ODE) has length = 47,

11Only the empirical study in the next section can give us more insights about which definitions should be
replaced to obtain a optimal balance between reduction of the number of propositional variables and the
addition of large numbers of clauses

116

whereas case 7 (no ODE) has length = 27. This is the same situation for the INCH ontology,

where Pc grows gradually with increasing r for all four cases.

Figure 6.7: Graph showing the variation of Pc for each case with increasing size of terminology

in an ontology with d = 20, r = 5 for CODI, RCC, and INCH. The x-axis is the number of

ternary predicates, the y-axis Pc and the cases shown as dots along with the number of unary

and binary predicates included in them. The number of predicates are from the clausification

of the TBox and basic ABox (i.e. for r = 1).

6.3 Guiding Predicate Selection for ODE

In order to reduce the number of propositional variables that determines the search

space, we can try to reduce the signature of the ontology, including the number of additional

predicates added from clausification, and to reduce the number of propositional clause that

determines how quickly the solver terminates, we can try to reduce the number of FOL

variables per clause in the FOL-CNF formula, and reduce the overall number of FOL-CNF

clauses.

The structuring of predicates in a problem is very ontology dependent. Definition

elimination depends on the dependency between defined predicates, with elimination starting

from the predicates on which no other predicates depend (i.e. at the lowest level in the

graph) and then moving up. If a predicate is not ideal for elimination, which is decided based

on size measures of the FOL-CNF formula, the pointer skips this but can move up to the

next connected predicate. Unlike typical formula simplification techniques, ODE may not

117

always reduce the size of the problem. There are two ways of potential growth in size of the

SAT representation: (1) larger Pv through skolemization: see the sum of the Pv from the

TBox and ABox in case 1 for RCC in Table 6.1.2, (2) larger number of FOL-CNF clauses, (3)

FOL-CNF clauses with high variable-density - v > 2, (4) FOL-CNF clauses with width ≥ 3.

While ODE typically reduces the number of propositional variables in the SAT problem in

a way that improves solver tractability, there are two things to be careful about with the

growth in propositional clause set. Firstly, a large propositional clause set impedes scalability

significantly – it carries a potential for a significant slowdown, because each clause takes up

valuable memory and needs to be looked at during the propagation phase after each variable

assignment. Secondly, a clause becomes vital in a search process only when it becomes unit,

but longer clauses are more difficult to become unit. ODE should not be applied when it

results in a significant increase in longer clauses, wider clauses or clauses with more variables.

All of this can be easily measured on the FOL-CNF versions of the different ontologies, which

can help select the best set of definitions to eliminate such that the simplification is maximally

efficient.

6.4 Discussion and Conclusions

Towards addressing objective 3 of this dissertation (O3 in Section 1.2.2) we have studied

the growth of the size of an ontology’s SAT translation in terms of the number of propositional

variables and clauses with respect to the size of the signature or ontology vocabulary (after

conversion to clausal form), the model domain size, and the number of relational assertions

in the ABox. The study verified the hypothesis that aggressive ODE on predicates of highest

arity mostly yields a significant reduction in the number of propositional variables and a

reasonable reduction in propositional clauses, but sometimes depending on the definition

being eliminated, ODE may be detrimental. For example, the definition of the optionally

defined term NTPP in RCC is defined using three other optional definitions: EC , O, and P .

The elimination of NTPP (including the 3 other dependent predicates) results in the nesting

118

of terms in the corresponding definiens and defined assertions. Such sentences with deep

terms either lead to an FOL-CNF formula with higher number of clauses, variable-density or

even formula-width. Transformation simplification (used in Paradox and Mace4) adds new

function symbols that replace deep sub-terms inflating the number of predicates even more,

or increases FOL-CNF clause count from clause splitting rules to transform long clauses with

many variables into several flat clauses with fewer variables. Thus, the most eager definition

elimination that is theoretically possible will likely not be the best choice, and this motivates

the next chapter, which analyses the model finding performance for these different cases

and compares it to the calculated measures. During ODE it is also important to be aware

of the number of predicates present in the DBox but also be cognizant of any additional

predicates that may be introduced in the ABox from skolemization. Existential quantifiers

(in the definiens and defined assertions) play a huge role as they create new predicates after

skolemization – but as consequence, we can use the FOL-CNF ontology (the translation to

FOL-CNF being polynomial in time, not exponential) to fairly cheaply measure this and

pick the best set of eliminated definitions before starting the time-intensive model finding

task. On that note, ODE is efficient only when the number of auxiliary predicates included

is minor compared to the number of optional definitions being eliminated.

119

CHAPTER 7

EXPERIMENTAL STUDY OF THE EFFECT OF ODE ON MODEL FINDING

TIMES

In order to understand the correlation between the theoretical measures of the size of SAT

problems from FOL ontologies that we formalized in Chapter 5 and the hardness of real-world

problems in practice, we conduct model finding experiments to verify the external consistency

of FOL ontologies (specifically spatial ones) with (spatial) datasets, through applying ODE

with different levels of aggressiveness. In Chapter 6 we designed TBoxes (or cases) for three

spatial ontologies – CODI, RCC and INCH – that only differ in which definitions are included

or removed to study the tradeoff in reduction in Pv from the TBox and potential increases

in Pv (and Pc) in the ABoxes. In this chapter, we construct multiple versions of ontologies

for these TBoxes using real-world datasets. The different cases for an ontology for a specific

dataset generates models that do not semantically differ, as the extensions of the defined

predicates are unique and can be reconstructed. Our experiments are specifically designed

to test the following hypothesis “optional definitions in the TBox significantly impact FOL

model finding time, and therefore eliminating them and rewriting ABox facts that use them

with their definiens allows improved performance.”.

Towards objectives 3 and 4 (O3, O4 in Section 1.2.2) of this dissertation, we conduct an

empirical investigation with these ontology instances to study the effectiveness of ODE as

reflected in the run-times of three model finders: Paradox, Vampire and iProver, which have

consistently been either the winner or the top contenders in the relevant divisions of the

CASC ATP competitions [219, 265] (see details in Chapter 3). Moreover, the idea behind

the design of experiments is to also systematically study how the growth of ABox size by

regulating the number of individuals (d) and relational assertions (r) impacts model finding

time. Through systematic study we demonstrate the linkage between the calculated size

measures – studied in detail in Chapter 6 – and practical model finding performance, and

120

through correlation analysis validate our findings. The results presented in this chapter is an

important step towards the more general goal of improving the feasibility and scalability of

practical SAT-based FOL model finding.

7.1 Design of Study

In this section we explain the design of the study, whereby we construct ontologies using

different definition sets (from the DBoxes of each ontology) and different sized datasets

to validate the hypothesis stated above. These sample ontologies also serve as important

practical benchmarks (that is, instances generated from real-world datasets in the spatial

domain) in the evaluation of automated theorem provers. For each TBox (cf. Tables 6.1.2,

6.1.2, and ?? - 13 cases for CODI, 7 for RCC, and 4 for INCH) we use a Python script1 to

construct sample ABoxes of different sizes2 as described below.

7.1.1 Constructing (r-d) ABoxes

ABoxes with controlled r values don’t come naturally but are crucial for a good comparison

of problem size. Thus, we have to artificially create them using a stratified sampling technique.

For each combination of d and r, 10 sample ABoxes are constructed from a single master

dataset about the critical habitat for lynx in Maine3 . Figure 7.1 shows the map from which

geometric entities and relations between them are extracted. Detailed spatial information

within this extent is abstracted from GIS shapefiles from the Maine Office of GIS Data

Catalog4 : points represent schools and endpoints of road segments, lines represent road

segments, and regions represent the boundaries of towns, subdivisions and counties. Some

sample assertions are as follows:

1https://github.com/shirlystephen/SpatialModelFinding/PythonScripts
2We are only interested in computing finite models having a finite domain.
3Unit 1 from https://www.gpo.gov/fdsys/pkg/FR-2014-09-12/pdf/2014-21013.pdf
4https://www.maine.gov/megis/catalog/

121

https://github.com/shirlystephen/SpatialModelFinding/Python Scripts
https://www.gpo.gov/fdsys/pkg/FR-2014-09-12/pdf/2014-21013.pdf
https://www.maine.gov/megis/catalog/

• sf_point(‘FoxcroftAcademy’) • sf_line(‘road_I95’)

• sf_region(‘PiscataquisCounty’) • intersects(‘FoxcroftAcademy’ ‘PiscataquisCounty’)

• within(‘segment1103’ ‘road_I95’) • crosses(‘segment1103’ ‘PiscataquisCounty’)

Figure 7.1: Geometric map about the critical habitat for lynx in Maine from which the master
dataset is constructed.

The master test suite describes the spatial relationships between 425 spatial objects (i.e.

individuals) using 130,256 ground assertions (4,937 positive ones and 125,319 negated ones),

each of which uses a single unary predicate (Point, Curve, ArealRegion) or single binary

predicate (within, overlaps, intersects, crosses and touches) from the Simple Features (SF)

standard as axiomatized in FOL as SFA-FOL in Chapter 4. A statistical summary of the ABox

(number of positive/negative facts from each concept and relation) is provided in Table 7.1.

During construction of the sample ontologies, these SFA-FOL terms are replaced with the

respective terms from CODI, RCC, and INCH (see mapping between terms in Table A.1 in

122

Unary-Concept Assertions (425) Binary-Relational Assertions (130,256)

Point Curve ArealRegion within crosses overlaps intersects touches

positive 194 42 189 227 414 1947 1038 1311

negated 0 0 0 60947 1160 30152 30222 2838

Table 7.1: Content of the master ABox from which sample (r-d)ABoxes are constructed for
CODI, RCC and INCH.

the appendix). Then distinctness assertions are added to the constructed ontologies to ensure

that all selected individuals are actually distinct. The complete set of sample ontologies

constructed in this study is available as CLIF files in the github repository5 .

The master ABox contains surplus assertions for each optional predicate needed for the

desired study of problems in our study so we don’t run out of assertions during the sampling

process.

Stratified Sampling Process

We construct (r-d)ABoxes for each case in a theory using a stratified sampling approach

as follows:

1. An assertion for a binary predicate in DBox D is selected at random and the two individuals

participating in the relation are added to a list M . Then we pick an assertion for all

other optional predicates in D (individuals in each selected assertion are added to M in

succession), such that each assertion contains atleast one element from M and one positive

and one negative assertion for each optional predicate in D have been added to (r-d)A.

2. Step (1) is repeated until |M | = d or the number of assertions selected for each predicate

reaches r. If the ABox has realized the size d first, random assertions for each optional

predicate are chosen from the master ABox containing individuals in M and added to

(r-d)ABox until the desired number of r assertions for each predicate is achieved. Otherwise,

5https://github.com/shirlystephen/SpatialModelFinding/SampleDatasets

123

https://github.com/shirlystephen/SpatialModelFinding/Sample Datasets

if the ABox has realized the size r first, two randomly selected individuals are removed

from M and all assertions containing these individuals are dropped from (r-d)ABox and

step (2) is repeated until (r-d)A reaches its desired size.

Note that the sample ABoxes are stratified in the sense that all non-unary optional

predicates are used equally. While this may rarely happen in practice6 , it allows us to rule

out many other factors in our analysis of the growth of the resulting SAT problem as well as

experimental model finding times.

7.1.2 Constructing Defined (r-d) ABoxes

ODE is applied to each sample (r-d)ABox to rewrite sentences that use predicates that

are already removed from TBox that it uses. By the ODE rule, sentences that uses eliminated

definitions are replaced by their defined assertions (cf. Example ??), provided the substitution

is made throughout wherever the predicate appears in the ABox, resulting in a non-factual

ABox with ground and/or partially-ground first-order assertions. For example, the default

TBox (case 13) of CODI includes the following explicit FOL definition for Inc,

Inc(x, y) ↔ ∃z[(Cont(z, x) ∧ P (z, y) ∧ z <dim x) ∨ (P (z, x) ∧ Cont(z, y) ∧ z ≺dim y)]

This defined predicate Inc is not used in any other axioms and definitions and thus can

simply be removed from the TBox to reduce its set of binary predicates (the CODI cases

1-7,11,12 all remove Inc). Now any assertion in a (r-d)ABox that uses Inc must also be

rewritten for the CODI cases 1-7,11,12. For example, the assertion Inc(‘exit193′, ‘i95′) will

be rewritten as: ∃z[(Cont(z, ‘exit193′) ∧ P (z, ‘i95′) ∧ z <dim ‘exit193′) ∨ (P (z, ‘exit193′) ∧

Cont(z, ‘i95′) ∧ z <dim ‘i95′)].

6To estimate the size of SAT problems resulting from practical datasets, we would need to treat r as
an upper bound on the number of assertions for any individual predicate. But as it turns out, r primarily
influences the number of propositional clauses but rarely the number of propositional variables.

124

7.1.3 Experimental Environment

We used the latest versions of three state-of-the art model finders – Paradox7 [164],

Vampire8 [172] and iProver9 [165] – for our work. For all three solvers we used the default

model finding option, which is the casc_sat mode for Vampire and the sat mode for iProver.

We used a timeout of 50,000s, 20,000s, 20,000s for Paradox, Vampire and iProver respectively.

