51,619 research outputs found

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M

    Dynamic resource allocation in a hierarchical multiprocessor system: A preliminary study

    Get PDF
    An integrated system approach to dynamic resource allocation is proposed. Some of the problems in dynamic resource allocation and the relationship of these problems to system structures are examined. A general dynamic resource allocation scheme is presented. A hierarchial system architecture which dynamically maps between processor structure and programs at multiple levels of instantiations is described. Simulation experiments were conducted to study dynamic resource allocation on the proposed system. Preliminary evaluation based on simple dynamic resource allocation algorithms indicates that with the proposed system approach, the complexity of dynamic resource management could be significantly reduced while achieving reasonable effective dynamic resource allocation

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Load sharing for optimistic parallel simulations on multicore machines

    Get PDF
    Parallel Discrete Event Simulation (PDES) is based on the partitioning of the simulation model into distinct Logical Processes (LPs), each one modeling a portion of the entire system, which are allowed to execute simulation events concurrently. This allows exploiting parallel computing architectures to speedup model execution, and to make very large models tractable. In this article we cope with the optimistic approach to PDES, where LPs are allowed to concurrently process their events in a speculative fashion, and rollback/ recovery techniques are used to guarantee state consistency in case of causality violations along the speculative execution path. Particularly, we present an innovative load sharing approach targeted at optimizing resource usage for fruitful simulation work when running an optimistic PDES environment on top of multi-processor/multi-core machines. Beyond providing the load sharing model, we also define a load sharing oriented architectural scheme, based on a symmetric multi-threaded organization of the simulation platform. Finally, we present a real implementation of the load sharing architecture within the open source ROme OpTimistic Simulator (ROOT-Sim) package. Experimental data for an assessment of both viability and effectiveness of our proposal are presented as well. Copyright is held by author/owner(s)

    Self-organising management of Grid environments

    Get PDF
    This paper presents basic concepts, architectural principles and algorithms for efficient resource and security management in cluster computing environments and the Grid. The work presented in this paper is funded by BTExacT and the EPSRC project SO-GRM (GR/S21939)
    • …
    corecore