
Living Without Beth and Craig:
Definitions and Interpolants in Description and

Modal Logics
with Nominals and Role Inclusions

Alessandro Artale1, Jean Christoph Jung2, Andrea Mazzullo1, Ana
Ozaki3, and Frank Wolter4

1 Free University of Bozen-Bolzano 2 TU Dortmund University
3 University of Bergen 4 University of Liverpool

Abstract. The Craig interpolation property (CIP) states that an in-
terpolant for an implication exists iff it is valid. The projective Beth
definability property (PBDP) states that an explicit definition exists iff
a formula stating implicit definability is valid. Thus, the CIP and PBDP
reduce potentially hard existence problems to entailment in the under-
lying logic. Description (and modal) logics with nominals and/or role
inclusions do not enjoy the CIP nor the PBDP, but interpolants and ex-
plicit definitions have many applications, in particular in concept learn-
ing, ontology engineering, and ontology-based data management. In this
article we show that, even without Beth and Craig, the existence of in-
terpolants and explicit definitions is decidable in description logics with
nominals and/or role inclusions such as ALCO, ALCH and ALCHOI
and corresponding hybrid modal logics. However, living without Beth
and Craig makes these problems harder than entailment: the existence
problems become 2ExpTime-complete in the presence of an ontology or
the universal modality, and coNExpTime-complete otherwise. We also
analyze explicit definition existence if all symbols (except the one that
is defined) are admitted in the definition. In this case the complexity de-
pends on whether one considers individual or concept names. Finally, we
consider the problem of computing interpolants and explicit definitions if
they exist and turn the complexity upper bound proof into an algorithm
computing them, at least for description logics with role inclusions.

Keywords: Description logic, Modal logic, Craig interpolants, Beth definability, Ex-
plicit definitions, Computational complexity

1 Introduction

The Craig Interpolation Property (CIP) for a logic L states that an im-
plication φ ⇒ ψ is valid in L iff there exists a formula χ in L using only
the common symbols of φ and ψ such that φ ⇒ χ and χ ⇒ ψ are both

valid in L. The intermediate formula χ is then called an L-interpolant
for φ ⇒ ψ [27]. The CIP is generally regarded as one of the most impor-
tant and useful properties in formal logic [95], with numerous applications
ranging from formal verification [74] and software specification [29] to the-
ory combinations [25, 39, 21, 22] and query reformulation and rewriting in
databases [91, 13]. A particularly important consequence of the CIP is the
projective Beth definability property (PBDP), which states that a relation
is implicitly definable using a signature Σ of symbols iff it is explicitly
definable using Σ. If Σ is the set of all symbols distinct from that re-
lation, then we speak of the (non-projective) Beth definability property
(BDP) [16].

In this paper, we investigate interpolants and explicit definitions in
description logics (DLs), and we also highlight consequences in modal
logic. In DLs, one distinguishes essentially two forms of interpolation,
both of which are relevant and have their applications. Given an entail-
ment O |= C ⊑ D, that is, C is subsumed by D w.r.t. some background
knowledge in the form of a DL ontology O, one might either be interested
in an interpolant between the concepts C and D or in an interpolant be-
tween O and the concept inclusion (CI) C ⊑ D. In the first case, the
interpolant is a concept, whereas in the second case, the interpolant is
an ontology. We refer with CI-interpolation to the latter form and call
the interpolant a CI-interpolant. The CIP for CI-interpolation has been
shown to be the most important logical property that ensures the robust
behaviour of ontology modules and decompositions [55, 54].

In this article, we mostly focus on interpolation (in the former sense
of an interpolating concept) and only derive some corollaries for CI-
interpolation. Hence, unless stated otherwise, here and in what follows
we speak about interpolating concepts and the corresponding CIP. For
explicit definability, one asks for definitions of concepts, possibly with re-
spect to an ontology; these explicit definitions are strongly related to inter-
polants and as stated above BDP and PBDP follow from the CIP. In DLs,
the BDP and PBDP have been used in ontology engineering to extract ex-
plicit definitions of concepts and obtain equivalent acyclic terminologies
from ontologies [89, 90], they have been investigated in ontology-based
data management to equivalently rewrite ontology-mediated queries [85,
92, 35, 34, 93], and they have been proposed to support the construction of
alignments between ontologies [47]. Interpolants have been used to study
P/NP dichotomies in ontology-based query answering [69].

The CIP, PBDP, and BDP are so powerful because potentially very
hard existence questions are reduced to straightforward entailment ques-

tions: an interpolant exists iff an implication is valid and an explicit def-
inition exists iff a straightforward formula stating implicit definability is
valid. The existence problems are thus not harder than validity. Many ba-
sic DLs such as ALC, ALCI, and ALCIQ enjoy the CIP and PBDP [90],
and consequently the existence of an interpolant or an explicit defini-
tion can be decided in ExpTime simply because entailment checking in
these DLs is in ExpTime (and without ontology even in PSpace). Un-
fortunately, the CIP and the PBDP fail to hold for some important DLs.
The most basic examples are the extension ALCO of ALC with nomi-
nals (concepts of the form {a} with a an individual name), the extension
ALCH of ALC with role inclusions (inclusions r ⊑ s between binary rela-
tions/role names r and s), and all standard DLs containing either ALCO
or ALCH [55, 90]. It follows that for these DLs the existence of inter-
polants and explicit definitions cannot be reduced (directly) to entailment
checking.

The aim of this article is to explore the consequences of the failure
of the CIP and PBDP for interpolant and explicit definition existence.
To this end, we investigate the complexity of deciding the existence of
interpolants and explicit definitions for the set DLnr of DLs containing
ALCO, ALCH, and their extensions by inverse roles and/or the universal
role. We discuss next two more applications of interpolants and explicit
definitions for ALCO and its extensions.

Data Separability and Concept Learning. We show that interpolants are
essentially the same as concepts separating positive and negative data
examples in DL knowledge bases (KBs). Recall that a DL KB is a pair
(O,D) with O a DL ontology and D a set of data items of the form A(a)
and r(a, b) with a, b individuals, A a concept name, and r a role name.
Let O be an ontology and P and N sets of positively and negatively
labelled pairs (D, a) with D a set of data items and a an individual in D.
Then the aim of supervised concept learning is to determine a concept C
in a signature Σ of relevant symbols such that C separates P and N in
the sense that (O,D) |= C(a) for all positive examples (D, a) ∈ P and
(O,D) |= ¬C(a) for all negative examples (D, a) ∈ N .1 Concept learning
has received significant interest over the past 15 years, where the focus
has been on developing and analyzing refinement based algorithms for
finding separating concepts [62, 63, 65, 84, 30, 64, 82]. Prominent concept
1 This condition is called strong separation in [36, 49, 50]. A weaker version, called

weak separation, only demands that (O,D) ̸|= C(a) for all negative examples
(D, a) ∈ N . Concept learning systems have been developed for both the weak and
the strong notion.

learning systems include the DL Learner [20, 19], DL-Foil [31] and
its extension DL-Focl [83], SPaCEL [94], YinYang [45]. The existence
problem for separating concepts has been investigated in [36, 48–50]. For
DLs extending ALCO, we establish a one-to-one correspondence between
interpolants and separating concepts, modulo a rather straightforward
polynomial time translation. Hence the existence of separating concepts
reduces to the existence of interpolants and finding small such concepts
or concepts of a certain syntactic shape, as is often useful in supervised
learning, also reduces to the same task for interpolants. We emphasize
that the presence of nominals in the DL is critical as they are required to
encode the individuals used in D into concepts.

Referring Expressions. The computation of explicit definitions of con-
cept names has been explored in detail since at least [89], see also [7].
Only recently, the focus on defining concept names has been extended to
defining individual names, also called referring expression generation in
computational linguistics and data management [60, 3, 17]. In fact, it has
been convincingly argued that very often in applications the individual
names used in ontologies or data sets are insufficient “to allow humans to
figure out what real-world objects they refer to” [18]. A natural way to
address this problem is to check for such an individual name a whether
there exists a concept C over a set of relevant symbols Σ that provides an
explicit definition of {a} and present such a concept C to the human user.
Observe that one has to work with DLs extending ALCO to formulate
this problem as an explicit definition existence problem.

To conclude, data separation, concept learning, and referring express-
sion generation are challenging research problems which directly benefit
from a better understanding of interpolant and explicit definition existence
in extensions of ALCO. We now discuss the main results of this article,
formulated in an informal way. Precise formulations are given later. Re-
call that DLnr is the set of DLs ALCO, ALCH, and their extensions with
inverse roles and the universal role, and that we assume the presence of a
background DL ontology. Our first main result is as follows.

Theorem 1. Let L ∈ DLnr. Then L-interpolant existence and L-definition
existence are 2ExpTime-complete.

Theorem 1 confirms the suspicion that interpolant and definition existence
are much harder problems than entailment if one has to live without Beth
and Craig. On the positive side, these problems are still decidable. Inter-
estingly, for DLs in DLnr with nominals, the 2ExpTime lower bound for

definition existence already holds if one asks for an explicit definition of
an individual over the signature containing all symbols distinct from that
individual. In contrast, the same problem for concept names is shown to
be ExpTime-complete and thus not harder than entailment. Hence, in
contrast to concept name definitions, referring expression existence does
not become less complex in the non-projective case when all symbols are
allowed in definitions.

We next consider the same problems if the background ontology is
empty, or, in the case of DLs in DLnr without nominals, if the ontology
contains only role inclusions. Observe that if the DL admits the universal
role or both nominals and inverse roles, then the ontology can be encoded
as a concept using spy points [1], so nothing changes compared to the case
with ontologies covered in Theorem 1. For the remaining cases we show
the following.

Theorem 2. (1) If L ∈ {ALCO,ALCHO}, then for the empty ontology
and ontologies containing role inclusions only, L-interpolant existence and
L-definition existence are both coNExpTime-complete;

(2) If L ∈ {ALCH,ALCHI}, then for ontologies containing role in-
clusions only L-interpolant existence and L-definition existence are both
coNExpTime-complete.

It follows that without ontology and ontologies containing role inclusions
only interpolant existence and explicit definition existence are still harder
than entailment which is PSpace-complete.

The proofs of Theorems 1 and 2 can be adapted to also obtain results
about CI-interpolation and interpolation in modal logic. Regarding the
former we show that for the DLs L which extend ALCO with the universal
role or with the universal role and inverse roles the problem of deciding
the existence of a CI-interpolant for O |= C ⊑ D is 2ExpTime-complete.
It follows that again failure of the CIP leads to an exponentially harder
interpolant existence problem than entailment. We conjecture that the
same can be proved for all DLs in DLnr, but leave a proof for future work.

In modal logic, the CIP and PBDP have been investigated for many
years. In fact, the CIP and PBDP of DLs such as ALC and ALCI fol-
lows rather directly from earlier results on the CIP and PBDP in modal
logic [71, 72, 81]. Also the fact that nominals lead to failure of the CIP and
PBDP, and how this could be repaired by adding logical connectives, was
first analyzed in depth in the literature on hybrid modal logic, in particu-
lar [2, 86]. In our investigation of interpolant existence in modal logic, we
first consider basic modal logic with nominals and show that as a direct

consequence of Theorem 2 the problem of deciding interpolant existence
is coNExpTime-complete for the standard local consequence relation.
We also show using Theorem 1 that if one adds the universal modality,
then interpolant existence becomes 2ExpTime-complete. In modal logic,
nominals are often considered in tandem with the @-operator, where @aφ
states that formula φ holds at the world denoted by nominal a. The re-
sulting language is more expressive than modal logic with nominals and
less expressive than modal logic with nominals and the universal modality.
We show that for the modal logic with both nominals and the @-operator
interpolant existence is still coNExpTime-complete. Our complexity re-
sults also hold for the modal language with a single modal operator (and
the universal modality, if present).

While the focus in this article is on the decision problem, we also
make initial observations regarding the problem of actually computing
interpolants or explicit definitions if they exist. More specifically, for DLs
in DLnr that do not admit nominals, we present a modification of the
decision procedure from the proof of Theorem 1 that returns in double
exponential time the DAG representation of an interpolant (if it exists).
This corresponds to interpolants of worst case triple exponential size which
we conjecture to be optimal.

Overview of the Paper. In the following Section 2, we discuss further
related work. In Sections 3 and 4, we introduce the preliminaries on de-
scription logics and Craig interpolation and Beth definability, respectively.
In Section 5, we provide model-theoretic characterizations of the defini-
tion and interpolation existence problems and formulate our main results
in detail. The subsequent four sections are devoted to the proofs of these
main results. In more detail, Section 6 provides the upper bound proof
for the case with ontologies and Section 7 provides the matching lower
bounds. Sections 8 and 9 cover the ontology-free case and the case of
ontologies containing only role inclusions. In Section 10, we investigate
the problem of actually computing interpolants and explicit definitions in
case they exist, and in Section 11 we draw the connections of our results
on DLs to modal logic. Finally, we conclude and point out directions for
future work in Section 12.

An appendix available as supplementary material provides a few proofs
that were left out of the paper. Here we prove, in particular, our main
result about the computational complexity of non-projective definition
existence of concept names.

2 Related Work

This paper is an extended version of [5, 6, 51]. We include detailed proofs
and additionally discuss the link to concept learning, interpolants between
ontologies and concept inclusions, and applications to modal logic.

Related work on Craig interpolation and the Beth definability prop-
erty has been discussed already in the introduction. We therefore focus
on work on deciding interpolant and explicit definition existence. These
decision problems have only very recently been investigated. A notable
exception is linear temporal logic, LTL, for which the CIP fails and for
which decidability of interpolant existence has been shown both over fi-
nite linear orderings [41, 42] and over the natural numbers [79]. Note that
these results are formulated as separability results for formal languages
of finite and, respectively, infinite words: given two regular languages R1

and R2, does there exist a first-order definable language L separating R1

and R2 in the sense that R1 ⊆ L and L ∩R2 = ∅. Neither LTL nor Craig
interpolation are mentioned in [79, 41, 42]. Using the fact that regular lan-
guages are projectively LTL definable and that LTL and first-order logic
are equivalent over the natural numbers, it is, however, easy to see that
interpolant existence is the same problem as separability of regular lan-
guages in first-order logic, modulo the representation of the inputs. We
note that this result is just one instance of an ongoing exploration of sep-
aration between languages in automata theory. The problem of deciding
separation is interesting in this context because obtaining an algorithm
for separation yields a far deeper understanding of the class under consid-
eration than just membership [78, 80]. We conjecture that deciding inter-
polant existence could well play a similar role for understanding fragments
of first-order logic.

Indeed, interpolant existence has recently also been studied for the
guarded fragment (GF), the two-variable fragment (FO2) of FO [52], for
Horn description logics extending EL [33], and for first-order modal log-
ics [61]. While GF is a good generalization of modal and description logic
in many respects, it neither enjoys the CIP [44] nor the PBDP [10]. Fail-
ure of the CIP for FO2 was shown using algebraic [26, 76] and model-
theoretic techniques [73]. Using techniques that are similar to those intro-
duced in this article it is shown in [52] that, in GF, explicit definability
and interpolant existence are both 3ExpTime-complete in general, and
2ExpTime-complete if the arity of relation symbols is bounded by a con-
stant c ≥ 3. In FO2, explicit definability and interpolant existence are in
coN2ExpTime and 2ExpTime-hard [52]. Failure of the CIP and PBDP

for first-order modal logics with constant domain is shown in [32, 73].
Both properties also fail for their otherwise well-behaved one-variable and
monodic fragments [38]. In [61], the complexity of interpolant existence
is investigated for first-order S5 with one variable (and some monodic
fragments) and for first-order K with one variable. For S5, explicit de-
finability and interpolant existence turn out to be in coN2ExpTime and
2ExpTime-hard while for K only a non-elementary upper bound is shown.
These results confirm that for many logics not enjoying the CIP and
PBDP, interpolant and explicit definition existence are harder than en-
tailment.

It turns out that this is not always the case. It is shown in [33] that
extensions of the description logic EL with any combination of the uni-
versal role, nominals, or inverse roles do not enjoy the CIP nor PBDP,
but that interpolant existence and explicit definition existence still have
the same complexity as entailment (in PTime for those that do not admit
inverse roles and ExpTime-complete for those that admit inverse roles).
The proofs are rather different from those given in this paper, as they make
use of the universal/canonical model that only exists for Horn logics.

We note that for logics that do not enjoy the CIP nor PBDP it is also
of interest to look for “small” extensions that enjoy the CIP and PBDP
and are decidable. For example, the guarded negation fragment of FO
is a decidable extension of GF that enjoys the CIP and the PBDP [11,
15, 14, 12]. Also the two-variable fragment of GF is a decidable extension
of ALCH enjoying both properties [44, 43]. In both cases the complexity
of entailment does not increase for the extension (2ExpTime-complete
for the guarded negation fragment and ExpTime-complete for the two-
variable fragment of FO). On the other hand, under mild conditions there
is no decidable extension of ALCO with the universal role nor of modal
logic with nominals and the @-operator enjoying the CIP [86].

While the problem of deciding interpolant and explicit definition ex-
istence for logics that neither enjoy the CIP nor the PBDP has only been
considered rather recently, the problem of computing and deciding the
existence of uniform interpolants for logics that do not enjoy the uni-
form interpolation property (UIP) has been investigated before. Recall
that uniform interpolants generalize Craig interpolants in the sense that
a uniform interpolant is an interpolant for a fixed φ and all ψ which are
entailed by φ and share with φ a fixed set of symbols. First-order logic
enjoys the CIP but not the UIP. Propositional intuitionistic logic, local
modal logic, and the modal mu-calculus are examples of expressive logics
that enjoy the UIP [77, 96, 28], see [59, 46] for more recent results. In de-

scription logic, uniform interpolants of ontologies (extending what we call
CI-interpolants in this article) are of particular importance but do not
always exist for any standard description logic, including ALC. The com-
plexity of deciding their existence has been investigated in [68, 70], their
size has been considered in [75, 58], and various approaches to computing
them have been developed and implemented [56–58, 97].

3 Preliminaries

We introduce the syntax and semantics of the relevant description logics,
see also [9]. Let NC, NR, and NI be mutually disjoint and countably infinite
sets of concept, role, and individual names. A role is a role name s, or an
inverse role s−, with s a role name and (s−)− = s. We use u to denote
the universal role. A nominal takes the form {a}, with a an individual
name. An ALCOIu-concept is defined according to the syntax rule

C,D ::= ⊤ | A | {a} | ¬C | C ⊓D | ∃r.C

where A ranges over concept names, a ranges over individual names, and
r over roles and the universal role. We use C ⊔ D as abbreviation for
¬(¬C ⊓ ¬D), C → D for ¬C ⊔ D, C ↔ D for (C → D) ⊓ (D → C),
and ∀r.C for ¬∃r.¬C. We use several fragments of ALCOIu, including
ALCOI, obtained by dropping the universal role, ALCOu, obtained by
dropping inverse roles, ALCO, obtained from ALCOu by dropping the
universal role, and ALC, obtained from ALCO by dropping nominals. If
L is any of the DLs above, then an L-concept inclusion (L-CI) takes the
form C ⊑ D with C and D L-concepts. An L-ontology is a finite set of
L-CIs. We also consider DLs with role inclusions (RIs), expressions of
the form r ⊑ s, where r and s are roles. As usual, the addition of RIs is
indicated by adding the letter H to the name of the DL, where inverse
roles occur in RIs only if the DL admits inverse roles. Thus, for example,
ALCH-ontologies are finite sets of ALC-CIs and RIs not using inverse
roles and ALCHOIu-ontologies are finite sets of ALCOIu-CIs and RIs. In
what follows we use DLnr to denote the set of DLs ALCO, ALCOI, ALCH,
ALCHI, ALCHO, ALCHOI, and their extensions with the universal role.
To simplify notation we do not drop the letter H when speaking about
the concepts and CIs of a DL with RIs. Thus, for example, we sometimes
use the expressions ALCHO-concept and ALCHO-CI to denote ALCO-
concepts and CIs, respectively. An RI-ontology is an ontology containing
RIs only.

The semantics is defined in terms of interpretations I = (∆I , ·I),
where ∆I is a non-empty set, called domain of I, and ·I is a function
mapping every A ∈ NC to a subset of ∆I , every s ∈ NR to a subset of
∆I ×∆I , the universal role u to ∆I ×∆I , and every a ∈ NI to an element
in ∆I . Given a role name s ∈ NR, we set (s−)I = {(d, e) ∈ ∆I × ∆I |
(e, d) ∈ sI}. Moreover, the extension CI of an L-concept C in I is defined
as follows, where r ranges over roles and the universal role:

⊤I = ∆I ,

{a}I = {aI},
¬CI = ∆I \ CI ,

(C ⊓D)I = CI ∩DI ,

(∃r.C)I = {d ∈ ∆I | there exists e ∈ CI : (d, e) ∈ rI}.

An interpretation I satisfies an L-CI C ⊑ D if CI ⊆ DI and an RI r ⊑ s
if rI ⊆ sI . We say that I is a model of an ontology O if it satisfies all
inclusions in it. We say that an inclusion α follows from an ontology O,
in symbols O |= α, if every model of O satisfies α. We write O |= C ≡ D
if O |= C ⊑ D and O |= D ⊑ C. We drop O if it is empty and write
|= C ⊑ D for ∅ |= C ⊑ D. A concept C is satisfiable w.r.t. an ontology
O if there is a model I of O with CI ̸= ∅. We use a few well known
complexity bounds for reasoning in DLs from DLnr. The L-subsumption
problem is the problem to decide for any L-ontology O and L-CI C ⊑ D
whether O |= C ⊑ D. The ontology-free L-subsumption problem and
the RI-ontology L-subsumption problem are the sub-problems of the L-
subsumption problem in which the ontology is empty or an RI-ontology,
respectively. For any L ∈ DLnr, the L-subsumption problem is ExpTime-
complete [8, 1]. If L admits the universal role or both inverse roles and
nominals, then ontologies can be encoded in concepts and so ontology-
free L-subsumption and RI-ontology L-subsumption are also ExpTime-
complete. In the remaining cases, that is for ALCO, ALCH, ALCHO,
and ALCHI, L-subsumption becomes PSpace-complete [8, 1].

A signature Σ is a set of concept, role, and individual names, uniformly
referred to as symbols. Following standard practice we do not regard the
universal role as a symbol but as a logical connective. Thus, the universal
role is not contained in any signature. We use sig(X) to denote the set of
symbols used in any syntactic object X such as a concept or an ontology.
An L(Σ)-concept is an L-concept C with sig(C) ⊆ Σ. A Σ-role r is a role
with sig(r) ⊆ Σ. The size of a (finite) syntactic object X, denoted ||X||,
is the number of symbols needed to represent it as a word.

[AtomC] for all (d, e) ∈ S: d ∈ AI iff e ∈ AJ

[AtomI] for all (d, e) ∈ S: d = aI iff e = aJ

[Forth] if (d, e) ∈ S and (d, d′) ∈ rI , then
there is a e′ with (e, e′) ∈ rJ and (d′, e′) ∈ S.

[Back] if (d, e) ∈ S and (e, e′) ∈ rJ , then
there is a d′ with (d, d′) ∈ rI and (d′, e′) ∈ S.

Fig. 1. Conditions on S ⊆ ∆I ×∆J .

We next recall model-theoretic characterizations when elements in in-
terpretations are indistinguishable by concepts formulated in one of the
DLs L introduced above. A pointed interpretation is a pair I, d with I
an interpretation and d ∈ ∆I . For pointed interpretations I, d and J , e
and a signature Σ, we write I, d ≡L,Σ J , e and say that I, d and J , e are
L(Σ)-equivalent if d ∈ CI iff e ∈ CJ , for all L(Σ)-concepts C.

As for the model-theoretic characterizations, we start with ALC. Let
Σ be a signature. A relation S ⊆ ∆I × ∆J is an ALC(Σ)-bisimulation
if conditions [AtomC], [Forth], and [Back] from Figure 1 hold, where A
and r range over all concept and role names in Σ, respectively. We write
I, d ∼ALC,Σ J , e and call I, d and J , e ALC(Σ)-bisimilar if there exists
an ALC(Σ)-bisimulation S such that (d, e) ∈ S. For ALCO, we define
∼ALCO,Σ analogously, but now demand that, in Figure 1, also condition
[AtomI] holds for all individual names a ∈ Σ. For languages L with inverse
roles, we demand that, in Figure 1, r additionally ranges over inverse roles.
For languages L with the universal role we extend the respective conditions
by demanding that the domain dom(S) and range ran(S) of S contain ∆I

and ∆J , respectively. If a DL L has RIs, then we use I, d ∼L,Σ J , e to
state that I, d ∼L′,Σ J , e for the fragment L′ of L without RIs.

The next lemma summarizes the model-theoretic characterizations for
all relevant DLs [67, 40]. For the definition of ω-saturated structures, we
refer the reader to [24].

Lemma 3. Let I, d and J , e be pointed interpretations and ω-saturated.
Let L ∈ DLnr and Σ a signature. Then

I, d ≡L,Σ J , e iff I, d ∼L,Σ J , e.

For the “if ”-direction, the ω-saturatednesses condition can be dropped.

