
A Deception Planning Framework for Cyber Defense

Jafar Haadi Jafarian
University of Colorado Denver
haadi.jafarian@ucdenver.edu

Amirreza Niakanlahiji
University of Illinois Springfield

aniak2@uis.edu

Abstract

The role and significance of deception systems
such as honeypots for slowing down attacks
and collecting their signatures are well-known.
However, the focus has primarily been on developing
individual deception systems, and very few works
have focused on developing strategies for a
synergistic and strategic combination of these
systems to achieve more ambitious deception
goals. The objective of this paper is to lay a
scientific foundation for cyber deception planning,
by (1) presenting a formal deception logic for
modeling cyber deception, and (2) introducing a
deception framework that augments this formal
modeling with necessary quantitative reasoning tools
to generate coordinated deception plans. To
show expressiveness and evaluate effectiveness and
overhead of the framework, we use it to model and
solve two important deception planning problems:
(1) strategic honeypot planning, and (2) deception
planning against route identification. Through these
case studies, we show that the generated deception
plans are highly effective and outperform alternative
random and unplanned deception strategies.

1. Introduction

While reactive detection-based defense technologies
remain a core component of cyber defense,
they are no longer adequate in addressing the
ever-increasing threats of evolving cyber attacks
[1]. In recent years, we have witnessed novel
classes of advanced and persistent attacks using
stealthy or zero-day techniques that are not fully
detectable by these reactive defense technologies
[2]. Examples are very stealthy indirect link
flooding attacks [3, 4] or on-the-rise Advanced
Persistent Threats (APT) [5]. In lack of effective
reactive countermeasures, defensive deception, as
a proactive defense paradigm, could play a

significant role in resisting against such stealthy and
undetectable threats [1].

While a myriad of deception systems have
been proposed in the literature, very few works
have focused on the idea of developing strategies,
theories, and techniques for a strategic combination
of various deception systems in a goal-oriented
manner. Meanwhile, effective deception of skilled
attackers requires, not just a bunch of deception
systems, but a strategic combination of a group
of coordinated systems in a manner that their
coherent system-wide deceptive image manipulates
an attackers’ thinking and leads them to a false
reconnaissance and thus false attack planning.
For instance, consider the very stealthy and
undetectable indirect link flooding attacks such as
Crossfire [3] and Coremelt [4], where the attacker
tries to find all active routes to a target area,
in order to identify links that are most critical
to the connectivity of that area and only floods
those links. Assume an ISP intends to defeat
such route identifications by deceiving the attacker
about parts of the routes that are under its control.
These fake routes are announced by identifying
traceroute packets and giving spoofed replies to
them. One approach to this aim is to present each
querying source with an isolated and random fake
route in the network. This will confuse attackers
about the routing topology (link map [3]) and may
achieve some arbitrary effectiveness. However, by
strategically selecting a set of coordinated fake
routes, we can mislead the attacker to a better
goal with higher benefit: misidentifying a set of
trivial links as critical (min-cut) and flooding those
links instead. This will rescue benign user traffic
from flooding and lead to a benefit that is much
higher than the sum of benefit from those individual
spoofed replies.

Solving deception problems of this kind requires
a deception planning framework that provides
necessary paradigms for defining various deception

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 1905
URI: https://hdl.handle.net/10125/63973
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/286030293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

actions, along with their inter-dependencies,
benefits, and costs. More importantly, such a
framework must provide paradigms for modeling
how such deceptive actions would as a whole
manipulate cognitive thinking process of attackers
who may have different goals and sophistication
levels. It must also be able to reason and identify
the most beneficial deception plan (set of actions)
with the given budget. We show that this planning
problem is a generalization of the 0-1 knapsack
problem and thus it is NP-hard.

In this paper, we present a framework for
modeling and identifying optimal deception plans
for cyber deception problems. The framework
introduces a deception logic for defining deception
models, where each deception model addresses a
specific cyber threat model. The deception logic
is an abstraction over satisfiability modulo theories
(SMT) [6].

Our framework provides necessary user
interfaces for knowledge engineers to define
their deception models. Once defined, the given
deception model is then synthesized into an SMT
instance, which is then solved by the underlying
SMT solver, for which we use Microsoft Z3
Theorem Prover [6]. The Z3 SMT solver finds a
satisfiable assignment to the given instance. These
assignments define what set of deceptive actions are
optimal and are referred to as deception plan. Each
deceptive action is then actuated in the system by
a set of deception techniques that are implemented
in the system.

We use our framework to solve two deception
planning problems as case studies. First, we
solve the problem of strategic honeypot planning,
where the problem is to determine the optimal
number and types of honeypots (regarding fidelity
level) for an enterprise, given its mission, budget
and sophistication level of potential attackers;
this deception plan targets remote network
reconnaissance and infiltration attacks. Through
comparison with alternative honeypot planning
paradigms, we show that the generated deception
plan is effective. Secondly, we model the
aforementioned problem of deception planning
against route identification attacks. Through
simulation, we show that the generated fake routes
incur maximum deception on attackers. For both
models, we discuss and evaluate the cost of model
generation and planning, and demonstrate that the
framework is highly expressive and fairly scalable.