All experiments are conducted on an Intel Xeon CPU E5-2620 v3 at 2.40 GHz (with 12 cores,

though a single instance of any solver does not use more than a single core) with 64GB RAM

and 64bit Windows 10 Pro, using Ubuntu (release 16.04) inside an Oracle VirtualBox VM

(version 6.0) with 40 GB of allocated RAM and 12 CPU processors.

7.1.4 Statistical Analysis Methods

Each model finder was run with ten different samples for each case of each ontology and

each combination of a domain size (ranging from 10 to 50) and an r value (5, 10, 15, or 20;

INCH samples include 8, 12, 18) for a total of 2,080, 840, and 560 problems of different sizes

for CODI, RCC and INCH, respectively. In each sample set sometimes there aere a number

of outliers, which took disproportionately longer10 . For example, for case 7 in CODI, when

d = 30 and r = 15, the runtime of Paradox for only two of ten samples is over 1,500s, while

the remaining samples have runtime ranging between 180s and 900s. Therefore we only plot

the low-mean of each sample set of ten samples calculated as follows:

S = Set of (tractable) model finding times for a case and its (r-d) ABoxes,

SL = {si ∈ S|si < (µ+ σ)}; where µ =

n=|S|∑
i=1

si ∈ S

|S|
and σ =

√√√√√√
n=|S|∑
i=1

((si ∈ S) − µ)2

|S|

then, low-mean =

n=|SL|∑
i=1

si ∈ SL

n

7accessed on 02/10/2018 - https://github.com/c-cube/paradox
8accessed on 01/12/2020 - https://github.com/vprover/vampire
9accessed on 01/12/2020 - http://www.cs.man.ac.uk/~korovink/iprover

10The stratified sampling technique for creating these samples does not allow us to control for the hardness
of the samples, some end up significantly harder than others

125

https://github.com/c-cube/paradox
https://github.com/vprover/vampire
http://www.cs.man.ac.uk/~korovink/iprover

The low-mean is the average runtime of all samples that terminated within less than the

mean µ of all ten samples plus one standard deviation (µ+ σ) runtime for that sample set.

This time is representative of how long it takes for verifying the ontology (specifically the

theories here) against the majority of samples. Cases where the majority of problems did

not terminate are assigned the solver timeout and are specially marked in our graphs (the

percentage of intractable, i.e. non-terminating, samples for each case in the three ontologies

is presented in Table ?? in the appendix). For some cases in Paradox and Vampire, where

the majority of problems terminated but without generating a model due to a memory error

(likely due to reaching some internal memory limit), we use the solver runtime, though these

times do not significantly effect the overall trend.

7.2 Experimental Results

In this section we present the model finding times and discuss any trends with respect

to the findings from Chapter 6. Figures 7.5, 7.3 and 7.6 present the runtimes for the three

model finders for the different cases in CODI (13 cases), RCC (7 cases) and INCH (4 cases)

for different (r-d)ABoxes, where each line in a single plot represents the low-mean runtimes

for a specific r. We will discuss specific observations and trends and how they relate to the

Pv and Pc values. We first analyze the results for Paradox and Vampire in more detail for

each of the three ontologies, as they render similar trends. Afterwards, we look at iProver as

its results are very different. Finally we presents statistical correlation results between the

empirical findings and theoretical measures.

7.2.1 Paradox and Vampire Results

CODI: The results from both Paradox and Vampire show that runtime seems to

exponentially increase with d. More interestingly for an (r-d)-ontology, runtimes also

significantly increases in cases that include more definitions, as predicted by their increases

in Pv and Pc. This is especially obvious for Paradox, where for the default case – case 13,

126

which includes all five optional definitions (for a total of 13 binary predicates), the number of

propositional variables is 63,380. This is over four times the number of propositional variables

from case 1 (13,980), and the runtime for case 13 more than quadruples compared to case 1:

e.g. for domain size 20, runtime increases from 7s to 345s and from 134s to 713s for r = 5

and 20, respectively. The exponential increase in runtime is more obvious, for domain size 30,

the runtimes increase from 16s to 32,000s and 164s to over 50,000s, which is the timeout at

which point the model finder is told to terminate. While Vampire is consistently faster than

Paradox, the model finding times of both exhibit a very similar pattern that is also closely

correlated with the number of propositional variables as visualized in Fig. 7.5. The reduction

in the model finding time between the default case and the best case can be dramatic in

this ontology: Vampire shows upto 27 times runtime increase for some (r-d)-problems (cf.

Fig. 7.7), while the decrease for Paradox is even higher - an decrease in three orders of

magnitudes. This also becomes evident from the size of models that can be constructed

(cf. Fig. 7.5): in the default case, models of size 30 and 50 are the limit for Paradox and

Vampire, respectively, whereas the best case allows constructing models of sizes up to 120

individuals in similar times as previously needed for size 30 (cf. Table 7.2 for model finding

time using Paradox for case 1 in CODI for domain sizes 100 to 120, r = 5). While there

are slight differences about how well certain cases perform (e.g. cases 11 and 12 are more

difficult for Paradox, whereas cases 8 to 10 are more difficult for Vampire), invariably the

default case consistently takes the longest to construct a model for both solvers and quickly

becomes intractable from d = 30 (for Paradox) and d = 50 (for Vampire) on.

Domain size 100 110 120

Time in s 8,564 9,434 25,704

Table 7.2: Model finding time using Paradox for case 1 in CODI for d 90 to 120 (r = 5).

Overall, case 1, which removes the most definitions i.e. performs ODE most aggressively,

yields the best runtimes for Paradox throughout. However, the results for Vampire show that

127

removing as many definitions as possible does not always result in the best performance, in fact,

case 2 that retains the definition of PP performs best. Another critical factor is the complexity

of a definition. For example, cases 2, 3, 5, 8, and 11 all include exactly one additional definition

(PP, C, PO, Inc, and SC respectively) compared to case 1, but lead to different speed-ups.

Vampire’s and Paradox’s runtimes increase more when adding Inc or SC as compared

to when adding C or PO, which are simpler because they only contain one existentially

quantified conjunction each. Whereas Inc contains a disjunction of two existentially quantified

statements, and SC contains a conjunction of one existentially quantified and one universally

quantified statement (cf. Section 2.4.2.1 for their axiomatization). In fact, removing only the

predicate Inc and its definition yields a 88/59% (Vampire/Paradox) and only SC a 79/75%

decrease in runtime for d = 40 and r = 10. This holds similarly for other d and r combinations,

and in fact for larger values, problems containing these definitions are the first that become

intractable. One explanation is that Inc or SC add additional FOL-CNF clauses in the TBox,

which, in the case of Inc are rather wide (i.e. with more than 3 literals, CT with w ≥ 3 = 43,

cf. column 10 in Table 6.1.2) and, in the case of SC have high variable-density (i.e. contain

more than 3 variables, CT with (v = 3) = 5, column 6 in Table 6.1.2). And both definitions

are not used in any other definitions, which would potentially reintroduce additional Skolem

functions. Such complexity measures could potentially be used to decide which defined

predicates are prime candidates for removal but require additional experimentation beyond

the scope of this work.

128

Figure 7.2: Model finding times for CODI (domain sizes 20 to 50) using Paradox and Vampire(cf.

Tables ?? and ??). Each graph fixes the domain size and each line represents an r value. Cases are

on the x-axis, from case 1 with a total of 8 (binary) predicates to the default case (case 13) having a

total of 13 binary predicates. The runtime (y-axis) uses a log10 scale, and Pv in the secondary axis

uses regular scale. Note: Pv for CODI does not change with different r values.

129

Figure 7.3: Model finding times for different d and r values for the different cases of RCC (cf.

Table ?? in the appendix). The cases along the x-axis are sorted by increasing number of

defined predicates. The runtime (y-axis) uses a log10 scale, and Pv in the secondary axis uses

regular scale. Runtimes from iProver for RCC are not displayed as it did not find any models

at all.

RCC: For RCC, a slightly more nuanced story emerges. While the runtimes mostly follow

the trend of Pv, the steep increase in Pc and Pv in case 1 (cf. Fig. 6.3) yields comparable

and sometimes even worse runtime on some (r-d)-problems than performing no ODE at all.

130

As predicted by the theoretical analysis, the steep increase in Pv and Pc when removing all

definitions (case 1) makes it the most difficult case, besides the default case, for both solvers.

RCC is an excellent example of the impact of clauses with w ≥ 3 on model finding – as seen

by the visual correlation (cf. Fig 7.3, statistical correlation results are discussed in more

detail in the next section) between case 1 having more clauses with high formula-width (CA

with w ≥ 3 = 32, cf. column 15-18 in Table 6.1.2) on runtimes. Pv and Pc are the lowest

in case 2, which removes all optionally defined predicates except for P , but keeps both the

number of newly introduced Skolem functions and the number of clauses with more variables

relatively low. This is the best case for Vampire for both domain sizes 20 and 30. Paradox

performs slightly better on case 4, which additionally retains O and results in even fewer

clauses with more variables (CA,2 is 1 compared to 8 for cases 2 and 3). As the number of

defined predicates further increases to 4 and beyond (cases 5–7), the runtime increases again.

This phenomenon is similarly observable for Vampire, especially for d = 40, which is also

the domain size beyond which conspicuous differences in runtime for the different cases is

visible. Similar to CODI, with the best case, although Vampire runs longer, it scales better

compared to Paradox with the capability to find models on larger (r-d)-problems.

INCH: (Note: The study with INCH was not the emphasis of our work, but added as

yet another ontology for comparison to see whether some of the trends from CODI and RCC

transfer to this ontology.) Even though INCH includes only few definitions, its clausification

yields an extremely large number of FOL-CNF clauses and additional predicates (from Skolem

functions) with high arity (a ≥ 2), which eventually results in large Pv and Pc even for small

domain values. For example, when d = 20 and r = 5, even with the most aggressive ODE,

i.e. for case 1, Pv = 58,100, which is 4 and 3 times the smallest values of Pv for CODI and

RCC respectively for the same domain size and r value. We therefore had to experiment with

smaller domain sizes (d = 10 and d = 15) to obtain any models at all. Overall, the runtime of

Paradox is lowest for cases 3 and 4. When d = 10, Paradox’s performance is mostly uniform

across cases (but the runtimes are also too short to make any meaningful distinctions), and

131

when d = 15 the removal of certain definitions, particularly CO, deteriorates its performance.

With Vampire, the improvement in runtime with ODE is significant with larger problems (i.e.

from d = 15 and r = 8 onwards), where the default case has upto 4-times higher model finding

time compared to case 1. In addition the variation in Vampire’s runtime for the default case

(case 4) across different r values mimics the phase transition of random SAT. Model finding

time is less when the problems are less constrained (r = 5) or heavily constrained (r = 20),

compared to when r = 10, 12 or 15. For example, when d = 15 and r = 15, the runtimes for

case 4 and case 1 are 1523s and 399s respectively, but when r = 20, the runtimes for the two

cases decreases to 310s and 240s respectively.

Figure 7.4: Model finding times for different d and r values for the different cases of INCH

using Paradox and Vampire (cf. Table ?? in the appendix). The cases along the x-axis are

sorted by increasing number of defined predicates. Runtime (y-axis) is in regular scale.

132

7.2.2 IProver Results

Figure 7.5: Model finding times for different problems for CODI (domain sizes 20-50) using

iProver (cf. Table ??). Each graph fixes the domain size and each line represents an r value.

The cases are listed on the x-axis, from case 1 with only a total of 8 (binary) predicates to

the default case (case 13) with 5 additional defined predicates a total of 13 binary predicates.

The runtime (y-axis) uses a log10 scale, and Pv in the secondary axis uses regular scale. Note:

Pv for CODI does not change with different r values.

IProver exhibits much less predictable results across the different ontologies, cases and

problem sizes. For CODI, iProver overall performs much better than Paradox and Vampire

with the exception that Vampire’s best case performs better for d = 20 to 40. Unlike Paradox

and Vampire, the default case is not the worst case, and case 1 is not always the best case. In

fact, in most problems the model finding times for these two cases are relatively close. Thus,

133

for CODI it seems that iProvers built-in predicate elimination (cf. Section 3.2.3) performs

well. However, very different results emerge for RCC and INCH (cf. Fig. 7.3): on RCC,

iProver fails to produce any models whereas on INCH it performs much worse than Paradox

and Vampire for d = 10 and 15 and it altogether fails to produce models for d = 15 at r

values of 18 and 20.

Figure 7.6: Model finding times for different d and r values for the different cases of INCH

using iProver (cf. Table ?? in the appendix). The cases along the x-axis are sorted by

increasing number of defined predicates. Runtime (y-axis) is in regular scale.

7.3 Analysis

Now we try to further strengthen our hypothesis by determining that there exists an

exponential relationship between practical model finding time and theoretical measures of

an ontology’s size, and also reveal that significant gains in runtime can be achieved through

definition elimination.