4 Craig Interpolation and Beth Definability

We introduce interpolants and the Craig interpolation property (CIP) as
well as implicit and explicit definitions and the (projective) Beth definabil-

ity property ((P)BDP). Recall from the introduction that there are two
forms of interpolants, one pertaining to concepts and the other pertaining
to concept inclusions. We start the discussion here with the former one,
and discuss CI-interpolants later. For concept interpolants, we establish
a close link between interpolants and separators of positive and negative
data examples, show that logics in DLnr do not enjoy the CIP nor PBDP,
and determine which DLs in DLnr enjoy the BDP.

Let O be an L-ontology, C1, C2 be L-concepts, and let Σ be a signa-
ture. Then, an L-concept D is an L(Σ)-interpolant for C1 ⊑ C2 under
O, if sig(D) ⊆ Σ, O |= C1 ⊑ D, and O |= D ⊑ C2. If O is empty,
then we drop it and call an L(Σ)-interpolant for C1 ⊑ C2 under O sim-
ply an L(Σ)-interpolant for C1 ⊑ C2. Observe that Σ is arbitrary in
this definition, so it does not follow from O |= C1 ⊑ C2 that an L(Σ)-
interpolant for C1 ⊑ C2 under O exists. If O is empty, then we obtain
the standard definition of the Craig interpolation property by demanding
that for Σ = sig(C1) ∩ sig(C2) from |= C1 ⊑ C2 it follows that there
exists an L(Σ)-interpolant for C1 ⊑ C2. The obvious generalization of
this definition to non-empty ontologies, however, does not work. Con-
sider, for instance, O = {A1 ⊑ A2, A2 ⊑ A3} and A1 ⊑ A3. Then for
Σ = sig(A1) ∩ sig(A3) = ∅, we have O |= A1 ⊑ A3, but there does
not exist any L(Σ)-interpolant for A1 ⊑ A3 under O. In fact, to gener-
alize the Craig interpolation property to non-empty ontologies, one has
to split the ontology O into two. Hence, we adopt here the following
definition of the Craig interpolation property in DLs from [90]. We set
sig(O, C) = sig(O) ∪ sig(C), for any ontology O and concept C.

Definition 4. A DL L enjoys the Craig interpolation property (CIP) if
for any L-ontologies O1,O2 and L-concepts C1, C2 such that O1 ∪ O2 |=
C1 ⊑ C2 there exists an L(Σ)-interpolant for C1 ⊑ C2 under O1 ∪ O2,
where Σ = sig(O1, C1) ∩ sig(O2, C2). If O1,O2 range over L-ontologies
containing RIs only or O1 = O2 = ∅, then we say that L enjoys the CIP
for RI-ontologies and the CIP for the empty ontology, respectively.

Note that the CIP for the empty ontology coincides with the standard
definition of the CIP mentioned before. It is shown in [90] that the DLs
ALC and ALCI and their extensions with qualified number restrictions
and the universal role all enjoy the CIP. In contrast, no DL in DLnr enjoys
the CIP. This is implicitly proved in [90] and is shown in Theorem 12
below. The following illustrating example is folklore and shows that this
holds even for the empty ontology for logics admitting nominals.

Example 5. Consider C1 = {a} ⊓ ∃r.{a} and C2 = {b} → ∃r.{b}. Then
|= C1 ⊑ C2 but there does not exist any ALCHOIu({r})-interpolant for
C1 ⊑ C2. Intuitively, no such interpolant D exists as it would have to be
true in exactly the elements x with r(x, x) and no such ALCHOIu({r})-
concept exists. A formal proof is given in Example 22 below. ⊣

As discussed in the introduction, the close link between separation
of data examples and interpolants is one of our main motivations for
studying interpolants for DLs with nominals. We next formalize this link.
A database D is a finite set of assertions of the form A(a) and r(a, b)
with a, b individuals, A a concept name, and r a role name. By ind(D) we
denote the set of individual names in D. A knowledge base (KB) is a pair
K = (O,D) consisting of an ontology O and database D. An interpretation
I is a model of K if it is a model of O, aI ∈ AI for all A(a) ∈ D, and
(aI , bI) ∈ rI for all r(a, b) ∈ D. An assertion C(a) with C a concept
and a an individual follows from K, in symbols K |= C(a), if every model
I of K satisfies aI ∈ CI . A labelled data set consists of two sets, P
and N , of positive and negative examples each containing pairs (D, a)
with a ∈ ind(D). Let O be an ontology. An L(Σ)-separator for O, P,N
is an L(Σ)-concept C such that (O,D) |= C(a) for all (D, a) ∈ P and
(O,D) |= ¬C(a) for all (D, a) ∈ N . The following result establishes a
one-to-one correspondence between interpolants and separators, modulo
straightforward polynomial time reductions. Note that we do not require
the frequent assumption that the database is uniform across the examples
in the sense that D = D′ for all (D, a), (D′, a′) ∈ P ∪N [50].

Theorem 6. Let L ∈ DLnr admit nominals. Then one can construct for
any ontology O, labelled data sets P,N , and signature Σ with Σ ∩ {a |
(D, a) ∈ P ∪ N} = ∅ in polynomial time L-ontologies O1, O2 and L-
concepts C1, C2 such that Σ = sig(O1, C1)∩ sig(O2, C2) and the following
conditions are equivalent for all L-concepts C:

1. C is an L(Σ)-separator for O, P,N ;
2. C is an L(Σ)-interpolant for C1 ⊑ C2 under O1 ∪ O2.

Conversely, asssume that L-ontologies O1, O2, and L-concepts C1, C2 are
given. Then one can construct in polynomial time an ontology O and la-
belled data sets P,N such that Conditions (1) and (2) are equivalent for
Σ = sig(O1, C1) ∩ sig(O2, C2).

Proof. Assume O, P,N , andΣ are given. Let P = {(D1, a1), . . . , (Dn, an)}
and N = {(Dn+1, an+1), . . . , (Dn+m, an+m)}. If L ∈ DLnr admits nomi-
nals and the universal role, then a pair (D, a) can be represented using the

L-concept CD,a = {a}⊓∃u.CD, where CD is the conjunction of all {b}⊓A
with A(b) ∈ D and {b} ⊓ ∃r.{c} with r(b, c) ∈ D. Pick for any symbol X
not in Σ a fresh copy X ′. Let O1 = O and obtain O2 from O by replacing
all symbols not in Σ by their copies. Let C1 = CD1,a1 ⊔ · · · ⊔ CDn,an and
obtain C2 from ¬(CDn+1,an+1 ⊔· · ·⊔CDn+m,an+m) by replacing all symbols
not in Σ by their copies. If L admits the universal role, then O1,O2 and
C1, C2 are as required. Otherwise replace the universal role in any CDi,ai

by fresh role names not in Σ. The resulting C1, C2 are still as required.

Conversely, assume that O1, O2 and C1, C2 are given. Introduce fresh
individual names a, b and fresh concept namesA,B and let P = {({A(a)}, a)},
N = {({B(b)}, b)} and O = O1∪O2∪{A ⊑ C1, B ⊑ ¬C2}. Then O, P,N
is as required. ❏

We next introduce the relevant definability notions. Let O be an ontol-
ogy and C,C0 be concepts. Let Σ be a signature. An L(Σ)-concept D is
an explicit L(Σ)-definition of C0 under O and C if O |= C ⊑ (C0 ↔ D).
We call C0 explicitly L(Σ)-definable under O and C if there is an explicit
L(Σ)-definition of C0 under O and C. If C = ⊤ or O is empty, then we
drop O and C, respectively. For instance, an L(Σ)-conceptD is an explicit
L(Σ)-definition of C0 under O if O |= C0 ≡ D. The following example
illustrates the link between explicit definitions of nominals and referring
expressions discussed in the introduction and also indicates that often one
can single out an individual from a set of individuals using an explicit def-
inition without being able to provide an ‘absolute’ explicit definition of
that individual.

Example 7. Let L be an abbreviation for the ALCO-concept

{ALC} ⊔ {ALCO} ⊔ {ALCOu} ⊔ {ML} ⊔ {MLn} ⊔ {MLu
n},

where ML, MLn, and MLu
n are modal logics introduced below in Sec-

tion 11. Let O be the ontology consisting of the following CIs:

{ALC} ⊔ {ALCO} ⊔ {ALCOu} ⊑ ∃hasOperator.DLOperator ⊓
¬∃hasOperator.MLOperator,

{ML} ⊔ {MLn} ⊔ {MLu
n} ⊑ ∃hasOperator.MLOperator ⊓

¬∃hasOperator.DLOperator,
{ALC} ⊔ {ML} ⊑ EnjoysCIP,

EnjoysCIP ⊑ EnjoysPBDP,

EnjoysPBDP ⊑ EnjoysBDP,

{ALCOu} ⊔ {MLu
n} ⊑ EnjoysBDP ⊓ ¬EnjoysPBDP,

{ALCO} ⊔ {MLn} ⊑ ¬EnjoysBDP.

Then O |= L ⊑ ({ALC} ↔ EnjoysCIP⊓∃hasOperator.DLOperator). Hence,
{ALC} is explicitly ALCO(Σ0)-definable under O and L, with Σ0 =
{EnjoysCIP,DLOperator, hasOperator}. However, {ALC} is not explicitly
ALCO(Σ)-definable under O, for any signature Σ with ALC ̸∈ Σ, since
there does not exist an ALCO(Σ)-concept C such that O |= {ALC} ≡ C.
⊣

We next define when a concept is implicitly definable. For a signature
Σ, the Σ-reduct I|Σ of an interpretation I coincides with I except that no
non-Σ symbol is interpreted in I|Σ . A concept C0 is called implicitly Σ-
definable under O and C if the Σ-reduct of any pointed model I, d with I
a model of O and d ∈ CI determines whether d ∈ CI

0 . More formally, C0 is
implicitly Σ-definable under O and C if the following holds for all models
I and J of O and d ∈ ∆I = ∆J : if I|Σ = J|Σ and d ∈ CI , then d ∈ CI

0

iff d ∈ CJ
0 . If C = ⊤, then we drop C and say that C0 is implicitly

Σ-definable under O. To illustrate, observe that in Example 7, {ALC}
is not implicitly Σ-definable, for any Σ such that ALC ̸∈ Σ under O.
Implicit definability can be reformulated as a standard reasoning problem
as follows: a concept C0 is implicitly Σ-definable under O and C iff

O ∪OΣ |= C ⊓ C0 ⊑ CΣ → C0Σ (1)

where OΣ , CΣ , and C0Σ are obtained from O, C and, respectively, C0, by
replacing every non-Σ symbol uniformly by a fresh symbol. If a concept is
explicitly L(Σ)-definable under O and C, then it is implicitly Σ-definable
under O and C, for any language L. A logic enjoys the projective Beth
definability property if the converse implication holds as well.

Definition 8. A DL L enjoys the projective Beth definability property
(PBDP) if for any L-ontology O, L-concepts C and C0, and signature
Σ ⊆ sig(O, C) the following holds: if C0 is implicitly Σ-definable under O
and C, then C0 is explicitly L(Σ)-definable under O and C. If O ranges
over L-ontologies containing RIs only or O = ∅, then we say that L en-
joys the PBDP for RI-ontologies and the PBDP for the empty ontology,
respectively.

The DLs ALC, ALCI, and their extensions with qualified number re-
strictions and the universal role all enjoy the PBDP [90]. The following
example shows that, in contrast, ALCH does not.

Example 9. Consider O = {r ⊑ r1, r ⊑ r2} and let

C =
(
(¬∃r.⊤ ⊓ ∃r1.A) → ∀r2.¬A

)
⊓
(
(¬∃r.⊤ ⊓ ∃r1.¬A) → ∀r2.A

)
.

Let Σ = {r1, r2} and C0 = ∃r.⊤. Then the concept D = ∃r1 ∩ r2.⊤ is an
explicit definition of C0 under O and C in the extension of ALCH with
role intersection (the semantics of r1 ∩ r2 is defined in the obvious way).
Hence C0 is implicitly Σ-definable under O and C. There does not exist an
explicit ALCH(Σ)-definition of C0 under O and C, however. Intuitively,
the reason is that role intersection cannot be expressed in ALCH (see
Example 24 below for a proof).

Note that an example without "background concept” C can be ob-
tained by taking the ontology

O′ ={ r ⊑ r1, r ⊑ r2,

¬∃r.⊤ ⊓ ∃r1.A ⊑ ∀r2.¬A, ¬∃r.⊤ ⊓ ∃r1.¬A ⊑ ∀r2.A }

and asking for an explicit ALCH({r1, r2})-definition of ∃r.⊤ under O′. ⊣

It is known that the CIP and PBDP are tightly linked [90]. We state the
inclusion for logics in DLnr only, but the proof shows that it holds under
rather mild conditions.

Lemma 10. If L ∈ DLnr enjoys the CIP, then L enjoys the PBDP.

Proof. Assume that an L-concept C0 is implicitly Σ-definable under an
L-ontology O and L-concept C, for some signature Σ. Then (1) holds.
Take an L(Σ)-interpolant D for C ⊓ C0 ⊑ CΣ → C0Σ under O ∪ OΣ .
Then D is an explicit L(Σ)-definition of C0 under O and C. ❏

An important special case of explicit definability is the explicit definability
of a concept name A from sig(O, C)\{A} under an ontology O and concept
C. For this case, we also consider the following non-projective version of
the Beth definability property.

Definition 11. A DL L enjoys the Beth definability property (BDP) if
for any L-ontology O, concept C, and any concept name A the following
holds: if A is implicitly (sig(O, C) \ {A})-definable

under O and C, then A is explicitly L(sig(O, C)\{A})-definable under
O and C. If O ranges over L-ontologies containing RIs only or O = ∅,
then we say that L enjoys the BDP for RI-ontologies and the BDP for the
empty ontology, respectively.

Clearly the PBDP entails the BDP, but we will see below that the
converse direction does not always hold. In fact, the following theorem
states that no DL in DLnr enjoys the CIP or PBDP, but that quite a few
DLs in DLnr enjoy the BDP. Moreover, all DLs in DLnr enjoy the BDP for
RI-ontologies and for the empty ontology.

As mentioned before, the theorem is mostly folklore and therefore
proved in the appendix.

Theorem 12. The following statements hold.

(1) No L ∈ DLnr enjoys the CIP nor the PBDP. The CIP and PBDP also
do not hold for RI-ontologies and, if L admits nominals, the empty
ontology.

(2) All L ∈ DLnr\{ALCO,ALCHO} enjoy the BDP. ALCO and ALCHO
do not enjoy the BDP.

(3) All L ∈ DLnr enjoy the BDP for RI-ontologies and the BDP for the
empty ontology.

We have seen that all L ∈ DLnr \ {ALCO,ALCHO} enjoy the BDP.
One might be tempted to conjecture that this holds as well if concept
names are replaced by nominals; that is to say, a nominal {a} that is
implicitly definable using symbols distinct from a is explicitly definable
using symbols distinct from a. Rather surprisingly, the following example
shows that this is not the case for any DL in DLnr with nominals (for DLs
without nominals this notion is clearly meaningless).

Example 13. Let L ∈ DLnr admit nominals and assume that

O = {{a} ⊑ ∃r.{a},
A ⊓ ¬{a} ⊑ ∀r.(¬{a} → ¬A),
¬A ⊓ ¬{a} ⊑ ∀r.(¬{a} → A)}.

Thus, O implies that a is r-reflexive and that no element distinct from a
is r-reflexive. Let Σ = {r,A}. Then {a} is implicitly Σ-definable under O
since we have the following explicit definition in first-order logic:

O |= ∀x((x = a) ↔ r(x, x)),

but one can show that {a} is not explicitly L(Σ)-definable under O for
any L ∈ DLnr with nominals. Indeed, the interpretation I in Figure 2
(where aI = a) is a model of O and the relation S = ∆I ×∆I is an L(Σ)-
bisimulation on I. Thus, Lemma 3 implies I, aI ≡L,Σ I, d and there is
no explicit L(Σ)-definition for {a} under O, as any such definition would
apply to d as well. ⊣

I

a

AA

d
r

r

r

Fig. 2. Failure of the PBDP for L ∈ DLnr with nominals.

The CIP defined above is concerned with interpolating concepts. In
the context of modular ontologies and forgetting there is also an interest
in interpolating concept inclusions [55]. For simplicity, we only consider
DLs without RIs. Let L not admit RIs and let O and O′ be L-ontologies.
We write O |= O′ if O |= α for all α ∈ O′. Then an L-ontology O′′ is called
an L-CI interpolant for O and O′ if sig(O′′) ⊆ sig(O) ∩ sig(O′), O |= O′′,
and O′′ |= O′. If the particular language L is clear from the context or not
important we drop it and call L-CI interpolants simply CI-interpolants.

Definition 14. Let L be a DL that does not admit RIs. Then L has the
CI-interpolation property if for all L-ontologies O and O′ such that O |=
O′ there exists an L-CI-interpolant for O and O′.

Observe that for any L ∈ DLnr that does not admit RIs and L-ontology O
one can construct in linear time an L-conceptD such that O and {⊤ ⊑ D}
are equivalent in the sense that O |= ⊤ ⊑ D and {⊤ ⊑ D} |= O. Hence
L has the CI-interpolation property if for all L-ontologies O and L-CIs
C ⊑ D such that O |= C ⊑ D there exists an L-CI-interpolant for O
and {C ⊑ D}. It is known that ALC and its extensions with inverse
roles, qualified number restrictions, and the universal role enjoy the CI-
interpolation property [55]. The following example shows that no DL in
DLnr that does not admit RIs enjoys the CI-interpolation property.

Example 15. We modify the ontology given in Example 13. Let

O′ = {A ⊑ ∀r.¬A,¬A ⊑ ∀r.A}.

We have that O′ |= {a} ⊑ ¬∃r.{a}, but there does not exist an ALCOIu-
CI-interpolant for O′ and {a} ⊑ ¬∃r.{a}, since one cannot express using
an ALCOIu({r})-CI that ∀x ¬r(x, x). Indeed, assume for a proof by
contradiction that there exists an ALCOIu-CI-interpolant O′′ for O′ and
{{a} ⊑ ¬∃r.{a}}. Consider the interpretations I1, I2 in Figure 3, where
I1 |= O′, aI2 ∈ ({a} ⊓ ∃r.{a})I2 , and I1, d ∼ALCOIu,{r} I2, aI2 . Since
I1 |= O′, we have that I1 |= O′′, where O′′ can be assumed to be of
the form {⊤ ⊑ D}, with sig(D) ⊆ {r}. Thus, d ∈ (∀u.D)I1 and, from
I1, d ∼ALCOIu,{r} I2, aI2 , we obtain by Lemma 3 that aI2 ∈ (∀u.D)I2 .
This implies I2 |= O′′, and hence I2 |= {a} ⊑ ¬∃r.{a}, contrary to the
assumption that aI2 ∈ ({a} ⊓ ∃r.{a})I2 . ⊣

I1

d
¬A

O′

e
A

rr

I2

a
{a} ⊓ ∃r.{a}

r∼ALCOIu,Σ

∼ALCOIu,Σ

Fig. 3. Failure of the CI-interpolation property for L ∈ DLnr without RIs.

In this article we focus on interpolating concepts and not CIs. The
main reasons are that the corresponding notion of an explicit definition
of an ontology appears to be less useful than definitions of concepts and
nominals and that while the CI-interpolation property is crucial for robust
decompositions of ontologies and for robust forgetting [55], checking the
existence of an interpolant or computing it for concrete ontologies and
CIs appears to not have found any applications yet. Regarding the first
point, observe that CI-interpolants correspond to the following notion of
an explicit CI-definition of an ontology. Let Σ be a signature and O and O′

ontologies. Then an L(Σ)-ontology O′′ is called an explicit L(Σ)-definition
of O′ under O if O∪O′ |= O′′ and O∪O′′ |= O′. In particular, if O is empty
then one asks for an ontology using symbols in Σ only that is equivalent
to O. While the existence of such ontologies is an interesting theoretical
question that could well have applications in the future, investigating
this problem is beyond the focus of this article. In what follows we only
consider aspects of CI-interpolants that are closely related to concept
interpolants, leaving their detailed investigation for future work.

5 Main Results

The failure of CIP and (P)BDP reported in Theorem 12 imply that in-
terpolant existence and projective and non-projective definition existence
cannot be directly polynomially reduced to subsumption checking. This
motivates studying the respective decision problems of interpolant exis-
tence and projective and non-projective definition existence. In this sec-
tion we introduce the decision problems, formulate model-theoretic char-
acterizations of the problems that play a fundamental role in our proofs,
and we formulate the main results.

We start with interpolant existence for which we take the definition
used in the formulation of the CIP.

Definition 16. Let L be a DL. Then L-interpolant existence is the prob-
lem to decide for any L-ontologies O1,O2 and L-concepts C1, C2, whether
there exists an L(Σ)-interpolant for C1 ⊑ C2 under O1 ∪ O2, where
Σ = sig(O1, C1) ∩ sig(O2, C2).

In our proofs, we actually focus on a more general version of interpolant
existence which has been discussed in the previous section and in which
we do not split O into two ontologies and in which Σ is arbitrary.

Definition 17. Let L be a DL. Then generalized L-interpolant existence
is the problem to decide for any L-ontology O, L-concepts C1, C2, and
signature Σ whether there exists an L(Σ)-interpolant for C1 ⊑ C2 under
O.

We also consider (generalized) L-interpolant existence with empty ontolo-
gies, called ontology-free (generalized) L-interpolant existence, and with
RI-ontologies, called RI-ontology (generalized) L-interpolant existence, both
defined in the obvious way. Observe that in the ontology-free case there
is no difference between generalized interpolant existence and interpolant
existence. In fact, also with ontologies generalized interpolant existence
and interpolant existence are interreducible.

Lemma 18. Let L ∈ DLnr. There are mutual polynomial time reductions
between generalized L-interpolant existence and L-interpolant existence.

Proof. The reduction from L-interpolant existence to generalized L-interpolant
existence is trivial: for input O1,O2, C1, C2 to L-interpolant existence, set
O = O1 ∪ O2 and Σ = sig(O1, C1) ∩ sig(O2, C2).

For the converse reduction from generalized interpolant existence to
interpolant existence, assume that an L-ontology O, L-concepts C1, C2,
and Σ are given. Then there exists an L(Σ)-interpolant for C1 ⊑ C2 under

O iff there exists an L(Σ)-interpolant for C1 ⊑ C2Σ under O∪OΣ , where
OΣ and C2Σ are obtained from O and C2 by replacing every non-Σ symbol
uniformly by a fresh symbol. The latter is an instance of L-interpolant
existence. ❏

Note that the reduction above works for all standard DLs including ALC.
Recall that interpolant existence reduces to checking O1 ∪O2 |= C1 ⊑ C2

for logics with the CIP. Hence, for DLs which enjoy the CIP such as
ALC, interpolant existence and generalized interpolant existence are Ex-
pTime-complete and ontology-free interpolant existence and generalized
ontology-free interpolant existence are PSpace-complete.

We next introduce the relevant definition existence problems.

Definition 19. Let L be a DL. Projective L-definition existence is the
problem to decide for any L-ontology O, L-concepts C and C0, and sig-
nature Σ, whether there exists an explicit L(Σ)-definition of C0 under O
and C.

(Non-projective) L-definition existence of concept names (nominals)
is the sub-problem where C0 ranges only over concept names A (nominals
{a}) and Σ = sig(O, C) \ {A} (and Σ = sig(O, C) \ {a}, respectively).

We also consider the (projective) L-definition existence problems with
empty ontologies, called ontology-free (projective) L-definition existence,
and with RI-ontologies, called RI-ontology (projective) L-definition exis-
tence, both defined in the obvious way. Similar to the case of interpolant
existence, definition existence reduces to checking implicit definability for
logics with the PBDP. We provide model-theoretic characterizations for
the non-existence of generalized interpolants and explicit definitions in
terms of bisimulations.

Definition 20 (Joint consistency). Let L ∈ DLnr. Let O be an L-
ontology, C1, C2 be L-concepts, and Σ a signature. Then C1 and C2 are
called jointly consistent under O modulo L(Σ)-bisimulations if there exist
pointed interpretations I1, d1 and I2, d2 such that Ii is a model of O,
di ∈ CIi

i , for i = 1, 2, and I1, d1 ∼L,Σ I2, d2.

The associated decision problem, joint consistency modulo L-bisimu-lations,
is defined in the expected way. The following result characterizes the exis-
tence of interpolants using joint consistency modulo L(Σ)-bisimulations.
The proof uses Lemma 3.

Theorem 21. Let L ∈ DLnr. Let O be an L-ontology, C1, C2 be L-concepts,
and Σ a signature. Then the following conditions are equivalent:

1. there is no L(Σ)-interpolant for C1 ⊑ C2 under O;
2. C1 and ¬C2 are jointly consistent under O modulo L(Σ)-bisimula-

tions.

Proof. The proof is standard and we refer the reader to [40] for
similar proofs. We only provide a sketch.

“1 ⇒ 2”. Assume there is no L(Σ)-interpolant for C1 ⊑ C2 under O.
Let

Γ = {D | O |= C1 ⊑ D,D ∈ L(Σ)}.