2. Related Work

In early 2000s, several seminal works [7, 8, 9, 10]
proposed different type of honeypots. Since then,
defensive deception has been considered as one of
the pillars of cyber defense. In this section, we
investigate existing works focused on devising a
formal theory, logic, or framework for modeling and
planning cyber deception.

Several logic-based models of deception exist
in the formal methods literature. Sakama et al.
[11] introduce a modal logic for deception that can
express belief, action, and intention and formulate
eight different categories of deception. Authors
in [12] introduce a propositional multi-modal
logic to formulate various types of dishonest
communications between agents. In [13], Rowe
presents an automated deception planner that
take a sequence of operating system commands
as input and find viable deception plans that are
consistent with constraints which are defined in
second-order logic. Rosis et al. [14] propose a
formal deception planning model that formalizes
information impact on receiver’s mind. These
logical models cannot be directly used to address
deception planning problem; however, they can be
used to formally express both an act of deceiving
and its effect on addressee’s belief. Duan et
al. present a multi-layered deception system
called CONCEAL [15], which composes mutation
(random changing of parameter values), anonymity,
and diversity to defeat reconnaissance attacks on
computer networks.

Another class of approaches focuses on modeling
deceptive engagement between attacker and
defender using game theory. Signaling game
[16, 17, 18, 19] has been the primary modeling
paradigm since it is inherently a natural fit for
deception planning. Ettinger et al. [19] present
game-theoretic modeling of bargaining tactic
problem using belief manipulation. Carroll et al.
[17] investigate the effects of deception on the
interaction between an attacker and a defender in
a computer network. The game-theoretic models,
although insightful, only target specific deception
problems and are not expressive or scalable in
defining deception models in a more generic
context.

Another class of models uses probabilistic
approaches for deception planning. Rowe [20]
presents a probabilistic model based on a decision
tree to determine whether a single deception plan
should be performed. In another work, Rowe [21]

Page 1906

introduces an obstructive counter-planning model
that uses a probabilistic approach to determine the
optimal set of deceptive mechanisms (called ploys)
to deter the attack. Jajodia et al. [22] present
probabilistic modeling of the problem of defeating
network scanners by generating effective fake scan
results to minimize the damage the attacker can
produce.

While existing models provide useful insights
into deception modeling and planning, none of them
is generic and expressive enough to formulate a
wider range of cyber deception planning against
different threat models.

3. A Deception Modeling and
Planning Framework

3.1. Deception Modeling Logic

A Deception model DM is formally defined as a
tuple:

DM =

〈〈φ, T, τ〉︸ ︷︷ ︸
facts

, 〈β〉︸︷︷︸
beliefs

, 〈A,C, P,α〉︸ ︷︷ ︸
actions

, CR︸︷︷︸
caus. rules

, 〈Θ, χ〉︸ ︷︷ ︸
attackers

, 〈G, I〉︸ ︷︷ ︸
goal

, 〈B〉︸︷︷︸
budget

〉

(1)

In a deception model, only β (beliefs) and α
(actions) are variables, and all other components
are inputs to the model. Next, we formally define
each of these components.

3.2. Facts

A deception problem is described in terms of
attributes, where each attribute describes a factual
item (e.g., configuration parameter) of the system;
e.g., operating system of a host, criticality level of
a server, route between two hosts, etc. The set of
attributes is denoted as φ = {ϕ1, . . . , ϕm}.

Tϕi
denotes the data type of ϕi; i.e., the set of

possible (alternate) values for ϕi, which could be
either Boolean, Ordered (e.g., low, medium, high),
or integral (e.g., from 1 to 100). The symbol T
denotes the set of all attribute data types in the
system.

The facts of the system are described in terms
of attribute values. The real value of attribute ϕi is
denoted as τϕi ∈ Tϕi .

3.3. Attacker Types

The set of attacker types is denoted as
Θ = {θ1, . . . , θn}, where a probability distribution

function χ determines the adversary type
distribution over Θ; i.e., χ(θi) determines the
likelihood that attacker is of type θi. Distribution
over adversary types are given to the model as
input.

3.4. Beliefs

An attacker’s belief on an attribute denote her
expected perception of that attribute. This belief
could be different from the actual value of that
attribute. We define variable βϕi

to denote
attacker’s belief on attribute ϕi. In other words,
(βϕi

= v) means that adversary believes that the
value of attribute ϕi is v. When the model has
more than one attacker type, βθkϕi

denotes belief of
an attacker of type θk over ϕi.

The belief value v must be in (Tϕi ∪ ψ), where
symbol ψ is called the null or undefined value that
denotes lack of knowledge. The attribute value (τϕi

)
can never be ψ; i.e., the fact can not be undefined.

3.5. Actions

An action denotes a deceptive representation of
a fact in the system that directly manipulates
the attacker’s belief on one attribute. From
manipulability standpoint, attributes are
categorized into two categories: actionable and
derivative. Actionable attributes are those for
which attackers’ belief can be manipulated directly
via a deceptive action. Derivative attributes are
those for which attackers’ belief cannot directly be
manipulated; rather, it can only be derived from
her beliefs over other attributes.