7.3.1 Correlation Analysis between SAT Problem Size and Model Finding Times

In Chapter 6 we showed that the number propositional variables and clauses in an ontology

O with a (r-d)ABox increases significantly with the signature of O, specifically the number

134

of binary defined predicates, and d. Through empirical analysis we demonstrated that model

finding time looks exponential with respect to Pv. Here, through correlation analysis we

statistically verify how the practical hardness – measured in terms of model finding times – of

ontologies with a (r-d)ABoxes corresponds to the size of their SAT translations. Specifically

we calculate the correlation between three transformations (linear, logarithmic - log10, and

square root) of the low-mean model finding time over all cases and all (r-d)ABoxes against

three theoretical measures of their size: Pv, Pc, and Pw (the approximate percentage of Pc with

width ≥ 3 calculated using the following formula –
(
CT,w≥3

CT

+ CA,w≥3

CA

)
· Pc

11 . Correlation

values are calculated only using results from tractable problems for all ontologies and provided

in Table 7.3. The highlighted values (cells in gray) are the runtime transformations that have

the most significant correlations with size. Like expected, the results prove that there is an

exponential relation between model finding time with Pv, Pc, and Pw (except iProver’s results

for CODI, which show a more linear relation for Pv, and a square root relation with Pc and

Pw). The complete scatter plots of runtime and the three measures of size are presented in

Figures A.1, A.2, and A.3 in the appendix.

Both Paradox and Vampire show a positive correlation between runtime and all three

measures of size, somewhat higher than 0.5 for CODI. While Vampire shows a strong positive

correlation with size for CODI and INCH, its values for RCC are somewhat low. In RCC

although we predicted that larger Pc and higher width of clauses (as occurs in case 1) have

a more signficant influence on runtime, the correlation results for the two measures are

comparatively lower than for Pv, with both Paradox and Vampire. With large (r-d)ABoxes,

for RCC’s case 1, both Paradox and Vampire are completely intractable, and therefore

measures for this case is largely not unaccounted for while determining correlation. Although

the iProver’s time is positively correlated with the size of CODI’s problems, the correlation

values of runtime with Pc and Pw are too low to indicate an exponential relationship. However

11In this chapter and the previous we occasionally compared the size of problems in terms of their
formula-width with the hardness of model finding to highlight some difficult cases. But we leave the detailed
examination of the impact of W on the size of the SAT problem for future work.

135

Ontology Prover
Linear Exponential Quadratic

Pv Pc Pw Pv Pc Pw Pv Pc Pw

CODI
Paradox 0.19 0.24 0.17 0.52 0.53 0.48 0.38 0.42 0.35
Vampire 0.37 0.37 0.42 0.78 0.79 0.82 0.53 0.54 0.59
iProver 0.89 0.12 0.15 0.78 0.08 0.08 0.15 0.18 0.70

RCC
Paradox 0.43 0.06 0.03 0.82 0.32 0.27 0.70 0.19 0.16
Vampire -0.07 -0.04 -0.01 0.40 0.31 0.31 0.01 0.06 0.08

INCH
Paradox 0.54 0.55 0.64 0.95 0.95 0.97 0.78 0.79 0.84
Vampire 0.73 0.72 0.59 0.91 0.91 0.86 0.83 0.82 0.73
iProver 0.40 0.39 0.29 0.63 0.63 0.56 0.52 0.51 0.42

Table 7.3: Correlation analysis results between runtime of three model finders and three
measures of the size of SAT problems for CODI, RCC, and INCH: no. of propositional
variables, no. of propositional clauses and approximate number of those clauses having three
or more literals.

we also did not expect to observe any exponential growth of runtime with the size of the

problem using iProver, because of its fluctuating behaviour across the three spatial ontologies,

while its performance was superior to Paradox and Vampire for CODI (smaller runtimes

and scaled efficiently with larger domain sizes), it was altogether intractable on any of the

tested problems in RCC, and did not scale as successfully as Paradox and Vampire for INCH.

Surprisingly, although it was hard to recognize a uniform meaningful decrease in runtime

with eliminating definitions in INCH, the strong correlation results (with all three solvers)

prove that ODE actually improves solver performance. Interestingly we also found that

unlike for regular CNF problem [278], problems generated from any of the three ontologies

did not reveal any relevant correlation between clause-density ratio (Pc/Pv) and any solver

performance – see results in Table ?? in the appendix12 .

12We have reviewed in related work in Section 3.2.1 that many existing works in propositional logic have
found a strong strong correlation between the hardness of the problem and clause-density ratio, but we do
not observe a replication of this with FOL ontologies.

136

7.3.2 Speedup in Model Finding through ODE

The idea here is to analyze runtime improvements of the best case (i.e. the case with

the lowest relative runtime over all r and d values for all ontologies, the second worst case

(to determine the mimimum improvement from eliminating definitions), and the average

improvement over all cases using ODE from the default case. To reiterate, case 1 in a theory

corresponds to the case that removes all optional definitions from its DBox, whereas the

default case includes all optional definitions. Usually case 1 reduces Pv and Pc the most

(except RCC, where Pc for case 1 is larger compared to the default case) and is therefore

theoretically the best case. However, in practice the best case may vary for different solvers

and therefore the preprocessing algorithm for each solver must be optimized to select the ideal

set of definitions for elimination. Figure 7.7 shows the maximum, minimum, and average

runtime decreases from eliminating definitions for the three ontologies.

CODI: Paradox performs the best on case 1 with a runtime improvement that approaches

100% especially for larger domain sizes, and an average runtime of always more than 50%.

Although Vampire performs well on case 1, the relative decrease in runtime is higher for

case 2, i.e. with the inclusion of the definition for PP. With case 2, Vampire achieves a

maximum runtime improvement close to 98%, and an average runtime improvement as high

as 73%. The runtime improvement of iProver with case 1 is mostly negligible, and the average

improvement is also rather low13 .

Since there does not seem to be a best case, we decide that ODE is not ideal for CODI

with iProver.

RCC:14 Overall, Paradox performs best on case 4, which is expected, as it has fewer

binary and unary predicates in the FOL-CNF formula (aggregated predicates from the

ontology and from skolemization) compared to case 2 and 3 (cf. Table 6.1.2), while Vampire

performs best on case 2, which has the smallest ontology signature. The runtime gains with

13There also isn’t an average increase in runtime.
14We remind the reader that we only have results from Paradox and Vampire for RCC, since iProver was

altogether intractable on the tested ontologies.

137

the best cases using both solvers is significant with larger domain sizes indicating that ODE

is capable of pushing the limits of scalable model finding.

INCH: ODE shows no improved runtimes with Paradox, however this cannot be

generalized, since we are unsure if with better hardware capabilities ODE might reflect

a different trend with larger (r-d)-ontologies15 . iProver performs considerably well with case

1, which also happens to be its best case. Although it is hard to see a substantial improvement

in runtime with Vampire for lower domain sizes with larger problems the average decrease in

runtimes and maximum runtime improvement with case 1 reveals that ODE does leave room

for a significant improved performance.

Although runtime improvements are more visibly pronounced with larger d values, overall,

with the elimination of the right set of definitions, ODE can lead to significant performance

gains between 10-100% and scalability. For example, with ODE we could find models

for CODI using Paradox with ABoxes containing atleast 50 individuals and 200 relational

assertions, whereas previously Paradox ran out of time with 30 individuals and 100 assertions.

7.4 Discussion and Conclusion

Through an experimental study with a set of spatial ontologies and the best available

model finders we verified that the runtime of model finders (that do not employ predicate

elimination) is actually closely correlated to that growth in the ontology’s size measures. In

that sense the work undertaken here goes further than previous studies that only compare

performance between model finders without looking at which parameters affect the model

finder’s performance most. Using FOL-based definition elimination with solvers that do not

perform their own predicate elimination and do FOL-based definition elimination, here with

Paradox and Vampire, led to a more consistent improvement in model finding as opposed to

iProver which exhibits very unpredictable results. With ODE, Paradox scaled to generate

models for the RCC ontology with ABoxes with d = 40 and r = 10, which is a very significant

15Our experimental results are limited to two low values for d = 10, 15 – as solvers quickly run into
intractability due to the hardness of the INCH ontology

138

improvement in performance compared to iProver, which became intractable on problems

half this size.

Figure 7.7: Reduction in low mean model finding time (y axis) for different domain sizes

(x axis). The reduction is measured as a percentage of runtime decrease from the default

case. The maximum decrease (represented by the small circle on the top of the high-low

lines) represents the decrease calculated with the best case (uniformly determined across all

(r-d)ABoxes).

We also presented results that show an improved performance of solvers when reasoning

with medium-sized datasets. We found that with ODE we were able to solve examples that

were previously intractable. We expect the experimental developments presented in this

paper can provide some insights into specific preprocessing steps that can be inbuilt into

139

FOL model-finders. Further, in order to make ODE effective and efficient, the results address

the following questions: (1) When should we activate ODE? (2) Which optionally defined

predicates should we eliminate? The most satisfactory answers to these questions may depend

on other techniques implemented in the solver, and problem hardness characteristics not

studied in this work. Nevertheless, we want to argue that the general principle for guiding

the implementation of ODE for any axiomatization to identify the best case, which is usually

the case that minimizes the following measures the utmost: (1) number of predicates of

highest arity to reduce Pv, (2) FOL-CNF clauses with high variable-density to reduce Pc, (2)

FOL-CNF formula-width. Theoretical calculation of these measures can be used to develop a

ODE preprocessing heuristic that can be implemented into ATPs in the future as extension

of this dissertation.

140

CHAPTER 8

CONCLUSION

This dissertation presents two principal results that align with the overarching objectives

highlighted in Section 1.2 in terms of integrated spatial reasoning. First we have focused

on the representational aspects that merges qualitative and geometric spatial information

to unify the two kinds of representations within a single framework, thereby addressing the

specific objective O1 from Section 1.2.2. Secondly we develop a formal framework for size or

complexity measures of ontologies with data addressing objective O2. Finally we investigate

a FOL ontology preprocessing technique to improve the scalability of spatial reasoning such

as consistency checking and query answering through model finding, thereby addressing

objectives O3-O4. Here below, we present a summary of this dissertation and highlight the

important contributions we have made to improve FOL-based spatial reasoning.

Simple Features Access (SFA-FOL): Currents trends in qualitative spatial reasoning

include using spatial operators to compute qualitative relations between vector geometries

in a spatial database, or using formal spatial ontologies to query over a set of geometric

data assertions. Axiomatic representations enable reasoning consistent with common-sense

reasoning [94] in varying degrees. However existing formalisms are limited in certain ways,

and any one separate model is incapable of handling the mixture of real-world spatial data

as they exist in GIS databases and non-geometric sources. Popular representations such

as the RCC-8 and the 9-IM only model topological relations between objects of the same

dimension, while 9-IM does not denote the dimensionality of shared region; the DE-9IM

used in SFA cannot handle complex objects with holes and parts; Freska’s Double cross

calculus is limited to 2-D [102]; graph-based approaches [184] do not tie vector geometric

concepts to qualitative relations. Some of these limitations are tackled in multi-dimensional

mereotopologies such as CODIB and multi-dimensional RCC [154], but they still do not

allow seamless integrated reasoning that combines data from geometric and non-geometric

141

sources. On the other hand, works undertaken to integrate qualitative spatial reasoning

over spatial geometries using reasoning tools such as Racer [274] and Pellet [258] or even

spatial extensions of RDF and SPARQL, such as stSPARQL [170] or GeoSPARQL [220] use

DL-based ontologies that lack the semantics available in FOL ontologies. In Chapter 4 we

have developed a qualitatively augmented formalization of the Simple Features Access model

in FOL as an extension of CODI and CODIB to tackle these limitations. The formalization

presented in this chapter shows that geometric concepts (e.g. polygon) can be considered

as specialization of qualitative concepts (e.g. ArealRegion) and all the qualitative relations

apply equally to geometric and qualitative concepts. This ontology, SF-FOL, can now be

used to ingest traditional geometric information that resides in spatial knowledge bases as

well as qualitative information from any external non-geometric source and FOL automated

reasoners can be used to reason over a mix of both.

Model Finding using FOL Spatial Ontologies: The formalization of SF-FOL serves

as a unifying representation for integrated spatial reasoning. Specific reasoning tasks include

theorem proving, consistency checking and query answering. We identified that much of prior

work on FOL reasoning focuses on theorem proving tasks that are, while also theoretically

intractable, comparatively easier than model finding. But even these works have mostly

used axiomatizations with signatures that do not reflect the signatures of realistic domain

and application ontologies, nor do they use any datasets in the reasoning. Even leading

SAT-based ATPs have sophisticated mechanisms to handle theorem proving for mathematical

axiomatizations and [97, 10], but poorly performed with our spatial model finding problems.

Little work has been done to systematically test model finding with tools rarely successful

or producing only very small, often trivial models that do not exceed 20 individuals. The

exact root sources of the poor performance of model finding for FOL ontologies have also

never been clearly investigated and quantified, thus preventing any progress on improving

model finding with FOL ontologies. Despite the theoretical hardness of large SAT problems,

practical SAT solvers have made strident progress in successfully scaling and solving large

142

propositional logic problems. This is vastly attributed to formula simplification techniques,

some of which have even been lifted to FOL ATPs. But FOL ontologies lead to a combinatorial

increase in the size of their SAT problems with increasing sizes of the domain and terminology

leading to a dramatic increase in the SAT search space. So, while these simplifications

strategically and successfully reduce problem size and therefore search space, the magnitude

of simplification still does not allow for scalable model finding for even moderate-sized datasets

that are needed for simple reasoning tasks with FOL ontologies1 . On the other hand, some

of these simplifications are intrinsically computationally complex, for example identifying

which clauses to remove is non-trivial [183]. Another driver for solver advancement is the

experimental research effort towards understanding complexity of problems using benchmark

problems. SAT benchmarks do not reflect the complexity and size of problems that arise from

the translation of FOL ontologies with data to propositional logic. And ATP benchmarks,

specifically the TPTP suite functions well for evaluating theorem provers but less so for

model finders.