Then O ̸|= D ⊑ C2, for any D ∈ Γ . As Γ is closed under conjunction
and by compactness (recall that ALCHOIu is a fragment of first-order
logic), there exists a model J of O and an element d ∈ ∆J such that
d ∈ DJ for all D ∈ Γ but d ̸∈ CJ

2 . Consider the set tJ (d) = {D ∈
L(Σ) | d ∈ DJ }. Then, using again compactness, there exists a model
I of O and an element e ∈ ∆I such that e ∈ CI

1 and e ∈ DI for all
D ∈ tJ (d). Thus I, e ≡L,Σ J , d. For every interpretation I there exists
an ω-saturated elementary extension I ′ of I [24]. Thus, it follows from
the fact that ALCHOIu is a fragment of first-order logic that we may
assume that both I and J are ω-saturated. By Lemma 3, I, e ∼L,Σ J , d.

“2 ⇒ 1”. Assume an L(Σ)-interpolant D for C1 ⊑ C2 under O exists.
Assume that Condition 2 holds, that is, there are models I1 and I2 of
O and di ∈ ∆Ii for i = 1, 2 such that d1 ∈ CI1

1 and d2 ̸∈ CI2
2 and

I1, d1 ∼L,Σ I2, d2. Then, by Lemma 3, I1, d1 ≡L,Σ I2, d2. But then from
d1 ∈ CI1 we obtain d1 ∈ DI1 and so d2 ∈ DI2 which implies d2 ∈ CI2

2 , a
contradiction. ❏

Example 22. Consider again C1 = {a} ⊓ ∃r.{a} and C2 = {b} → ∃r.{b}
from Example 5 and set Σ = {r}. The interpretations I1, I2 depicted
in Figure 4 (where we set aIi = a and bIi = b, for i = 1, 2) show
that C1 and ¬C2 are jointly consistent modulo ALCO(Σ)-bisimulations.
By extending the bisimulation in Figure 4 to a relation S such that
(bI1 , aI2) ∈ S (so that the domain and range of S contain ∆I1 and ∆I2 ,
respectively), one can show that C1 and ¬C2 are jointly consistent modulo
ALCOu(Σ)-bisimulations. Moreover, by introducing an element e in I2 so
that (e, bI2) ∈ rI2 and (e, e) ∈ rI2 , and further extending S by adding
(aI1 , e) ∈ S, it can be seen that C1 and ¬C2 are jointly consistent modulo
ALCOIu(Σ)-bisimulations (and hence ALCHOIu(Σ)-bisimulations). ⊣

The following characterization of the existence of explicit definitions
can be proved similarly to Theorem 21.

I1

a

C1

b

r
I2

ab

¬C2

d

r

r
∼ALCO,Σ

∼ALCO,Σ

Fig. 4. Interpretations I1 and I2 illustrating Example 22.

Theorem 23. Let L ∈ DLnr. Let O be an L-ontology, C and C0 L-
concepts, and Σ ⊆ sig(O, C) a signature. Then the following conditions
are equivalent:

1. there is no explicit L(Σ)-definition of C0 under O and C;
2. C ⊓ C0 and C ⊓ ¬C0 are jointly consistent under O modulo L(Σ)-

bisimulations.

Example 24. Consider O, C, and Σ from Example 9. The interpreta-
tions I1, I2 depicted in Figure 5 show that C ⊓ ∃r.⊤ and C ⊓ ¬∃r.⊤ are
jointly consistent under O modulo ALCH(Σ)-bisimulations. Note that the
ALCH(Σ)-bisimulation in Figure 5 is also an ALCHu(Σ)-bisimula-tion,
but it is not an ALCHI(Σ)-bisimulation, since e1 has both an r1- and
an r2-predecessor, whereas e2 and e′2 lack an r2- and an r1-predecessor,
respectively. To repair this, we replace I2 with an interpretation J that
is obtained by taking the union of I2 with a copy I1 of I1, and further
adding (d1, e2) ∈ rJ2 and (d1, e

′
2) ∈ rJ1 (where d1 is the copy of d1 in J).

Then, we extend the ALCH(Σ)-bisimulation in Figure 5 to a relation S
that also connects the elements of I1 with the respective copies in J . It
can be seen that J is a model of O, d2 ∈ (C ⊓¬∃r.⊤)J , and (d1, d2) ∈ S,
where S is an ALCHIu(Σ)-bisimulation. ⊣

I1

d1

C ⊓ ∃r.⊤

e1

r, r1, r2
I2

d2

C ⊓ ¬∃r.⊤

e2 e′2
A

r1 r2

∼ALCH,Σ

∼ALCH,Σ

∼ALCH,Σ

Fig. 5. Interpretations I1 and I2 illustrating Example 24.

Interpolant existence and explicit definition existence are closely linked.
We use Theorems 21 and 23 to show the following reductions.

Lemma 25. Let L ∈ DLnr, O be an L-ontology, C,C0, C1, and C2 be L-
concepts, and Σ a signature. Then the following conditions are equivalent:

1. there is an explicit L(Σ)-definition of C0 under O and C;
2. there is an L(Σ)-interpolant for C ⊓ C0 ⊑ C → C0 under O.

Conversely, the following conditions are also equivalent:

1. there is an L(Σ)-interpolant for C1 ⊑ C2 under O;
2. O |= C1 ⊑ C2 and there is an explicit L(Σ)-definition of C2 under O

and C2 → C1.

Proof. We show the second equivalence. Assume that (1) does not hold.
To show that (2) does not hold, assume O |= C1 ⊑ C2 (otherwise we are
done). By Theorem 21 there exist pointed interpretations I1, d1 and I2, d2
such that Ii is a model of O, d1 ∈ CI1

1 , d2 ̸∈ CI2
2 , and I1, d1 ∼L,Σ I2, d2.

But then d1 ∈ ((C2 → C1) ⊓ C2)
I1 and d2 ∈ ((C2 → C1) ⊓ ¬C2)

I2 which
shows that (2) does not hold by Theorem 23. The other direction is shown
similarly. ❏

Hence we obtain the following corollary.

Theorem 26. Let L ∈ DLnr. Then there is a polynomial time reduc-
tion of projective L-definition existence to L-interpolant existence (and
thus to generalized L-interpolant existence). Conversely, there is a poly-
nomial time reduction of generalized L-interpolant existence (and thus L-
interpolant existence) to projective L-definition existence if an oracle for
L-subsumption is admitted.

Both reductions also exist for the ontology-free case and for RI-ontologies.

We now formulate the main complexity results proved in this article.

Theorem 27. Let L ∈ DLnr. Then L-interpolant existence, generalized L-
interpolant existence, and projective L-definition existence are all 2ExpTime-
complete.

It follows that interpolant existence and projective definition existence
are one exponential harder than subsumption for logics in DLnr. Our
lower bound proofs rely on the presence of ontologies. To understand the
ontology-free case (and the case with RI-ontologies) we first recall from
our introduction of DLs in DLnr above that for DLs with the universal role

or with both inverse roles and nominals, the ontology can be encoded in
a concept and so interpolant existence and projective definition existence
are still 2ExpTime-complete with empty ontologies and RI-ontologies,
respectively. For the remaining DLs in DLnr, interpolant existence and
projective definition existence become coNExpTime-complete, however.
Thus, less complex than with ontologies, but still harder than subsump-
tion (which is PSpace-complete), under standard complexity theoretic
assumptions.

Theorem 28. Let L ∈ DLnr.

1. If L admits nominals and the universal role, or nominals and in-
verse roles, then ontology-free L-interpolant existence, generalized L-
interpolant existence, and projective L-definition existence are all 2ExpTime-
complete.

2. If L admits the universal role and RIs, then RI-ontology L-interpo-
lant existence, generalized L-interpolant existence, and projective L-
definition existence are all 2ExpTime-complete.

3. If L ∈ {ALCO,ALCHO}, then ontology-free and RI-ontology L-interpolant
existence, generalized L-interpolant existence, and projective L-definition
existence are all coNExpTime-complete.

4. If L ∈ {ALCH,ALCHI}, then RI-ontology L-interpolant existence,
generalized L-interpolant existence, and projective L-defini-tion exis-
tence are all coNExpTime-complete.

We have seen that with the exception of ALCO and ALCHO, all DLs in
DLnr enjoy the non-projective Beth definability property. Hence checking
the existence of a non-projective definition of a concept name is polyno-
mial time reducible to subsumption checking and so ExpTime-complete
in the presence of an ontology. The following result states that even for
ALCO and ALCHO checking the existence of non-projective definitions
of concept names is not harder than subsumption.

Theorem 29. Let L ∈ {ALCO,ALCHO}. Then non-projective L-definition
existence of concept names is ExpTime-complete.

Interestingly, Theorem 29 is the only result where the lack of either the
CIP of (P)BDP does not lead to an increase in complexity of the inter-
polant/explicit definition existence problem. We show Theorem 29 in the
appendix provided as supplementary material as it uses techniques that
are slightly different from our other main results.

We next consider the non-projective explicit definability of nominals.
We have seen in Example 13 above that for nominals even the non-
projective Beth definability property does not hold for any DL in DLnr.

In fact, the following result states that the non-projective definability of
nominals is as hard as their projective definability.

Theorem 30. Let L ∈ DLnr admit nominals. Then non-projective L-
definition existence of nominals is 2ExpTime-complete.

Observe that the characterizations given in Theorems 21 and 23 pro-
vide mutual polynomial time reductions of generalized interpolant and
definition existence to the complement of joint consistency modulo L-
bisimulations. Hence, to prove Theorems 27 to 30, it suffices to prove the
corresponding complexity bounds for joint consistency.

We finally discuss an interesting consequence for CI-interpolants. Let
L be a DL in DLnr that does not admit RIs. The CI-interpolant existence
problem in L is the problem to decide for L-ontologies O and O′ whether
there exists an L-CI-interpolant for O and O′.

Theorem 31. Let L ∈ {ALCOu,ALCOIu}. Then CI-interpolant exis-
tence in L is 2ExpTime-complete.

Observe that the 2ExpTime upper bound is an immediate consequence
of Point 1 of Theorem 28 as we can give a polynomial time reduction
of CI-interpolant existence to ontology-free interpolant existence. Assume
L-ontologies O and O′ are given. Let Σ = sig(O) ∩ sig(O′). We find
L-concepts D and D′ such that O is equivalent to {⊤ ⊑ D} and O′ is
equivalent to {⊤ ⊑ D′}, respectively. Then there exists a L-CI-interpolant
for O and O′ iff there exists an L-interpolant for ∀u.D ⊑ ∀u.D′.

The 2ExpTime lower bound is proved in Section 7 (Lemma 44) by
adapting the 2ExpTime lower bound proof for interpolant existence in
L.

6 Upper Bound Proofs With Ontology

We show the double exponential upper bound of Theorem 27 (and thus of
Theorem 30) using a new mosaic elimination procedure that decides joint
consistency modulo L-bisimulations, for all L ∈ DLnr.

Theorem 32. Let L ∈ DLnr. Then joint consistency modulo L-bisimulations
is in 2ExpTime.

To motivate our approach, reconsider Example 22. Notice that in interpre-
tations I1, I2 witnessing joint consistency of C1 and ¬C2, aI1 is bisimilar
to both bI2 and d. Moreover, it can be easily verified that there are no
witnessing interpretations where aI1 is bisimilar to a single element in I2.

Using an ontology, one can extend this example so that aI1 is enforced to
be bisimilar to exponentially many elements in I2 in any interpretations
I1, I2 witnessing joint consistency of two concepts (in fact, this will be
the basis for showing the lower bound in the subsequent section). Thus,
we cannot consider (pairs of) elements in isolation, but instead need to
consider sets of elements. As usual in DLs, we abstract elements in in-
terpretations by types, which syntactically describe the behavior of these
elements by listing the relevant concepts that are satisfied there. Corre-
spondingly, sets of elements are abstracted to sets of types. Since we need
to coordinate two interpretations I1, I2, we thus consider mosaics, which
are pairs (T1, T2) of sets of types. The intuitive meaning of such a pair
is that it describes collections of elements in two interpretations I1 and
I2 which realize precisely the types in T1 and T2, respectively, and are
all mutually bisimilar. Naturally, not all possible mosaics (T1, T2) can be
realized in this way and the goal is to determine the realizable ones. For
this task, we use an elimination procedure. We start with the set of all
possible mosaics and drop the ‘bad’ ones until a fixed point is reached.
We will see that the elimination conditions extend the conditions known
from standard type elimination procedures in a relatively natural way to
mosaics. Then, concepts C1, C2 will be jointly consistent under an ontol-
ogy O modulo bisimulations if there is a surviving mosaic (T1, T2) such
that C1 is contained in some type in T1 and C2 is contained in some type
in T2.

We will now formalize our approach and start by introducing the rele-
vant notions. Assume L ∈ DLnr and consider an L-ontology O, L-concepts
C1, C2, and a signature Σ. Let Ξ = sub(O, C1, C2) denote the closure un-
der single negation of the set of subconcepts of concepts in O, C1, C2. A
Ξ-type t is a subset of Ξ such that there exists a model I of O and d ∈ ∆I

with t = tpΞ(I, d), where

tpΞ(I, d) = {C ∈ Ξ | d ∈ CI}

is the Ξ-type realized at d in I. Let Tp(Ξ) denote the set of all Ξ-types.
We remark that the number of Ξ-types is at most exponential in ||O||+
||C1||+||C2|| and, moreover, the set of all Ξ-types can be computed in time
exponential in ||O||+ ||C1||+ ||C2|| for all considered logics [8, 1]. A mosaic
is a pair (T1, T2) of sets of types T1, T2 ⊆ Tp(Ξ). For interpretations
I1, I2 and i ∈ {1, 2}, the mosaic defined by d ∈ ∆Ii in I1, I2 is the pair
(T1(d), T2(d)) where

Tj(d) = {tpΞ(Ij , e) | e ∈ ∆Ij , Ii, d ∼L,Σ Ij , e},

for j = 1, 2. We say that a pair (T1, T2) of sets T1, T2 of types is a mo-
saic defined by I1, I2 if there exists d ∈ ∆I1 ∪ ∆I2 such that (T1,T2) =
(T1(d), T2(d)). Clearly, there are at most doubly exponentially many mo-
saics.

Example 33. Recall C1, C2,Σ, and I1, I2 from Example 22, and let O = ∅.
The set Ξ consists of the concepts {a}, ∃r.{a}, {b}, ∃r.{b}, C1, C2, and
negations thereof. We have that:

tpΞ(I1, aI1) = {{a},∃r.{a},¬{b},¬∃r.{b}, C1, C2}
tpΞ(I2, bI2) = {¬{a},¬∃r.{a}, {b},¬∃r.{b},¬C1,¬C2}

tpΞ(I2, d) = {¬{a},¬∃r.{a},¬{b},¬∃r.{b},¬C1, C2}

The mosaic defined by aI1 in I1, I2 is (T1(a
I1), T2(a

I1)), where

T1(a
I1) = {tpΞ(I1, aI1)} and T2(a

I1) = {tpΞ(I2, bI2), tpΞ(I2, d)}.

⊣

As announced above, the aim of the mosaic elimination procedure is to
determine all mosaics (T1, T2) such that all t ∈ T1 ∪ T2 can be realized in
mutually L(Σ)-bisimilar elements of models I1, I2 of O. In order to formu-
late the elimination conditions, we define several compatibility conditions
between types and between mosaics, similar to the compatibility condi-
tions that are used in standard type elimination procedures. Throughout
the rest of the section, we treat the universal role u as a role name con-
tained in Σ, in case L admits the universal role. Note that u− is equivalent
to u, and that O |= r ⊑ u, for every role r.

Let t1, t2 be Ξ-types. We call t1, t2 u-equivalent if ∃u.C ∈ t1 iff ∃u.C ∈
t2, for every ∃u.C ∈ Ξ. Notice that the condition is trivially satisfied if
L does not admit the universal role. For a role r, we call t1, t2 r-coherent
for O, in symbols t1 ⇝r t2, if t1, t2 are u-equivalent and the following
conditions hold for all roles s with O |= r ⊑ s: (1) if ¬∃s.C ∈ t1, then C ̸∈
t2 and (2) if ¬∃s−.C ∈ t2, then C ̸∈ t1. Note that t⇝r t

′ iff t′ ⇝r− t. We
lift the definition of r-coherence from types to mosaics (T1, T2), (T

′
1, T

′
2).

Specifically, we call (T1, T2), (T ′
1, T

′
2) r-coherent, in symbols (T1, T2) ⇝r

(T ′
1, T

′
2), if for i = 1, 2:

– for every t ∈ Ti there exists a t′ ∈ T ′
i such that t⇝r t

′, and
– if L admits inverse roles, then for every t′ ∈ T ′

i , there is a t ∈ Ti such
that t⇝r t

′.

Note that (T1, T2) ⇝r (T ′
1, T

′
2) iff (T ′

1, T
′
2) ⇝r− (T1, T2) in case L admits

inverse roles. Also notice that (T1, T2) ⇝r (T ′
1, T

′
2) implies (T1, T2) ⇝u

(T ′
1, T

′
2), for every role r.

Example 34. Consider again interpretations I1, I2 from Example 22 and
the types t1 = tpΞ(I1, aI1), t2 = tpΞ(I2, bI2), and t3 = tpΞ(I2, d). Then,
t1 ⇝r t1, t2 ⇝r t3, and t3 ⇝r t3. Moreover, the mosaic (T1, T2) defined
by aI1 in I1, I2 satisfies (T1, T2)⇝r (T1, T2). ⊣

We are now in the position to formulate the mosaic elimination conditions.
Let S ⊆ 2Tp(Ξ) × 2Tp(Ξ) be a set of mosaics. We call (T1, T2) ∈ S bad if it
violates one of the following conditions.

Σ-concept name coherence A ∈ t iff A ∈ t′, for every concept name
A ∈ Σ and every t, t′ ∈ T1 ∪ T2;

Existential saturation for i = 1, 2 and ∃r.C ∈ t ∈ Ti, there exists
(T ′

1, T
′
2) ∈ S such that (1) there exists t′ ∈ T ′

i with C ∈ t′ and t⇝r t
′

and (2) if O |= r ⊑ s for a Σ-role s, then (T1, T2)⇝s (T
′
1, T

′
2).

For didactic purposes and because we need it later in Section 10, we
first give the mosaic elimination procedure for logics L that do not admit
nominals. The procedure starts with the set S0 of all mosaics. Then obtain,
for i ≥ 0, Si+1 from Si by eliminating all mosaics (T1, T2) that are bad
in Si. Let S∗ be where the sequence stabilizes. The elimination procedure
decides joint consistency in the following sense.

Lemma 35. If L does not admit nominals, the following conditions are
equivalent:

1. C1, C2 are jointly consistent under O modulo L(Σ)-bisimulations;
2. there exist (T1, T2) ∈ S∗ and Ξ-types t1 ∈ T1, t2 ∈ T2 with C1 ∈ t1 and

C2 ∈ t2.

We refrain from giving the proof of Lemma 35 since it will follow from
Lemma 36 below. We note, however, that for L as in the lemma, The-
orem 32 is an immediate consequence of the procedure: there are only
double exponentially many mosaics, so the elimination terminates after
at most double exponentially steps. It remains to observe that every elim-
ination step can be executed in double exponential time.

This relatively straightforward elimination procedure does not quite
work in the presence of nominals. Intuitively, the reason is that in any
two interpretations I1, I2, every nominal a is realized (modulo bisimula-
tion) in exactly one mosaic. Now, if the set S contains several mosaics
mentioning a, they possibly witness existential saturation of each other

which, however, cannot be reflected in an interpretation. Thus, for the
mosaic elimination procedure to work (in the sense of Lemma 35) one has
to “guess” for every nominal a exactly one mosaic that describes a.

To formalize this idea, let us call a set S of mosaics good for nominals
if for every individual name a ∈ sig(Ξ) and i = 1, 2 there exists exactly
one tia with {a} ∈ tia ∈

⋃
(T1,T2)∈S Ti and exactly one pair (T1, T2) ∈ S

with tia ∈ Ti. Moreover, if a ∈ Σ, then that pair takes the form

– ({t1a}, {t2a}) in case L admits the universal role, and
– ({t1a}, {t2a}), ({t1a}, ∅), or (∅, {t2a}), otherwise.

We can now formulate the more general lemma.

Lemma 36. The following conditions are equivalent:

1. C1, C2 are jointly consistent under O modulo L(Σ)-bisimulations;
2. there exists a set S∗ of mosaics that is good for nominals and does not

contain a bad mosaic, such that there exist (T1, T2) ∈ S∗ and Ξ-types
t1 ∈ T1, t2 ∈ T2 with C1 ∈ t1 and C2 ∈ t2.

Proof. “1 ⇒ 2”. Let I1, d1 ∼L,Σ I2, d2 for models I1 and I2 of O such
that d1, d2 realize Ξ-types t1, t2 and C1 ∈ t1, C2 ∈ t2. Let S∗ be the set of
all mosaics defined by I1, I2. It is routine to show that no (T1, T2) in S∗

is bad and that S∗ is good for nominals. Now, the mosaic (T1, T2) defined
by dI1 in I1, I2 witnesses Condition (2).

“2 ⇒ 1”. Suppose there exist a good set S∗ of mosaics and (S1, S2) ∈ S∗

and Ξ-types s1 ∈ S1, s2 ∈ S2 with C1 ∈ s1 and C2 ∈ s2. Let Ii, for i = 1, 2
be interpretations defined by setting:

∆Ii := {(t, (T1, T2)) | (T1, T2) ∈ S∗, t ∈ Ti, and
if L admits the universal role, then (S1, S2)⇝u (T1, T2)

and t, si are u-equivalent}
rIi := {((t, p), (t′, p′)) ∈ ∆Ii ×∆Ii | t⇝r t

′ and for all Σ-roles s :
((O |= r ⊑ s) ⇒ p⇝s p

′)}
AIi := {(t, p) ∈ ∆Ii | A ∈ t}
aIi := (t, (T1, T2)) ∈ ∆Ii , {a} ∈ t ∈ Ti

Note that the interpretation of nominals is well-defined since S∗ is good
for nominals.

We verify that interpretations I1 and I2 witness Condition (1).
Claim 1. For i = 1, 2, all C ∈ Ξ, and all (t, p) ∈ ∆Ii , we have (t, p) ∈ CIi

iff C ∈ t.

Proof of Claim 1. Let i ∈ {1, 2}. The proof is by induction on the structure
of concepts in Ξ.

– The claim holds for concept names C = A and all nominals C = {a},
by definition of Ii.

– The Boolean cases, ¬C and C⊓C ′, are immediate consequences of the
hypothesis.

– Let C = ∃r.D. (Recall that r is possibly the universal role u.)
“if”: Suppose ∃r.D ∈ t. By existential saturation, there is a p′ =
(T ′

1, T
′
2) ∈ S∗ such that (1) there exists t′ ∈ T ′

i with D ∈ t′ and
t ⇝r, t

′ and (2) if O |= r ⊑ s for some Σ-role s, then p ⇝s p
′. Note

that t, t′ are thus also u-equivalent, so (t′, p′) ∈ ∆Ii . We distinguish
cases:
• If r is a role name, then by definition of rIi , we have that ((t, p), (t′, p′)) ∈
rIi . Since D ∈ t′, induction yields (t′, p′) ∈ DIi . Overall, we get
(t, p) ∈ (∃r.D)Ii .

• If r = r−0 is an inverse role, then (1) and (2) above imply (1’)
t′ ⇝r0 t and (2’) if O |= r0 ⊑ s for some Σ-role s, then p ⇝s p

′.
As before, we can then conclude that ((t′, p′), (t, p)) ∈ rIi0 . Since
D ∈ t′, induction yields (t′, p′) ∈ DIi . Overall, we get (t, p) ∈
(∃r−0 .D)Ii .

“only if”: Suppose (t, p) ∈ (∃r.D)Ii . Then, there is (t′, p′) ∈ ∆Ii with
((t, p), (t′, p′)) ∈ rIi and (t′, p′) ∈ DIi . By induction, the latter implies
D ∈ t′. We distinguish cases:
• If r is a role name, then by definition of rIi , t ⇝r t

′ and thus
∃r.D ∈ t.

• If r = r−0 is an inverse role, then by definition of rIi0 , t′ ⇝r0 t.
Thus, also ∃r−0 .D ∈ t.

This finishes the proof of Claim 1. Claim 1 implies that (s1, (S1, S2)) ∈ CI1
1

and (s2, (S1, S2)) ∈ CI2
2 . Claim 1 also implies that the type realized by

(t, p) in Ii is t, for all (t, p) ∈ ∆Ii . Since types are, by definition, realized
in models of O, it follows that both I1 and I2 are models of O.
Claim 2. The relation R defined by

R = {((t, p), (t′, p)) | (t, p) ∈ ∆I1 , (t′, p) ∈ ∆I2}

is an L(Σ)-bisimulation.
Proof of Claim 2. Clearly, R satisfies Condition [AtomC] due to Σ-concept
name coherence. Condition [AtomI] follows from the fact that S∗ is good
for nominals in case L admits nominals.