The set of admissible actions on attribute ϕi is
denoted as Aϕi

. The objective of the framework
is to determine which action from Aϕi

must be
selected such that the deception goal is achieved.
The action on attribute ϕi is denoted as action
variable αϕi ∈ (Aϕi), which must be assigned by
the framework (Z3 solver). The deception plan is
essentially comprised of assigned action variables.
Action Plausibility. One of the key elements
of a successful deception is that the deception
should conform to the expectations of the target
(i.e., the attacker). This feature of deception is
called plausibility [23]. To achieve plausibility,
the deception plan must present a coherent and
consistent deceptive depiction of the system. This
plausibility is modeled as a system-dependent set of
constraints over possible actions that could not be
assigned to attributes at the same time and defines
semantic inter-dependency among actions. These

Page 1907

conflicting action pairs are called implausibility
pairs and are given to the model as inputs:

P = {(a ∈ Aϕi , b ∈ Aϕj)}

where (a ∈ Aϕi
, b ∈ Aϕj

) denotes an implausible
pair of actions on attributes ϕi and ϕj .

In synthesis of the deception model to
its corresponding SMT instance, the following
constraint is generated and incorporated in the
instance for each implausible pair:

(αϕi = a)→ (αϕj 6= b) [Added in Synthesis] (2)

Example: Let srv25 and srv80 denote the type of
FTP and Web servers running on a network host.
The following domain constraint could be defined,
because vstfpd is a Linux service, while IIS is a
Windows service. So, (IIS, vstfpd) constitute an
implausible pair.

(αsrv25 = vstfpd)→ (αsrv80 6= IIS)

Action Costs. Applying actions on attributes are
costly, as it requires misrepresentation of attribute
values. We assume that costs are all expressible
as monetary values, and reflect the total price of
building and actuating the deceptive action. The
cost associated with applying action a ∈ Aϕi

on
attribute ϕi is denoted by a numerical value cϕi

(a)
which is given as input to the model.

The total available budget, B, is also given to
the model as input. In the synthesis process, the
following constraint is incorporated in the deception
model to ensure that the linear summation of action
costs in a plan does not surpass the available
budget, B:∑
ϕi

∑
al∈Aϕi

(αϕi
= al) · cϕi

(al) ≤ B [Added at Synthesis]

(3)

3.6. Causation Rules

We use the logical implication (→) to denote how

a combination of certain facts, actions, and/or

belief induces a consequent belief in attacker’s

mind. Specifically, causation rules of an attribute

determine how (cause) an attacker’s belief regarding

that attribute is manipulated (effect). A causality

rule has the following general form:

(Γ1 ∧ . . . ∧ Γk) ∨ . . . ∨ (Γn ∧ . . . ∧ Γm) → (βθi
ϕk

= v) (4)

where Γi is a constraint predicate (or its negation)
as defined next. Note that antecedent is in
disjunctive normal form (DNF). The consequent is
a belief variable over attribute ϕk and v ∈ Tϕk

.
Constraint predicate is an atomic condition over

facts, belief, or actions and has one of the following
types:
Fact Constraint: constraint on attribute values,
τϕi . It is of the form (τϕi = v) where v ∈ Tϕi .
Action Constraint: constraint on the action type.
It is of form (αϕi = a) where a ∈ Aϕi .
Belief Constraint: constraint on adversary’s
beliefs, which is of the form (βϕi

= v) where
v ∈ (Tϕi

∪ ψ) .

3.7. Deception Goal

Conceptually, the intention of deception is to
derive an adversary toward certain false conclusions.
In order to allow scientific reasoning for cyber
deception, and make various deception models
comparable, we need to quantify the benefit
associated with each potential deception plan.
The benefit of a deception plan depends on the
individual benefit of certain goal beliefs, i.e., beliefs
that an attacker must be driven to or away
from. The knowledge engineer determines the
monetary (financial) impact of these goal beliefs,
which could be either negative (for beliefs that are
undesirable for defense) or positive (for beliefs that
are contributing to defense).

The impact associated with a belief (βϕi
= v′)

when its truthful value is v (τϕi
= v) is denoted

as value Iϕi
(v → v′). This impact value shows the

significance of deceiving an attacker to believe that
ϕi is v′ when in fact its value is v.

Also, valueG, which is given as input, defines the
minimum acceptable benefit that a deception plan
must provide. Given belief impacts and the goal
values, during the synthesis process the following
constraint is incorporated in the SMT instance:

∑
θk∈Θ

∑
ϕi

∑
v∈Tϕi

∑
v′∈Tϕi

∪{ψ}

(χ(θk) · (τϕi = v)

· (βθkϕi
= v′) · Iϕi

(v → v′)) ≥ G [added at synthesis]

(5)

3.8. Solving Deception Model

This deception modeling problem is reducible to 0-1
knapsack problem, where beliefs are items, impacts
are their item values, costs are their weights, and

Page 1908

budget is the maximum weight capacity. The
knapsack problem is known to be NP-hard. This
is why we convert the problem to a satisfiability
problem, using generalized Boolean/arithmetic
format of satisfiability modulo theories (SMT) [6],
in order to make it solvable in a scalable manner.

