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Abstract

Cyber deception is a strategy that defenders can
leverage to gain an advantage over cyber attackers.
The effects of deception on the attacker however, are
not yet well understood. Quantifying the tangible
and emotional effects of deception on the attacker’s
performance, beliefs, and emotional state are critical to
deploying effective, targeted cyber deception. Our work
uses data from a human-subjects experiment measuring
the impact of cyber and psychological deception on
over 100 professional red-teamers. These results
demonstrate that an attacker’s cognitive and emotional
state can often be inferred from data already observed
and collected by cyber defenders world-wide. Future
work will leverage this observed data-set to formulate
more informed defensive strategies.

1. Introduction

In the cyber domain, since there is no flawless
defense, persistent attackers typically have the
advantage. However, it is thought that deception
could provide a means of flipping that dynamic in
favor of the defender. There has been a good amount
of theoretical and simulation research done to this
end (Al-Shaer E., 2019). Deception strategies, such
as the use of honeypots and decoys help bolster the
defense of information systems (Cohen, 2006) by
focusing on human elements of the attacker, and using
those attributes to benefit defenders (Gutzwiller et al.,
2018, 2019). Several steps will be necessary for full
effect. First, identify the emotional/cognitive state of
an attacker using data typically available to defenders.
Next, alter this state using on-network interactions
such as deception. Finally, create a mapping between
change in state and desired change in attacker behavior
(i.e., decreased confidence impedes reaching the goal).
In this work we focus on the first step, laying the
groundwork for potentially new impactful, customized
defenses.

Typically, a defender has no way of directly
assessing an attacker’s emotional state; so, the idea
is to instead infer it from network behavior (which
the defender can observe). This paper explores if
such an inference is possible. The results presented
here, which to our knowledge are the first of their
kind, were derived using data from a controlled
human-subjects research (HSR) experiment designed to
understand how defensive deception affects attackers.
We define the emotional state of an attacker to be the
levels of confusion, self-doubt, confidence, frustration,
and surprise that an attacker reported experiencing
throughout the day. Using the data from this experiment,
we develop a classifier that can determine high/low
levels of confusion and self-doubt with accuracy of
roughly 0.68.

The contributions of this work are the following:
• We propose a simple, yet meaningful, model that

captures attacker behavioral patterns.
• Using data collected from a real-world experiment

involving cyber attack experts, we show that it
may be possible in some cases to accurately infer
some aspects of the emotional state of an attacker.

• We demonstrate that there appears to be a
strong correlation between emotional state and the
frequency an attacker performs reconnaissance
and intrusion actions.

• We analyze the behavior of attackers who
report extreme levels of confusion and self-doubt
according to the proposed model.

• We evaluate the functional consequence
of knowing emotional states by examining
relationships to maximum threat potential.

For contribution 5), our main result is to show that
seven independent variables account for 28.7% of the
variance in threat potential, with attacker’s emotional
state accounting for a majority of it. These results
together imply that not only may it be possible to
infer an attacker’s emotional state, but also that this
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information is associated with attacker performance on
the network.

2. Related Work

As cyber attacks have become increasingly more
sophisticated, defending networks against such attacks
has become even more difficult. In some instances,
researchers have claimed that network defenses have
“reached the limits of what traditional defenses...
can do” (Heckman et al., 2015). Consequently,
recent research into cyber defense has investigated
new innovative strategies that leverage additional
information such as deception as well as the attacker’s
cognitive/emotional state (Ferguson-Walter et al.,
2021b; Veksler et al., 2020)

Researchers have measured the efficacy of
deception through the use of decoys and the
result such defensive tactics can have on attacker
performance (Ferguson-Walter et al., 2021b; Fraunholz
et al., 2018; Michael, 2002). However, a fuller
understanding of using cyber deception for maximal
impact is still needed. For example, the work
in (Ferguson-Walter et al., 2021b) experimentally
demonstrated that knowledge of deception may play
a critical role in increasing the impact of the actual
cyber deception that is present. (Heuer Jr, 1981) and
(Yuill et al., 2006) also claim that the knowledge
of deception heavily influences the decision-making
process of an attacker. It has been proposed that in
order to maximize the impact of any deceptive strategy,
the cognitive/emotional state of the attacker should be
taken into account (Cranford et al., 2020, 2021).

In (Veksler et al., 2020), the authors used symbolic
deep learning to construct cognitive models of expert
behavior. One of the goals was to develop models
of attacker decision bias to reduce the risk of
successful attacks. The goal of (Cranford et al.,
2020) was to characterize cognitive state using the
Instance-Based-Learning (IBL) model, to then later use
this information to improve network defenses.

In this work, we explore the connection between the
emotional state of a cyber attacker and thier observed
network behavior. Previous studies on the subject
(Al-Nafjan et al., 2017; Kim et al., 2013; Kotowski et al.,
2020; Soroush et al., 2017) have leveraged machine
learning algorithms to differentiate between emotional
states provided a set of derived electroencephalography
(EEG) signals as input. Accuracies of up to 94% have
were reported for two-class discrete problems and up
to 82% for four-class discrete problems. In (Ghosh
et al., 2017) and (Trojahn et al., 2013), the authors
considered the related problem of performing emotional

recognition using keystrokes rather than EEG signals.
For this setup, accuracies ranging between 77-88% were
reported for two-class discrete problems and 84% for
four-class. While the accuracy is high, the data used
to achieve it is not something that can be realistically
collected from malicious cyber intruders.