For Condition [Forth], let ((t, p), (t′, p)) ∈ R and ((t, p), (t1, p1)) ∈ rI1 ,
for some Σ-role r, and let p = (T1, T2) and p1 = (T ′

1, T
′
2). We distinguish

cases:

– If r is a role name, then by definition of rI1 , we have (1) t⇝r t1 and (2)
for all Σ-roles s with O |= r ⊑ s, we have p ⇝s p1. Since t′ ∈ T2 and
p⇝r p1 there is some t′′ ∈ T ′

2 with t′ ⇝r t
′′. Thus, in particular, t′′ is

u-equivalent to t′ (and thus to s2), which implies (t′′, p1) ∈ ∆I2 . The
definition of rI2 then implies that ((t′, p), (t′′, p1)) ∈ rI2 . It remains to
note that the definition of R yields ((t1, p1), (t

′′, p1)) ∈ R.
– If r = r−0 is an inverse role, then by definition of rI10 , we have (1) t1 ⇝r0

t and (2) for all Σ-roles s with O |= r0 ⊑ s, we have p1 ⇝s p. Since
t′ ∈ T2 and p1 ⇝r0 p there is some t′′ ∈ T ′

2 with t′′ ⇝r0 t
′. Thus, in par-

ticular, t′′ is u-equivalent to t′ (and thus to s2), which implies (t′′, p1) ∈
∆I2 . The definition of rI20 then implies that ((t′′, p1), (t

′, p)) ∈ rI20 . It
remains to note that the definition of R yields ((t1, p1), (t

′′, p1)) ∈ R.

Condition [Back] is dual.
Finally, we verify that R and R− are surjective if L admits the uni-

versal role. Let (t, (T1, T2)) ∈ ∆I1 . Then, (S1, S2) ⇝u (T1, T2), by def-
inition of ∆I1 . This implies that there is a type t′ ∈ T2 which is u-
equivalent to s2 and thus (t′, (T1, T2)) ∈ ∆I2 . The definition of R implies
((t, (T1, T2)), (t

′, (T1, T2))) ∈ R. The other direction is dual.
This finishes the proof of Claim 2. By definition ofR, we have ((s1, (S1, S2)), (s2, (S1, S2))) ∈

R, and thus I1, (s1, (S1, S2)) ∼L,Σ I2, (s2, (S1, S2)). ❏

It remains to argue that we can find in double exponential time a set
S∗ as in Condition (2) of Lemma 36. We use a suitable variant of the
elimination procedure described after Lemma 35.

Lemma 37. Let L ∈ DLnr. Then it is decidable in time double exponential
in ||O||+ ||C1||+ ||C2|| whether for an L-ontology O, L-concepts C1, C2,
and a signature Σ ⊆ sig(Ξ) there exists some S∗ satisfying Condition (2)
of Lemma 36.

Proof. Let L ∈ DLnr, and assume O, C1, C2, and Σ are given. We
can enumerate in double exponential time the maximal good sets U ⊆
2T (Ξ) × 2T (Ξ) by picking, for each nominal a ∈ sig(Ξ) and i = 1, 2, a
type tia, and a mosaic (T1, T2) with tia ∈ Ti. In doing so, we make sure
that ({t1a}, {t2a}) is selected in case a ∈ Σ. Crucially, there are only double
exponentially many possibilities to make this choice. Remove all mosaics
that mention a nominal and have not been selected. The resulting set is
good for nominals.

Then we eliminate from any set U obtained in that process recursively
all bad mosaics. Let SU ⊆ U be the largest fixpoint of that procedure. Then
one can easily show that there exists a set S∗ satisfying Condition (2) of
Lemma 36 iff there exists a set U that can be obtained by the process
described above such that the largest fixpoint SU satisfies Condition (2)
of Lemma 36. Since elimination terminates after double exponential time,
and there are only double exponentially many possible choices for U , the
lemma follows. ❏

Theorem 32 is a direct consequence of Lemmas 36 and 37.

7 Lower Bound Proofs With Ontology

The goal of this section is to provide the proofs of the lower bounds in
Theorems 27, 30, and 31. We start with the former two. By Lemma 25
and Theorem 23, it suffices to consider joint consistency. We will provide
two reductions: in Section 7.1, we provide the reduction for DLs in DLnr
that admits nominals and, in Section 7.3, the one for DLs that admits role
inclusions. In Section 7.2, we will investigate the shape of the interpolants
/ explicit definitions that arise in the preceding lower bound proof. In
Section 7.4, we then show how to adapt the lower bound proof from Sec-
tion 7.1 to the case of CI-interpolant existence. In all cases we reduce the
word problem for languages recognized by exponentially space bounded
alternating Turing machines, which we introduce next.

An alternating Turing machine (ATM) is a tuple

M = (Q,Θ, Γ, q0, ∆)

where Q = Q∃ ⊎ Q∀ is a finite set of states partitioned into existential
states Q∃ and universal states Q∀. Further, Θ is the input alphabet and
Γ is the tape alphabet that contains a blank symbol 2 /∈ Θ, q0 ∈ Q∀ is the
initial state, and ∆ ⊆ Q× Γ ×Q× Γ × {L,R} is the transition relation.
We assume without loss of generality that the set ∆(q, a) := {(q′, a′,M) |
(q, a, q′, a′,M) ∈ ∆} contains exactly two or zero elements for every q ∈ Q
and a ∈ Γ . Moreover, the state q′ must be from Q∀ if q ∈ Q∃ and from Q∃
otherwise, that is, existential and universal states alternate. Acceptance of
ATMs is defined in a slightly unusual way, without using accepting states.
Intuitively, an ATM accepts if it runs forever on all branches and rejects
otherwise. More formally, a configuration of an ATM is a word wqw′ with
w,w′ ∈ Γ ∗ and q ∈ Q. We say that wqw′ is existential if q is, and likewise
for universal. Successor configurations are defined in the usual way. Note

that every configuration has exactly zero or two successor configurations.
A computation tree of an ATM M on input w is a (possibly infinite) tree
whose nodes are labeled with configurations of M such that

– the root is labeled with the initial configuration q0w;
– if a node is labeled with an existential configuration wqw′, then it has

a single successor which is labeled with a successor configuration of
wqw′;

– if a node is labeled with a universal configuration wqw′, then it has
two successors which are labeled with the two successor configurations
of wqw′.

An ATM M accepts an input w if there is a computation tree of M on
w. Note that we can convert any ATM M in which acceptance is based
on accepting states to our model by assuming that M terminates on any
input and then modifying it to enter an infinite loop from the accepting
states. It is well-known that there are 2n-space bounded ATMs which
recognize a 2ExpTime-hard language [23], where n is the length of the
input w.

7.1 DLs with Nominals

We start with DLs supporting nominals. By Theorem 23, it suffices to
prove the following result.

Lemma 38. Let L ∈ DLnr admit nominals. It is 2ExpTime-hard to de-
cide for an L-ontology O, individual name b, and signature Σ ⊆ sig(O) \
{b} whether {b} and ¬{b} are jointly consistent under O modulo L(Σ)-
bisimulations. This is true even if b is the only individual in O and
Σ = sig(O) \ {b}.

As announced, we reduce the word problem for 2n-space bounded
ATMs. Let us fix such an ATM M = (Q,Θ, Γ, q0, ∆) and an input w =
a0 . . . an−1 of length n. We first provide the reduction for L = ALCO us-
ing an ontology O and a signature Σ such that O contains concept names
that are not in Σ and uses two role names r, s, and show later how to
adapt this proof to Σ = sig(O) \ {b} and DLs supporting inverses and/or
the universal role.

The idea of the reduction is as follows. We aim to construct an ontology
O such that M accepts w iff {b} and ¬{b} are jointly consistent under O
modulo L(Σ)-bisimulations, where

Σ = {r, s, Z,B∀, B
1
∃, B

2
∃} ∪ {Aσ | σ ∈ Γ ∪ (Q× Γ)}.

The ontology O enforces that r(b, b) holds in any model O using the
concept inclusion {b} ⊑ ∃r.{b}. Moreover, it enforces that any element
distinct from bI with an r-successor lies on an infinite r-path ρ enforced
by the concept inclusions:

¬{b} ⊓ ∃r.⊤ ⊑ Is Is ⊑ ∃r.⊤ ⊓ ∀r.Is

with Is a concept name. Thus, if there exist models I, J of O with
I, bI ∼ALCO,± J , d for some d ̸= bJ and d ∈ (∃r.⊤)J , it follows that
all elements on the path ρ are ALC(±)-bisimilar to bI and thus mutually
ALC(±)-bisimilar. The situation is depicted in Figure 6, where the trees
T∗ and Ti, i ≥ 0 starting in bI and on the path elements, respectively, are
also mutually ALC(±)-bisimilar. These trees shall represent the computa-
tion tree of M on input w (using symbols from Σ) as follows, cf. Figure 7
which shows the skeleton of a single tree Ti. Configurations of M are rep-
resented as paths of length 2n over a role s in which every element is
labeled with a symbol Aσ, σ ∈ Γ ∪ (Q × Γ) that represents the content
of a single tape cell (omitted in the figure for the sake of readibility). In
Figure 7, the start of a configuration is indicated by ◦ and the s-path
between consecutive ◦ has length 2n. Every configuration is marked as ex-
istential or universal using concept names B∀, B

1
∃, B

2
∃; the superscript ·1/·2

indicates which successor is chosen for an existential configuration. Exis-
tential configurations have a single successor configuration and universal
configurations have two successor configurations.

bI
r

T∗

d ̸= bJ

0
T0

r

1
T1

r

2
T2

r

...

...
ρ

...

Fig. 6. Enforced bisimulation in lower bound

The structure of this computation tree can easily be enforced in ALC
using standard techniques (as we detail below). The difficulty is to achieve

synchronization between successor configurations in the tree. That is, if
a configuration c in the computation tree is followed by another config-
uration c′, then c′ is actually a successor configuration of c according to
M . To achieve this, we first ensure that in Ti, for i ≤ 2n, the (2n − i)-th
cell of each configuration in the computation tree is synchronized with the
(2n−i)-th cell of the next configuration(s), as indicated by the dotted lines
in Figure 7. This can be realized in ALC using a set of concept names not
in Σ. Then we exploit the fact that the trees Ti are mutually ALC(±)-
bisimilar which implies that in all Ti all cells of all configurations are
synchronized. In more detail, we do this by using several counters modulo
2n as follows.

Ti

B∀

. . .
2n − i

. . .

B∗
∃

. . .

2n − i

. . .
B∀

. . .

2n − i

. . .

. . .

. . .

B∗
∃

. . .
2n − i

. . .
B∀

. . .
2n − i

. . .

. . .

. . .

s

Fig. 7. Computation tree of M

The first counter counts modulo 2n along the path ρ using concept
names not in Σ. As announced, each point of ρ starts an infinite tree
along role s that is supposed to mimick the computation tree of M on
input w. Along this tree, two more counters are maintained:

– one counter starting at 0 and counting modulo 2n, and
– another counter starting at the value of the counter on ρ and also

counting modulo 2n.

The first counter is used to divide the tree into configurations of length
2n and the second counter is used to link the (2n − i)-th cell of successive
configurations in Ti as described above.

We will next provide the concept inclusions in O in more detail. The
counter along ρ is realized using concept names Ai, 0 ≤ i < n and by
including the following (standard) concept inclusions, for every i with

0 ≤ i < n:

Is ⊓Ai ⊓
l

j<i

Aj ⊑ ∀r.¬Ai Is ⊓ ¬Ai ⊓
l

j<i

Aj ⊑ ∀r.Ai

Is ⊓Ai ⊓ ⊔
j<i

¬Aj ⊑ ∀r.Ai Is ⊓ ¬Ai ⊓ ⊔
j<i

¬Aj ⊑ ∀r.¬Ai

Using again the concept name Is, we start the s-trees with two counters,
realized using concept names Ui and Vi, 0 ≤ i < n, and initialized to 0
and the value of the A-counter, respectively, by including the following
concept inclusions for every j with 0 ≤ j < n:

Is ⊑ (U = 0)

Is ⊑ Aj ↔ Vj

⊤ ⊑ ∃s.⊤

Here, (U = 0) is an abbreviation for the concept
dn−1

i=0 ¬Ui; we use similar
abbreviations below without further notice. The counters Ui and Vi are
incremented along s in the same way as Ai is incremented along r, so we
omit details. Configurations ofM are represented between two consecutive
points having U -counter value 0. We next enforce the structure of the
computation tree (recall that q0 ∈ Q∀):

Is ⊑ B∀ (†)
(U < 2n − 1) ⊓B∀ ⊑ ∀s.B∀

(U < 2n − 1) ⊓Bi
∃ ⊑ ∀s.Bi

∃ i ∈ {1, 2}
(U = 2n − 1) ⊓B∀ ⊑ ∀s.(B1

∃ ⊔B2
∃)

(U = 2n − 1) ⊓Bi
∃ ⊑ ∀s.B∀ i ∈ {1, 2}

(U = 2n − 1) ⊓B∀ ⊑ ∃s.Z ⊓ ∃s.¬Z

These concept inclusions enforce that all points which represent a config-
uration satisfy one of B∀, B

1
∃, B

2
∃ indicating the kind of configuration and,

if existential, also a choice of the transition function. The symbol Z ∈ Σ
enforces the branching.

We next set the initial configuration, for input w = a0, . . . , an−1.

Is ⊑ Aq0,a0

Is ⊑ ∀sk.Aak 0 < i < n

Is ⊑ ∀sn.Blank
Blank ⊑ A2

Blank ⊓ (U < 2n − 1) ⊑ ∀s.Blank

To coordinate successor configurations, we associate with M functions
fi, i ∈ {1, 2} that map the content of three consecutive cells of a con-
figuration to the content of the middle cell in the i-the successor con-
figuration (assuming an arbitrary order on the set ∆(q, a), for all q, a).
In what follows, we ignore the corner cases that occur at the border of
configurations; they can be treated in a similar way. Clearly, for each pos-
sible triple (σ1, σ2, σ3) ∈ (Γ ∪ (Q × Γ))3, the ALC-concept Cσ1,σ2,σ3 =
Aσ1 ⊓ ∃s.(Aσ2 ⊓ ∃s.Aσ3) is true at an element a of the computation tree
iff a is labeled with Aσ1 , an s-successors b of a is labeled with Aσ2 , and
an s-successors c of b is labeled with Aσ3 . In each configuration, we syn-
chronize elements with V -counter 0 by including for every (σ1, σ2, σ3) and
i ∈ {1, 2} the following concept inclusions:

(V = 2n − 1) ⊓ (U < 2n − 2) ⊓ Cσ1,σ2,σ3 ⊓B∀ ⊑ ∀s.A1
f1(σ1,σ2,σ3)

⊓

∀s.A2
f2(σ1,σ2,σ3)

(V = 2n − 1) ⊓ (U < 2n − 2) ⊓ Cσ1,σ2,σ3 ⊓Bi
∃ ⊑ ∀s.Ai

fi(σ1,σ2,σ3)

At this point, the importance of the superscript in B∗
∃ becomes apparent:

since different cells of a configuration are synchronized in different trees
Tk the superscript makes sure that all trees rely on the same choice for
existential configurations. The concept names Ai

σ are used as markers (not
in Σ) and are propagated along s for 2n steps, exploiting the V -counter.
The superscript i ∈ {1, 2} determines the successor configuration that the
symbol is referring to. After crossing the end of a configuration, the symbol
σ is propagated using concept names A′

σ (the superscript is not needed
anymore because the branching happens at the end of the configuration,
based on Z).

(U < 2n − 1) ⊓Ai
σ ⊑ ∀s.Ai

σ

(U = 2n − 1) ⊓B∀ ⊓A1
σ ⊑ ∀s.(Z → A′

σ)

(U = 2n − 1) ⊓B∀ ⊓A2
σ ⊑ ∀s.(¬Z → A′

σ)

(U = 2n − 1) ⊓Bi
∃ ⊓Ai

σ ⊑ ∀s.A′
σ i ∈ {1, 2}

(V < 2n − 1) ⊓A′
σ ⊑ ∀s.A′

σ

(V = 2n − 1) ⊓A′
σ ⊑ ∀s.Aσ

For those (q, a) with ∆(q, a) = ∅, we add the concept inclusion

Aq,a ⊑ ⊥.

The following lemma establishes correctness of the reduction.

Lemma 39. The following conditions are equivalent:

1. M accepts w;
2. there exist models I and J of O such that I, bI ∼ALCO,± J , d, for

some d ̸= bJ .

Proof. “1 ⇒ 2”. If M accepts w, there is a computation tree of M
on w. We construct a single interpretation I with I, bI ∼ALCO,± I, d for
some d ̸= bI as follows. Let Ĵ be the infinite tree-shaped interpretation
that represents the computation tree of M on w as described above, that
is, configurations are represented by sequences of 2n elements linked by
role s and labeled by B∀, B

1
∃, B

2
∃ depending on whether the configuration

is universal or existential, and in the latter case the superscript indicates
which choice has been made for the existential state. Finally, the first
element of the first successor configuration of a universal configuration is
labeled with Z. Observe that Ĵ interprets only the symbols in Σ as non-
empty. Now, we obtain interpretations Ik, k < 2n from Ĵ by interpreting
non-Σ-symbols as follows:

– the root of Ik satisfies Is;
– the U -counter starts at 0 at the root and counts modulo 2n along each
s-path;

– the V -counter starts at k at the root and counts modulo 2n along each
s-path;

– the auxiliary concept names of the shape Ai
σ and A′

σ are interpreted
in a minimal way so as to satisfy the concept inclusions starting from
concept inclusion (†). Note that, by definition of these concept inclu-
sions, there is a unique result.

Now obtain I from Ĵ and the Ik by creating an infinite outgoing r-path
ρ from some element d ̸= bI (with the corresponding A-counter) and
adding Ik, k < 2n to every element with A-counter value k on the r-path,
identifying the roots of the Ik with the element on the path. Additionally,
include (bI , bI) ∈ rI and add Ĵ to I by identifying bI with the root of
Ĵ . It should be clear that I is as required. In particular, the reflexive,
transitive, and symmetric closure of

– all pairs (bI , e), with e on ρ, and
– all pairs (e, e′), with e in Ĵ and e′ a copy of e in some tree Ik

is an ALCO(±)-bisimulation S on I with (bI , d) ∈ S.
“2 ⇒ 1”. Assume that I, bI ∼ALCO,± J , d for some d ̸= bJ . As argued

above, due to the r-self loop at bI , from d there has to be an outgoing

infinite r-path on which all s-trees are ALCO(±)-bisimilar. Since I is a
model of O, all these s-trees are additionally labeled with some auxiliary
concept names not in Σ, depending on the distance from their roots on
ρ. Using the concept inclusions in O and the arguments given in their
description, it can be shown that all s-trees contain a computation tree
of M on input w (which is solely represented with concept names in Σ).

❏

The same ontology O can be used for the remaining DLs with nominals.
For ALCO⊓, exactly the same proof works; in particular, note that both
the bisimulation S constructed in “1 ⇒ 2” and its inverse are surjective.
For the DLs with inverse roles the (one-way) infinite r-path ρ has to
replaced by a two-way infinite path in “1 ⇒ 2”.

Using the ontology O defined above we define a new ontology O′ to
obtain the 2ExpTime lower bound for signatures Σ′ = sig(O′) \ {b}. Fix
a role name rE for any concept name E ∈ sig(O) \ Σ. Now replace in O
any occurrence of E ∈ sig(O) \ Σ by ∃rE .{b} and denote the resulting
ontology by O′.
Lemma 40. The following conditions are equivalent:

1. M accepts w;
2. there exist models I and J of O′ such that I, bI ∼ALCO,±′ J , d, for

some d ̸= bJ .

Proof. “1 ⇒ 2”. We modify the interpretation I defined in the proof
of Lemma 39 in such a way that we obtain a model of O′ and such that
the ALCO(±)-bisimulation S on I defined in that proof is, in fact, an
ALCO(±′)-bisimulation on the new interpretation. Formally, obtain I ′

from I by interpreting every rE , E ∈ sig(O) \Σ as follows:

(i) there is an rE-edge from e to bI , for all e ∈ EI ;
(ii) there is an rE-edge from e to all elements on the path ρ, for all (e, e′) ∈

S and e′ ∈ EI ;
(iii) there are no more rE-edges.

Note that, by (i), I ′ is a model of O′. By (ii), the relation S defined in
the proof of Lemma 39 is an ALCO(±′)-bisimulation. In particular, by (i),
elements e′ ∈ EI have now an rE-edge to bI , so any element e bisimilar to
e′, that is, (e, e′) ∈ S, needs an rE-successor to some element bisimilar to
bI . Since all elements on the path ρ are bisimilar to bI , these rE-successors
exist due to (ii).

“2 ⇒ 1”. This direction remains the same as in the proof of Lemma 39.
❏

The extension to DLs with inverse roles and the universal role and the
restriction to a single role name are again straightforward.

We conclude the section with an observation that will be relevant for
the application of our results to modal logic in Section 11. More speci-
ficially, we strengthen the lower bound for the case of L = ALCO⊓ as
follows:

Lemma 41. Let L ∈ {ALCO,ALCO⊓}. Then, it is 2ExpTime-hard to
decide for an L-ontology O, individual name b, and signature Σ ⊆ sig(O)\
{b} whether {b} and ¬{b} are jointly consistent under O modulo L(Σ)-
bisimulations, even if O is allowed to use only a single role name.

Proof. We modify the ontology O and signature Σ used in the proof of
Lemma 38. Let O′ be the ontology obtained from O by:

– replacing every subconcept of the shape ∃r.C with ∃r.(Xr ⊓ C) and
– replacing every subconcept of the shape ∃s.C with ∃r.(Xs ⊓ C),

for fresh concept names Xr, Xs, and set Σ′ = Σ ∪ {Xr, Xs}. It is routine
to verify that Lemma 39 holds for O′, Σ′ instead of O, Σ. In particular,
we can obtain an interpretation I ′ from I as constructed in “1 ⇒ 2” as
follows.

– replace all s-connections by r-connections;
– every element that has an s-predecessor in I satisfies Xs in I ′, that

is, XI′
s = (∃s−.⊤)I ;

– bI and every element on the infinite r-path ρ in I satisfy Xr in I ′,
that is, XI′

r = (∃r.⊤)I (the root of the infinite path has to satisfy Xr

since it is bisimilar to bI which satisfies Xr).
❏

7.2 Shape of Explicit Definitions in the Lower Bound

The goal of this subsection is to provide some intuition on the shape of
the explicit definitions that arise in the proof of Lemma 38. We note first
that r(x, x) is an explicit FO(Σ)-definition of {b} under O, regardless
of whether the ATM accepts its input or not. This means that inter-
polant and explicit definition existence is 2ExpTime-hard even under the
promise that a fixed FO-definition / FO-interpolant exists.

We now analyze the ALCO(±)-definitions that arise in the proof of
Lemma 38. Recall that such a definition exists iff the ATM M does not
accept its input w. So, for the rest of the dicussion we assume the latter.

Instead of directly providing an explicit ALCO(±)-definition of {b}, we
give a definition C¬b of ¬{b}, since the definition of C¬b is close to the
intuitions provided in the proof of Lemma 38. Obviously, ¬C¬b will be the
desired definition of {b}. Let n be the length of the input word w and let
k = |Γ ∪ (Q × Γ)| be the number of possible labelings of a cell in some
configuration of the ATM. Moreover, set K = k2

n
+ 2n.

The concept C¬b takes the shape

C¬b = ∃r.⊤ →
(
Ctree ⊓ Cstart ⊓ ¬Cstop ⊓

2n−1

⊔
i=0

Ci

)
.

To understand the structure ∃r.⊤ → C ′ of C¬b, recall that the proof of
Lemma 38 relies on the assumption that an element d ̸= bI has an r-
successor. The concepts Ctree, Cstop, Cstart, Ci provide an “approximation”
of an accepting computation tree of the ATM M on its input w in the
following sense. (Note that the definition of ¬{b} cannot describe the full
accepting computation since it is not entailed).

The concept Ctree enforces an s-tree of depth K that acts as the skele-
ton for encoding (an initial fragment of) a computation tree. It is labeled
with concepts Z,B∀, B

1
∃, B

2
∃ in the expected way. Formally, Ctree is

Path2n

s,B∀
⊓

l

i=ℓ·2n−1
i<K

∀si.
(
B∀ →

(
∃s.(Z ⊓ Path2n

s,B1
∃
) ⊓ ∃s.(¬Z ⊓ Path2n

s,B2
∃
)
)

⊓ (B1
∃ ⊔B2

∃) → ∃s.Path2n

s,B∀

)
where Pathm

s,X is a concept that enforces an s-path of length m with each
element labeled with X. We refrain from giving the precise definitions of
the remaining concepts, and rather provide the intuitions. Cstart is a con-
cept that enforces the initial configuration to be true in the computation
tree, and Cstop is a concept that is true if some element within K s-steps
is labeled with a concept name Aq,a for which ∆(q, a) = ∅. Moreover, each
Ci is a concept with O |= Is ⊓ (A = i) ⊑ Ci; recall that we denote with
(A = i) that the A-counter has value i. The disjunction over all possible
Ci in C¬b is needed since the A-counter can take any value between 0
and 2n − 1 at a given element in d ̸= bI . More precisely, each Ci is a
conjunction

Ci =

2n−1l

j=0

∀rj .Ci⊕2nj
sync ,

where ⊕m denotes addition modulo m, and for each m with 0 ≤ m < 2n,
Cm

sync is a concept that coordinates the content of the m-th cell in every

configuration in the computation tree with the same cell in the successor
configuration(s). This can be easily realized using value restrictions ∀s.