After defining the deception model, the synthesis
module incorporates implausibility constraints (Eq.
2), budget constraint (Eq. 3) and goal constraint
(Eq. 5) in the model and creates a Z3 SMT
instance. Then, using the underlying Z3 SMT
solver, the framework solves the model and
determines appropriate assignments to variables.
The deception plan is a satisfiable solution to the
SMT instance, determined by the SMT solver.
The deception plan is comprised of values assigned
to only action variables. If the plan is not
satisfiable, the model constraints need to be relaxed
to make it satisfiable. In the next sections, we use
the framework to model and solve two deception
planning problems.

4. Case Study A: Strategic
Honeypot Planning

Honeynet mapping aims to identify honeypots
located inside a production network from real
production machines, in order to exclude them from
the attack. So while low-interaction honeypots are
potentially not detectable by naive attackers, their
decoy nature is easily detectable even by remote
network reconnaissance [24] due to their low fidelity.
However, they are cheap in terms of deployment and
maintenance [8, 25]. In contrast, high-interaction
honeypots have a higher level of fidelity. They
are usually implemented using software-based full
virtualization, which makes them hard to detect
by remote network reconnaissance; however, as
mentioned above they are noticeably costlier than
low-interaction honeypots [8, 26].

Now, assume we aim to protect an enterprise
network from network reconnaissance attacks,
ranging from automated worms and scanners to
advanced reconnaissance. Given a limited budget,
we aim to place a number of honeypots of either
type (low-interaction or LI, high-interaction or HI)
in our DMZ. The LIs are effective in slowing
down attacks launched by naive attackers but
are detectable by elite adversaries. However,
their cost is very low. In contrast, HIs are not
detectable by elite attackers, but their deployment
is costly. The network DMZ has a limited number
of unused public addresses that could be assigned to

honeypots. Also, the budget is limited and the total
cost should be within the bounds of the available
budget. Attacker types distribution is determined
based on enterprise mission and history of attacks.
Given this expected attacker distribution as input,
our problem is to determine the number of LI and
HI honeypots that could be placed in the DMZ to
achieve a high deception benefit.

4.1. Deception Model

Assume the DMZ includes n hosts and m public
addresses. Therefore, the address space can have
(m − n) honeypots. Next, we define the deception
model.

Attributes: attribute si denotes the status of IP
address IPi in the public (DMZ) address space: ϕ =
{s1, . . . sm}
Attribute Types: attribute type of an IP address
denotes alternative configurations that an address
could have. An IP address may be dark, assigned
to a real host, or assigned to a decoy: Tsi =
{dark, real, decoy}
Facts: For a dark address IPi, (τsi = dark) and for
a live address IPj , (τsj = real).

Adversary Types: attackers could be either naive
or elite: Θ = {naive, elite}.

χ(naive) and χ(elite) denote distribution of
attackers, and in Section 4.2 we investigate effect of
various distributions on produced deception plans.
Action Types: the action type denotes alternative
actions that could be taken on an IP address. We
may either place a LI or HI honeypot on an IP
address or leave it as it is: Asi = {ψ,LI,HI}
Causation Rules: causation rules define how the
placement of honeypots affects attackers’ beliefs.
These rules are extracted by the knowledge engineer
as part of defining the deception model.

Rule 1 (Real Host): all attackers (naive or elite)
would eventually identify a real host as real host.

(τsi = real)→ (βnaivesi = real), (βelitesi = real)

Rule 2 (Dark Address): all attackers would identify

a dark address.

(τsi = dark) ∧ (αsi = ψ) → (βnaive
si

= dark), (βelite
si

= dark)

Rule 3 (LI): LI honeypots are not detectable by

naive attackers, but detectable by elite ones.

(τsi = dark) ∧ (αsi = LI) → (βnaive
si

= real), (βelite
si

= decoy)

Page 1909

Rule 4 (HI): HI honeypots are not detectable by any

attacker type.

(τsi = dark) ∧ (αsi = high) → (βnaive
si

= real), (βelite
si

= real)

Actions Costs: the cost of creating LI honeypots
are much lower than HI honeypots.

csi(ψ) = 0$, csi(low) = 10$, csi(high) = 100$

Belief Impacts: defines the impact of goal beliefs
on deception benefit.
Impact 1 (an attacker correctly identifies a real
host): Isi(real→ real) = −50$
Impact 2 (an attacker misidentifies a honeypot as
real host): Isi(dark → real) = 100$
Impact 3 (an attacker correctly identifies a
honeypot): once a honeypot is detected, it becomes
useless and merely a waste of resources: Isi(dark →
decoy) = −20$
Impact 4 (an attacker correctly identifies a dark
address): Isi(dark → dark) = 0$
Goal and Budget: in the next section, we
evaluate the model with various goal and budget
values.