With this knowledge of state-of-the-art and limitations that impede extensible spatial

reasoning, we have identified and studied specific measures that lead to intractability of FOL

model finding. The contributions made in this regard are two-fold. First we have provided

formal semantics for the TBox, ABox and different sets of optional definitions that can be

removed from an FOL ontology. We have identified the number of predicates of the highest

arity and domain size of the ABox in a FOL ontology, and the number of FOL-CNF clauses,

variable-density and formula-width of its FOL-CNF translation as the attributes that have

an outsized influence on the size and difficulty of the resulting SAT problems for model

finding. Through theoretical calculations we have found these parameters contribute to the

growth of the SAT problem specifically in terms of its number of propositional variables Pv

and propositional clauses Pc. These are also the two size measures that correlate to runtime

of solvers as we have found in our work. A large ontology signature, especially the set of

1Our experiments revealed that with Vampire - the best performing solver - tractable model finding is
limited to domain size 40 in CODI and domain size 15 in INCH.

143

predicates of highest arity, exponentially increases the size of the SAT problem in terms

of Pv with increasing domain size. This signature stems from the set of predicates in the

axiomatization (TBox) and any additional predicates that get introduced from clausifying

the TBox and the ABox. Many defined predicates in the TBox also contribute to a significant

increase in Pc, due to the elimination of biconditionals during clausification. With this insight

into the growth in size of a FOL ontology’s SAT translation, we consequently define optional

definition elimination (ODE) to syntactically simplify the FOL ontology by altering the

DBox and ABox while preserving the structure of any possible models. ODE can prune the

search space significantly dependent on the number of optionally defined predicates and their

axiomatic simplicity, and is capable of significantly reducing the size of a problem by orders

of magnitude, thus verifying our hypothesis that aggressive ODE on predicates of highest

arity yields a significant reduction in the number of propositional variables.

By implementing ODE at different degrees, we compared calculated measures of FOL

ontologies against practical hardness of model finding, in particular to understand whether

the size of the SAT problem is a good indicator of practical hardness. This was accomplished

through conducting comprehensive experiments on benchmark problems by varying three

parameters: signature of the ontology, domain size and number of relational assertions

in the ABox. To the best of our knowledge, no such systemic model finding experiments

have previously been reported on, and is an important step that actually establishes a

strong correlation correlation between the two that informs future work on automatically

preprocessing FOL ontologies for improved model finding. The experiments on the benchmark

ontologies revealed that with ODE we were able to achieve speedups upto at least 10% and

as high as 99%, and even improving scalability of model finding to domain sizes that were

previously intractable. This confirms our hypothesis that removing optional definitions from

the TBox can significantly improve FOL model finding performance, and demonstrating

the feasibility of model finding with mid-sized spatial data sets. To further complement

the empirical evaluation, we identified that formula-width is another important measure for

144

estimating how difficult the SAT problem that results from an FOL ontology may be, and a

good indicator for determining whether to eliminate a certain definition or not. Applying

ODE to ontologies with nested defined predicates not only leads to an exponential increase in

the number of clauses, but also formulas with large formula-width, and thus does not justify

the most aggressive definition elimination that is theoretically possible. The preprocessing

algorithm must therefore be optimized to select the level upto which ODE is maximally

efficient.

We have found ODE to at least alleviate the problem of intractabilty encountered with

increasing domain sizes during model finding and enable reasoning with more reasonably

sized, though still relatively small in today’s big data expectations, samples from datasets.

But using ODE is to syntactically alter an ontology to improve model finding performance by

potentially decreasing the runtime by orders of magnitudes and, as a more important effect,

allowing to successfully verify ontologies against data sets with larger domain sizes is a very

important finding.

Preprocessing is crucial when dealing with large ontologies especially in the presence of

data. Given a FOL ontology, the goal of ODE is to translate it to an equisatisfiable variant

with a smaller signature that minimizes Pv and Pc in its SAT translation while avoiding

adverse consequences from applying ODE aggressively. ODE aims to reduce the number of

predicates in the FOL-CNF formula, because each (a-nary) predicate leads to da propositional

variables for domain d. But, since recursive ODE increases the possibility of creating longer

FOL formulas, it is important to limit ODE to predicates whose elimination does not result

in alarmingly long formulas that in turn lead to longer FOL-CNF formulas. The measures

that we identify (on the ontology and its FOL-CNF formula) can be specifically used for

a heuristic analysis – to automatically calculate the resulting Pv, while not significantly

increasing Pc with and without definition elimination (e.g. take one definition, see whether

it should be eliminated, then move on to the next definition until we have a decision for

all predicates in the DBox. ODE as presented here advances on definition inlining outlined

145

in [229] that also uses contextual information to inline definitions and reduce the size of a

problem’s signature. Our experimental results demonstrate performance gains from ODE

are quite significant over any inlining simplification already implemented in Vampire. Other

predicate elimination procedures that reduce the FOL ontology signature resembling our

implementation of ODE are PPE and UDE [161] implemented in Vampire, however even

with these simplifications our experiments revealed intractability on problems with more

than 920,000 propositional variables and 160,0000 propositional clauses2 . Our experiments

on the sample ontologies show that through ODE the reduction in Pv and Pc is as high as

83% and 72%. For Paradox and Vampire, this leads to a speed-up model finding time by at

least 3 and 1 orders of magnitude, respectively, across the ABoxes of different sizes. More

importantly, ODE enables tractable model finding on larger problems on which solvers with

standard simplification procedures failed. For example, by applying ODE to CODI, the

size of models that could be found by Paradox increased from domain size 30 to domain

sizes of 120 and beyond. Unlike many simplifications such as identifying blocked clauses for

elimination, which in itself is NP hard or others which are at best polynomial [163], ODE can

be implemented without compromising efficiency, on the FOL problem before its translation

to FOL-CNF or propositional-CNF.

Additionally, through correlation analysis we verify that our results are consistent with

our general hypothesis that the difficulty of model finding is determined by the overall size of

the signature. In particular, the number of propositional variables might be a more precise

indicator of practical hardness than the number of propositional clauses or their width, in

the sense that the latter two measures give too optimistic estimates for formulas which have

very low number of clauses or width but which might nevertheless be hard for solvers to

solve in practice. We believe that ODE when combined with efficient heuristics (that can be

guided by our results) is a promising FOL-simplification paradigm for model finding with

2Resembling case 13 in CODI for d = 50 and r = 5. This is the default case including all the defined
predicates with no ODE performed - thereby allowing Vampire to perform any default simplifications such as
inlining, PPE and UDE.

146

complex axiomatizations and moderately sized datasets. In addition to typical reasoning tasks,

this kind of scalability will aid in the external verification of ontologies, specifically spatial

ontologies and reasoning with them (as evident from our model finding results using CODI,

RCC and INCH against small real vector datasets), identifying suitable spatial background

theories for a dataset and also more generically in data repairing.

8.1 Future Work

A conspicuous point for future work, and also as a next step of this work would be to

include the developments of our findings into an automated heuristic preprocessing tool and

verify the implementation with much larger and diverse (non-geospatial) set of ontologies to

see how broadly useful it is. But a challenge that ensues is that such a task will be limited

to ontologies for which real data is easily accessible. Another concern is that there are still

many open questions about what makes some solvers tick. From our experimental findings,

iProver did not gain as much benefit from ODE as Vampire and Paradox.

Another interesting line of investigation would be to study the implications of ODE

on non-MACE systems like Darwin-style and SMT solvers or even theorem provers. The

flattening transformation in Paradox generates one n+1-ary predicate symbol in the FOL-CNF

translation for each n-ary function symbol in the FOL formula. But Darwin, replaces all n-ary

function symbols with one n+2-ary function symbol – which means Darwin adds fewer Skolem

predicates from clausification compared to Paradox, but some of these predicates could also

be of an arity higher than any predicate generated by Paradox. This kind of a meta-modeling

approach yields a more compact clause set, but also operates in the function-free logic

fragment, where the growth in problem size is much slower than propositional problems. We

therefore expect ODE could lead to more significant performance gains with Darwin-style

solvers over MACE-style solvers.

A certain extent of redundancy is generally thought to improve solver performance.

For example, several works find lemmas and redundant axioms to make theorem proving

147

problems easier [55], redundant clauses boost solver performance [156], and constrainedness

(in terms of clause density) affect problem hardness [53, 206, 117]. Likewise our experiments

reveal constrainedness of ABox assertions (ratio of d to r), specifically in RCC and INCH

influence the performance of Paradox and Vampire (discussed in Section 7.2.1). We plan

to investigate the influence of this parameter on model finding to investigate the question

whether sub-models, or new assertions proved from smaller/easier problems, can be added to

a more difficultly constrained problem to scale reasoning for larger domain sizes.

Splitting is a reduction technique to minimize the number of variables v in clauses3 , but

introduces additional clauses and more importantly the addition of new predicate symbols

[56]. However our theoretical results reveal that with optimal ODE, v is already reduced,

and since Pv has an outsized impact on hardness compared to Pc, it would be worthwhile to

investigate the interaction between the two simplification techniques – if turning off splitting

when using ODE can further improve model finding performance.

3Since the number of propositional instantiations for each FOL-CNF clause in a formula is exponential in
the number of variables in the clause.

148

REFERENCES

[1] https://github.com/gruninger/colore/mereotopology, accessed 04/2020.

[2] https://github.com/gruninger/colore/inch, accessed 04/2020.

[3] Emmanuel Abbe and Andrea Montanari. On the Concentration of the Number

of Solutions of Random Satisfiability Formulas. Random Structures & Algorithms,

45(3):362–382, 2014.

[4] Dimitris Achlioptas. Lower Bounds for Random 3-SAT via Differential Equations.

Theoretical Computer Science, 265(1-2):159–185, 2001.

[5] Dimitris Achlioptas and Federico Ricci-Tersenghi. On the Solution-Space Geometry of

Random Constraint Satisfaction Problems. In Proceedings of the thirty-eighth annual

ACM symposium on Theory of computing, pages 130–139. ACM, 2006.

[6] Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis Papakonstantinou, and Bangsheng

Tang. Width-parameterized SAT: Time-space tradeoffs. 2014.

[7] Fadi A Aloul, Arathi Ramani, Igor L Markov, and Karem A Sakallah. Solving Difficult

SAT Instances in the Presence of Symmetry. In Proceedings of the 39th annual Design

Automation Conference, pages 731–736. ACM, 2002.

[8] Teresa Alsinet, Felip Manya, and Jordi Planes. A Max-SAT Solver with Lazy Data

Structures. In Ibero-American Conference on Artificial Intelligence, pages 334–342.

Springer, 2004.

[9] Marcelo Arenas and Jorge Pérez. Querying Semantic Web Data with SPARQL. In

Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems, pages 305–316, 2011.

149

https://github.com/gruninger/colore/mereotopology
https://github.com/gruninger/colore/inch

[10] Rob Arthan and Paulo Oliva. (Dual) Hoops have Unique Halving. In Automated

Reasoning and Mathematics, pages 165–180. Springer, 2013.

[11] Gilles Audemard and Laurent Simon. Glucose: a Solver that Predicts Learnt Clauses

Quality. SAT Competition, pages 7–8, 2009.

[12] Fahiem Bacchus. Enhancing Davis Putnam with Extended Binary Clause Reasoning.

AAAI/IAAI, 2002:613–619, 2002.

[13] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Solving #SAT and Bayesian

Inference with Backtracking Search. Journal of Artificial Intelligence Research,

34:391–442, 2009.

[14] Fahiem Bacchus and Jonathan Winter. Effective Preprocessing with Hyper-Resolution

and Equality Reduction. In International conference on theory and applications of

satisfiability testing, pages 341–355. Springer, 2003.

[15] Clark W Barrett, David L Dill, and Aaron Stump. Checking Satisfiability of First-Order

Formulas by Incremental Translation to SAT. In International Conference on Computer

Aided Verification, pages 236–249. Springer, 2002.

[16] Jon Barwise, Solomon Feferman, and Solomon Feferman. Model-theoretic logics,

volume 8. Cambridge University Press, 2017.

[17] John Bateman and Scott Farrar. Spatial Ontology Baseline, D2, I1-[OntoSpace].

Technical report, Collaborative Research Center for Spatial Cognition, University of

Bremen, 2006.

[18] Sotiris Batsakis and Euripides GM Petrakis. SOWL: Spatio-Temporal Representation,

Reasoning and Querying over the Semantic Web. In Proceedings of the 6th international

conference on semantic systems, pages 1–9, 2010.

150

[19] Ringo Baumann and Heinrich Herre. The Axiomatic Foundation of Space in GFO.