This work, which to the best of the authors’
knowledge is the first of its kind, departs from previous
research in the following ways: (1) We consider the
problem of predicting an individual’s emotional state
within an adversarial cyber environment using HSR
data from a real exercise. (2) Unlike previous work
that usually aims to differentiate between two or four
emotional states, we attempt to differentiate high/low
levels of each attribute of an attacker’s emotional state.
As people can feel multiple emotions simultaneously,
this is a more general approach and provides a much
richer possibility of outputs that can potentially be
leveraged by a defender in making decisions. (3) The
input to each of our classifiers does not require signals
from wearable devices or keystroke records, which
are often impossible to obtain from a cyber attacker.
Instead, the input to each of our classifiers is a derived
set of features that can be obtained from an attacker’s
packet capture (PCAP) data, which a defender could
obtain.

3. Tularosa Study

The Tularosa study was designed to understand
the effects of deception, both real and psychological,
on cyber attackers. During 17 sessions, over 130
experts participated in two days of network penetration
testing. To measure the effect of deception, participants
were either presented a network with decoys or no
decoys, and were either told deception may be present
or left uninformed of the possibility of deception. In
addition to host and network traffic, data collected
from each participant included cognitive surveys:
fluid intelligence, working memory, personality,
decision-making, task-specific questionnaires (TSQ),
and qualitative self-reports. More details can be found
in the Tularosa Study (Ferguson-Walter et al., 2018),
its online Appendix, and results showing efficacy of
deception (Ferguson-Walter et al., 2021b).

Participants worked independently and were given
an initial foothold on their individual copy of the
simulated target network. The network for participants
with no deception included 25 real Windows and 25
real Linux machines representing a variety of operating
systems, patch levels, and services. Networks with
deception present included an additional 25 Windows
decoys and 25 Linux decoys. Each decoy responded to
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scans similarly to their real counterparts; however, the
decoys did not respond the same as real machines to
intrusions or exploits. Logon attempts on decoys always
failed.

Participants were motivated to emulate an Advanced
Persistent Threat (APT) and asked to: “conduct
recon on the network and locate vulnerable services,
misconfigurations, and working exploits...” using Kali
Linux. In addition to the cyber task, the participants
logged their findings and strategies in a variety of ways,
including real time self-reporting, end-of-day briefings,
and in the TSQ, which provides the participants’ own
evaluation of their emotional state for that day.

For the results discussed in Section 5, we made
use of two sources of data: (a) A dataset consisting of
known network-based cyber attacks identified from the
raw network traffic (PCAP) for each participant, and
(b) the TSQ survey. We included data from the 108
test subjects for whom we had both network attack data
and a completed TSQ survey. For the TSQ survey,
the participants were asked to assign scores between
1-5 indicating their levels of confusion, self-doubt,
confidence, frustration, and surprise throughout the day.
For shorthand, we refer to these as aspects of emotional
state. See (Ferguson-Walter et al., 2021a) for previously
published results on a thematic analysis of the TSQ data.

In addition to TSQ scores, Section 6 also
incorporates threat potential ratings and measures of
personality and decision-making style. Threat potential
ratings were derived based on a consensus between
three cyber experts. A rating between 1 − 5 was
assigned for each of the 22 unique PCAP events,
including success and failure outcomes for each event.
Reconnaissance events (e.g., web requests) were coded
as “1” whereas successful intrusions were coded as
“5” (e.g., successful Server Message Block [SMB]
logon). The middle scores ranging from 2-4 included
more involved reconnaissance events (e.g., SMB scan),
intrusion failures (e.g., SMB logon failure) and exploit
failures (e.g., failed Eternalblue exploit), in order of
increasing threat. Importantly, the threat potential
ratings considered both the lethality of the action as
well as the outcome (failures and successes). The
highest threat potential rating for each subject was
then extracted and labeled as maximum threat, and
refers to the highest level of potential damage each
subject was capable of causing to the network. We
also incorporated implicit traits including personality
(Big Five Inventory; BFI, (John et al., 1999)) and
decision-making style (General Decision-Making Style
Inventory; GDMSI, (Scott and Bruce, 1995)) to
determine the relative strength of the association
between emotional state and behavior, compared to

implicit traits. The same 108 subjects from Section 5
were included, however one subject was dropped due to
a lack of BFI data.

The Tularosa Study occurred over 4 years ago and
was conducted for a different purpose. Thus, while
we extracted additional value from its data, there are
notable limitations for our purposes. In the original
experiment...While the TSQ data did capture aspects
of emotional state, they did so only at the end of each
day. Better resolution and/or other means of measuring
emotional state would of course be helpful. Further,
while our analysis establishes a number of interesting
correlations, very specific subsequent experiments are
needed to tease out causation.