Observe that O |= ¬{b} ⊑ C¬b regardless of whether the ATM accepts
w or not. In particular, in every model of O, each element d satisfying
¬{b} ⊓ ∃r.⊤ satisfies the concepts Ctree, Cstart, and ¬Cstop. Moreover, d
satisfies Is and (A = i) for some i, and thus d also satisfies Ci.

For the converse, O |= C¬b ⊑ ¬{b}, suppose that C¬b is realizable
in a model I of O in an element d with (d, d) ∈ rI . We thus also have
d ∈ (Ctree ⊓ Cstart ⊓ ¬Cstop)

I , and d ∈ CI
i , for some i. Due to the r-self

loop, d ∈ (Cm
sync)

I , for all m with 0 ≤ m < 2n. But this means that at d
starts the initial segment of a computation tree of M which is not labeled
with a halting configuration, and all of whose cells are coordinated with
the corresponding cell of the successor configuration(s). By the choice
of K, on every path there is a configuration that occurs twice. We can
thus extend the initial fragment of the computation tree to an infinite
computation tree for the word w, in contradiction to the fact that M does
not accept w.

We conclude with observing that the size of the definition C¬b of ¬{b}
is double exponential in the length n of the input word, due to the depth
K of the enforced tree. This is in stark contrast with the (constant!)
size of the FO(Σ)-definition. We conjecture that one can enforce explicit
definitions of triple exponential size. For example, when using two roles
s1, s2 instead of s for encoding the computation tree, already the concept
Ctree will be of triple exponential size. We leave a detailed analysis for
future work.

7.3 DLs with Role Inclusions

By Theorem 23, it suffices to prove the following.

Lemma 42. Let L ∈ DLnr admit role inclusions. It is 2ExpTime-hard to
decide for an L-ontology O, concept C, and signature Σ ⊆ sig(O) whether
C and ¬C are jointly consistent under O modulo L(Σ)-bisimulations.

As in the proof of Lemma 38, we reduce the word problem for exponen-
tially space bounded ATMs, so let M be a 2n-space bounded ATM and
w = a0 . . . an−1 an input of length n. In fact, the only difference to the
proof of Lemma 38 is the way in which we enforce that exponentially many
elements are L(Σ)-bisimilar. We first provide the reduction for L = ALCH
and

Σ = {r1, r2, s, Z,B∀, B
1
∃, B

2
∃} ∪ {Aσ | σ ∈ Γ ∪ (Q× Γ)}.

The symbols s, Z,B∀, B
1
∃, B

2
∃ and Aσ, σ ∈ Γ ∪ (Q × Γ), play exactly the

same role as above. The main difference is that we replace the nominal b
by an r-chain of length n. The ontology O contains the RIs r ⊑ r1, r ⊑ r2
and the CI ¬∃rn.⊤ ⊓ ∃rn1 .⊤ ⊑ R. As usual ∃rn abbreviates a sequence of
n times ∃r.

To see how we use these inclusions, suppose there exist models I and
J of O and d ∈ ∆I , e ∈ ∆J such that

– d ∈ (∃rn.⊤)I ;
– e ∈ (¬∃rn.⊤)J ;
– I, d ∼ALCH,Σ J , e.

then it follows that e ∈ RJ : due to I, d ∼ALC,Σ J , e and d ∈ (∃rn1 .⊤)I ,
we also have e ∈ (∃rn1 .⊤)I . Let now d′ be an element reachable from d
via an r-path of length n (which exists due to d ∈ (∃rn.⊤)I). Since r ⊑ ri
for i = 1, 2, there are also arbitrary r1/r2-paths of length n from d to d′.
Since I, d ∼ALC,Σ J , e, there are also arbitrary r1/r2-paths of length n
starting in e and whose end points are all ALCH(±)-bisimilar to d′ and
thus also mutually ALCH(±)-bisimilar. The concept name R will enforce
that

(∗) the end point of any r1/r2-path of length n starting in e carries a
counter value that describes the path in a canonical way.

We can thus use these 2n different, but bisimilar end points to start the
infinite trees which mimick the computation tree of M as in the proof of
Lemma 38. Along these we maintain the same two counters as there:

– one counter starting at 0 and counting modulo 2n to divide the tree
into configurations of length 2n;

– another counter starting at the value of the counter on the leaf and
also counting modulo 2n.

Formally, the ontology O is constructed as follows. In order to realize (∗)
above, we use concept names Ai, 0 ≤ i < n realizing the counter and the
following concept inclusions:

R ⊑ R0

Ri ⊑ ∀r1.(Ai ⊓Ri+1) ⊓ ∀r2.(¬Ai ⊓Ri+1) i < n

Ri ⊓Aj ⊑ ∀r1.Aj ⊓ ∀r2.Aj 0 ≤ j < i < n

Ri ⊓ ¬Aj ⊑ ∀r1.¬Aj ⊓ ∀r2.¬Aj 0 ≤ j < i < n

Rn ⊑ LR

Using the concept name LR, we start the s-trees with two counters, real-
ized using concept names Ui and Vi, 0 ≤ i < n, and initialized to 0 and
the value of the A-counter, respectively:

LR ⊑ (U = 0)

LR ⊑ Aj ↔ Vj 0 ≤ j < n

⊤ ⊑ ∃s.⊤

The structure of the computation tree, the initial configuration, and the
coordination between consecutive configurations is done using the same
concept inclusions as in the proof of Lemma 38, starting from inclusion (†)
and replacing Is with LR. We can then prove the following very similarly
to Lemma 39.

Lemma 43. The following conditions are equivalent:

1. M accepts w;
2. there exist models I and J of O such that I, d ∼ALCH,Σ J , e, for

some d ∈ (∃rn.⊤)I and e ̸∈ (∃rn.⊤)J .

Proof. “1 ⇒ 2”. If M accepts w, there is a computation tree of M on
w. We construct a single interpretation I with I, d ∼ALCH,± I, e for some
d, e with d ∈ (∃rn.⊤)I and e /∈ (∃rn.⊤)I as follows. Let Ĵ be the infinite
tree-shaped interpretation that represents the computation tree of M on
w as described above, that is, configurations are represented by sequences
of 2n elements linked by role s and labeled by B∀, B

1
∃, B

2
∃ depending on

whether the configuration is universal or existential, and in the latter case
the superscript indicates which choice has been made for the existential
state. Finally, the first element of the first successor configuration of a
universal configuration is labeled with Z. Observe that Ĵ interprets only
the symbols in Σ as non-empty. Now, we obtain interpretations Ik, k < 2n

from Ĵ by interpreting non-Σ-symbols as follows:

– the root of Ik satisfies LR;
– the U -counter starts at 0 at the root and counts modulo 2n along each
s-path;

– the V -counter starts at k at the root and counts modulo 2n along each
s-path;

– the auxiliary concept names of the shape Ai
σ and A′

σ are interpreted
in a minimal way so as to satisfy the concept inclusions that enforce
the coordination between consecutive configurations (cf. the concept
inclusions in proof of Lemma 38).

Now obtain I from Ĵ and the Ik as follows: First, create a path of length
n from some element d so that consecutive elements are connected with
r, r1, r2, and identify the end point of the path with the root of Ĵ . Then
create a binary tree of depth n, rooted in e, in which left children are
always r1-successors and right children are always r2-successors. Label
the nodes of the tree with Ri and Aj as described above and identify the
leaf having A-counter value k with the root of Ik, for all k < 2n. I is
as required since, by construction, d ∈ (∃rn.⊤)I , e /∈ (∃rn.⊤)I , and the
reflexive, transitive, and symmetric closure of
– all pairs (d′, e′) such that d′ has distance ℓ ≤ n from d and e′ has

distance ℓ from e, and
– all pairs (b, b′), with b in Ĵ and b′ a copy of b in some tree Ik

is an ALCH(±)-bisimulation S on I with (d, e) ∈ S.
“2 ⇒ 1”. Assume that I, d ∼ALCH,± J , e for models I,J of O and

some d, e with d ∈ (∃rn.⊤)I and e /∈ (∃rn.⊤)J . As argued above, there
are r1/r2-paths of length n whose end points carry all possible counters
< 2n and are all ALCH(±)-bisimilar. In addition, all these end points
root s-trees which are ALCH(±)-bisimilar. Since J is a model of O, all
these s-trees are additionally labeled with some auxiliary concept names
not in Σ, depending on the value of the A-counter of the corresponding
leaf. Using the concept inclusions in O and the arguments given in their
description, it can be shown that all s-trees contain a computation tree
of M on input w (which is solely represented with concept names in Σ).

❏

The same proof works as well for ALCH⊓ as the relation S constructed
in the direction “1 ⇒ 2” above is actually an ALCH⊓(±)-bisimulation. For
L ∈ {ALCHI,ALCHIu}, we have to slightly adapt the model construc-
tion in “1 ⇒ 2”, following the idea provided in Example 24 (except that
we do not need to take the union of I1, I2 here, since we construct a single
interpretation I = I1 = I2). Let d0, . . . , dn be the elements on the r-path
that starts in d, that is, d0 = d and dℓ has distance ℓ from d. Recall that
(dℓ, e

′) ∈ S for every element e′ in level ℓ in the binary tree rooted at e.
Observe that S is not an L(Σ)-bisimulation since, for ℓ > 0, dℓ has both
an r1 and an r2-predecessor (both are dℓ−1), but elements in the binary
tree lack either an r1- or an r2-predecessor. To repair this, we add for every
element e′ in level ℓ > 0 in the binary tree the following connections:

(dℓ−1, e
′) ∈ rI1 and (dℓ−1, e

′) ∈ rI2 .

It can be verified that the modified interpretation is still a model of O,
and that S is an L(Σ)-bisimulation as required.

We conclude the section by remarking that one can analyze the struc-
ture of the explicit ALCH(±)-definitions that arise in the proof of Lemma 42
along the lines of Section 7.2. In contrast to that section, the size of the
FO-definition

φ(x1) = ∃x2 . . . ∃xn.
n−1∧
i=1

r1(xi, xi+1) ∧ r2(xi, xi+1)

of ∃rn.⊤ under O is not constant, but depends on n.

7.4 CI-interpolant Existence

We show the 2ExpTime lower bound for CI-interpolant existence stated
in Theorem 31. We employ the ontology O, individual b, and signature
Σ constructed in the proof of Lemma 39 and remind the reader that
the claim of Lemma 39 holds also for ALCOu and ALCOIu. Let O1 be
defined as O without {b} ⊑ ∃r.{b}and with ¬{b} ⊓ ∃r.⊤ ⊑ Is replaced by
∃r.⊤ ⊑ Is. Also define O2 as O without {b} ⊑ ∃r.{b} and with all concept
and role names not in Σ replaced by fresh symbols. Transform O2 into an
equivalent ontology of the form {⊤ ⊑ D}. Observe that O1 does not use
b. In fact, the shared symbols of O1 and the CI ∀u.D ⊓{b} ⊑ ¬∃r.{b} are
exactly the symbols in Σ. The 2ExpTime lower bound now follows from
the following lemma.

Lemma 44. Let L ∈ {ALCOu,ALCOIu}. Then the following conditions
are equivalent:

1. Point 2 of Lemma 39 holds; that is, there exist models I and J of O
such that I, bI ∼L,Σ J , d, for some d ̸= bJ ;

2. there does not exist an L-CI interpolant for O1 and ∀u.D ⊓ {b} ⊑
¬∃r.{b}.

Proof. Assume Point (1) holds and take I,J , and d witnesssing this. We
may assume that I = J is the interpretation constructed in the proof
of “1 ⇒ 2” of Lemma 39. Assume for a proof by contradiction that O′

is an L-CI interpolant for O1 and ∀u.D ⊓ {b} ⊑ ¬∃r.{b}. Let I ′ denote
the restriction of I to elements that cannot be reached from b along a
path following rI or sI and reinterpret b as an element of ∆I′ . Then I ′

is a model of O1 by the definition of I and since O1 does not contain
any CIs with the individual b . Moreover, we have I, bI ∼L,Σ I ′, d since
b ̸∈ Σ. Then, as L admits the universal role, I is a model of O′. We now
reinterpret in I the fresh concept and role names in O2 in the same way

as the original ones in I and obtain a model I ′′ with ∆I = DI′′ since
I is a model of O. But then I ′′ ̸|= ∀u.D ⊓ {b} ⊑ ¬∃r.{b} and so (as I ′′

is still a model of O′ since sig(O′) ⊆ Σ) O′ ̸|= ∀u.D ⊓ {b} ⊑ ¬∃r.{b}, a
contradiction.

Conversely, assume there does not exist an L-CI interpolant for O1 and
∀u.D ⊓ {b} ⊑ ¬∃r.{b}. As in the proof of Theorem 21 and using the fact
that L admits the universal role, we obtain a model J of O1, d ∈ ∆J , and
an interpretation I with I ̸|= ∀u.D ⊓ {b} ⊑ ¬∃r.{b} and I, bI ∼L,Σ J , d.
We may assume that I and J are disjoint. Observe that J satisfies all
CIs in O with the exception of {b} ⊑ ∃r.{b}. By reinterpreting in I the
original concept and role names in O in the same way as the fresh concept
and role names in O2, we obtain a model I ′ of O. Take the union I ′∪J of
I ′ and J with bI′∪J defined as bI . Then I ′∪J is a model of O such that
I ′ ∪ J , bI′∪J ∼L,Σ I ′ ∪ J , d, for some d ̸= bJ , as required for Point (1).

❏

8 Upper Bound Proofs without Ontology

The upper bound for Points 1 and 2 of Theorem 28 is a consequence of the
respective upper bounds in Theorem 27. For showing the upper bounds
of Points 3 and 4 in Theorem 28, we prove that joint consistency is in
NExpTime and then apply Theorem 21. Indeed, the NExpTime upper
bound follows directly from the following exponential size witness model
property.

Lemma 45. Let L ∈ DLnr admit neither the universal role nor both in-
verse roles and nominals simultaneously. Let O be a set of RIs, C1, C2

L-concepts, and Σ a signature. If C1 and C2 are jointly consistent un-
der O modulo L(Σ)-bisimulations, then there exist pointed interpretations
I1, d1 and I2, d2 with I1, I2 models of O and of at most exponential size in
||O||+ ||C1||+ ||C2|| such that d1 ∈ CI1

1 , d2 ∈ CI2
2 , and I1, d1 ∼L,Σ I2, d2.

Before we prove Lemma 45, we introduce some notation. The depth of a
concept C is the number of nestings of existential restrictions in C. For
instance, a concept name has depth 0 and ∃r.∃r.B has depth 2. Given the
ontology O, concepts C1, C2, and the signature Σ, we use the notation
introduced in Section 6. For instance, the set of concepts Ξ, Ξ-types
t, and mosaics (T1, T2) are defined as in Section 6. While in Section 6
we used the relation ⇝r between mosaics to guide the construction of
interpretations, here we use a relation between mosaics that is directly

induced by interpretations. Assume interpretations I1 and I2 are given.
Consider mosaics p = (T1(d), T2(d)) and q = (T1(d

′), T2(d
′)) such that

there exists a role name r ∈ Σ with (d, d′) ∈ rIi , for some i ∈ {1, 2}. Then
define, for every role name s and i ∈ {1, 2}, relations Rs,i

p,q ⊆ Ti(d)×Ti(d′)
by setting (t, t′) ∈ Rs,i

p,q if there exist e and e′ realizing t and t′, respectively,
with (T1(e), T2(e)) = p and (T1(e

′), T2(e
′)) = q, such that (e, e′) ∈ sIi .

Now assume that C1 and C2 are jointly consistent under O modulo
L(Σ)-bisimulations. By definition, there exist pointed models I1, d1 and
I2, d2 of O such that d1 ∈ CI1

1 , d2 ∈ CI2
2 , and I1, d1 ∼L,Σ I2, d2. Let k be

the maximum depth of C1, C2.
We start with the case involving nominals and without inverse roles.

We construct exponential size J1,J2 with the same properties as I1, I2
above. Intuitively, Ji is obtained via a suitable unraveling operation up
to the depth k of the concepts C1, C2; during the unraveling, we take care
of the nominals and, moreover, restrict the outdegree of the produced
interpretation by keeping only necessary successors. Formally, let B be
some minimal set of mosaics defined by I1, I2 such that

– (T1(d1), T2(d1)) ∈ B;
– B contains every mosaic generated by some nominal, or formally,

(T1(d), T2(d)) ∈ B for every d ∈ ∆Ii such that d = aIi for some
nominal a ∈ sig(Ci);

– for every type t realized in Ii there exists (T1, T2) ∈ B with t ∈ Ti.

Intuitively, B serves to describe the behavior of the root of the unraveling
(first item), of the nominals (second item), and of potential witnesses
for existential restrictions for non-Σ-roles (third item). Observe that the
size of B is at most exponential in the size of O, C1, C2. To restrict the
outdegree, select, for any mosaic p = (T1, T2) defined by I1, I2 and any
∃s.C ∈ t ∈ Ti such that there exists r ∈ Σ with O |= s ⊑ r, a mosaic
q = (T ′

1, T
′
2) such that (t, t′) ∈ Rs,i

p,q and C ∈ t′, and denote the resulting
set by S(p). Form the set T of sequences

σ = p0 · · · pj = (T 0
1 , T

0
2) · · · (T

j
1 , T

j
2)

with j ≤ k, p0 ∈ B and pi+1 ∈ S(pi) for i < j. Let tail(σ) = pj and
taili(σ) = T j

i . We next define the domain of J1 and J2 as

∆Ji = {(t, p) | t ∈ taili(p), p ∈ B} ∪
{(t, σ) | σ ∈ T , t ∈ taili(σ), |σ| > 1, t contains no nominal}

and define the interpretation of individual, concept and role names in
J1,J2 in the expected way:

– for any individual name a and (T1, T2) ∈ B with {a} ∈ t ∈ Ti, we set
aJi = (t, (T1, T2));

– for any concept name A, (t, σ) ∈ AJi iff A ∈ t;
– for any role name r we let for σp ∈ T ,

• ((t, σ), (t′, σp)) ∈ rJi if (t, t′) ∈ Rr,i
tail(σ),p and t′ contains no nomi-

nal;
• ((t, σ), (t′, p)) ∈ rJi if (t, t′) ∈ Rr,i

tail(σ),p and t′ contains a nominal.
Next assume that tail(σ) = (T1, T2) and σ has length k. If tail(σ′) =
(T1, T2) for some |σ′| < k, then choose as r-successors of any element
of the form (t, σ) exactly the r-successors of (t, σ′) defined above. If no
such σ′ exists, then all elements of the form (t, tail(σ)) have distance
exactly k from the roots (since no nominal occurs in any type in any
mosaic in σ) and no successors are added.
It remains to take care of existential restrictions ∃r.C for the role
names r that do not entail any role name in Σ. If σ ∈ T , ∃r.C ∈ t ∈ Ti
with taili(σ) = Ti and O ̸|= r ⊑ s for any s ∈ Σ, we add ((t, σ), (t′, p))
to rJi (and all sJi with O |= r ⊑ s) for some p = (T ′

1, T
′
2) ∈ B and

t′ ∈ T ′
i with C ∈ t′ such that there are e, e′ realizing t, t′ in Ii and

(e, e′) ∈ rIi .

The following example illustrates the construction of J1,J2 using the
interpretations I1, I2 introduced in Example 22.

Example 46. Let t0 = tpΞ(I1, aI1), t1 = tpΞ(I2, bI2), and t2 = tpΞ(I2, d).
We ignore the types realized by bI1 in I1 and by aI2 in I2 as they are
not relevant for understanding the construction. Then only the mosaic
p = (T1, T2) with T1 = {t0} and T2 = {t1, t2} remains and J1 and J2 are
depicted in Figure 8. ⊣

J1

(t0, p)

r
J2

(t1, p)

(t2, p)

(t2, p)

(t2, p)

r

r

r

r

Fig. 8. Interpretations J1 and J2 illustrating Example 46.

We show that J1,J2 are as required. First, for i ∈ {1, 2}, Ji |= O
follows from the definition of Ji and the fact that Ii |= O. Indeed,
given r ⊑ s ∈ O, let ((t, σ), (t′, σ′)) ∈ rJi . This means that (t, t′) ∈
Rr,i

tail(σ),tail(σ′), that is, there exist e, e′ realizing t and t′, respectively,
with (T1(e), T2(e)) = tail(σ) and (T1(e

′), T2(e
′)) = tail(σ′), such that

(e, e′) ∈ rIi . Since Ii |= O, we obtain that (e, e′) ∈ sIi as well, and
thus (t, t′) ∈ Rs,i

tail(σ),tail(σ′), meaning that ((t, σ), (t′, σ′)) ∈ sJi . Hence,
Ji |= r ⊑ s.

We next prove that, for every (t, σ) ∈ ∆Ji and every concept C ∈ Ξ
of depth ≤ k − |σ|,

(t, σ) ∈ CJi iff C ∈ t.

The proof is by induction on the structure of C. We consider the case
C = ∃r.D, where D has depth < k − |σ|. We can assume that |σ| < k,
since for |σ| = k the claim holds trivially.

(⇒) Let (t, σ) ∈ ∃r.DJi . Then ∃r.D ∈ t follows by construction of rJi

as we only have ((t, σ), (t′, σ′) ∈ rJi if there are e, e′ realizing t, t′ in Ii
such that (e, e′) ∈ rIi .

(⇐) Let tail(σ) = p = (T1, T2) and suppose that ∃r.D ∈ t ∈ Ti. We
distinguish two cases.

– There exists s ∈ Σ such that O |= r ⊑ s. Then there exists q =
(T ′

1, T
′
2) ∈ S(p) and t′ ∈ T ′

i such that (t, t′) ∈ Rr,i
p,q and D ∈ t′. We

distinguish two cases.
• t′ does not contain nominals. Then we have that ((t, σ), (t′, σq)) ∈
rJi . By inductive hypothesis, (t′, σq) ∈ DJi , and thus (t, σ) ∈
∃r.DJi .

• t′ contains a nominal. Then we have that ((t, σ), (t′, q)) ∈ rJi . By
inductive hypothesis, (t′, q) ∈ DJi , hence (t, σ) ∈ ∃r.DJi .

– For every s ∈ Σ, O ̸|= r ⊑ s. By definition of Ji, we have ((t, σ), (t′, q)) ∈
rJi , for some q = (T ′

1, T
′
2) ∈ B and t′ ∈ T ′

i such that D ∈ t′. By induc-
tive hypothesis, (t′, q) ∈ DJi . Thus, (t, σ) ∈ ∃r.DJi .

Next observe that the relation

S = {((t, σ), (t′, σ′)) ∈ ∆J1 ×∆J2 | tail(σ) = tail(σ′)}

is an ALCHO(Σ)-bisimulation. Indeed, for ((t, σ), (t′, σ′)) ∈ S, we have
the following.

[AtomC] Let (t, σ) ∈ AJ1 and A ∈ Σ. By definition of J1, we have
that (t, σ) ∈ AJ1 iff A ∈ t ∈ tail1(σ), and thus A ∈ t′ ∈ tail2(σ) =
tail2(σ′), by definition of mosaics. But then (t′, σ′) ∈ AJ2 . The converse
direction is analogous.

[AtomI] Let (t, σ) = aJ1 and a ∈ Σ. By definition of J1, (t, σ) = aJ1

iff {a} ∈ t ∈ tail1(σ), and thus {a} ∈ t′ ∈ tail2(σ) = tail2(σ′), by
definition of mosaics. But then (t′, σ′) = aJ2 .

[Forth] Suppose that ((t, σ), (t̂, σ̂)) ∈ rJ1 with r ∈ Σ.
First, consider the case with |σ|, |σ′| < k. We have two possibilities.
– t̂ does not contain nominals. The following proof is illustrated in

Figure 9. There is a mosaic p with σ̂ = σp, and from ((t, σ), (t̂, σp)) ∈
rJ1 we obtain (t, t̂) ∈ Rr,1

tail(σ),p. This means that there exist d, d̂
realizing t and t̂, respectively, with (T1(d), T2(d)) = tail(σ) and
(T1(d̂), T2(d̂)) = p, such that (d, d̂) ∈ rI1 . As t′ ∈ T2(d), there
exists e ∈ ∆I2 with I1, d ∼ALCHO,Σ I2, e and e realizes t′. By
the definition of bisimulations, there exists ê with (e, ê) ∈ rI2 and
I1, d̂ ∼ALCHO,Σ I2, ê. Assume that ê realizes t̂′. Then t̂′ ∈ T2(d̂)

and (t̂, t̂′) ∈ Rr,2
tail(σ′),p. Now we consider again two possibilities.

• t̂′ does not contain nominals. Then from (t′, t̂′) ∈ Rr,2
tail(σ′),p we

obtain ((t′, σ′), (t̂′, σ′p)) ∈ rJ2 . Since tail(σp) = tail(σ′p), we
also obtain ((t̂, σp), (t̂′, σ′p)) ∈ S.