Applied Ontology, 2011. submitted.

[20] Ringo Baumann, Frank Loebe, and Heinrich Herre. Towards an Ontology of Space for

GFO. In Conf. on Formal Ontology in Inf. Systems (FOIS-16), pages 53–66, 2016.

[21] Peter Baumgartner. A First-Order Davis-Putnam-Logemann-Loveland Procedure. In

IJCAR2001, International Joint Conference on Artificial Intelligence, 2002.

[22] Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach. A Confluent Connection

Calculus. In International Conference on Automated Deduction, pages 329–343. Springer,

1999.

[23] Peter Baumgartner, Alexander Fuchs, Hans De Nivelle, and Cesare Tinelli. Computing

finite Models by Reduction to Function-Free Clause Logic. Journal of Applied Logic,

7(1):58–74, 2009.

[24] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Darwin: A Theorem Prover

for the Model Evolution Calculus. In IJCAR Workshop on Empirically Successful First

Order Reasoning (ESFOR (aka S4)), Electronic Notes in Theoretical Computer Science,

page 191. Citeseer, 2004.

[25] Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model Evolution with

Equality-Revised and Implemented. Journal of Symbolic Computation, 47(9):1011–1045,

2012.

[26] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In International

Conference on Automated Deduction, pages 350–364. Springer, 2003.

[27] Roberto J Bayardo Jr and Robert Schrag. Using CSP Look-Back Techniques to solve

real-world SAT instances. In Aaai/iaai, pages 203–208. Providence, RI, 1997.

151

[28] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and

harnessing the potential of clause learning. Journal of Artificial Intelligence Research,

22:319–351, 2004.

[29] Mordechai Ben-Ari. Mathematical logic for computer science. Springer Science &

Business Media, 2012.

[30] Konstantina Bereta, Guohui Xiao, Manolis Koubarakis, Martina Hodrius, Conrad

Bielski, and Gunter Zeug. Ontop-spatial: Geospatial Data Integration using

GeoSPARQL-to-SQL translation. In Proceedings of the 15th International Semantic

Web Conference, Posters & Demonstrations Track (ISWC). Available at: http://ceur-ws.

org, volume 1690, 2016.

[31] Jeremias Berg and Matti Järvisalo. SAT-Based Approaches to Treewidth Computation:

An evaluation. In 2014 IEEE 26th International Conference on Tools with Artificial

Intelligence, pages 328–335. IEEE, 2014.

[32] Evert W. Beth. On Padoa’s Method in the Theory of Definition. Indagationes Math.,

15:330–339, 1953.

[33] Armin Biere. Resolve and Expand. In International conference on theory and

applications of satisfiability testing, pages 59–70. Springer, 2004.

[34] Armin Biere. Preprocessing and Inprocessing Techniques in SAT. In Haifa Verification

Conference, volume 1, 2011.

[35] Armin Biere. Splatz, Lingeling, PLingeling, Treengeling, Yalsat entering the SAT

Competition 2016. Proc. of SAT Competition, pages 44–45, 2016.

[36] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan

Zhu. Bounded model checking. Handbook of satisfiability, 185(99):457–481, 2009.

152

[37] Armin Biere, Marijn Heule, and Hans van Maaren. Chapter 5: Look-Ahead Based SAT

Solvers. In Handbook of satisfiability, volume 185. IOS press, 2009.

[38] Per Bjesse, James Kukula, Robert Damiano, Ted Stanion, and Yunshan Zhu. Guiding

SAT Diagnosis with Tree Decompositions. In International Conference on Theory and

Applications of Satisfiability Testing, pages 315–329. Springer, 2003.

[39] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding Bugs in an Alpha

Microprocessor usingSsatisfiability Solvers. In International Conference on Computer

Aided Verification, pages 454–464. Springer, 2001.

[40] Patrick Blackburn and Johan Bos. Representation and Inference for Natural Language.

A first course in computational semantics. CSLI, 2005.

[41] Ivan Bocic and Tevfik Bultan. Efficient Data Model Verification with Many-Sorted

Logic (T). In 2015 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 42–52. IEEE, 2015.

[42] Maria Paola Bonacina. On Theorem Proving for Program Checking: Historical

Perspective and Recent Developments. In Proceedings of the 12th international ACM

SIGPLAN symposium on Principles and practice of declarative programming, pages

1–12, 2010.

[43] Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional Satisfiability and

Constraint Programming: A comparative survey. ACM Computing Surveys (CSUR),

38(4):12, 2006.

[44] Stefano Borgo, Nicola Guarino, and Claudio Masolo. A Pointless Theory of Space

based on Strong Connection and Congruence. In KR’96: Principles of Knowledge

Representation and Reasoning, pages 220–229, 1996.

153

[45] Stefano Borgo and Claudio Masolo. Full Mereogeometries. Rev. Symb. Logic,

3(4):521–567, 2010.

[46] Johan Bos. Exploring Model Building for Natural Language Understanding. In Proc.

ICoS, volume 4, 2003.

[47] Ronen I Brafman. A Simplifier for Propositional Formulas with many Binary

Clauses. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

34(1):52–59, 2004.

[48] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey Propagation: An

algorithm for satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

[49] Boyan Brodaric and Torsten Hahmann. Towards a Foundational Hydro Ontology for

Water Data Interoperability. In Int. Conf. on Hydroinformatics (HIC-2014), 2014.

[50] Andrei Z Broder, Alan M Frieze, and Eli Upfal. On the Satisfiability and Maximum

Satisfiability of Random 3-CNF formulas. In SODA, volume 93, pages 322–330, 1993.

[51] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A Duality between Clause

Width and Clause Density for SAT. In 21st Annual IEEE Conference on Computational

Complexity (CCC’06), pages 7–pp. IEEE, 2006.

[52] Roberto Casati and Achille C. Varzi. Parts and Places. MIT Press, 1999.

[53] Peter C Cheeseman, Bob Kanefsky, and William M Taylor. Where the really hard

problems are. In IJCAI, volume 91, pages 331–337, 1991.

[54] Jingchao Chen. Fast Blocked Clause Decomposition with High Quality. arXiv preprint

arXiv:1507.00459, 2015.

[55] Koen Claessen, Reiner Hähnle, and Johan Mårtensson. Verification of Hardware Systems

with First-Order Logic. In Proceedings of the CADE-18 Workshop-Problem and Problem

Sets for ATP, number 02/10, 2002.

154

[56] Koen Claessen and Niklas Sörensson. New Techniques that Improve MACE-style Finite

Model Building. In Workshop on Model Computation at CADE 2003, 2003.

[57] Eliseo Clementini and Paolino Di Felice. A Comparison of Methods for Representing

Topological Relationships. Information sciences-applications, 3(3):149–178, 1995.

[58] Eliseo Clementini, Paolino Di Felice, and Daniel Hernández. Qualitative Representation

of Positional Information. Artificial intelligence, 95(2):317–356, 1997.

[59] Eliseo Clementini, Paolino Di Felice, and Peter Van Oosterom. A small set of formal

topological relationships suitable for end-user interaction. In International Symposium

on Spatial Databases, pages 277–295. Springer, 1993.

[60] Eliseo Clementini and Paolino Di Felice. A Model for Representing Topological

Relationships between Complex Geometric Features in Spatial Databases. Inf. Sci.,

90(1):121–136, 1996.

[61] Cristian Coarfa, Demetrios D Demopoulos, Alfonso San Miguel Aguirre, Devika

Subramanian, and Moshe Y Vardi. Random 3-sat: The plot thickens. In International

Conference on Principles and Practice of Constraint Programming, pages 143–159.

Springer, 2000.

[62] Anthony G Cohn, Brandon Bennett, John Gooday, and Nicholas Mark Gotts.

Qualitative Spatial Representation and Reasoning with the Region Connection Calculus.

GeoInformatica, 1(3):275–316, 1997.

[63] Anthony G. Cohn, Brandon Bennett, John M. Gooday, and Nicholas M. Gotts.

Representing and Reasoning with Qualitative Spatial Relations about Regions. In

Oliviero Stock, editor, Spatial and Temporal Reasoning, pages 97–134. Kluwer, 1997.

155

[64] Anthony G. Cohn and Jochen Renz. Qualitative Spatial Representation and Reasoning.

In F. van Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of Knowledge

Representation. Elsevier, 2008.

[65] Anthony G Cohn and Achille C Varzi. Mereotopological connection. Journal of

Philosophical Logic, 32(4):357–390, 2003.

[66] Stephen A Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of

the third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[67] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. On the Fixed Parameter

Complexity of Graph Enumeration Problems Definable in Monadic Second-Order Logic.

Discrete Applied Mathematics, 108(1-2):23–52, 2001.

[68] Kenny R Coventry and Simon C Garrod. Saying, seeing and acting: The psychological

semantics of spatial prepositions. Psychology Press, 2004.

[69] Simon Cox. Observations and measurements. Open Geospatial Consortium Best

Practices Document. Open Geospatial Consortium, page 21, 2006.

[70] James M Crawford and Larry D Auton. Experimental results on the crossover point in

satisfiability problems. In AAAI, volume 93, pages 21–27. Citeseer, 1993.

[71] James M Crawford and Larry D Auton. Experimental Results on the Crossover Point

in Random 3-SAT. Artificial intelligence, 81(1-2):31–57, 1996.

[72] Cycorp Inc. OpenCyc Selected Vocabulary and Upper Ontology, Spatial Relations.

http://www.cyc.com/cycdoc/vocab/spatial-vocab.html, 02 2012.

[73] Evgeny Dantsin and Alexander Wolpert. On Moderately Exponential Time for SAT.

In International Conference on Theory and Applications of Satisfiability Testing, pages

313–325. Springer, 2010.

156

http://www.cyc.com/cycdoc/vocab/spatial-vocab.html

[74] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for

Theorem-Proving. Communications of the ACM, 5(7):394–397, 1962.

[75] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory.

Journal of the ACM (JACM), 7(3):201–215, 1960.

[76] Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox Reasoning in Expressive

Description Logics. In KR’96: Principles of Knowledge Representation and Reasoning,

pages 316–327, 1996.

[77] Rina Dechter and Judea Pearl. Tree Clustering for Constraint Networks. Artificial

Intelligence, 38(3):353–366, 1989.

[78] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A Clause-Based Heuristic for

SAT Solvers. In International Conference on Theory and Applications of Satisfiability

Testing, pages 46–60. Springer, 2005.

[79] Lyndon Drake and Alan Frisch. The Interaction Between Inference and Branching

Heuristics. In International Conference on Theory and Applications of Satisfiability

Testing, pages 370–382. Springer, 2003.

[80] Lyndon Drake, Alan Frisch, Inês Lynce, JP Marques-Silva, and Toby Walsh. Comparing

SAT Preprocessing Techniques. 2002.

[81] Heshan Du, Natasha Alechina, Kristin Stock, and Michael Jackson. The Logic of NEAR

and FAR. In International Conference on Spatial Information Theory, pages 475–494.

Springer, 2013.

[82] André Duarte and Konstantin Korovin. Experimenting with Superposition in iProver.

In WORKSHOP 2019, page 27, 2019.

[83] Olivier Dubois. Sat versus unsat. Cliques, Coloring, and Satisfiability: Series in Discrete

Mathematics and Theoretical Computer Sicence, 26:415–436, 1996.

157

[84] Olivier Dubois, Yacine Boufkhad, and Jacques Mandler. Typical Random 3-SAT

Formulae and the Satisfiability Threshold. arXiv preprint cs/0211036, 2002.

[85] Jeffrey M Dudek, Kuldeep S Meel, and Moshe Y Vardi. The Hard Problems are almost

everywhere for Random CNF-XOR Formulas. arXiv preprint arXiv:1710.06378, 2017.

[86] Vincent Dugat, Pierre Gambarotto, and Yannick Larvor. Qualitative Theory of Shape

and Orientation. In Proc. of the 16th Int. Joint Conference on Artificial Intelligence

(IJCAI’99), Stockolm, Sweden, pages 45–53, 1999.

[87] Vijay Durairaj and Priyank Kalla. Guiding CNF-SAT Search via Efficient Constraint

Partitioning. In Proceedings of the 2004 IEEE/ACM International conference on

Computer-aided design, pages 498–501. IEEE Computer Society, 2004.

[88] Niklas Eén and Armin Biere. Effective Preprocessing in SAT through Variable

and Clause Elimination. In International conference on theory and applications of

satisfiability testing, pages 61–75. Springer, 2005.

[89] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In SAT, 2003.

[90] Niklas Een and Niklas Sorensson. The MINISAT Page. http://minisat.se, 2016.

[91] Max J. Egenhofer. Reasoning about Binary Topological Relations. In Symp. on Large

Spatial Databases (SSD’91), LNCS 525, pages 141–160. Springer, 1991.

[92] Max J. Egenhofer and John Herring. Categorizing Binary Topological Relations between

Regions, Lines, and Points in Geographic Databases. Technical report, Department of

Surveying Engineering, Univ. of Maine, 1991.

[93] Mohamed El Halaby. On the Computational Complexity of MaxSAT. In Electronic

Colloquium on Computational Complexity (ECCC), volume 23, page 34, 2016.