4.2. Effectiveness Analysis

Fig. 1 and 2 denote the crafted deception plan
for a DMZ with m = 128 addresses and n = 12
hosts for different budgets and different attacker
type distributions. In our evaluation, instead
of having a minimum benefit value (G), we aim
to determine maximum attainable benefit value
for every evaluation scenario. Note that when
the budget is low (Fig. 1), the number of HI
honeypots is very low, even when all attackers
are expected to be elites (χ(elite) = 1). This
is because, for a low budget, the cost of a HI
honeypot is hardly justifiable. However, as the
budget increases (Fig. 2), HI honeypots become
affordable, especially when the probability of facing
elite attackers increases.

Also, note that even for high budgets and
even when both attacker types have the same
probability (χ(elite) = χ(naive) = 0.5), deception
plan includes more LI honeypots than HI. This is
because, in our deception model, we assume that
the advantage (impact) of deceiving a naive attacker
(100) far exceeds the disadvantage of failing to
deceive an elite one (−20). However, as Fig. 1
and 2 indicate, when the probability of facing elite
attackers becomes ≥ 0.8, LI honeypots are not
justifiable anymore (more costly than beneficial)
and there is a steep decrease in their number.

Fig. 4 and 5 compare the benefit (Eq. 5) of the
optimal deception plan generated by the framework
with the following alternative plans, for χ(elite) =
χ(naive) = 0.5:

• All honeypots are LIs.

• All honeypots are HIs.

• Half honeypots are LIs, half HIs: in this strategy
budget distribution conforms to attacker types;
since both attacker types have the same
probability of 0.5, half the budget is assigned
to LIs and the other half to HIs.

Note that the deception benefit of the optimal
plan is always higher or equal to other alternative
strategies. When the budget is low (Fig. 4), the
optimal strategy is very close to the all-LI strategy.
This is also the case for when the address space size
is too large. However, in Fig. 5, note that when the
budget is high enough for the given address space,
the benefit of the optimal plan is almost 50% higher
than that of all-LIs.

4.3. Planning Cost

As discussed in 3, the deception planning problem
is a generalization of 0-1 knapsack problem, where
impacts are values and costs are weights, each item
(belief) can be selected at most once, and our
objective is to select beliefs that have maximum
aggregate benefit for a given budget (knapsack size).

With respect to the honeypot planning problem,
we have two parallel knapsacks (address space size
and budget) and also negative values (impacts).
While the dynamic programming approach to
solving the original 0-1 knapsack problem is known
to be pseudo-polynomial (polynomial in input size),
developing heuristics for solving our generalized
knapsack problem is not as straightforward.

Fig. 3 shows planning time for DMZs with
various address space sizes (m) and differing
number of hosts. Note that planning time increases
exponentially with the address space size because
the number of variables in the corresponding SMT
instance is a function of m (and also n). Also, note
that for higher budgets the planning time is lower
because a less strict budget exerts less constraint on
the solver.

5. Case Study B: Strategic Network
Topology Obfuscation

Discovering active routes to a target area (e.g.,
an enterprise network) is precursory reconnaissance

Page 1910

(1,0) (.3, .7) (.5, .5) (.7, .3) (0,1)

Attacker type distribution (naive, elite)

0

20

40

60

80

100

#
 o

f
h
o
n
e
y
p
o
ts

of LIs

of HIs

Figure 1. Dec. plan (Budget =

1,000$)

(1,0) (.3, .7) (.5, .5) (.7, .3) (0,1)

Attacker type distribution (naive, elite)

0

20

40

60

80

100

120

#
 o

f
h
o
n
e
y
p
o
ts

of LIs

of HIs

Figure 2. Dec. plan (budget =

4,000$)

20481024512256128

address space size

0

100

200

300

400

ti
m

e
 (

s
e
c
)

Figure 3. Solving time for various

network sizes

102451225612864

address space size

2000

3000

4000

5000

6000

7000

8000

B
e
n
e
fi
t
($

) optimal

all LIs

all HIs

Half-Half

Figure 4. Comparing dec. benefit

for various plans (budget = 1,000$)

102451225612864

address space size

0

0.5

1

1.5

2

2.5

3

3.5

B
e
n
e
fi
t
($

)

10
4

optimal

all LIs

all HIs

Half-Half

Figure 5. Comparing dec. benefit

for various plans (budget = 4,000$)

100 200 300 400 500

no. of nodes

0

500

1000

1500

2000

ti
m

e
 (

s
e
c
)

Figure 6. Model generation and

solving time for various network sizes

step for a variety of network threat models such as
link flooding DDoS attacks, and man-in-the-middle
and eavesdropping attacks. The route discovery
allows attackers to identify critical network links
that are responsible for transiting majority of traffic
to a target area and focus their attack on those links.
For example, by identifying and only flooding the
critical links in the minimum cut of the graph of
routes between a group of bots and a target area,
attackers can cut off all the traffic to that target area
[3, 4]. Examples of such link flooding attacks are
Crossfire [3] and Coremelt [4] which are so effective
that they can cut off 33% of all connections to the
West Coast of the US.

Detecting such stealthy flooding is very hard,
primarily because the flows are not destined to (and
so are not visible at) the target area, and so the
defense must be implemented by an external entity
at the ISP level [3].