• t̂′ contains nominals. Then from (t′, t̂′) ∈ Rr,2
tail(σ′),p we ob-

tain ((t′, σ′), (t̂′, p)) ∈ rJ2 . Since tail(σp) = p, we get that
((t̂, σp), (t̂′, p)) ∈ S as well.

In both cases, we obtain some (t̂′, σ̂′) with ((t′, σ′), (t̂′, σ̂′)) ∈ rJ2

and ((t̂, σ̂), (t̂′, σ̂′)) ∈ S, as required.
– t̂ contains nominals. In this case, σ̂ = p for some mosaic p, and

from ((t, σ), (t̂, p)) ∈ rJ1 we obtain (t, t̂) ∈ Rr,1
tail(σ),p. Now we can

reason as above.
Now consider the case with |σ| = k and |σ′| < k. As tail(σ) = tail(σ′),
there exists σ′′ such that |σ′′| < k and tail(σ′′) = tail(σ) and the r-
successors of any node of the form (t, σ) are exactly the r-successors of
(t, σ′′), and thus to show [Forth] one can proceed as above. The same
argument applies if |σ| < k and |σ′| = k and if |σ| = |σ′| = k and
there exists σ′′ with tail(σ′′) = tail(σ′) = tail(σ) and |σ′′| < k. Finally,
if |σ| = |σ′| = k but there does not exist any σ′′ with tail(σ′′) =
tail(σ′) = tail(σ) and |σ′′| < k, then there are no r-successors to
consider.

[Back] Dual to [Forth].

Observe that the models Ji, i = 1, 2, are at most exponential in
the size of O, C1, C2. Moreover, we have (T1(d1), (T2(d1)) ∈ B and so
(tpΞ(I1, d1), T1(d1)) ∈ CJ1

1 , (tpΞ(I2, d2), T2(d1)) ∈ CJ2
2 , and

((tpΞ(I1, d1), T1(d1)), (tpΞ(I2, d2), T2(d1)) ∈ S,

I1

d

d̂

r
I2

e

ê

r
∼ALCHO,Σ

∼ALCHO,Σ

J1 J2

(t, σ)

(t̂, σ̂)

(t′, σ′)

(t̂′, σ̂′)

r rS

S

Fig. 9. Proof step to show that S satisfies [Forth], with σ̂ = σp and σ̂′ = σ′p (if t̂′ does
not contain nominals) and σ̂′ = p (if t̂′ contains nominals).

as required.
We next consider the case with inverse roles, but without nominals.

In this case, we let B be some minimal set of mosaics defined by I1, I2
containing (T1(d1), T2(d1)) and such that for every type t realized in Ii
there exists (T1, T2) ∈ B with t ∈ Ti. We extend the relations Rs,i

p,q defined
previously to inverse roles s in the obious way and select for any mosaic
p = (T1, T2) and any ∃s.C ∈ t ∈ Ti such that there exists a Σ-role r with
O |= s ⊑ r a mosaic q = (T ′

1, T
′
2) such that (t, t′) ∈ Rs,i

p,q and C ∈ t′ and
denote the resulting set by S(p).

Form again the set T of sequences

σ = p0 · · · pj = (T 0
1 , T

0
2) · · · (T

j
1 , T

j
2)

with j ≤ k, p0 ∈ B and pi+1 ∈ S(pi) for i < j. Let tail(σ) = pj and
taili(σ) = T j

i . We next define the domain of J1 and J2 as

∆Ji = {(t, σ) | σ ∈ T , t ∈ taili(σ)}

We define interpretations J1,J2 in the expected way.

– For any concept name A, (t, σ) ∈ AJi iff A ∈ t;
– Let r be a role name. Then we let for σp ∈ T ,

• ((t, σ), (t′, σp)) ∈ rJi if (t, t′) ∈ Rr,i
tail(σ),p;

• ((t′, σp), (t, σ)) ∈ rJi if (t, t′) ∈ Rr−,i
tail(σ),p.

– We still have to take care of existential restrictions ∃r.C with r a
role that does not entail any Σ-role. If σ ∈ T , ∃r.C ∈ t ∈ Ti with
taili(σ) = Ti and O ̸|= r ⊑ s for any Σ-role s, we add ((t, σ), (t′, p))
to rJi (and all sJi with O |= r ⊑ s) for some p = (T ′

1, T
′
2) ∈ B and

t′ ∈ T ′
i with C ∈ t′ such that there are e, e′ realizing t, t′ in Ii and

(e, e′) ∈ rIi .

The fact that Ji |= O, for i ∈ {1, 2}, is proved similarly to the case
with nominals. One can also prove again by induction on the structure of
C that for every (t, σ) ∈ ∆Ji and every C ∈ Ξ of depth ≤ k − |σ|,

(t, σ) ∈ CJi iff C ∈ t.

Next we observe that the relation

S = {((t, σ), (t′, σ)) ∈ ∆J1 ×∆J2 | σ ∈ T }

is an ALCHI(Σ)-bisimulation. Indeed, it can be seen, similar to the case
with nominals, that S satisfies [AtomC]. We now give a proof of [Forth].
We provide the proof for role names; the proof for inverse roles is similar.

[Forth] Let ((t, σ), (t′, σ)) ∈ S and ((t, σ), (t̂, σ̂)) ∈ rJ1 . We distinguish
two cases. Assume first that there exists a mosaic p with σ̂ = σp. Then
(t, t̂) ∈ Rr,1

tail(σ),p. Thus, there exist d, d̂ realizing t, t̂, respectively, such

that (T1(d), T2(d)) = tail(σ), (T1(d̂), T2(d̂)) = p, and (d, d̂) ∈ rI1 . Since
((t, σ), (t′, σ)) ∈ S, there exists e realizing t′ such that I1, d ∼ALCHI,Σ
I2, e. As d and e are bisimilar, we also have some ê ∈ ∆I2 such that
(e, ê) ∈ rI2 and I1, d̂ ∼ALHI,Σ I2, ê, with ê realizing some t̂′. Hence,
(t′, t̂′) ∈ Rr,2

tail(σ),p, and it follows that ((t′, σ), (t̂′, σp)) ∈ rJ2 . Moreover,
((t̂, σp), (t̂′, σp)) ∈ S.
Assume now that σ = σ̂p for some mosaic p. Then (t̂, t) ∈ Rr−,1

tail(σ̂),p.

Thus, there exist d̂, d realizing t̂, t, respectively, such that (T1(d̂), T2(d̂)) =
tail(σ̂), (T1(d), T2(d)) = p, and (d̂, d) ∈ (r−)I1 . Since ((t, σ), (t′, σ)) ∈
S, there exists e realizing t′ such that I1, d ∼ALCHI,Σ I2, e. As d and e
are bisimilar, we also have some ê ∈ ∆I2 such that (ê, e) ∈ (r−)I2 and
I1, d̂ ∼ALHI,Σ I2, ê, with ê realizing some t̂′. Hence, (t̂′, t′) ∈ Rr−,2

tail(σ̂),p,
and it follows that ((t′, σ), (t̂′, σ̂)) ∈ rJ2 . Moreover, ((t̂, σ̂), (t̂′, σ̂)) ∈ S.

Observe that again the models Ji, i = 1, 2, are of at most exponential
size in the size of O, C1, C2. We also have (T1(d1), T2(d1)) ∈ B and so
(tpΞ(I1, d1), T1(d1)) ∈ CJ1

1 , (tpΞ(I2, d2), T2(d1)) ∈ CJ2
2 , and

((tpΞ(I1, d1), T1(d1)), (tpΞ(I2, d2), T2(d1)) ∈ S,

as required.

9 Lower Bound Proofs without Ontology

In this section, we first show (the hardness part of) Points 1 and 2 of
Theorem 28 by a reduction of the case with ontologies, and then show

the nondeterministic exponential time lower bounds for Points 3 and 4 of
that Theorem. Points 1 and 2 of Theorem 28 are a direct consequence of
the following lemma.

Lemma 47. Let L ∈ DLnr admit the universal role or both inverse roles
and nominals. Then the following holds:

1. if L admits RIs, then projective L-definition existence can be reduced
in polynomial time to RI-ontology projective L-definition existence;

2. if L does not admit RIs, then projective L-definition existence can
be reduced in polynomial time to ontology-free projective L-definition
existence.

Proof. Assume O, C, C0, and Σ are given. We may assume that O takes
the form {⊤ ⊑ D} ∪ O′ with O′ a set of RIs.

Assume first that L admits the universal role. Then one can easily
show that there exists an explicit L(Σ)-definition of C0 under O and C
iff there exists an explicit L(Σ)-definition of C0 under O′ and C ⊓ ∀u.D.

Now assume that L admits inverse roles and nominals. We use the
spy-point technique to encode the universal role [1]. Introduce a fresh
individual a and a fresh role name r0 and define U as the conjunction of
the concepts

{a}, ∃r0.{a}, ∃r0.({b} ⊓ ∃r0.{a}), ∀r−0 .∀s.∃r0.{a},

for all s ∈ {r, r−} with r ∈ sig(O, C, C0) and b ∈ sig(O, C, C0). Observe
that if d ∈ (U ⊓ ∀r−0 .F)I for some interpretation I and concept F , then
e ∈ F I holds for all elements e in ∆I that can be reached in I from d or
any bI with b ∈ sig(O, C, C0) along roles in sig(O, C, C0). It follows that
for any L(Σ)-concept E, we have

O |= C ⊑ (C0 ↔ E) iff O′ |= (C ⊓ U ⊓ ∀r−0 .D) ⊑ (C0 ↔ E).

Hence there exists an explicit L(Σ)-definition of C0 under O and C iff
there exists an explicit L(Σ)-definition of C0 under O′ and C⊓U⊓∀r−0 .D.

❏

We show the lower bound for Theorem 28, Points 3 and 4, by proving
NExpTime-hardness for the version of joint consistency formulated in
Theorem 23. We reduce the exponential torus tiling problem. A tiling
system is a triple P = (T,H, V), where T = {0, . . . , k} is a finite set of
tile types and H,V ⊆ T × T are the horizontal and vertical matching
conditions, respectively. An initial condition for P takes the form c =

(c0, . . . , cn−1) ∈ Tn. A mapping τ : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → T
is a solution for P and c if τ(i, 0) = ci for all i < n, and for all i, j < 2n,
the following conditions hold (where ⊕k denotes addition modulo k):

– if τ(i, j) = t1 and τ(i⊕2n 1, j) = t2, then (t1, t2) ∈ H;
– if τ(i, j) = t1 and τ(i, j ⊕2n 1) = t2, then (t1, t2) ∈ V .

It is well-known that the problem of deciding whether there is a solution
for given P and c is NExpTime-hard [9, Section 5.2.2]. For the following
constructions, assume a tiling system P and an initial condition c of length
n.

For the reduction for ALCO, we give concepts C,C0 and a signature
Σ such that here exist I1, d1 ∼ALCO,Σ I2, d2 with d1 ∈ (C ⊓ C0)

I1 and
d2 ∈ (C ⊓ ¬C0)

I2 iff P has a solution given c. We start with setting

C0 = ∃r2n.{a} ⊓ ∀r2n.{a}

with a ̸∈ Σ and r ∈ Σ. In addition to r, Σ contains concept names
B0, . . . , B2n−1 that serve as bits in the binary representation of grid po-
sitions (i, j) with 0 ≤ i, j ≤ 2n − 1, where bits B0, . . . , Bn−1 represent
the horizontal position i and Bn, . . . , B2n−1 the vertical position j, and
concept names T0, . . . , Tk representing tile types. We also use the follow-
ing concept names that are not in Σ: another four sets of concepts names
A0, . . . , A2n−1 and V0, . . . , V2n−1 with V ∈ {X,Y, Z} that also serve as bits
in the binary representation of grid position (i, j) with 0 ≤ i, j ≤ 2n − 1,
and concept names R0, . . . , R2n, M , M1, and M2. We now define the con-
cept C as a conjunction of several concepts. The first conjunct is

¬C0 ⊓ ∃r2n.⊤ → R0.

Intuitively, R0 generates a binary r-tree of depth 2n with Ri true at level
i for 0 ≤ i ≤ 22n and each leaf represents a grid position (i, j) using the
concept names Ai. To achieve this let C contain the following conjuncts
for generating the binary tree:

l

0≤i<2n

∀ri.
(
Ri → (∃r.(Ai ⊓Ri+1) ⊓ ∃r.(¬Ai ⊓Ri+1))

)
l

1≤i<2n

l

0≤j<i

∀ri.
(
(Aj → ∀r.Aj) ⊓ (¬Aj → ∀r.¬Aj)

)
As usual, ∀ri abbreviates a sequence of i times ∀r.

We next express using additional conjuncts of C that any leaf d rep-
resenting (i, j) using Ai has the following properties (A) – (C):

(A) d has an r-successor representing (i, j) using Bi with a tile type T(i,j)
true in it; moreover, no r-successor of d representing (i, j) satisfies a
tile type different from T(i,j). This is achieved using the marker M
which holds in exactly those r-successors of d that represent (i, j)
using Bi. The latter condition is expressed using the counter Xi which
represents (i, j) on all r-successors of d. In detail, we add the following
conjuncts to C:

∀r2n.∃r.M

∀r2n.
(l

i<2n

(Ai → ∀r.Xi) ⊓ (¬Ai → ∀r.¬Xi)
)

∀r2n+1.
(
M ↔

l

i<2n

(Xi ↔ Bi) ⊓ (¬Xi ↔ ¬Bi)
)

∀r2n.
(
∀r.(M → ⊔

i≤k
Ti) ⊓

l

i≤k

∃r.(M ⊓ Ti) → ∀r.(M → Ti)
)

∀r2n+1.
l

i ̸=j

¬(Ti ⊓ Tj)

(B) d has an r-successor representing (i⊕2n 1, j) using Bi with a tile type
T right
(i,j) true in it such that (T(i,j), T

right
(i,j)) ∈ H; moreover, no r-successor

of d representing (i⊕2n 1, j) satisfies a tile type different from T right
(i,j) .

This is achieved in a similar way as (A) using the marker M1 which
holds in exactly those r-successors of d that represent (i ⊕2n 1, j) us-
ing Bi. The latter condition is expressed using the counter Yi which
represents (i⊕2n 1, j) on all r-successors of d. The implementation of
these conditions is similar to (A) and omitted.

(C) d has an r-successor representing (i, j ⊕2n 1) using Bi with a tile type
T up
(i,j) true in it such that (T(i,j), T

up
(i,j)) ∈ V ; moreover, no r-successor of

d representing (i, j⊕2n 1) satisfies a tile type different from T up
(i,j). This

is achieved in a similar way as (A) using the marker M2 which holds
in exactly those r-successors of d that represent (i, j ⊕2n 1) using Bi.
The latter condition is expressed using the counter Zi which represents
(i, j⊕2n 1) on all r-successors of d. The implementation is again similar
to (A) and omitted.

Finally, we ensure that the initial condition holds, that is T(i,0) = ci for
i < n. To this end we add the conjuncts

∀r2n.(A = (i, 0) → (∀r.(M → ci)))

for i < n, where A = (i, 0) stands for the representation of (i, 0) using Ai;
for instance, A = (0, 0) stands for

d
0≤i<2n ¬Ai.

This finishes the definition of C,C0 and we verify next that they are
as required.
Claim. There exist I1, d1 ∼ALCO,Σ I2, d2 with d1 ∈ (C ⊓ C0)

I1 and d2 ∈
(C ⊓ ¬C0)

I2 iff P has a solution given c.
Proof of the Claim. Observe that if I1, d1 ∼ALCO,Σ I2, d2 with d1 ∈ (C ⊓
C0)

I1 and d2 ∈ (C⊓¬C0)
I2 , then there are elements e(i,j), 0 ≤ i, j ≤ 2n−1

such that
I1, aI1 ∼ALCO,Σ I2, e(i,j)

and e(i,j) has (at least) three r-successors satisfying Conditions (A) to
(C) and the initial condition. By Σ-bisimilarity and since r ∈ Σ, all e(i,j)
have r-successors satisfying the same concept names in Σ. Hence, since
the concept names Bi and Ti are in Σ, for every grid position (i, j) every
e(i′,j′) has an r-successor representing (i, j) using Bi and all r-successors
representing (i, j) using Bi satisfy the same tile type T(i,j). Moreover,
T(i⊕2n1,j) = T right

(i,j) and T(i,j⊕2n1) = T up
(i,j). It follows that the mapping τ

defined by setting τ(i, j) = T(i,j) is a solution of P given c.
Conversely, assume that P and c have a solution τ . The definition of an

interpretation I with elements d1 and d2 such that I, d1 ∼ALCO,Σ I, d2
with d1 ∈ (C ⊓ C0)

I and d2 ∈ (C ⊓ ¬C0)
I is rather straightforward.

An abstract version is depicted in Figure 10. We omit the counters, and
note that aI and all elements at level R2n have, for all 0 ≤ i, j < 2n,
an r-successor representing (using concept names Bi) grid position (i, j)
which satisfies the concept name Tτ(i,j). We show only the three special
successors from Conditions (A)–(C). This finishes the proof of the Claim
and thus the reduction for ALCO.

We come to the lower bound for ALCH and ALCHI. Let

O = {r ⊑ r1, r ⊑ r2, r1 ⊑ v, r2 ⊑ v},

and Σ contains r1, r2 but not r nor v. In addition to r1 and r2, Σ contains
exactly the same concept names as in the ALCO proof and we also use
the same concept names not in Σ. We aim to construct concepts C,C0

such that there exist models I1, I2 of O and d1 ∈ (C ⊓ C0)
I1 and d2 ∈

(C ⊓ ¬C0)
I2 with I1, d1 ∼ALCH,Σ I2, d2 iff P has a solution given c.

We set C0 = ∃r2n.⊤. The concept C is again a conjunction of several
concepts; we start in a similar way as for ALCO with

¬C0 ⊓ ∃v2n.⊤ → R0

d1
C ⊓ C0

...

aI

r

r

d2
C ⊓ ¬C0

R0

(i,j)R2n

(i,j)
M M1

(i⊕2n 1,j)

(i,j ⊕2n 1)
M2

r r

r r r

∼ALCO,Σ

∼ALCO,Σ

...
∼ALCO,Σ

∼ALCO,Σ

Fig. 10. Interpretation I with elements d1 ∈ (C ⊓C0)
I and d2 ∈ (C ⊓¬C0)

I such that
I, d1 ∼ALCO,± I, d2.

The concept name R0 will enforce that

(∗∗) the end point of any r1/r2-path of length 2n starting in an element sat-
isfying R0 carries a pair of counter values (i, j) represented by concept
names Ai which describe the path in a canonical way.2

To achieve this, we include the following conjuncts in C:
l

0≤i<2n

∀vi.
(
Ri → ∀r1.(Ai ⊓Ri+1) ⊓ ∀r2.(¬Ai ⊓Ri+1)

)
l

1≤i<2n

l

0≤j<i

∀vi.
(
(Aj → ∀v.Aj) ⊓ (¬Aj → ∀v.¬Aj)

)
Note that we can use the role name v to address all elements reachable
along r1/r2-paths of length i via ∀vi. We continue the definition of C in
exactly the same way as for ALCO except that we use ∀v2n to reach the
end points of the paths mentioned in (∗∗) and r1-successors of the leaves
to encode a solution of the tiling problem. One can then easily prove the
following.
Claim. There exist I1, d1 ∼ALCH,Σ I2, d2 with I1, I2 models of O, d1 ∈
(C ⊓ ∃r2n.⊤)I1 , and d2 ∈ (C ⊓ ¬∃r2n.⊤)I2 iff P has a solution given c.
Proof of the Claim. Observe that if I1, d1 ∼ALCH,Σ I2, d2 with I1, I2
models of O, d1 ∈ (C ⊓ ∃r2n.⊤)I1 , and d2 ∈ (C ⊓ ¬∃r2n.⊤)I2 , then there
exists an element e reachable from d1 along an r-path of length 2n in I1.
2 Notice the similarity with Property (∗) from the proof of Lemma 42.

Since d2 ∈ RI2
0 and e is reachable via arbitrary r1/r2-paths of length 2n

from d1, Property (∗∗) implies that there are elements e(i,j), 0 ≤ i, j ≤
2n − 1, reachable from d2 along a v-path of length 2n in I2 such that
I1, e ∼ALCH,Σ I2, e(i,j) and ei,j represents the pair (i, j) using the concept
names Ai. The remaining proof is now essentially the same as for ALCO.

The converse direction is rather straightforward and similar to the
proof for ALCO. The difference is that the binary tree over role r in the
right side of interpretation I depicted in Figure 10 is now a binary tree
over roles r1 (left successor) and r2 (right successor). This finishes the
proof of the Claim.

To prove the claim above for ALCHI, we adapt the model construction
in a similar way as in the case with ontologies (Section 7.3). More precisely,
for each element e at level ℓ > 0 in the binary tree below d2, add (d, e) ∈
rI1 and (d, e) ∈ rI2 , where d is the element in distance ℓ − 1 from d1.
One can then verify that I is as required, that is, I, d1 ∼ALCHI I, d2,
d1 ∈ (C ⊓ C0)

I , and d2 ∈ (C ⊓ ¬C0)
I .

10 Computation Problem

In the previous sections, we have presented algorithms for deciding the
existence of interpolants and explicit definitions, but these algorithms
(and their correctness proofs) do not give immediately rise to a way of
computing interpolants and explicit definitions in case they exist. Intu-
itively, this is due to the fact that compactness is used in the proof of
the model-theoretic characterization of interpolant and explicit definition
existence in terms of joint consistency modulo bisimulations which was
provided in Theorems 21 and 23, respectively. In this section, we address
the computation problem for logics in DLnr that do not admit nominals,
by showing that we can actually compute interpolants in case they ex-
ist. We use DAG representation for the interpolants; recall that in DAG
representation common sub-formulas are stored only once, and that thus
DAG representation is more succinct than formula representation. Our
approach is inspired by a recent note on a type elimination based com-
putation of interpolants in modal logic [88] which was originally provided
for the guarded fragment [15].

Theorem 48. Let L ∈ DLnr not admit nominals, O be an L-ontology,
C1, C2 be L-concepts, and Σ be a signature. Then, if there is an L(Σ)-
interpolant for C1 ⊑ C2 under O, we can compute the DAG representation
of an L(Σ)-interpolant in time 22

p(n) where p is a polynomial and n =
||O||+ ||C1||+ ||C2||.

Note that this implies that the DAG representation is also of double ex-
ponential size, and that a formula representation of the interpolant can be
computed in triple exponential time. Moreover, this also allows us to com-
pute explicit definitions since, given O, C, and Σ, any L(Σ)-interpolant
for CΣ ⊑ C under O ∪ OΣ is an explicit L(Σ)-definition of C under O,
where OΣ and CΣ are obtained from O and C by replacing all symbols not
in Σ by fresh symbols. We conjecture that the triple exponential upper
bound on formula size is actually tight, given the discussion on the explicit
definitions that arise in the hardness proofs in Sections 7.2 and 7.3.

Let L, O, C1, C2, and Σ be as in Theorem 48. By Theorem 21, the
existence of an L(Σ)-interpolant for C1 ⊑ C2 under O is equivalent to
joint consistency of C1 and ¬C2 under O modulo L(Σ)-bisimulations.
Recall that we have provided before Lemma 35 in Section 6 a mosaic
elimination procedure for deciding the latter. In fact, the computation of
the L(Σ)-interpolant relies on a finer analysis of that procedure. We need
one more notion to formalize this analyis.

Let T be a set of Ξ-types. Let I be an interpretation and, for each
t ∈ T , let dt be a domain element of I. We say that I and the elements
dt, t ∈ T jointly realize T modulo L(Σ)-bisimulations if, for all t, t′ ∈
T , we have that tpΞ(I, dt) = t and I, dt ∼L,Σ I, dt′ . We call T jointly
realizable under O modulo L(Σ)-bisimulations if there is a model I of
O and elements dt for each t ∈ T that jointly realize T modulo L(Σ)-
bisimulations. In contrast to the notion of joint consistency, we require
here a single model I of O. In what follows, let Real denote the set of
all sets of types T which are jointly realizable under O modulo L(Σ)-
bisimulations. We can effectively determine Real since joint realizability
of a set T can be decided in double exponential time, similar to joint
consistency—we refrain from giving details.

In the (proof of the) following lemma we show how to compute a
concept differentiating between T1 and T2 when (T1, T2) is eliminated
for T1, T2 ∈ Real. In Lemma 50 below, we show how to assemble these
differentiating concepts to an interpolant (in case it exists).

Lemma 49. Let T1, T2 ∈ Real. If (T1, T2) is eliminated in the mosaic
elimination procedure, then we can compute an L(Σ)-concept IT1,T2 such
that

1. for all models I of O and elements dt, for each t ∈ T1, that jointly real-
ize T1 modulo L(Σ)-bisimulations, dt ∈ IIT1,T2

for some (equivalently:
all) t ∈ T1;

2. for all models I of O and elements dt, for each t ∈ T2, that jointly real-
ize T2 modulo L(Σ)-bisimulations, dt /∈ IIT1,T2

for some (equivalently:
all) t ∈ T2.

Moreover, a DAG representation of IT1,T2 can be computed in time 22
p(n)

for some polynomial p and n = ||O||+ ||C1||+ ||C2||.