[94] Zoe Falomir. Towards a Qualitative Descriptor for Paper Folding Reasoning. In Proc.

of the 29th International Workshop on Qualitative Reasoning (QR?16), 2016.

158

http://minisat.se

[95] Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental Inprocessing in

SAT Solving. In International Conference on Theory and Applications of Satisfiability

Testing, pages 136–154. Springer, 2019.

[96] Giorgio De Felice, Paolo Fogliaroni, and Jan Oliver Wallgrün. A Hybrid

Geometric-Qualitative Spatial Reasoning System and its Application in GIS. In Conf.

on Spatial Inf. Theory (COSIT-09), 2009.

[97] Branden Fitelson. Gibbards Collapse Theorem for the Indicative Conditional: An

Axiomatic Approach. In Automated Reasoning and Mathematics, pages 181–188.

Springer, 2013.

[98] Jörg Flum. RG Downey and MR Fellows. Parameterized Complexity. Monographs

in Computer Science. Springer, New York, Berlin, and Heidelberg, 1999, xv+ 533 pp.

Bulletin of Symbolic Logic, 8(4):528–529, 2002.

[99] Paolo Fogliaroni, Paul Weiser, and Heidelinde Hobel. Qualitative Spatial Configuration

Search. Spatial Cognition & Computation, 16(4):272–300, 2016.

[100] Andreas Folkler. Automated Theorem Proving: Resolution vs. Tableaux, 2002.

[101] Jon William Freeman. Improvements to Propositional Satisfiability Search Algorithms.

PhD thesis, University of Pennsylvania Philadelphia, PA, 1995.

[102] Christian Freksa. Using Orientation Information for Qualitative Spatial Reasoning. In

Theories and methods of spatio-temporal reasoning in geographic space, pages 162–178.

Springer, 1992.

[103] Eugene C Freuder. A Sufficient Condition for Backtrack-Bounded Search. Journal of

the ACM (JACM), 32(4):755–761, 1985.

[104] Ehud Friedgut, Jean Bourgain, et al. Sharp Thresholds of Graph Properties, and the

k-SAT Problem. Journal of the American mathematical Society, 12(4):1017–1054, 1999.

159

[105] Alan Frieze and Stephen Suen. Analysis of Two Simple Heuristics on a Random Instance

of k-SAT. Journal of Algorithms, 20(2):312–355, 1996.

[106] Nicola Galesi and Oliver Kullmann. Polynomial Time SAT Decision, Hypergraph

Transversals and the Hermitian Rank. In International Conference on Theory and

Applications of Satisfiability Testing, pages 89–104. Springer, 2004.

[107] Anthony Galton. Taking Dimension Seriously in Qualitative Spatial Reasoning. In

Europ.Conf. on Artif. Intell. (ECAI-96), pages 501–505, 1996.

[108] Robert Ganian, Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-Encodings

for Treecut Width and Treedepth. In 2019 Proceedings of the Twenty-First Workshop

on Algorithm Engineering and Experiments (ALENEX), pages 117–129. SIAM, 2019.

[109] Harald Ganzinger and Konstantin Korovin. New Directions in Instantiation-Based

Theorem Proving. In 18th Annual IEEE Symposium of Logic in Computer Science,

2003. Proceedings., pages 55–64. IEEE, 2003.

[110] Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh

freeman New York, 2002.

[111] Martin Gebser, Tomi Janhunen, Roland Kaminski, Torsten Schaub, and Shahab

Tasharrofi. Writing Declarative Specifications for Clauses. In European Conference on

Logics in Artificial Intelligence, pages 256–271. Springer, 2016.

[112] Roman Gershman and Ofer Strichman. Cost-Effective Hyper-Resolution for

Preprocessing CNF Formulas. In International Conference on Theory and Applications

of Satisfiability Testing, pages 423–429. Springer, 2005.

[113] Arup Kumar Ghosh. Speeding up SAT Solver by Exploring CNF Symmetries: Revisited.

arXiv preprint arXiv:1102.0230, 2011.

160

[114] Enrico Giunchiglia, Marco Maratea, and Armando Tacchella. Dependent and

Independent Variables in Propositional Satisfiability. In European Workshop on Logics

in Artificial Intelligence, pages 296–307. Springer, 2002.

[115] Evgueni Goldberg and Yakov Novikov. Verification of Proofs of Unsatisfiability for

CNF Formulas. In Proceedings of the conference on Design, Automation and Test in

Europe-Volume 1, page 10886. IEEE Computer Society, 2003.

[116] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability

Solvers. Foundations of Artificial Intelligence, 3:89–134, 2008.

[117] Carla P Gomes and Bart Selman. Computational Science: Can get Satisfaction. Nature,

435(7043):751, 2005.

[118] Nicholas Mark Gotts. Formalising Commonsense Topology: The INCH Calculus. In

Proc. Fourth International Symposium on Artificial Intelligence and Mathematics, 1996.

[119] R Goyal and Max J Egenhofer. The Direction-Relation Matrix: A Representation for

Directions Relations between Extended Spatial Objects. the annual assembly and the

summer retreat of University Consortium for Geographic Information Systems Science,

3:95–102, 1997.

[120] Pierre Grenon. BFO in a nutshell: A Bi-Categorical Axiomatization of BFO and

comparison with DOLCE. Technical report, Leipzig University, Institute of Formal

Ontology and Medical Information Science (IFOMIS), 2003.

[121] Pierre Grenon and Barry Smith. SNAP and SPAN: Towards Dynamic Spatial Ontology.

J. Spat. Cogn. Comput., 4(1):69–104, 2004.

[122] Orna Grumberg, Assaf Schuster, and Avi Yadgar. Memory Efficient All-Solutions SAT

Solver and its Application for Reachability Analysis. In International Conference on

Formal Methods in Computer-Aided Design, pages 275–289. Springer, 2004.

161

[123] Michael Grüninger. Ontology of the Process Specification Language. In Handbook on

ontologies, pages 575–592. Springer, 2004.

[124] Michael Grüninger, Katy Atefi, and Mark S Fox. Ontologies to Support Process

Integration in Enterprise Engineering. Computational & Mathematical Organization

Theory, 6(4):381–394, 2000.

[125] Yuri Gurevich and David G Mitchell. A SAT Solver Primer. 2005.

[126] Djamal Habet, Lionel Paris, and Cyril Terrioux. A Tree Decomposition Based Approach

to Solve Structured SAT Instances. In 2009 21st IEEE International Conference on

Tools with Artificial Intelligence, pages 115–122. IEEE, 2009.

[127] Torsten Hahmann. A Reconciliation of Logical Representations of Space: from

Multidimensional Mereotopology to Geometry. PhD thesis, Univ. of Toronto, 2013.

[128] Torsten Hahmann. On Decomposition Operations in a Theory of Multidimensional

Qualitative Space. In FOIS, pages 173–186, 2018.

[129] Torsten Hahmann and Michael Grüninger. Multidimensional Mereotopology with

Betweenness. In Int. Joint Conf. on Artif. Intell. (IJCAI-11), pages 906–911, 2011.

[130] Torsten Hahmann and Michael Grüninger. A Naïve Theory of Dimension for Qualitative

Spatial Relations. In Symp. on Logical Formalizations of Commonsense Reasoning

(CommonSense 2011). AAAI Press, 2011.

[131] Torsten Hahmann and Michael Grüninger. A Theory of Multidimensional Qualitative

Space: Semantic integration of spatial theories that distinguish interior from boundary

contact (extended abstract). In Proc. of the Int. Conference on Spatial Information

Theory (COSIT 2011), Belfast, Maine, September 12-16, 2011, 2011.

162

[132] Torsten Hahmann and Michael Grüninger. Region-Based Theories of Space:

Mereotopology and Beyond. In Qualitative spatio-temporal representation and reasoning:

Trends and future directions, pages 1–62. IGI Global, 2012.

[133] Torsten Hahmann, Shirly Stephen, and Boyan Brodaric. Semantically Refining the

GWML2 with the Help of a Reference Ontology. In Conf. on Geographic Inf. Sci.

(GIScience), 2016.

[134] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. Learning for Dynamic Subsumption.

International Journal on Artificial Intelligence Tools, 19(04):511–529, 2010.

[135] Hyojung Han and Fabio Somenzi. On-the-fly Clause Improvement. In International

conference on theory and applications of satisfiability testing, pages 209–222. Springer,

2009.

[136] Brian Hayes. Computing science: Can’t get no satisfaction. American scientist,

85(2):108–112, 1997.

[137] Julio Cesar Lopez Hernandez and Konstantin Korovin. Towards an

Under-Approximation Abstraction-Refinement for Reasoning with Large Theories. In

WORKSHOP 2019, page 3, 2019.

[138] J Herring. OpenGIS Implementation Standard for Geographic information - Simple

Feature Access-Part 1: Common architecture, 2011.

[139] Marijn Heule, Matti Järvisalo, and Armin Biere. Clause Elimination Procedures for

CNF Formulas. In International Conference on Logic for Programming Artificial

Intelligence and Reasoning, pages 357–371. Springer, 2010.

[140] Marijn Heule, Matti Järvisalo, and Armin Biere. Covered Clause Elimination. arXiv

preprint arXiv:1011.5202, 2010.

163

[141] Marijn Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and Armin Biere. Clause

Elimination for SAT and QSAT. Journal of Artificial Intelligence Research, 53:127–168,

2015.

[142] Marijn JH Heule and Armin Biere. Blocked Clause Decomposition. In International

Conference on Logic for Programming Artificial Intelligence and Reasoning, pages

423–438. Springer, 2013.

[143] Marijn JH Heule, Matti Järvisalo, and Armin Biere. Efficient CNF Simplification Based

on Binary Implication Graphs. In International Conference on Theory and Applications

of Satisfiability Testing, pages 201–215. Springer, 2011.

[144] Marijn JH Heule and Stefan Szeider. A SAT Approach to Clique-Width. ACM

Transactions on Computational Logic (TOCL), 16(3):24, 2015.

[145] Timothy L Hinrichs and Michael R Genesereth. Extensional Reasoning. Citeseer, 2008.

[146] Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov.

Preprocessing Techniques for First-Order Clausification. In 12th Intern. Conf. on

Formal Methods in Computer-Aided Design (FMCAD 2012), pages 44–51. IEEE, 2012.

[147] Holger H Hoos. On the Run-Time Behaviour of Stochastic Local Search Algorithms for

SAT. In AAAI/IAAI, pages 661–666, 1999.

[148] Holger H Hoos and Thomas Stützle. Local Search Algorithms for SAT: An Empirical

Evaluation. Journal of Automated Reasoning, 24(4):421–481, 2000.

[149] Holger H Hoos and Thomas Stützle. SATLIB: An Online Resource for Research on

SAT. Sat, 2000:283–292, 2000.

[150] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with Individuals for the

Description Logic SHIQ. In CADE-2000, pages 482–496. Springer, 2000.

164

[151] International Electrotechnical Commission (ISO/IEC). ISO 19125:2004 geographic

Information – Simple Feature Access, 2004.

[152] International Electrotechnical Commission (ISO/IEC). ISO 19136:2007 Geographic

Information – Geography Markup Language (GML), 2007.

[153] Kazuo Iwama and Kazuya Takaki. Satisfiability of 3-CNF Formulas with Small

Clause/Variable Ratio. American Mathematical Society, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 35:315–333, 1997.

[154] Azadeh Izadi, Kristin M Stock, and Hans W Guesgen. Multidimensional Region

Connection Calculus. Unpublished Paper, Association for the Advancement of Artifical

Intelligence, 2017.

[155] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked Clause Elimination. In

International conference on tools and algorithms for the construction and analysis of

systems, pages 129–144. Springer, 2010.

[156] Matti Järvisalo, Marijn JH Heule, and Armin Biere. Inprocessing Rules. In International

Joint Conference on Automated Reasoning, pages 355–370. Springer, 2012.

[157] HoonSang Jin and Fabio Somenzi. An Incremental Algorithm to Check Satisfiability

for Bounded Model Checking. Electronic Notes in Theoretical Computer Science,

119(2):51–65, 2005.

[158] Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Complexity of

SAT Problems, Clone Theory and the Exponential Time Hypothesis. In Proceedings

of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages

1264–1277. Society for Industrial and Applied Mathematics, 2013.

165

[159] Soumya C Kambhampati and Thomas Liu. Phase Transition and Network Structure in

Realistic SAT Problems. In Twenty-Seventh AAAI Conference on Artificial Intelligence,

2013.

[160] Hadi Katebi, Karem A Sakallah, and João P Marques-Silva. Empirical Study of

the Anatomy of Modern SAT Solvers. In International Conference on Theory and

Applications of Satisfiability Testing, pages 343–356. Springer, 2011.

[161] Zurab Khasidashvili and Konstantin Korovin. Predicate Elimination for Preprocessing in

First-Order Theorem Proving. In International Conference on Theory and Applications

of Satisfiability Testing, pages 361–372. Springer, 2016.

[162] Benjamin Kiesl and Martin Suda. A Unifying Principle for Clause Elimination in

First-Order Logic. In International Conference on Automated Deduction, pages 274–290.

Springer, 2017.