A straightforward approach for attackers to
discover routes to a target area is to issue
traceroute queries from geographically distributed
bots [3] to this area. ISP can deceive potential
attackers by lying about the routes to the defended
area at border gateways by providing fake responses
to these traceroute packets. In providing such
fake replies, the fundamental deception planning
question is what fake routes could be announced to
deceive attackers maximally and achieve the best
protection for the defended area. Our objective in
this section is to model and solve this problem using

our deception framework.

5.1. Deception Model

The potential adversarial traceroutes enter from
a set of entry gateways, denoted as S and exits
ISP network to the defended area from a set of
exit gateways, denoted as T . We assume that
the attacker’s traceroutes are issued from a set of
geographically distributed bots [3], and therefore all
the routes from S to T are ultimately probed and
identified by the attacker. The set of routes from
S to T denote the routing topology of the defended
area that is under the control of the ISP. We denote
this real routing topology graph as Gr. This Gr

routing graph is a sub-graph of the ISP physical
network topology, denoted as G.

After discovering this routing graph Gr, the
attacker would determine the set of critical links by
identifying the minimum cut of this graph. Our goal
is to present a fake routing graph Gf for a defended
area (again a sub-graph of G) such that attacker
misidentifies the critical links. By persuading DDoS
attackers to flood non-critical links (that are not
part of our routes to the defended area), we will be
able to rescue a significant portion of the defended
area’s users from this flooding. Using the deception
plan, we intend to identify the optimal Gf that
could be presented to attackers to achieve minimum
cut-off for clients of the defended area.

The route discovery deception planning problem

Page 1911

is formalized as follows:
Attributes: attribute rts,t denotes the route from
entry gateway s ∈ S to exit gateway t ∈ T .
Attribute cs denotes the set of critical links (on
minimum cut) of the graph.
Attribute Types: for each rts,t, there are
a number of candidate simple paths. While
enumeration of all simple paths between two nodes
in graph is generally not polynomial, we can either
use an upper bound K for maximum path lengths or
use heuristic algorithms such as [27] to discover the
candidate routes between a s-t pair in polynomial
time. Assume r1, . . . , rk denote the simple paths
between s and t. We have: Trts,t = {r1, . . . , rk}.
Action Types: the attribute cs is a derivative
(non-actionable) attribute. The action type for each
route attribute rts,t is the same as its attribute type:
any rk ∈ Trts,t could be represented as the route
between s and t.
Adversary Types: we assume only one adversary
type for this threat model.
Causation Rules: the causation rules determine
attackers’ belief on the critical set for every
potential fake routing topology (Gf).
Rule 1: fake replies are not distinguishable from real
replies. Therefore, if the route rk is announced for
an s-t pair, an attacker would believe that rk is the
route between s and t.

(αrts,t = rk)→ (βrts,t = rk)

Rule 2: if we announce fake routes for all s-t pairs,

we mislead attackers to a different critical set. For
every possible assignments to all rts,t, we need a

causation rule of the following form:

∧
s∈S,t∈T

(βrts,t
= ri) → βcs = mincutk, ∀ri ∈ Trts,t (6)

where mincutk is the minimum cut for the graph
generated by route assignments to all action
variables αrts,t . Note that the left-hand side
includes exactly one assignment for every and each
s-t pair.
Action costs: while we can assume higher costs
for longer routes, the increase in the number of fake
responses is negligible and therefore we assume that
lying on all routes has equal costs.

Belief Impacts: CutRatio(setk, G
r) is the value

that denotes the ratio of s-t pairs that are

disconnected when mincutk is cut off (deleted) from

the real routing topology, Gr.

Ics(τcs → mincutk) = 1− CutRatio(mincutk, Gr)

Budget and Goal: to investigate the upper bound
of benefit, we assume the budget is not limited. The
goal is to achieve a deception benefit of G = 1,
which means no link on min-cut of Gf is on an
s-t route in Gr; i.e., the cut-off is 0. If G = 1
is not satisfiable, we reduce it by a small δ and
then solve the model again, until the model becomes
satisfiable.

5.2. Effectiveness Analysis

To understand how effective this deception planning
is, we investigate the optimal deception plan for a
small example network in Fig. 7 and 8. Fig. 7
shows the real routing topology between S and T ,
and also its minimum cut. Fig. 8 shows the same
network with the optimal fake routing topology and
its minimum cut. Note that if the fake min-cut
is deleted from the real routing topology, no route
would be disconnected and the cut-off ratio would
be 0; i.e., the deception benefit would be 1.

To evaluate the deception benefit for large
networks, we developed two programs. One, a
random graph generator program that we used
to generate networks with n nodes and average
node degree d according to either the Erdos-Renyi
(random graph) or Barabasi-Albert (scale-free)
models. Second, an automated deception plan
generator that we used to create deception plans
for a given input graph.

Fig. 9 shows the deception benefit for random
graphs with various sizes and connectivity. To
calculate average deception benefit for each data
point, we generated and investigated 100 different
random graphs of the same size. In the figure, note
that the deception benefit increases with network
size (n), because the larger the network, the more
the number and diversity of alternative routing
topologies that could be offered to the attacker.
For example, for d = 1.5, a random network with
n = 300 has an average deception benefit of 0.8,
while a network with the same average degree, but
n = 100 achieves a deception benefit that is slightly
higher than 0.5.