Proof. We compute the IT1,T2 inductively in the order in which the
(T1, T2) got eliminated in the elimination procedure. We distinguish cases
why (T1, T2) got eliminated.

Suppose first that (T1, T2) was eliminated because of (failing)Σ-concept
name coherence. Since T1, T2 are both jointly realizable, there are the fol-
lowing two cases.

(a) There is a concept name A ∈ Σ such that A ∈ t for all t ∈ T1, but
A /∈ t, for all t ∈ T2. Then IT1,T2 = A.

(b) There is a concept name A ∈ Σ such that A ∈ t for all t ∈ T2, but
A /∈ t, for all t ∈ T1. Then IT1,T2 = ¬A.

Clearly, in both cases, IT1,T2 satisfies Points (1) and (2) of Lemma 49.
Now, suppose that (T1, T2) was eliminated due to (failing) existential

saturation from Si during the elimination procedure. Since T1, T2 are both
jointly realizable under O, there are the following two cases.

(a) There exist t ∈ T1, ∃r.C ∈ t, and a Σ-role s with O |= r ⊑ s, such
that there is no (T ′

1, T
′
2) ∈ Si such that (i) (T1, T2) ⇝s (T ′

1, T
′
2) and

(ii) there is t′ ∈ T ′
1 with C ∈ t′ and t⇝r,O t′. Then, take

IT1,T2 = ∃s.(⊔
T ′
1∈Real,

T1⇝sT ′
1,t⇝r,Ot′,C∈t′∈T ′

1

l

T ′
2∈Real,
T2⇝sT ′

2

IT ′
1,T

′
2
)

(b) There exist t ∈ T2, ∃r.C ∈ t, and a Σ-role s with O |= r ⊑ s, such
that there is no (T ′

1, T
′
2) ∈ S such that (i) (T1, T2)⇝s (T

′
1, T

′
2) and (ii)

there is t′ ∈ T ′
2 with C ∈ t′ and t⇝r,O t′. Then, take

IT1,T2 = ∀s.(⊔
T ′
1∈Real,
T1⇝sT ′

1

l

T ′
2∈Real,

T2⇝sT ′
2,t⇝r,Ot′,C∈t′∈T ′

2

IT ′
1,T

′
2
)

We show Points (1) and (2) of the lemma for Case (a); Case (b) is dual.
So suppose Case (a) applies and fix t ∈ T1,∃r.C ∈ t, and a Σ-role s
witnessing that.

To show Point (1) of the lemma, let I be a model of O and fix dt1
for each t1 ∈ T1 such that I and the dt1 jointly realize T1 modulo L(Σ)-
bisimulations. It suffices to show that dt ∈ IIT1,T2

for the type t that was
fixed in the application of Case (a). Since dt realizes t and ∃r.C ∈ t, there
is some e ∈ CI with (dt, e) ∈ rI . Since O |= r ⊑ s, also (dt, e) ∈ sI . Since
the dt1 , t1 ∈ T1 are mutually L(Σ)-bisimilar and s is a Σ-role, we find
elements et1 , t1 ∈ T1 such that:

– et1 , t1 ∈ T1 are mutually L(Σ)-bisimilar,
– (dt1 , et1) ∈ sI , for all t1 ∈ T1,
– et = e.

Let
T ′
1 = {tpΞ(I, et1) | t1 ∈ T1},

and let further T ′
2 ∈ Real be arbitrary with T2 ⇝s T

′
2. By definition of

T ′
1, we have T ′

1 ∈ Real and T1 ⇝s T
′
1. Thus, (T ′

1, T
′
2) has been eliminated

before (T1, T2): otherwise, Case (a) would not apply to the fixed t,∃r.C, s.
By induction, we can conclude that e = et ∈ IIT ′

1,T
′
2
, and hence d ∈ IIT1,T2

.

To show Point (2) of the lemma, let I be a model of O and fix dt2
for each t2 ∈ T2 such that I and the dt2 jointly realize T2 modulo L(Σ)-
bisimulations. Suppose, to the contrary of what has to be shown, that
dt̂ ∈ IIT1,T2

for some t̂ ∈ T2. Then, there is an e with (dt̂, e) ∈ sI and a
T ′
1 ∈ Real with T1 ⇝s T

′
1 and a type t′1 ∈ T1 with t ⇝r,O t′1 and C ∈ t′1

such that

(∗) e ∈ IIT ′
1,T

for all T ∈ Real with T2 ⇝s T .

Since I and the elements dt2 , t2 ∈ T2 jointly realize T2 modulo L(Σ)-
bisimulations and s is a Σ-role, there are elements et2 , t2 ∈ T2 such that:

– et2 , t2 ∈ T2 are mutually L(Σ)-bisimilar,
– (dt2 , et2) ∈ sI , for all t2 ∈ T2,
– et̂ = e.

Let
T ′
2 = {tpΞ(I, et2) | t2 ∈ T2}.

By definition of T ′
2, we have T ′

2 ∈ Real and T2 ⇝s T
′
2. Thus, (T ′

1, T
′
2) has

been eliminated before (T1, T2): otherwise, Case (a) would not apply to the
fixed t,∃r.C, s. By induction, we obtain e = et̂ /∈ IIT ′

1,T
′
2
, in contradiction

to (∗).

For the analysis of the DAG representation, observe that we can use
a single node for every IT1,T2 . Moreover, IT1,T2 looks as follows:

– If (T1, T2) was eliminated due to failing Σ-concept name coherence,
IT1,T2 is a single concept name A or its negation ¬A.

– Otherwise, it is a node labeled with ∃s (resp., ∀s), which has a single
successor labeled with ⊔. This successor has then at most double
exponentially many successor nodes, each labeled with

d
and each

having at most double exponentially many successor nodes IT1,T2 .

Overall, we obtain double exponentially many nodes in the DAG and the
DAG can be constructed in double exponential time (both in p(||O|| +
||C1||+ ||C2||)). ❏

Lemma 50. Suppose the result S∗ of the mosaic elimination procedure
does not contain a pair (T1, T2) ∈ Real × Real such that C1 ∈ t1 and
¬C2 ∈ t2 for some types t1 ∈ T1 and t2 ∈ T2. Then,

C = ⊔
T1∈Real:

there is t1 ∈ T1 with C1 ∈ t1

l

T2∈Real:
there is t2 ∈ T2 with ¬C2 ∈ t2

IT1,T2

is an L(Σ)-interpolant for C1 ⊑ C2 under O. Moreover, a DAG repre-
sentation of C can be computed in time 22

p(n), for some polynomial p and
n = ||O||+ ||C1||+ ||C2||.

Proof. We have to show that O |= C1 ⊑ C and O |= C ⊑ C2.
For O |= C1 ⊑ C, let I be a model of O and suppose d ∈ CI

1 . Let T1 =
{tpΞ(I, d)} consist of the single type of d. Clearly, T1 ∈ Real. Let T2 ∈
Real be arbitrary such that ¬C2 ∈ t, for some t ∈ T2. By assumption of
Lemma 50, (T1, T2) got eliminated in the elimination procedure. Point (1)
of Lemma 49 implies d ∈ IIT1,T2

. Hence, d ∈ CI .
For O |= C ⊑ C2, let I be a model of O and let d ∈ (¬C2)

I . Now,
let T1 ∈ Real be arbitrary such that C1 ∈ t for some t ∈ T1, and set
T2 = {tpΞ(I, d)}. Clearly, T2 ∈ Real. By assumption of Lemma 50, (T1, T2)
got eliminated in the elimination procedure. Point (2) of Lemma 49 implies
d /∈ IIT1,T2

. Hence, d /∈ CI .

For the analysis of the DAG representation of C, it suffices to recall
that the DAG representations of the IT1,T2 provided in Lemma 49 can be
computed in time 22

p(n) , and to observe that C adds only one ⊔ node and
at most double exponentially many

d
-nodes. ❏

To conclude the section, we give some intuition as to why the proof of
Theorem 48 cannot be easily adapted to logics from DLnr that admit
nominals. Recall that in any two interpretations I1, I2, every nominal a is
realized (modulo bisimulation) in exactly one mosaic. We addressed this
by starting the elimination procedure for all possible choices of mosaics
realizing the nominals. More specifically, in the proof of Lemma 37, we
showed there is an interpolant for C1 ⊑ C2 under O iff, for all maximal
sets U of mosaics that are good for nominals, the mosaic elimination pro-
cedure started with U leads to an S∗ which does not satisfy Condition 2
of Lemma 36, which is akin to the precondition of Lemma 50 above. It
is, however, unclear how to combine these different runs of the elimina-
tion procedure in proving analogues of Lemmas 49 and 50. An alternative
approach might be to derive the interpolants from a suitably constrained
proof of O |= C ⊑ D in an appropriate proof system, see e.g. [81].

11 Some Consequences for Modal and Hybrid Logics

In this section we formulate a few consequences of our results in terms of
modal and hybrid logics. We focus on interpolant existence and do not dis-
cuss the transfer of results on explicit definition existence as they can be
obtained in a similar way. We consider the local consequence relation and
formulate results for standard hybrid modal languages without the back-
ward modality but with any combination of nominals, the @-operator, and
the universal modal modality. We also briefly discuss the reformulation
of description logics with role inclusions into modal logic with inclusion
conditions on the accessibility relations. For detailed introductions to (hy-
brid) modal logics we refer the reader to [2, 4].

Let MLu
@ denote the modal hybrid language constructed using the rule

φ,ψ := p | ⊤ | i | ¬φ | φ ∧ ψ | 2φ | @iφ | 2uφ,

where p ranges over a countably infinite set of propositional variables, i
ranges over a countably infinite set of nominals, 2 ranges over an infinite
set of modal operators 20, . . . , and 2u denotes the universal modality.
The fragment of MLu

@ without the universal modality is denoted ML@,
the fragment of ML@ without the operators @i is denoted MLn, and the
fragment of MLn without nominals is the standard language of polymodal
logic and denoted ML. By MLu

n we denote the fragment of MLu
@ without

the operators @i and by MLu the extension of ML with the universal
modality.

The signature sig(φ) of a formula φ is the set of propositional variables,
nominals, and modal operators (without the universal role) occurring in
it.

The language MLu
@ and its fragments are interpreted in Kripke models

M = (W, (Ri)i<ω, V) with W a nonempty set of worlds, Ri ⊆ W ×W
accessibility relations, and V a valuation such that V (p) ⊆ W for every
propositional variable p, and V (i) ⊆ W a singleton for every nominal i.
Then the truth relation M, w |= φ between pointed models M, w with
w ∈W and formulas φ is defined inductively as follows:

M, w |= ⊤,
M, w |= p iff w ∈ V (p),

M, w |= i iff V (i) = {w},
M, w |= ¬ψ iff M, w ̸|= ψ,

M, w |= ψ ∧ χ iff M, w |= ψ and M, w |= χ,

M, w |= 2nψ iff M, v |= ψ, for every v ∈W such that
(w, v) ∈ Rn,

M, w |= @iψ iff M, v |= ψ, for the unique element v ∈ V (i),

M, w |= 2uψ iff M, v |= ψ, for every v ∈W.

We set M |= φ if M, w |= φ for all w ∈ W . Observe that the @-operator
can be defined using the universal modality as @iφ = 2u(i → φ) and so
MLu

n and MLu
@ have the same expressive power.

There are two natural notions of consequence studied in modal and
hybrid logics, local and global entailment, which also give rise to different
notions of interpolants. We focus here on local entailment and briefly
discuss global entailment at the end of this section. We say that φ locally
entails ψ, in symbols φ |=loc ψ, if for all pointed models M, w, if M, w |= φ
then M, w |= ψ. We note that deciding |=loc is PSpace-complete for any
of the languages introduced above without the universal modality and
ExpTime-complete for any of the languages introduced above with the
universal modality [4].

We formulate the interpolant existence problems for hybrid modal
logics in the expected way. Call a formula χ an interpolant for φ,ψ if
sig(χ) ⊆ sig(φ) ∩ sig(ψ), φ |=loc χ and χ |=loc ψ.

Definition 51. Let L be any of the languages introduced above. Then
the interpolant existence problem for L is the problem to decide for any
φ,ψ ∈ L whether there exists an interpolant for φ,ψ in L.

Observe that since ML and MLu enjoy the Craig interpolation property (if
φ |=loc ψ then an interpolant for φ,ψ exists [37]), the interpolant existence
problem reduces to checking φ |=loc ψ and is PSpace-complete for ML
and ExpTime-complete for MLu. The following tight complexity bounds
for their extensions with nominals and the @-operator are the main result
of this section.

Theorem 52. 1. Let L ∈ {MLn,ML@}. Then the interpolant existence
problem for L is coNExpTime-complete.

2. The interpolant existence problem for MLu
n is 2ExpTime-complete.

These results also hold if one considers the language with a single
modal operator only.

Proof. (1) Let ·m be the obvious bijection between ALCO-concepts and
MLn-formulas and denote by ·d its inverse. Then |= C ⊑ D iff Cm |=loc D

m

for any ALCO-concepts C,D. Hence the following conditions are equiva-
lent, for all formulas φ,ψ ∈ MLn:

– there exists an interpolant for φ,ψ in MLn;
– there exists an ALCO(Σ)-interpolant for φd, ψd, where Σ = sig(φd)∩

sig(ψd).

The coNExpTime-completeness for interpolant existence for MLn now
follows from Point 3 of Theorem 28. We now come to ML@. We did not
consider the operator @ for DLs as it does not play a large role in de-
scription logic research.3 Note, however, that ALCO can be extended to
the DL ALCO@ with @ in a straightforward way by setting @aC :=
∀u.({a} → C). The expressive power of ALCO@-concepts is character-
ized by ALCO@(Σ)-bisimulations, where an ALCO(Σ)-bisimulation S be-
tween interpretations I and J is an ALCO@(Σ)-bisimulation if (aI , aJ) ∈
S for any a ∈ Σ. Then one can prove Lemma 3 also for ALCO@. Next
one can prove the characterization (Theorem 21) for ALCO@ in exactly
the same way as for ALCO, and finally one can extend the NExpTime-
upper bound proof for joint consistency modulo ALCO(Σ)-bisimulations
to joint consistency modulo ALCO@(Σ)-bisimulations (Lemma 45) by ob-
serving that for all nominal generated mosaics (T1(d), T2(d)) we now have
that Ti(d) ̸= ∅ for i = 1, 2. Hence (aI , aJ) ∈ S for any a ∈ Σ, for the
bisimulation S constructed in the proof of Lemma 45.

The lower bound proof for Theorem 28, Point 3, provided in Section 9
still goes through as it does not use any nominal in the shared signature
3 An exception is the investigation of updates for description logic knowledge bases

where the expressive power of the @-operator plays a significant role [66].

and so using @ does not make any difference. Note, moreover, that it
uses only a single role name r which corresponds to using a single modal
operator.

(2) can be proved in the same way as (1) by observing that there is a
bijection ·m between ALCOu-concepts and MLu

n-formulas, that |= C ⊑ D
iff Cm |=loc D

m for any ALCOu-concepts C,D, and then applying Point 1
of Theorem 28. Note that the lower bound holds for a single role, see
Lemma 41, which again translates to a single modal operator (and the
universal modality). ❏

Description logics with RIs correspond to modal logics determined by
Kripke models satisfying inclusions Ri ⊆ Rj between accessibility rela-
tions Ri and Rj . For any finite set I of pairs (i, j) let MI denote the
class of Kripke models satisfying Ri ⊆ Rj for all (i, j) ∈ I. Define the
consequence relation |=I

loc in the usual way by setting φ |=I
loc ψ if for all

pointed models M, w with M ∈ MI , if M, w |= φ then M, w |= ψ. We
then obtain the following complexity result directly from Points 4 and 2
of Theorem 28, respectively.

Theorem 53. For all finite I, the interpolant existence problem for |=I
loc

in ML is in coNExpTime. There exists a finite I such that the interpolant
existence problem for |=I

loc in ML is coNExpTime-hard.
For all finite I, the interpolant existence problem for |=I

loc in MLu is
in 2ExpTime. There exists a finite I such that the interpolant existence
problem for |=I

loc in MLu is 2ExpTime-hard.

We close this section with a brief discussion of interpolant existence for
the global consequence relation. We say that φ globally entails ψ, in sym-
bols φ |=glo ψ, if for all models M from M |= φ it follows that M |= ψ.
Call a formula χ a global interpolant for φ,ψ if sig(χ) ⊆ sig(φ) ∩ sig(ψ),
φ |=glo χ and χ |=glo ψ. The global interpolant existence problem for L is
the problem to decide for any φ,ψ ∈ L whether there exists a global inter-
polant for φ,ψ in L. It is straightforward to show that global interpolant
existence corresponds to CI-interpolant existence in DLs in the same way
as interpolant existence for the local consequence relation corresponds to
ontology-free interpolant existence in DLs. We therefore obtain 2Exp-
Time-completeness of global interpolant existence for the language MLu

n

from Theorem 31. We conjecture that the same result holds for global
interpolant existence for MLn and ML@ but leave the proofs for future
work.

12 Conclusion

We have investigated the problem of deciding the existence of interpolants
and explicit definitions for description and modal logics with nominals and
role inclusions, and we also presented an algorithm computing them for
logics with role inclusions. There are many challenging problems left for
future work, for instance, an algorithm computing interpolants for logics
with nominals and the design and implementation of practical algorithms
that could be applied in supervised concept learning and referring expres-
sion generation. From a theoretical viewpoint it would be of interest to
gain a better understanding of when the existence of interpolants is com-
putationally harder than entailment, for logics that do not enjoy the CIP.
Logics to consider include more expressive DLs with nominals such as
those also admitting qualified number restrictions and/or transitive roles
and extensions of the two-variable fragment of FO with counting and/or
further constraints on relations [53]. Another class of interest are decidable
fragments of first-order modal logics and products of modal logics which
both often do not enjoy the CIP [32, 73]. Here it would be of interest to
consider logics such as the one-variable or monodic fragments of K and
S4 for which the complexity of interpolant existence was left open [61].
Finally, is it possible to prove general transfer results (for example, for
families of normal modal logics) stating that decidable entailment implies
decidability of interpolant existence?

Acknowledgements

Frank Wolter was supported by EPSRC grant EP/S032207/1. Ana Ozaki
was supported by NFR grant 316022. We thank Agi Kurucz, Michael
Zakharyaschev, and two referees for helpful comments.

A Proofs for Section 4

For the proofs of Theorems 12 and 29, we require a few definitions and
observations. Given an interpretation I = (∆I , ·I) and non-empty set
V ⊆ ∆I , we define the restriction of I to V as I|V = (∆I|V , ·I|V), where
∆I|V = ∆I ∩ V , BI|V = BI ∩ V , for every concept name B, rI|V =
rI ∩ (V × V), for every role name r, and aI|V = aI if aI ∈ V , for every
individual name a. Note that I|V does not interpret individual names
that are not interpreted in V . Hence, in our constructions of restrictions,
we always make sure that all relevant indviduals are interpreted in V .

The relativization C|A of a concept C to a concept name A describes,
in any interpretation I, the extension of C in the restriction of I to
AI . In detail, define C|A inductively by setting ⊤|A = A, B|A = B ⊓ A,
(¬C)|A = A ⊓ ¬C|A, (C ⊓ D)|A = C|A ⊓ D|A, {a}|A = {a} ⊓ A, and
(∃r.C)|A = A ⊓ ∃r.C|A. Then the following observations can be shown
by induction over the construction of C. For any interpretation I with
AI ̸= ∅ and A ̸∈ sig(C) such that all a ∈ sig(C) are interpreted in AI ,
d ∈ CI

|A iff d ∈ C
I|AI , for all d ∈ ∆I . Given an ontology O, we set

O|A = {C|A ⊑ D|A | C ⊑ D ∈ O}. Then I |= O|A iff I|AI |= O whenever
all a ∈ sig(O) are interpreted in AI and AI ̸= ∅.

We next introduce a generalization of cartesian products called bisimu-
lation products. Consider pointed models I1, d1 and I2, d2 with I1, d1 ∼ALCO,Σ

I2, d2. Take a bisimulation S witnessing this. Then the bisimulation prod-
uct I induced by S is defined as follows: the domain ∆I of I is the set of all
pairs (e1, e2) ∈ S. The concept and role names in Σ are interpreted as in
cartesian products: (e1, e2) ∈ BI iff (e1, e2) ∈ S and ei ∈ BIi for i = 1, 2,
and ((e1, e2), (e

′
1, e

′
2)) ∈ rI iff (e1, e2), (e

′
1, e

′
2) ∈ S and (ei, e

′
i) ∈ rIi for

i = 1, 2. A nominal a in Σ is interpreted as (aI1 , aI2) if a is in the do-
main (equivalently, range) of S. Note that we have projection functions
fi : S → ∆Ii with fi(e1, e2) = ei, for i = 1, 2. We denote by fi(S) the
image of S under fi in ∆Ii and set f−1

i (V) := {(e1, e2) ∈ S | ei ∈ V }, for
any V ⊆ ∆Ii . The following lemma is straightforward.

Lemma 54. Let L ∈ {ALCO,ALCIO}. If S is an L(Σ)-bisimulation,
then fi is an L(Σ)-bisimulation between I and Ii, for i = 1, 2.

A subset V of ∆I is called closed in I if e′ ∈ V whenever (e, e′) ∈ rI

and e ∈ V , where r is a role name. V is called fully closed in I if it
is closed in I and, moreover, e ∈ V whenever (e, e′) ∈ rI and e′ ∈ V ,
where r is a role name. Observe that ALCO-concepts are preserved under
relativization to closed subsets in the sense that d ∈ CI iff d ∈ CI|V for
any closed subset V of ∆I , d ∈ V , and ALCO-concept C. It is easy to see
that ALCIO-concepts are not always preserved under relativization to
closed subsets. They are, however, preserved under relativization to fully
closed subsets. Concepts using the universal role are not always preserved
under relativization to fully closed subsets.

For a pointed interpretation I, d denote by ∆I
↓d the smallest subset of

∆I such that d ∈ ∆I
↓d and ∆I

↓d is closed in I. The restriction of I to ∆I
↓d

is denoted I↓d and called the interpretation generated by d in I. It follows
from our observation about closed subsets above that e ∈ DI iff e ∈ DI↓d

holds for all e ∈ ∆I
↓d and all ALCO-concepts D. We are in a position now

to prove Theorem 12.

Theorem 12. The following statements hold.

(1) No L ∈ DLnr enjoys the CIP nor the PBDP. The CIP and PBDP also
do not hold for RI-ontologies and, if L admits nominals, the empty
ontology.

(2) All L ∈ DLnr\{ALCO,ALCHO} enjoy the BDP. ALCO and ALCHO
do not enjoy the BDP.

(3) All L ∈ DLnr enjoy the BDP for RI-ontologies and the BDP for the
empty ontology.

Proof. Point (1) follows from the proofs of our complexity lower
bounds for explicit definition existence. More specifically, in the proofs
of the lower bounds we present concepts that are implicitly definable, but
not explicitly definable.

For Point (2), assume first that L ∈ DLnr\{ALCO,ALCHO} does not
admit nominals. Then the BDP follows essentially from Theorem 2.5.4
in [87], see also [89]. Theorem 2.5.4 is formulated in terms of modal logic.
Hence observe that modal logics are syntactic variants of descriptions log-
ics (see Section 11 for details) and that inverse roles, role inclusions, and
the universal role can be introduced as first-order definable conditions on
frame classes that are preserved under generated subframes and bisimu-
lation products of frames.

Next assume that L ∈ DLnr \ {ALCO,ALCHO} admits nominals and
the universal role. Then the @-operator from hybrid logic can be expressed
in L (see again Section 11) and so the BDP follows from Theorem 6.2.4
in [87], see also [89].

It remains to prove that ALCOI and ALCHOI enjoy the BDP. This
is done using bisimulation products. We also use the characterization of
the existence of explicit definitions using bisimulations provided in Theo-
rem 23. Consider an ALCHOI-ontology O, let A be a concept name, and
let C be an ALCHOI-concept. Let Σ = sig(O, C)\{A}. Assume A is not
explicitly ALCHOI(Σ)-definable under O and C. By Theorem 23, we find
pointed models I1, d1 and I2, d2 such that Ii is a model of O and di ∈ CIi

for i = 1, 2, d1 ∈ AI1 , d2 ̸∈ AI2 , and I1, d1 ∼ALCOI,Σ I2, d2. Take a bisim-
ulation S witnessing this. Let I be defined as the bisimulation product
induced by S. By Lemma 54, the projection functions fi : S → ∆Ii are
ALCOI(Σ)-bisimulations between I and Ii. Moreover, as we have inverse

roles, the image of S under fi is fully closed in Ii. We now define inter-
pretations J1 and J2 as the interpretation I except that AJi = f−1

i (AIi),
for i = 1, 2. Then the fi are ALCOI(Σ ∪ {A})-bisimulations between Ji

and Ii, for i = 1, 2. Note, however, that the Ji do not necessarily inter-
pret all nominals, as for a nominal {a}, the element aI1 might be in a
different connected component than d1 (equivalently: aI2 is in a different
connected component than d2). To address this, let I ′ be the restriction of
I1 to ∆I1 \ fi(S). Then, obtain J ′

i by taking the disjoint union of Ji and
I ′, i = 1, 2. It follows from the construction, the preservation properties
of ALCOI-bisimulations, and the fact that the universal role is not used
in O nor C that the following conditions hold:

(a) J ′
1 and J ′

2 are models of O, (d1, d2) ∈ CJ ′
1 , and (d1, d2) ∈ CJ ′

2 ;
(b) the Σ-reducts of J ′

1 and J ′
2 coincide;

(c) (d1, d2) ∈ AJ ′
1 but (d1, d2) ̸∈ AJ ′

2 .

