12,354 research outputs found

    The Moonraker Study: An Experimental Evaluation of Host-Based Deception

    Get PDF
    Cyber deception has been discussed as providing enhanced cyber defense. This human subjects research, one of the first rigorously controlled studies on this topic, found that host-based deception was effective at preventing completion of a specific exfiltration task against a virtual network. In addition to impeding progress and preventing success, the deception resulted in increased confusion and surprise in the participants. This study provided the necessary rigor to scientifically attest to the effectiveness of cyber deception for cyber defense with computer specialists

    Emotional State Classification and Related Behaviors Among Cyber Attackers

    Get PDF
    Cyber deception is a strategy that defenders can leverage to gain an advantage over cyber attackers. The effects of deception on the attacker however, are not yet well understood. Quantifying the tangible and emotional effects of deception on the attacker’s performance, beliefs, and emotional state are critical to deploying effective, targeted cyber deception. Our work uses data from a human-subjects experiment measuring the impact of cyber and psychological deception on over 100 professional red-teamers. These results demonstrate that an attacker’s cognitive and emotional state can often be inferred from data already observed and collected by cyber defenders world-wide. Future work will leverage this observed data-set to formulate more informed defensive strategies

    A Survey of Network Requirements for Enabling Effective Cyber Deception

    Full text link
    In the evolving landscape of cybersecurity, the utilization of cyber deception has gained prominence as a proactive defense strategy against sophisticated attacks. This paper presents a comprehensive survey that investigates the crucial network requirements essential for the successful implementation of effective cyber deception techniques. With a focus on diverse network architectures and topologies, we delve into the intricate relationship between network characteristics and the deployment of deception mechanisms. This survey provides an in-depth analysis of prevailing cyber deception frameworks, highlighting their strengths and limitations in meeting the requirements for optimal efficacy. By synthesizing insights from both theoretical and practical perspectives, we contribute to a comprehensive understanding of the network prerequisites crucial for enabling robust and adaptable cyber deception strategies

    A Deception Planning Framework for Cyber Defense

    Get PDF
    The role and significance of deception systems such as honeypots for slowing down attacks and collecting their signatures are well-known. However, the focus has primarily been on developing individual deception systems, and very few works have focused on developing strategies for a synergistic and strategic combination of these systems to achieve more ambitious deception goals. The objective of this paper is to lay a scientific foundation for cyber deception planning, by (1) presenting a formal deception logic for modeling cyber deception, and (2) introducing a deception framework that augments this formal modeling with necessary quantitative reasoning tools to generate coordinated deception plans. To show expressiveness and evaluate effectiveness and overhead of the framework, we use it to model and solve two important deception planning problems: (1) strategic honeypot planning, and (2) deception planning against route identification. Through these case studies, we show that the generated deception plans are highly effective and outperform alternative random and unplanned deception strategies

    HoneyBug: Personalized Cyber Deception for Web Applications

    Get PDF
    Cyber deception is used to reverse cyber warfare asymmetry by diverting adversaries to false targets in order to avoid their attacks, consume their resources, and potentially learn new attack tactics. In practice, effective cyber deception systems must be both attractive, to offer temptation for engagement, and believable, to convince unknown attackers to stay on the course. However, developing such a system is a highly challenging task because attackers have different expectations, expertise levels, and objectives. This makes a deception system with a static configuration only suitable for a specific type of attackers. In order to attract diverse types of attackers and prolong their engagement, we need to dynamically characterize every individual attacker\u27s interactions with the deception system to learn her sophistication level and objectives and personalize the deception system to match with her profile and interest. In this paper, we present an adaptive deception system, called HoneyBug, that dynamically creates a personalized deception plan for web applications to match the attacker\u27s expectation, which is learned by analyzing her behavior over time. Each HoneyBug plan exhibits fake vulnerabilities specifically selected based on the learned attacker\u27s profile. Through evaluation, we show that HoneyBug characterization model can accurately characterize the attacker profile after observing only a few interactions and adapt its cyber deception plan accordingly. The HoneyBug characterization is built on top of a novel and generic evidential reasoning framework for attacker profiling, which is one of the focal contributions of this work