Also, note that the deception benefit increases
for larger average node degrees (i.e., higher number
of links), again because the number of alternative
routing topologies that could be built on top of the
network graph increases, and so the deception space
is larger. In the figure, note that for all network
sizes, when d = 4, the deception benefit is 1.

Fig. 10 calculates deception benefit for scale-free
(Power law) networks. Note that, like random

Page 1912

Figure 7. Real (observable) routing topology Figure 8. Fake (announced) routing topology

3/2 (low con.) 2 3 4 (high con.)

avg. degree

0.5

0.6

0.7

0.8

0.9

1

d
e
c
e
p
ti
o
n
 b

e
n
e
fi
t
(%

 o
f
s
a
v
e
d
 u

s
e
rs

)

n=100

n=200

n=300

Figure 9. Deception Benefit for

random networks with various sizes

3/2 (low con.) 2 3 4 (high con.)

avg. degree

0.65

0.7

0.75

0.8

0.85

0.9

0.95

d
e

c
e

p
ti
o

n
 b

e
n

e
fi
t

(%
 o

f
s
a

v
e

d
 u

s
e

rs
)

n=100

n=200

n=300

Figure 10. Deception Benefit for

scale-free networks with various sizes

3/2 (low con.) 2 3 4 (high con.)

avg. degree

0.65

0.7

0.75

0.8

0.85

0.9

0.95

d
e

c
e

p
ti
o

n
 b

e
n

e
fi
t

(%
 o

f
s
a

v
e

d
 u

s
e

rs
)

n=100, random

n=200, random

n=100, scale-free

n=200, scale-free

Figure 11. Comparing deception

benefit for random vs. scale-free

networks

networks, the deception benefit increases with the
average node degree. However, contrary to random
networks, the deception benefit does not increase
with network size (n) noticeably. This is due to
the existence of hub nodes in the scale-free network
that increases the probability of overlaps between
alternative routing topologies of the network.

Fig. 11 compares deception benefit for random
vs. scale-free networks of the same size and
connectivity. As expected, for the same network
size and connectivity, a random graph has higher
deception benefit than a scale-free one, because, in a
scale-free graph, alternative routing topologies have
a higher probability of overlap.

5.3. Planning Cost

The planning time for a given network of size n
and node degree d includes (I) time for generating
the deception model, and (II) time for solving the
generated model by the framework. To generate
the deception plan for a given network with given
entry and exit sets, we need to enumerate the simple
paths between all entry-exit node pairs. Since the
number of simple paths could be exponential, we
only find simple paths with length≤ k·D where D is
the diameter (the longest shortest path between any
two nodes) of the network graph. Each alternative
routing topology corresponds to a causation rule
of form 6. An important step in the planning
process is generating min-cuts and calculating their
deception benefit, which is done by the deception
model generator. So, while solving the model

(finding a satisfiable assignment) for the solver is
straightforward, the number of candidate routing
topologies could be large, making the problem
computationally hard to solve.

Fig. 6 shows the time for generation and solving
of the deception model for various network sizes.
Note that the planning time increases exponentially
with network size, because of the exponential
increase in the number of simple paths. This effect
is even higher for larger average node degrees. For
example for n = 500, planning time for a network
with d = 4 is more than twice higher as compared
to that of a network with d = 3/2. Also, note
that planning time for random networks is slightly
lower than that of scale-free networks. Finally,
since the deception space increases exponentially
with the network size, solving the problem for very
large network sizes (n = 15, 000) is computationally
challenging, thus limiting the scalability of the
model.

6. Conclusion

In this paper, we present a framework for deception
modeling and planning against cyber threats. The
deception models are defined based on a deception
logic which is an abstraction over satisfiability
modulo theories (SMT). We used the framework
to model and solve two deception problems.
First, we solved the strategic honeypot planning
problem. We showed that the resulting deception
plan outperforms alternative plans that could be
envisioned with the same budget.

Page 1913

In the second problem, we showed that by
representing carefully planned fake replies to
traceroute queries, we can mislead attackers to
attack links that are not critical for transmitting
flows of an enterprise. We showed that with enough
size and link diversity in the underlying physical
network, this scheme could save up to 100% of
network traffic from such attacks.

References

[1] N. Virvilis, B. Vanautgaerden, and O. S. Serrano,
“Changing the game: The art of deceiving
sophisticated attackers,” in Cyber Conflict (CyCon
2014), 2014 6th International Conference On,
pp. 87–97, IEEE, 2014.

[2] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang,
and X. S. Wang, Moving target defense: creating
asymmetric uncertainty for cyber threats, vol. 54.
Springer Science & Business Media, 2011.

[3] M. S. Kang, S. B. Lee, and V. D. Gligor, “The
crossfire attack,” in Security and Privacy (SP),
2013 IEEE Symposium on, pp. 127–141, IEEE,
2013.