[163] Benjamin Kiesl, Martin Suda, Martina Seidl, Hans Tompits, and Armin Biere. Blocked

Clauses in First-Order Logic. arXiv preprint arXiv:1702.00847, 2017.

[164] Niklas SÃűrensson Koen Claessen. Paradox First-Order Logic Model-Finder. https:

//github.com/c-cube/paradox, accessed 09/2019.

[165] Konstantin Korovin. iProver – An Instantiation-Based Theorem Prover for First-Order

Logic (system description). In International Joint Conference on Automated Reasoning,

pages 292–298. Springer, 2008.

[166] Konstantin Korovin. Inst-Gen – A Modular Approach to Instantiation-Based Automated

Reasoning. In Programming Logics, pages 239–270. Springer, 2013.

[167] Konstantin Korovin. Non-Cyclic Sorts for First-Order Satisfiability. In Pascal Fontaine,

Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers of Combining Systems,

pages 214–228. Springer, 2013.

166

https://github.com/c-cube/paradox
https://github.com/c-cube/paradox

[168] E Kotelnikov. Checking Network Reachability Properties by Automated Reasoning in

First-Order Logic. Automated Theorem Proving with Extensions of First-Order Logic,

pages 114–131.

[169] Evgenii Kotelnikov. Automated Theorem Proving with Extensions of First-Order Logic.

Department of Computer Science and Engineering, Chalmers University of ?, 2018.

[170] Manolis Koubarakis and Kostis Kyzirakos. Modeling and Querying Metadata in the

Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In

Extended Semantic Web Conference, pages 425–439. Springer, 2010.

[171] Laura Kovács and Andrei Voronkov. Finding Loop Invariants for Programs over Arrays

using a Theorem Prover. In International Conference on Fundamental Approaches to

Software Engineering, pages 470–485. Springer, 2009.

[172] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In

International Conference on Computer Aided Verification, pages 1–35. Springer, 2013.

[173] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K Ganai. Robust

Boolean Reasoning for Equivalence Checking and Functional Property Verification.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

21(12):1377–1394, 2002.

[174] Werner Kuhn. Metaphors create theories for users. In European Conference on Spatial

Information Theory, pages 366–376. Springer, 1993.

[175] O Kullmann. A Systematical Approach to 3-SAT Decision, yielding 3-SAT Decision in

less than 1: 5045n steps. Theoretical Computer Science, 1997.

[176] Oliver Kullmann. The SAT 2005 Solver Competition on Random Instances. Journal

on Satisfiability, Boolean Modeling and Computation, 2(1-4):61–102, 2006.

167

[177] Wolfgang Kunz and Dhiraj K Pradhan. Recursive Learning: An Attractive Alternative

to the Decision Tree for Test Generation in Digital Ci. In Proceedings International

Test Conference 1992, page 816. IEEE, 1992.

[178] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Developing Registries

for the Semantic Sensor Web using stRDF and stSPARQL. In International Workshop

on Semantic Sensor Networks, 2010.

[179] Shie-Jue Lee and David A Plaisted. Eliminating Duplication with the Hyper-Linking

Strategy. Journal of Automated Reasoning, 9(1):25–42, 1992.

[180] Reinhold Letz and Gernot Stenz. Proof and Model Generation with Disconnection

Tableaux. In International Conference on Logic for Programming Artificial Intelligence

and Reasoning, pages 142–156. Springer, 2001.

[181] Chu Min Li. Integrating Equivalency Reasoning into Davis-Putnam Procedure.

AAAI/IAAI, 2000:291–296, 2000.

[182] Chu Min Li and Anbulagan Anbulagan. Heuristics Based on Unit Propagation for

Satisfiability Problems. In Proceedings of the 15th international joint conference on

Artifical intelligence-Volume 1, pages 366–371. Morgan Kaufmann Publishers Inc., 1997.

[183] Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, and Yu Li. Clause

Vivification by Unit Propagation in CDCL SAT Solvers. Artificial Intelligence,

279:103197, 2020.

[184] Zhiyu Liu, Meng Jiang, and Hai Lin. A Graph-Based Spatial Temporal Logic for

Knowledge Representation and Automated Reasoning in Cognitive Robots. arXiv

preprint arXiv:2001.07205, 2020.

168

[185] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT Approach to Branchwidth.

In International Conference on Theory and Applications of Satisfiability Testing, pages

179–195. Springer, 2016.

[186] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-Encodings for Special

Treewidth and Pathwidth. In International Conference on Theory and Applications of

Satisfiability Testing, pages 429–445. Springer, 2017.

[187] Zhiguo Long, Matt Duckham, Sanjiang Li, and Steven Schockaert. Indexing Large

Geographic Datasets with Compact Qualitative Representation. International Journal

of Geographical Information Science, 30(6):1072–1094, 2016.

[188] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl. Enhancing

Search-Based QBF Solving by Dynamic Blocked Clause Elimination. In Logic for

Programming, Artificial Intelligence, and Reasoning, pages 418–433. Springer, 2015.

[189] Feng Lu, Li-C Wang, Kwang-Ting Cheng, and Ric CY Huang. A Circuit SAT Solver

with Signal Correlation Guided Learning. In Proceedings of the conference on Design,

Automation and Test in Europe-Volume 1, page 10892. IEEE Computer Society, 2003.

[190] Peter Lucas. The Representation of Medical Reasoning Models in Resolution-Based

Theorem Provers. Artificial Intelligence in Medicine, 5(5):395–414, 1993.

[191] I. Lynce and J. Marques-silva. Efficient Data Structures for Fast SAT Solvers. 01 2002.

[192] Inês Lynce and João Marques-Silva. Probing-Based Preprocessing Techniques for

Propositional Satisfiability. In Proceedings. 15th IEEE International Conference on

Tools with Artificial Intelligence, pages 105–110. IEEE, 2003.

[193] Inês Lynce and Joao P Marques-Silva. The Puzzling Role of Simplification in

Propositional Satisfiability. In Proceedings of the EPIA Workshop on Constraint

169

Satisfaction and Operational Research Techniques for Problem Solving, pages 73–86,

2001.

[194] Inês Lynce and João P Marques-Silva. An Overview of Backtrack Search Satisfiability

Algorithms. Annals of Mathematics and Artificial Intelligence, 37(3):307–326, 2003.

[195] Peter Maandag, Henk Barendregt, and Alexandra Silva. Solving 3-SAT. PhD thesis,

Citeseer, 2012.

[196] Joao Marques-Silva. Search algorithms for satisfiability problems in combinational

switching circuits. PhD thesis, University of Michigan, 1995.

[197] Joao Marques-Silva. The Impact of Branching Heuristics in Propositional Satisfiability

Algorithms. In Portuguese Conference on Artificial Intelligence, pages 62–74. Springer,

1999.

[198] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and Alessandro

Oltramari. Wonderweb Deliverable D18 - Ontology Library (Final Report). Technical

report, National Research Council - Institute of Cognitive Sci. and Technology, Trento,

2003.

[199] William McCune. A Davis-Putnam Program and its Application to Finite First-Order

Model Search: Quasigroup Existence Problems. Technical report, Technical report,

Argonne National Laboratory, 1994.

[200] William McCune. Mace4 reference manual and guide. arXiv preprint cs/0310055, 2003.

[201] Sheila McIlraith and Eyal Amir. Theorem proving with Structured Theories. In IJCAI,

volume 1, pages 624–634, 2001.

[202] Mark McKenney, Alejandro Pauly, Reasey Praing, and Markus Schneider.

Dimension-refined topological predicates. In Conf. on Advances in Geographic

Information Systems (GIS-05), pages 240–249. ACM, 2005.

170

[203] Mark McKenney, Alejandro Pauly, Reasey Praing, and Markus Schneider.

Dimension-Refined Topological Pxredicates. In Proceedings of the 13th annual ACM

international workshop on Geographic information systems, pages 240–249, 2005.

[204] Elliott Mendelson. Introduction to mathematical logic. Chapman and Hall/CRC, 2009.

[205] Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold Values of Random

K-SAT from the Cavity Method. Random Structures & Algorithms, 28(3):340–373,

2006.

[206] David Mitchell, Bart Selman, and Hector Levesque. Hard and Easy Distributions of

SAT Problems. In AAAI, volume 92, pages 459–465, 1992.

[207] David G Mitchell and Hector J Levesque. Some Pitfalls for Experimenters with Random

SAT. Artificial Intelligence, 81(1-2):111–125, 1996.

[208] Michael Mitzenmacher. Tight Thresholds for the Pure Literal Rule. DEC/SRC Technical

Note 1997, 11, 1997.

[209] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th annual

Design Automation Conference, pages 530–535. ACM, 2001.

[210] DoRon B Motter and Igor L Markov. A Compressed Breadth-First Search for

Satisfiability. In Workshop on Algorithm Engineering and Experimentation, pages

29–42. Springer, 2002.

[211] Juan Antonio Navarro and Andrei Voronkov. Proof Systems for Effectively Propositional

Logic. In International Joint Conference on Automated Reasoning, pages 426–440.

Springer, 2008.

[212] M Saqib Nawaz, Moin Malik, Yi Li, Meng Sun, and M Lali. A Survey on Theorem

Provers in Formal Methods. arXiv preprint arXiv:1912.03028, 2019.

171

[213] Ian Niles and Adam Pease. Towards a Standard Upper Ontology. In Conf. on Formal

Ontology in Inf. Systems (FOIS-01), pages 2–9. IOS Press, 2001.

[214] Yakov Novikov. Local Search for Boolean Relations on the Basis of Unit Propagation.

In Proceedings of the conference on Design, Automation and Test in Europe-Volume 1,

page 10810. IEEE Computer Society, 2003.

[215] Eugene Nudelman, Kevin Leyton-Brown, Holger H Hoos, Alex Devkar, and Yoav

Shoham. Understanding Random SAT: Beyond the Clauses-to-Variables Ratio. In

International Conference on Principles and Practice of Constraint Programming, pages

438–452. Springer, 2004.

[216] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. Recovering and

Exploiting Structural Knowledge from CNF Formulas. In International Conference on

Principles and Practice of Constraint Programming, pages 185–199. Springer, 2002.

[217] Oded Padon. Deductive Verification of Distributed Protocols in First-Order Logic. In

2018 Formal Methods in Computer Aided Design (FMCAD), pages 1–1. IEEE, 2018.

[218] Adam Pease and Geoff Sutcliffe. First order reasoning on a large ontology. ESARLT,

257, 2007.

[219] Francis Jeffry Pelletier, Geoff Sutcliffe, and Christian Suttner. The Development of

CASC. AI Communications, 15(2, 3):79–90, 2002.

[220] Matthew Perry and John Herring. OGC GeoSPARQL – a geographic query language

for RDF data, 2012.

[221] David A Plaisted and Yunshan Zhu. Ordered Semantic Hyper-linking. Journal of

Automated Reasoning, 25(3):167–217, 2000.

172

[222] Mukul R Prasad, Armin Biere, and Aarti Gupta. A Survey of Recent Advances in

SAT-Based Formal Verification. International Journal on Software Tools for Technology

Transfer, 7(2):156–173, 2005.

[223] Ian Pratt-Hartmann. First-order Mereotopology. In Handbook of spatial logics, pages

13–97. Springer, 2007.

[224] Deepak Ramachandran, Pace Reagan, and Keith Goolsbey. First-orderized Research

Cyc: Expressivity and Efficiency in a Common-Sense Ontology. In AAAI Workshop on

Contexts and Ontologies: Theory, Practice and Applications, 2005.

[225] David A. Randell, Anthony G. Cohn, and Zhan Cui. Computing Transivity Tables: A

Challenge for Automated Theorem Provers. In Conf. on Automated Deduction (CADE

1992), LNCS 607, pages 786–790. Springer, 1992.

[226] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions

and connection. In KR’92: Principles of Knowledge Representation and Reasoning,

pages 165–176, 1992.

[227] David A Randell, Zhan Cui, and Anthony G Cohn. A Spatial Logic Based on Regions

and Connection. 1992.

[228] Colin R Reeves and Mériéma Aupetit-Bélaidouni. Estimating the Number of Solutions

for SAT Problems. In International Conference on Parallel Problem Solving from

Nature, pages 101–110. Springer, 2004.

[229] Giles Reger. Some Thoughts About FOL-Translations in Vampire. In ARQNL@

IJCAR, pages 11–25, 2018.

[230] Giles Reger and Martin Suda. The Uses of SAT Solvers in Vampire. In Vampire

Workshop, pages 63–69, 2015.

173

[231] Andrew Reynolds, Radu Iosif, and Cristina Serban. Reasoning in the

Bernays-schönfinkel-ramsey Fragment of Separation Logic. In International Conference

on Verification, Model Checking, and Abstract Interpretation, pages 462–482. Springer,

2017.

[232] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark

Barrett. Quantifier Instantiation Techniques for Finite Model Finding in SMT. In

International Conference on Automated Deduction, pages 377–391. Springer, 2013.

[233] Alexandre Riazanov and Andrei Voronkov. Splitting without Backtracking. In IJCAI,

pages 611–617, 2001.

[234] Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of

Tree-Width. Journal of algorithms, 7(3):309–322, 1986.

[235] Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. PhD thesis,

Theses (School of Computing Science)/Simon Fraser University, 2004.