But then A is not implicitly Σ-definable under O and C, as required.
Finally, to show Point (2), we have to argue that ALCO and ALCHO

do not enjoy the BDP. A counterexample to the BDP is given in [89].
It illustrates nicely the way in which the addition of inverse roles or the
universal role to ALCHO restores the BDP. As this is relevant in the proof
of Point (3) and also in the analysis of non-projective definitions later in
Section B, we give the example here. Let

O = {A ⊑ {a}, {b} ⊓B ⊑ ∃r.({a} ⊓A), {b} ⊓ ¬B ⊑ ∃r.({a} ⊓ ¬A)}

and setΣ = {a,B, b, r} = sig(O)\{A}. Then O |= A ≡ {a}⊓∃r−.(B⊓{b})
and so A is explicitly ALCOI(Σ)-definable under O. Also O |= A ≡
{a}⊓∃u.(B⊓{b}), and so A is also explicitly ALCOu(Σ)-definable under
O. Note, however, that A is not explicitly ALCO(Σ)-definable under O.
Indeed, the models I,J of O depicted in Figure 11 (where aI = a in I and
aJ = a in J , and similarly for b) show that I, aI ∼ALCO,Σ J , aJ , with
aI ∈ AI and aJ ̸∈ AJ . By Lemma 3, we have I, aI ≡ALCO,Σ J , aJ , and
hence there cannot be any ALCO(Σ)-concept C such that O |= A ≡ C.

It follows that non explicit ALCO(Σ)-definability of A is caused by
the fact that one cannot reach b from a along a path following the role
name r. One can reach b, however, using the universal role or inverse roles.

For Point (3), it remains to show that ALCHO enjoys the BDP for
ontologies containing RIs only. The BDP for ALCO with empty ontol-
ogy follows immediately. The proof is similar to the proof of Point (2)
above for ALCHIO with fully closed subsets replaced by point generated
interpretations.

I J

b,B

a,A

b,¬B

a,¬A
r r

∼ALCO,Σ

Fig. 11. Models I,J of O used to show that A is not explicitly ALCO(Σ)-definable
under O.

Assume O contains RIs only, C is an ALCO-concept, and A is a con-
cept name. LetΣ = sig(O, C)\{A}. Assume A is not explicitly ALCO(Σ)-
definable under O and C. By Theorem 23, we find pointed models I1, d1
and I2, d2 such that Ii is a model of O and di ∈ CIi for i = 1, 2, d1 ∈ AI1 ,
d2 ̸∈ AI2 , and I1, d1 ∼ALCHO,Σ I2, d2. Take a bisimulation S witnessing
this. As we do not have the universal role nor inverse roles, we may assume
that S is a ALCO(Σ)-bisimulation between the set∆I1

↓d1 generated by d1 in
I1 and the set ∆I2

↓d2 generated by d2 in I2. Let I be defined as the bisim-
ulation product induced by S. By Lemma 54, the projection functions
fi : S → ∆Ii are ALCO(Σ)-bisimulations between I and Ii. Let J1 and
J2 be again defined as the interpretation I except that AJi = f−1

i (AIi),
for i = 1, 2. Then the fi are ALCO(Σ ∪ {A})-bisimulations between Ji

and Ii, for i = 1, 2. As in the proof above, I does not necessarily interpret
all nominals in C. As O is an ontology using RIs only, this problem can be
addressed in a straightforward manner. Define interpretations J ′

i as the
disjoint union of Ji and the singleton interpretation I ′ with domain {d}
such that aJi = d for all a not interpreted in I and BI′

= rI
′
= ∅ for all

concept and role names B and r. Then J ′
1 and J ′

2 satisfy the conditions
(a) to (c) above and show that A is not implicitly Σ-definable under O
and C. ❏

B Proof of Theorem 29

We show Theorem 29 which states that for L ∈ {ALCO,ALCHO} non-
projective L-definition existence of concept names is ExpTime-complete.
The lower bound follows from the corresponding lower bound for subsump-
tion and any upper bound for ALCHO trivially implies the same upper
bound for ALCO. We therefore focus on the upper bound for ALCHO
and show the following criterion for (the complement of) non-projective
explicit definability of concept names.

Lemma 55. Let O be an ALCHO-ontology, C an ALCO-concept, and
A a concept name. Let Σ = sig(O, C) \ {A}. Then A is not explicitly

ALCHO(Σ)-definable under O and C iff there are pointed interpretations
I1, d and I2, d such that

– Ii is a model of O and d ∈ CI , for i = 1, 2;
– the Σ-reducts of I1↓d and I2↓d coincide;
– d ∈ AI1 and d ̸∈ AI2.

Proof. Clearly, if the conditions of Lemma 55 hold, then A is not
explicitly ALCHO(Σ)-definable under O and C, by Theorem 23. Con-
versely, assume A is not explicitly ALCHO(Σ)-definable under O an C.
By Theorem 23, we find pointed models I1, d1 and I2, d2 such that Ii
is a model of O and di ∈ CIi for i = 1, 2, d1 ∈ AI1 , d2 ̸∈ AI2 , and
I1, d1 ∼ALCHO,Σ I2, d2. Take a bisimulation S witnessing this. As we do
not admit the universal role nor inverse roles, we may assume that S is
a bisimulation between the set ∆I1

↓d1 generated by d1 in I1 and the set
∆I2

↓d2 generated by d2 in I2. Let I be the bisimulation product induced by
S. By Lemma 54, the projection functions fi : S → ∆Ii are ALCO(Σ)-
bisimulations between I and Ii. However, as in the proof of Theorem 12,
I does not necessarily interpret all nominals. We address this in the fol-
lowing. Let Ji be the restriction of Ii to ∆Ii \∆Ii

↓di , for i = 1, 2. We now
define interpretations J ′

1 and J ′
2 as follows: J ′

i is the disjoint union of I
and Ji extended by

– adding to the interpretation of A all elements in f−1
i (AIi);

– adding (e, (e1, e2)) with (e1, e2) ∈ S to the interpretation of a role
name r if e ∈ ∆Ii \∆Ii

↓di , ei ∈ ∆Ii
↓di , and (e, ei) ∈ rIi .

Using the condition that O and C do not use the universal role nor inverse
roles, one can show that the interpretations Ii := J ′

i and d := (d1, d2)
satisfy the conditions of Lemma 55. ❏

We now show that the conditions of Lemma 55 can be checked in Exp-
Time by providing a polynomial time reduction to checking non ALCHO-
subsumption. Let O be an ALCHO-ontology, C an ALCO-concept, A a
concept name, and Σ = sig(O, C) \ {A}. Take

– a concept name D for the domain ∆I1↓d of the interpretation I1↓d
generated by d;

– concept names Di for the domain ∆Ii of Ii, i = 1, 2;
– a copy A′ of A;
– and copies a′ of the individual names a in Σ.

We let Oc denote the set of CIs in O and Or denote the set of RIs in O.
Let Occ be the ontology obtained from Oc by replacing A by A′ and all

nominals a in Oc by a′. Let Oc
|D1

be the relativization of Oc to D1 and
let Occ

|D2
be the relativization of Occ to D2. Now consider the following

ontology encoding Points 1 and 2 of Lemma 55:

O′ = Or ∪ Oc
|D1

∪ Occ
|D2

∪ {D ⊑ ∀r.D | r ∈ Σ} ∪ {D ⊑ D1, D ⊑ D2} ∪
{{a} ⊑ D1 | a ∈ Σ} ∪ {{a′} ⊑ D2 | a ∈ Σ} ∪
{D ⊓ {a} ⊑ {a′} | a ∈ Σ} ∪ {D ⊓ {a′} ⊑ {a} | a ∈ Σ}

Observe that we have to treat the individual names in Σ differently from
the concept names in Σ as we have to ensure that they are interpreted in
D1 and D2 respectively. As their interpretation might be different outside
D, we have to introduce copies of the individual names and then state
that those that are interpreted in D are actually interpreted in the same
way. It is now straightforward to show that the conditions of Lemma 55
hold iff O′ ̸|= A ⊓D ⊑ A′.

References

1. Carlos Areces, Patrick Blackburn, and Maarten Marx. A road-map on complexity
for hybrid logics. In Proceedings of the 8th Annual Conference of the European
Association for Computer Science Logic, CSL 1999, pages 307–321. Springer, 1999.

2. Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: Characteri-
zation, interpolation and complexity. J. Symb. Log., 66(3):977–1010, 2001.

3. Carlos Areces, Alexander Koller, and Kristina Striegnitz. Referring expressions
as formulas of description logic. In Proceedings of the 5th International Natu-
ral Language Generation Conference, INLG 2008. The Association for Computer
Linguistics, 2008.

4. Carlos Areces and Balder ten Cate. Hybrid logics. In Handbook of Modal Logic,
volume 3, pages 821–868. Elsevier, 2007.

5. Alessandro Artale, Jean Christoph Jung, Andrea Mazzullo, Ana Ozaki, and Frank
Wolter. Living without beth and craig: Explicit definitions and interpolants in
description logics with nominals (extended abstract). In Proceedings of the 33rd
International Workshop on Description Logics (DL 2020) co-located with the 17th
International Conference on Principles of Knowledge Representation and Reason-
ing (KR 2020), Online Event [Rhodes, Greece], September 12th to 14th, 2020, 2020.

6. Alessandro Artale, Jean Christoph Jung, Andrea Mazzullo, Ana Ozaki, and Frank
Wolter. Living without beth and craig: Definitions and interpolants in descrip-
tion logics with nominals and role inclusions. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, AAAI 2021, pages 6193–6201. AAAI Press,
2021.

7. Alessandro Artale, Andrea Mazzullo, Ana Ozaki, and Frank Wolter. On free de-
scription logics with definite descriptions. In Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2021,
pages 63–73, 2021.

8. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter
F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge University Press, 2003.

9. Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to
Description Logic. Cambridge University Press, 2017.

10. Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting guarded negation
queries. In Proceedings of the 38th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2013, pages 98–110. Springer, 2013.

11. Vince Bárány, Michael Benedikt, and Balder ten Cate. Some model theory of
guarded negation. J. Symb. Log., 83(4):1307–1344, 2018.

12. Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. Definability and
interpolation within decidable fixpoint logics. Log. Methods Comput. Sci., 15(3),
2019.

13. Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura. Gen-
erating Plans from Proofs: The Interpolation-based Approach to Query Reformu-
lation. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2016.

14. Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Interpolation with
decidable fixpoint logics. In Proceedings of the 30th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2015, pages 378–389. IEEE Computer
Society, 2015.

15. Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Effective interpola-
tion and preservation in guarded logics. ACM Trans. Comput. Log., 17(2):8:1–8:46,
2016.

16. Evert Willem Beth. On Padoa’s Method in the Theory of Definition. J. Symb.
Log., 21(2):194–195, 1956.

17. Alexander Borgida, David Toman, and Grant E. Weddell. On referring expressions
in query answering over first order knowledge bases. In Proceedings of the 15th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
KR 2016, pages 319–328. AAAI Press, 2016.

18. Alexander Borgida, David Toman, and Grant E. Weddell. Concerning referring
expressions in query answers. In Proceedings of the 26th International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, pages 4791–4795. ijcai.org, 2017.

19. Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. DL-learner - A framework
for inductive learning on the semantic web. J. Web Sem., 39:15–24, 2016.

20. Lorenz Bühmann, Jens Lehmann, Patrick Westphal, and Simon Bin. DL-Learner
Structured Machine Learning on Semantic Web Data. In Companion Proceedings
of The Web Conference 2018, WWW 2018, pages 467–471. ACM, 2018.

21. Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey
Rivkin. Combined covers and beth definability. In Proceedings of the 10th Inter-
national Joint Conference on Automated Reasoning, Part I, IJCAR 2020, pages
181–200. Springer, 2020.

22. Diego Calvanese, Silvio Ghilardi, Alessandro Gianola, Marco Montali, and Andrey
Rivkin. Combination of uniform interpolants via beth definability. J. Autom.
Reason., 66(3):409–435, 2022.

23. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28:114–133, 1981.

24. C.C. Chang and H. Jerome Keisler. Model Theory. Elsevier, 1998.
25. Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Interpolant genera-

tion for UTVPI. In Proceedings of the 22nd International Conference on Automated
Deduction, CADE 2022, pages 167–182. Springer, 2009.

26. S. D. Comer. Classes without the amalgamation property. Pacific J. Math.,
28(2):309–318, 1969.

27. William Craig. Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory. J. Symb. Log., 22(3):269âĂŞ285, 1957.

28. Giovanna D’Agostino and Marco Hollenberg. Uniform interpolation, automata and
the modal µ-calculus. In Proceedings of the 1st Workshop on Advances in Modal
Logic, AiML-1, pages 73–84. CSLI Publications, 1996.

29. Razvan Diaconescu. Logical support for modularisation. Logical environments,
83:130, 1993.

30. Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept learn-
ing in description logics. In Proceedings of the 18th International Conference on
Inductive Logic Programming, ILP 2008, pages 107–121. Springer, 2008.

31. Nicola Fanizzi, Giuseppe Rizzo, Claudia d’Amato, and Floriana Esposito. Dlfoil:
Class expression learning revisited. In Proceedings of the 21st International Confer-
ence on Knowledge Engineering and Knowledge Management, EKAW 2018, pages
98–113. Springer, 2018.

32. Kit Fine. Failures of the interpolation lemma in quantified modal logic. J. Symb.
Log., 44(2):201–206, 1979.

33. Marie Fortin, Boris Konev, and Frank Wolter. Interpolants and explicit definitions
in extensions of the description logic EL. In Proceedings of the 19th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2022,
2022.

34. Enrico Franconi and Volha Kerhet. Effective query answering with ontologies
and dboxes. In Description Logic, Theory Combination, and All That - Essays
Dedicated to Franz Baader on the Occasion of His 60th Birthday, pages 301–328.
Springer, 2019.

35. Enrico Franconi, Volha Kerhet, and Nhung Ngo. Exact query reformulation over
databases with first-order and description logics ontologies. J. Artif. Intell. Res.,
48:885–922, 2013.

36. Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank
Wolter. Learning description logic concepts: When can positive and negative ex-
amples be separated? In Proceedings of the 28h International Joint Conference on
Artificial Intelligence, IJCAI 2019, pages 1682–1688, 2019.

37. Dov M. Gabbay. Craig’s interpolation theorem for modal logics. In Conference in
Mathematical Logic - London 1970, pages 111–127. Springer, 1972.

38. Dov M Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-
dimensional modal logics: theory and applications. 2003.

39. Amit Goel, Sava Krstic, and Cesare Tinelli. Ground interpolation for combined
theories. In Proceedings of the 22nd International Conference on Automated De-
duction, CADE 2022, pages 183–198. Springer, 2009.

40. Valentin Goranko and Martin Otto. Model theory of modal logic. In Handbook of
Modal Logic, pages 249–329. Elsevier, 2007.

41. K. Henkell. Pointlike sets: the finest aperiodic cover of a finite semigroup. J. Pure
Appl. Algebra, 55(1-2):85–126, 1988.

42. K. Henkell, J. Rhodes, , and B. Steinberg. Aperiodic pointlikes and beyond. In-
ternat. J. Algebra Comput., 20(2):287–305, 2010.

43. Eva Hoogland and Maarten Marx. Interpolation and definability in guarded frag-
ments. Studia Logica, 70(3):373–409, 2002.

44. Eva Hoogland, Maarten Marx, and Martin Otto. Beth definability for the guarded
fragment. In Proceedings of the 6th International Conference on Logic Program-
ming and Automated Reasoning, LPAR 1999, pages 273–285. Springer, 1999.

45. Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on
counterfactuals for concept learning in the semantic web. Appl. Intell., 26(2):139–
159, 2007.

46. Rosalie Iemhoff. Uniform interpolation and the existence of sequent calculi. Annals
of Pure and Applied Logic, 170(11):102711, 2019.

47. Ernesto Jiménez-Ruiz, Terry R. Payne, Alessandro Solimando, and Valentina A. M.
Tamma. Limiting logical violations in ontology alignnment through negotiation.
In Proceedings of the 15th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2016, pages 217–226, 2016.

48. Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. Logical
separability of incomplete data under ontologies. In Proceedings of the 17th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
KR 2020, pages 517–528, 2020.

49. Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. Sepa-
rating data examples by description logic concepts with restricted signatures. In
Proceedings of the 18th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, KR 2021, pages 390–399, 2021.

50. Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. Logical
separability of labeled data examples under ontologies. Artif. Intell., 313:103785,
2022.

51. Jean Christoph Jung, Andrea Mazzullo, and Frank Wolter. More on interpolants
and explicit definitions for description logics with nominals and/or role inclusions.
In Proceedings of the 35th International Workshop on Description Logics, DL 2022,
2022.

52. Jean Christoph Jung and Frank Wolter. Living without beth and craig: Definitions
and interpolants in the guarded and two-variable fragments. In Proceedings of the
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021,
pages 1–14. IEEE, 2021.

53. Emanuel Kieronski, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable logics
with counting and semantic constraints. ACM SIGLOG News, 5(3):22–43, 2018.

54. Boris Konev, Carsten Lutz, Denis K. Ponomaryov, and Frank Wolter. Decomposing
description logic ontologies. In Proceedings of the 12th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2010. AAAI Press,
2010.

55. Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal properties
of modularisation. In Modular Ontologies: Concepts, Theories and Techniques for
Knowledge Modularization, pages 25–66. Springer, 2009.

56. Boris Konev, Dirk Walther, and Frank Wolter. Forgetting and uniform interpola-
tion in large-scale description logic terminologies. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2009, pages 830–835,
2009.

57. Patrick Koopmann and Renate A. Schmidt. Count and forget: Uniform interpola-
tion of SHQ-ontologies. In Proceedings of the 7th International Joint Conference
on Automated Reasoning, IJCAR 2014, pages 434–448. Springer, 2014.

58. Patrick Koopmann and Renate A. Schmidt. Uniform interpolation and forgetting
for ALC ontologies with aboxes. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, AAAI 2015, pages 175–181. AAAI Press, 2015.

59. Tomasz Kowalski and George Metcalfe. Uniform interpolation and coherence.
Annals of Pure and Applied Logic, 170(7):825–841, 2019.

60. Emiel Krahmer and Kees van Deemter. Computational generation of referring
expressions: A survey. Computational Linguistics, 38(1):173–218, 2012.

61. Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Definitions and (uniform)
interpolants in first-order modal logic. CoRR, abs/2303.04598, 2023.

62. Jens Lehmann and Christoph Haase. Ideal downward refinement in the EL de-
scription logic. In Proceedings of the 19th International Conference on Inductive
Logic Programming, ILP 2009, pages 73–87. Springer, 2009.

63. Jens Lehmann and Pascal Hitzler. Concept learning in description logics using
refinement operators. Machine Learning, 78:203–250, 2010.

64. Francesca A. Lisi. A formal characterization of concept learning in description
logics. In Proceedings of the 25th International Workshop on Description Logics,
DL 2012. CEUR-WS.org, 2012.

65. Francesca A. Lisi and Umberto Straccia. Learning in description logics with fuzzy
concrete domains. Fundamenta Informaticae, 140(3-4):373–391, 2015.

66. Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Foundations of in-
stance level updates in expressive description logics. Artif. Intell., 175(18):2170–
2197, 2011.

67. Carsten Lutz, Robert Piro, and Frank Wolter. Description logic tboxes: Model-
theoretic characterizations and rewritability. In Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2011, pages 983–988.
IJCAI/AAAI, 2011.

68. Carsten Lutz, Inanç Seylan, and Frank Wolter. An automata-theoretic approach
to uniform interpolation and approximation in the description logic EL. In Pro-
ceedings of the 13th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, KR 2012. AAAI Press, 2012.

69. Carsten Lutz, Inanç Seylan, and Frank Wolter. The data complexity of ontology-
mediated queries with closed predicates. Logical Methods in Computer Science,
15(3), 2019.

70. Carsten Lutz and Frank Wolter. Foundations for uniform interpolation and forget-
ting in expressive description logics. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, IJCAI 2011, pages 989–995. IJCAI/AAAI,
2011.

71. Larisa Maksimova and Dov Gabbay. Interpolation and Definability in Modal and
Intuitionistic Logics. Clarendon Press, 2005.

72. Maarten Marx. Interpolation in modal logic. In Proceedings of the 7th Inter-
national Conference on Algebraic Methodology and Software Technology, AMAST
1998, pages 154–163. Springer, 1998.

73. Maarten Marx and Carlos Areces. Failure of interpolation in combined modal
logics. Notre Dame J. Formal Log., 39(2):253–273, 1998.

74. Kenneth L. McMillan. Interpolation and sat-based model checking. In Proceedings
of the 15th International Conference on Computer Aided Verification, CAV 2003,
pages 1–13. Springer, 2003.

75. Nadeschda Nikitina and Sebastian Rudolph. (Non-)succinctness of uniform inter-
polants of general terminologies in the description logic EL. Artif. Intell., 215:120–
140, 2014.

76. D. Pigozzi. Amalgamation, congruence-extension, and interpolation properties in
algebras. Algebra Univers., (1):269–349, 1971.

77. Andrew M. Pitts. On an interpretation of second order quantification in first order
intuitionistic propositional logic. J. Symb. Log., 57(1):33–52, 1992.

78. Thomas Place. Separating regular languages with two quantifier alternations. Log.
Methods Comput. Sci., 14(4), 2018.

79. Thomas Place and Marc Zeitoun. Separating regular languages with first-order
logic. Log. Methods Comput. Sci., 12(1), 2016.

80. Thomas Place and Marc Zeitoun. Adding successor: A transfer theorem for sepa-
ration and covering. ACM Trans. Comput. Log., 21(2):9:1–9:45, 2020.

81. Wolfgang Rautenberg. Modal tableau calculi and interpolation. J. Philos. Log.,
12(4):403–423, 1983.

82. Giuseppe Rizzo, Nicola Fanizzi, and Claudia d’Amato. Class expression induction
as concept space exploration: From dl-foil to dl-focl. Future Gener. Comput. Syst.,
108:256–272, 2020.

83. Giuseppe Rizzo, Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. A frame-
work for tackling myopia in concept learning on the web of data. In Proceedings
of the 21st International Conference on Knowledge Engineering and Knowledge
Management, EKAW 2018, pages 338–354. Springer, 2018.

84. Md. Kamruzzaman Sarker and Pascal Hitzler. Efficient concept induction for
description logics. In Proceedings of the 33rd AAAI Conference on Artificial Intel-
ligence, AAAI 2019, pages 3036–3043. AAAI Press, 2019.

85. Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with
ontologies over dboxes. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence, IJCAI 2009, pages 923–925, 2009.

86. Balder ten Cate. Interpolation for extended modal languages. J. Symb. Log.,
70(1):223–234, 2005.

87. Balder ten Cate. Model theory for extended modal languages. PhD thesis, Univer-
sity of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.

88. Balder ten Cate. Lyndon interpolation for modal logic via type elimination se-
quences. Technical report, ILLC, Amsterdam, 01 2022.

89. Balder ten Cate, Willem Conradie, Maarten Marx, and Yde Venema. Definitorially
complete description logics. In Proceedings of the 10th International Conference
on Principles of Knowledge Representation and Reasoning, KR 2006, pages 79–89.
AAAI Press, 2006.

90. Balder ten Cate, Enrico Franconi, and Inanç Seylan. Beth definability in expressive
description logics. J. Artif. Intell. Res., 48:347–414, 2013.

91. David Toman and Grant E. Weddell. Fundamentals of Physical Design and Query
Compilation. Synthesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, 2011.

92. David Toman and Grant E. Weddell. First order rewritability for ontology medi-
ated querying in horn-dlfd. In Proceedings of the 33rd International Workshop on
Description Logics, DL 2020. CEUR-WS.org, 2020.

93. David Toman and Grant E. Weddell. FO Rewritability for OMQ using Beth
Definability and Interpolation. In Proceedings of the 34th International Workshop
on Description Logics, DL 2021. CEUR-WS.org, 2021.

94. An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland. Parallel
symmetric class expression learning. J. Mach. Learn. Res., 18:64:1–64:34, 2017.

95. Johan Van Benthem. The many faces of interpolation. Synthese, pages 451–460,
2008.

96. Albert Visser et al. Uniform interpolation and layered bisimulation. In Gödel’96:
Logical foundations of mathematics, computer science and physics—Kurt Gödel’s
legacy, pages 139–164. Association for Symbolic Logic, 1996.

97. Yizheng Zhao and Renate A. Schmidt. Forgetting concept and role symbols in
ALCOIH-ontologies. In Proceedings of the 25th International Joint Conference on
Artificial Intelligence, IJCAI 2016, pages 1345–1353. IJCAI/AAAI Press, 2016.