[4] A. Studer and A. Perrig, “The coremelt attack,”
in European Symposium on Research in Computer
Security, pp. 37–52, Springer, 2009.

[5] L. Martin, “Cyber kill chain R©,”
URL: http://cyber. lockheedmartin.
com/hubfs/Gaining the Advantage Cyber Kill
Chain. pdf, 2014.

[6] N. Bjørner and L. de Moura, “Z3 : Applications,
enablers, challenges and directions,” in Sixth
International Workshop on Constraints in Formal
Verification, 2009.

[7] L. Spitzner, “Honeypots: Catching the insider
threat,” in Computer Security Applications
Conference, 2003. Proceedings. 19th Annual,
pp. 170–179, IEEE, 2003.

[8] N. Provos et al., “A virtual honeypot framework.,”
in USENIX Security Symposium, vol. 173, 2004.

[9] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and
F. Freiling, “The nepenthes platform: An efficient
approach to collect malware,” in Recent Advances
in Intrusion Detection, pp. 165–184, Springer,
2006.

[10] T. Sochor and M. Zuzcak, “Study of internet
threats and attack methods using honeypots and
honeynets,” in Computer Networks, pp. 118–127,
Springer, 2014.

[11] C. Sakama and M. Caminada, “The many faces
of deception,” Proceedings of the Thirty Years of
Nonmonotonic Reasoning, 2010.

[12] C. Sakama, M. Caminada, and A. Herzig, “A
formal account of dishonesty,” Logic Journal of
IGPL, vol. 23, no. 2, pp. 259–294, 2015.

[13] N. C. Rowe, “Finding logically consistent
resource-deception plans for defense in
cyberspace,” in Advanced Information Networking
and Applications Workshops, 2007, AINAW’07.
21st International Conference on, vol. 1,
pp. 563–568, IEEE, 2007.

[14] F. De Rosis, V. Carofiglio, G. Grassano, and
C. Castelfranchi, “Can computers deliberately
deceive?,” Computational Intelligence, vol. 19,
no. 3, pp. 235–263, 2003.

[15] Q. Duan, E. Al-Shaer, M. Islam, and H. Jafarian,
“Conceal: A strategy composition for resilient
cyber deception-framework, metrics and
deployment,” in 2018 IEEE Conference on
Communications and Network Security (CNS),
pp. 1–9, IEEE, 2018.

[16] N. Garg and D. Grosu, “Deception in honeynets:
A game-theoretic analysis,” in Information
Assurance and Security Workshop, 2007. IAW’07.
IEEE SMC, pp. 107–113, IEEE, 2007.

[17] T. E. Carroll and D. Grosu, “A game theoretic
investigation of deception in network security,”
Security and Communication Networks, vol. 4,
no. 10, pp. 1162–1172, 2011.

[18] J. Zhuang, V. M. Bier, and O. Alagoz, “Modeling
secrecy and deception in a multiple-period
attacker–defender signaling game,” European
Journal of Operational Research, vol. 203, no. 2,
pp. 409–418, 2010.

[19] D. Ettinger and P. Jehiel, “A theory of deception,”
American Economic Journal: Microeconomics,
vol. 2, no. 1, pp. 1–20, 2010.

[20] N. Rowe, “Planning cost-effective deceptive
resource denial in defense to cyber-attacks,” in
Proceedings of the 2nd International Conference on
Information Warfare & Security, p. 177, 2007.

[21] N. C. Rowe, “Counterplanning deceptions to foil
cyber-attack plans,” in Information Assurance
Workshop, 2003. IEEE Systems, Man and
Cybernetics Society, pp. 203–210, IEEE, 2003.

[22] S. Jajodia, N. Park, F. Pierazzi, A. Pugliese,
E. Serra, G. I. Simari, and V. Subrahmanian,
“A probabilistic logic of cyber deception,”
IEEE Transactions on Information Forensics and
Security, vol. 12, no. 11, pp. 2532–2544, 2017.

[23] N. C. Rowe, “Designing good deceptions in defense
of information systems,” in Computer Security
Applications Conference, 2004. 20th Annual,
pp. 418–427, IEEE, 2004.

[24] S. Mukkamala, K. Yendrapalli, R. Basnet,
M. Shankarapani, and A. Sung, “Detection
of virtual environments and low interaction
honeypots,” in Information Assurance and Security
Workshop, 2007. IAW’07. IEEE SMC, pp. 92–98,
IEEE, 2007.

[25] X. Fu, W. Yu, D. Cheng, X. Tan, K. Streff,
and S. Graham, “On recognizing virtual honeypots
and countermeasures,” in Dependable, Autonomic
and Secure Computing, 2nd IEEE International
Symposium on, pp. 211–218, 2006.

[26] S. Antonatos, K. Anagnostakis, and E. Markatos,
“Honey@ home: a new approach to large-scale
threat monitoring,” in Proceedings of the 2007
ACM workshop on recurring malcode, pp. 38–45,
ACM, 2007.

[27] F. Rubin, “Enumerating all simple paths in
a graph,” IEEE Transactions on Circuits and
Systems, vol. 25, no. 8, pp. 641–642, 1978.

Page 1914