    TESTING DECEPTION WITH A COMMERCIAL TOOL SIMULATING CYBERSPACE

    Get PDF
    Deception methods have been applied to the traditional domains of war (air, land, sea, and space). In the newest domain of cyber, deception can be studied to see how it can be best used. Cyberspace operations are an essential warfighting domain within the Department of Defense (DOD). Many training exercises and courses have been developed to aid leadership with planning and to execute cyberspace effects that support operations. However, only a few simulations train cyber operators about how to respond to cyberspace threats. This work tested a commercial product from Soar Technologies (Soar Tech) that simulates conflict in cyberspace. The Cyberspace Course of Action Tool (CCAT) is a decision-support tool that evaluates defensive deception in a wargame simulating a local-area network being attacked. Results showed that defensive deception methods of decoys and bait could be effective in cyberspace. This could help military cyber defenses since their digital infrastructure is threatened daily with cyberattacks.Marine Forces Cyberspace CommandChief Petty Officer, United States NavyChief Petty Officer, United States NavyApproved for public release. Distribution is unlimited

    Game of Travesty: Decoy-based Psychological Cyber Deception for Proactive Human Agents

    Full text link
    The concept of cyber deception has been receiving emerging attention. The development of cyber defensive deception techniques requires interdisciplinary work, among which cognitive science plays an important role. In this work, we adopt a signaling game framework between a defender and a human agent to develop a cyber defensive deception protocol that takes advantage of the cognitive biases of human decision-making using quantum decision theory to combat insider attacks (IA). The defender deceives an inside human attacker by luring him to access decoy sensors via generators producing perceptions of classical signals to manipulate the human attacker's psychological state of mind. Our results reveal that even without changing the classical traffic data, strategically designed generators can result in a worse performance for defending against insider attackers in identifying decoys than the ones in the deceptive scheme without generators, which generate random information based on input signals. The proposed framework leads to fundamental theories in designing more effective signaling schemes

    DECEPTION BASED TECHNIQUES AGAINST RANSOMWARES: A SYSTEMATIC REVIEW

    Get PDF
    Ransomware is the most prevalent emerging business risk nowadays. It seriously affects business continuity and operations. According to Deloitte Cyber Security Landscape 2022, up to 4000 ransomware attacks occur daily, while the average number of days an organization takes to identify a breach is 191. Sophisticated cyber-attacks such as ransomware typically must go through multiple consecutive phases (initial foothold, network propagation, and action on objectives) before accomplishing its final objective. This study analyzed decoy-based solutions as an approach (detection, prevention, or mitigation) to overcome ransomware. A systematic literature review was conducted, in which the result has shown that deception-based techniques have given effective and significant performance against ransomware with minimal resources. It is also identified that contrary to general belief, deception techniques mainly involved in passive approaches (i.e., prevention, detection) possess other active capabilities such as ransomware traceback and obstruction (thwarting), file decryption, and decryption key recovery. Based on the literature review, several evaluation methods are also analyzed to measure the effectiveness of these deception-based techniques during the implementation process

    Learning-based attacks in cyber-physical systems

    Get PDF
    We introduce the problem of learning-based attacks in a simple abstraction of cyber-physical systems---the case of a discrete-time, linear, time-invariant plant that may be subject to an attack that overrides the sensor readings and the controller actions. The attacker attempts to learn the dynamics of the plant and subsequently override the controller's actuation signal, to destroy the plant without being detected. The attacker can feed fictitious sensor readings to the controller using its estimate of the plant dynamics and mimic the legitimate plant operation. The controller, on the other hand, is constantly on the lookout for an attack; once the controller detects an attack, it immediately shuts the plant off. In the case of scalar plants, we derive an upper bound on the attacker's deception probability for any measurable control policy when the attacker uses an arbitrary learning algorithm to estimate the system dynamics. We then derive lower bounds for the attacker's deception probability for both scalar and vector plants by assuming a specific authentication test that inspects the empirical variance of the system disturbance. We also show how the controller can improve the security of the system by superimposing a carefully crafted privacy-enhancing signal on top of the "nominal control policy." Finally, for nonlinear scalar dynamics that belong to the Reproducing Kernel Hilbert Space (RKHS), we investigate the performance of attacks based on nonlinear Gaussian-processes (GP) learning algorithms
    corecore