[236] Marko Samer and Stefan Szeider. Fixed-Parameter Tractability. Handbook of

Satisfiability, (part 1), 2009.

[237] Marko Samer and Stefan Szeider. Constraint Satisfaction with Bounded Treewidth

Revisited. Journal of Computer and System Sciences, 76(2):103–114, 2010.

[238] Markus Schneider and Thomas Behr. Topological Relationships between Complex

Spatial Objects. ACM Trans. Database Systems, 31(1):39–81, 2006.

[239] Michael Schneider and Geoff Sutcliffe. Reasoning in the OWL2 Full Ontology Language

using First-Order Automated Theorem Proving. In CADE 2011, pages 461–475. Springer,

2011.

[240] Stephan Schulz. A Comparison of Different Techniques for Grounding

Near-Propositional CNF Formulae. In FLAIRS Conference, pages 72–76, 2002.

174

[241] Stephan Schulz, Geoff Sutcliffe, Josef Urban, and Adam Pease. Detecting Inconsistencies

in Large First-Order Knowledge Bases. In International Conference on Automated

Deduction, pages 310–325. Springer, 2017.

[242] Johann Schumann. Automated Theorem Proving in High-Quality Software Design. In

Intellectics and Computational Logic, pages 295–312. Springer, 2000.

[243] Alexander Scivos and Bernhard Nebel. Double-crossing: Decidability and Computational

Complexity of a Qualitative Calculus for Navigation. In International Conference on

Spatial Information Theory, pages 431–446. Springer, 2001.

[244] R Sekar, IV Ramakrishnan, and Andrei Voronkov. Term Indexing. In Handbook of

automated reasoning, pages 1853–1964. Elsevier Science Publishers BV, 2001.

[245] Bart Selman, Henry A Kautz, and Bram Cohen. Noise Strategies for Improving Local

Search. In AAAI, volume 94, pages 337–343, 1994.

[246] Bart Selman and Scott Kirkpatrick. Critical Behavior in the Computational Cost of

Satisfiability Testing. Artificial Intelligence, 81(1-2):273–295, 1996.

[247] Bart Selman, David G Mitchell, and Hector J Levesque. Generating Hard Satisfiability

Problems. Artificial intelligence, 81(1-2):17–29, 1996.

[248] Natarajan Shankar. Automated Deduction for Verification. ACM Computing Surveys

(CSUR), 41(4):1–56, 2009.

[249] João P Marques Silva and Karem A Sakallah. GRASP – A New Search Algorithm for

Satisfiability. In The Best of ICCAD, pages 73–89. Springer, 2003.

[250] Iouliia Skliarova and Antonio de Brito Ferrari. Reconfigurable Hardware SAT Solvers:

A Survey of Systems. IEEE Transactions on Computers, 53(11):1449–1461, 2004.

[251] Barry Smith. Mereotopology: A Theory of Parts and Boundaries. Data & Knowledge

Engineering, 20(3):287–303, 1996.

175

[252] Barry Smith et al. Basic Formal Ontology 2.0 Draft Specification Guide, 2012.

[253] Barry Smith and Achille C Varzi. The Niche. Noûs, 33(2):214–238, 1999.

[254] Niklas Sörensson and Armin Biere. Minimizing Learned Clauses. In International

Conference on Theory and Applications of Satisfiability Testing, pages 237–243. Springer,

2009.

[255] Christian Steinruecken. SAT-Solving: Performance Analysis of Survey Propagation and

DPLL. 2007.

[256] Shirly Stephen and Torsten Hahmann. Formal Qualitative Spatial Augmentation of the

Simple Feature Access Model. In 14th International Conference on Spatial Information

Theory (COSIT 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[257] Kristin Stock. A Geometric Configuration Ontology to Support Spatial Querying. 2014.

[258] Markus Stocker and Evren Sirin. Pelletspatial: A hybrid rcc-8 and rdf/owl reasoning

and query engine. In OWLED, volume 529. Citeseer, 2009.

[259] Sathiamoorthy Subbarayan and Dhiraj K Pradhan. NiVER: Non-Increasing Variable

Elimination Resolution for Preprocessing SAT Instances. In International conference

on theory and applications of satisfiability testing, pages 276–291. Springer, 2004.

[260] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF

and CNF parts, v3.5.0. J. Automat. Reasoning, 43(4):337–362, 2009.

[261] Geoff Sutcliffe. The CADE ATP System Competition = CASC. AI Magazine,

37(2):99–101, 2016.

[262] Geoff Sutcliffe. The CADE-27 Automated Theorem Proving System

Competition–CASC-27. AI Communications, 32(5-6):373–389, 2019.

176

[263] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Allen Van Gelder. Using the TPTP

language for Writing Derivations and Finite Interpretations. In International Joint

Conference on Automated Reasoning, pages 67–81. Springer, 2006.

[264] Geoff Sutcliffe and Christian Suttner. The TPTP Problem Library. Journal of

Automated Reasoning, 21(2):177–203, 1998.

[265] Geoff Sutcliffe and Christian Suttner. The state of CASC. AI Communications,

19(1):35–48, 2006.

[266] Geoff Sutcliffe and Christian B. Suttner. The CADE-18 ATP System Competition.

Journal of Automated Reasoning, 31(1):23–32, 2003.

[267] Stefan Szeider. On ixed-Parameter Tractable Parameterizations of SAT. In International

Conference on Theory and Applications of Satisfiability Testing, pages 188–202. Springer,

2003.

[268] Stefan Szeider. Not so easy problems for tree decomposable graphs. arXiv preprint

arXiv:1107.1177, 2011.

[269] Tanel Tammet. Finite Model Muilding: improvements and comparisons. In CADE-19,

Workshop W, volume 4. Citeseer, 2003.

[270] Josef Urban, Krystof Hoder, and Andrei Voronkov. Evaluation of Automated Theorem

Proving on the Mizar Mathematical Library. In International Congress on Mathematical

Software, pages 155–166. Springer, 2010.

[271] E Lynn Usery and Dalia Varanka. Design and Development of Linked Data from the

National Map. Semantic web, 3(4):371–384, 2012.

[272] Miroslav N Velev and Randal E Bryant. Effective use of Boolean Satisfiability Procedures

in the Formal Verification of Superscalar and VLIW Microprocessors. Journal of

Symbolic Computation, 35(2):73–106, 2003.

177

[273] Andrei Voronkov. AVATAR: The architecture for First-Order Theorem Provers. In

International Conference on Computer Aided Verification, pages 696–710. Springer,

2014.

[274] Michael Wessel and Ralf Möller. Flexible Software Architectures for Ontology-Based

Information Systems. Journal of Applied Logic, 7(1):75–99, 2009.

[275] Siert Wieringa and Keijo Heljanko. Concurrent Clause Strengthening. In International

Conference on Theory and Applications of Satisfiability Testing, pages 116–132. Springer,

2013.

[276] Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding FO and FO (ID)

with Bounds. Journal of Artificial Intelligence Research, 38:223–269, 2010.

[277] Andreas Wotzlaw, Alexander van der Grinten, and Ewald Speckenmeyer. Effectiveness

of pre-and inprocessing for CDCL-based SAT solving. arXiv preprint arXiv:1310.4756,

2013.

[278] Emmanuel Zarpas. Benchmarking SAT Solvers for Bounded Model Checking. In

International Conference on Theory and Applications of Satisfiability Testing, pages

340–354. Springer, 2005.

[279] Hantao Zhang and Jian Zhang. MACE4 and SEM: A Comparison of Finite Model

Generators. In Maria Paola Bonacina and Mark E. Stickel, editors, Automated Reasoning

and Mathematics: Essays in Memory of William W. McCune, pages 101–130. Springer,

2013.

[280] Jian Zhang. Constructing Finite Algebras with FALCON. Journal of automated

reasoning, 17(1):1–22, 1996.

[281] Jian Zhang and Hantao Zhang. SEM: A System for Enumerating Models. In IJCAI,

volume 95, pages 298–303, 1995.

178

[282] Lintao Zhang. On Subsumption Removal and on-the-fly CNF Simplification. In

International conference on theory and applications of satisfiability testing, pages

482–489. Springer, 2005.

179

APPENDIX A

SUPPLEMENTARY MATERIAL

SF-FOL CODI/CODIB RCC INCH

sf_point Point - -

sf_curve Curve - –

sf_surface ArealRegion -

within Cont PP/NTTP INCH/CS/CH

crosses Inc - -

overlaps PO O OV

intersects C P -

touches SC EC -

Table A.1: Mapping between SF-FOL terms and concepts in CODIB, RCC and INCH
ontologies. We use this mapping to construct sample (r-d)ABoxes for each theory from the
Master ABox.

180

Figure A.1: Dependencies between model finding time and three measures of size of the

SAT problem: no. of propositional variables, no. of propositional clauses and approximated

number of those clauses having three or more literals.

181

Figure A.2: Dependencies between model finding time of RCC and size measures of the SAT

problem.

182

Figure A.3: Dependencies between model finding time of INCH and size measures of the SAT

problem.

183

BIOGRAPHY OF THE AUTHOR

Shirly Stephen is a candidate for the Doctor of Philosophy degree in Spatial Information

Science and Engineering from the University of Maine in December 2021.

184

	Improving Model Finding for Integrated Quantitative-qualitative Spatial Reasoning With First-order Logic Ontologies
	Recommended Citation

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	ABBREVIATIONS
	 Introduction
	Context and Motivation
	Objectives
	Challenges
	Specific Objectives

	Contributions
	Spatial Representation for Integrated Reasoning
	Model Finding for Spatial Ontologies

	Overview

	 Preliminaries
	First-Order Logic Ontologies
	Syntax of First-Order Logic
	Semantics of First-Order Logic

	FOL Model Finding via Propositional SAT Solving
	Syntax and Semantics of Propositional Logic
	Model Finding via Translation to CNF and SAT
	Decision Procedures for Determining Satisfiability
	The Davis Putnam Logemann Loveland (DPLL) Algorithm
	Improvements to DPLL

	Automated Reasoning for First-Order Logic
	Common Algorithms for Finite-Model Finding
	State-of-the-art Model Finders Employed in this Dissertation

	Ontological Formalization of Space
	Qualitative Spatial Representations
	FOL Ontologies for QSR: CODI, RCC, INCH
	COntainment DImension Ontology
	The RCC Ontology:
	The INCH Ontology
	Summary of Formalizations used in our Model Finding Studies

	 Related Work
	Reasoning with FOL Ontologies
	Theorem Proving with FOL Ontologies
	Scalability of Model Finding for FOL Ontologies

	SAT-Based Model Finding for FOL Ontologies
	Studies on Tractability of Propositional SAT Solving
	Simplification Techniques for Propositional SAT Solving
	Simplification Techniques for FOL Problems

	Reasoning with Spatial Ontologies
	Spatial Ontologies in Geospatial Ontology Standards
	Integrated Qualitative and Quantitative Spatial Reasoning

	 Formal Qualitative Spatial Augmentation of the Simple Feature Access Model
	Preliminaries
	Semantics of Simple Feature Concepts and Spatial Relations
	Semantics of Concepts (Classes) from Simple Features
	Spatial Relations in Simple Features

	Dimensional Features and Qualitative Spatial Relations in CODIB
	CODI
	CODIB
	Refined Spatial Region Concepts in CODIB

	Axiomatization of Simple Feature as an Extension of CODIB
	Axiomatization of Simple Feature's Simple Geometric Features
	Axiomatization of Simple Feature's Simple Feature Collections
	Axiomatization of Simple Feature's Qualitative Spatial Relations

	Logical Verification
	Discussion

	 The Role of an Ontology's Signature in SAT-based Model Finding
	SAT-Based Model Finding for FOL Ontologies
	Size of the Clausified FOL Ontology
	Size of the Propositionalized FOL-CNF Ontology

	SAT-Based Model Finding for FOL Ontologies with Data
	Assertion Box and Terminological Box
	The Size of SAT Problems for an FOL Ontology with an ABox
	Significance of an FOL Ontology's Signature Size for its SAT Encoding

	Definition Elimination for Reducing the Size of the SAT Encodings of FOL Ontologies
	Discussion and Conclusion

	 The Impact of ODE on the Size of the SAT Problem for FOL Model Finding
	Design of Study
	Construction of TBoxes with Different Extents of ODE
	Constructing (r-d) ABoxes

	The Impact of ODE on the Size of the SAT Problem
	Growth in Propositional Variables with Different (r-d)ABoxes and Different Definition Sets
	Growth in Propositional Clauses with Different (r-d)ABoxes and Different Definition Sets

	Guiding Predicate Selection for ODE
	Discussion and Conclusions

	 Experimental Study of the Effect of ODE on Model Finding Times
	Design of Study
	Constructing (r-d) ABoxes
	Constructing Defined (r-d) ABoxes
	Experimental Environment
	Statistical Analysis Methods

	Experimental Results
	Paradox and Vampire Results
	IProver Results

	Analysis
	Correlation Analysis between SAT Problem Size and Model Finding Times
	Speedup in Model Finding through ODE

	Discussion and Conclusion

	 Conclusion
	Future Work

	BIBLIOGRAPHY
	Supplementary Material
	BIOGRAPHY
	Biography of the Author