4. Model

In this section, we first review the model used to
characterize attacker behavior. Afterwards, we present
the procedure used to generate the classifiers discussed
in Section 5 with initial observations from Tularosa data.

Recall from the previous section, that in order to
design our emotional classifiers, we leveraged both
PCAP data and information from a TSQ survey that was
collected at the end of of the first day. Each network
event recorded in the PCAP data was assigned one of
the following three labels: (1) recon, (2) intrusion, and
(3) exploit. Events identified as recon occur when the
attacker is gathering information about the environment.
Intrusion events are those used to gain access to a system
whereas exploit events compromise systems by causing
them to enter into an insecure state. A more detailed
description of this process can be found in Appendix A.

As a starting point, we defined the state of an attacker
at any given time to be the label of the last recorded
network event for that attacker. Since there are three
states, and it is possible to go from any state to any other
state, we characterized the behavior of an attacker over
a fixed time interval according to a first-order discrete
Markov chain, which can be represented as a set of
9 probabilities:

{
p1|1, p2|1, p3|1, p1|2, . . . , p3|3

}
, where

pi|j denotes the probability of going to state i provided
we are in state j. For shorthand, we refer to this model
as the first-order behavioral Markov model.

Despite its simplicity, the information contained
in this model is correlated with the scores provided
by participants during the TSQ survey. For example,
we consider two extreme groups with respect to their
reported frustration levels on the TSQ survey. The
left and right state diagrams in Figure 1 respectively
show the average transition probabilities of attackers.
The attackers who reported a “5” on the TSQ for high
frustration are shown on the left, whereas the attackers
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who reported a “1” for low frustration are shown on the
right. For both types of attackers, they each spend most
of their time in recon and intrusion states. Furthermore,
both types of attackers behave similarly given that they
are in the exploit state. However, for the case where the
attackers are in the intrusion state, the high frustration
attacker is more likely to remain in the intrusion state
than the low-frustration attacker. This could indicate
frustrated attackers are more likely to continue pursuing
a fruitless intrusion endeavor or that pursuing fruitless
endeavors can increase frustration. In general, the high
frustration attacker is less likely to launch an exploit
regardless of its previous state. This further motivates
creating defenses that impart frustration upon attackers.

Figure 1. Behavior of high/low frustration attacker

Figure 2 displays from left to right the average
transition probabilities for attackers who reported a
high (4 or 5) confusion score along with attackers
that reported a low (1) confusion score. Given that
an attacker is in the recon state, the low-confusion
attacker is more likely to trigger an intrusion or exploit
event than a high-confusion attacker. This further
motivates defensive strategies, like deception, which
cause confusion to attackers.

Figure 2. Behavior of high/low confusion attacker

In order to further explore this behavioral model and
to develop a more accurate classifier, we constructed a
set of 5 binary prototype classifiers (Wellek, 2002) (one
for each of the 5 aspects of emotional state) that attempt
to predict the emotional state based upon the following
features:

1. Transition probabilities (9) from the first-order
behavioral Markov model,

2. Number of seconds the attacker is idle,
3. Number of successful exploits,
4. Ratio of successful versus total exploits.

In order to compute feature 2) above, we first computed
the number of idle seconds (rounded down) between the

start time of every event (recon, intrusion, exploit) that
originated with the attacker, then summed these terms.

For shorthand, we refer to the classifier that
predicts confusion, self-doubt, confidence, frustration,
or surprise as the confusion classifier, self-doubt
classifier, etc. As will be described in more details in the
next few paragraphs, the inputs to each of our classifiers
will be a set of data points that represent some subset of
the features (1-4) at various points in time.

The output of each of our classifiers is a binary
integer where, for some particular emotional aspect, the
output 0 or 1 indicate a low or high level, respectively.
For instance, an output of 1 from the frustration
classifier indicates that the attacker is experiencing high
levels of frustration. The prototype classifiers presented
here use the Euclidean distance in the feature space to
determine distance, and only the data from individuals
who reported high/low levels of each of the emotional
aspects was used in this work.

In order to generate a set of data points that can be
used for training and validation, we first partition each
participant’s data into non-overlapping intervals of 30
minutes. For each of these intervals, we compute the
nine transition probabilities for the first-order behavioral
Markov model along with the values of the other three
features. These 9 transition probabilities along with
number of idle seconds, successful exploits, and ratio
of successful exploits comprise the set of 12 features
that will be used for training. Altogether, this procedure
resulted in 1336 data points that were used for both
testing and validation. For more information regarding
the generation of our data, see Appendix B.

Procedure 1 highlights the 3 steps of our
methodology for developing binary prototype
classifiers. Consider the classifier for emotional
aspect A where A ∈ {confusion, self-doubt,
confidence, frustration, surprise}. Our
procedure takes as input the emotional aspect A along
with the number of cluster centers that are labeled 1,
denoted kh, and the number of cluster centers labeled 0,
denoted kl. Using Elkan’s algorithm, we run k-means
clustering on the data labeled 1 given kh centroids 1,
and then we run k-means clustering on the data labeled
0 given kl centroids. Finally, the classifier is evaluated
using the shuffled leave-p-groups-out cross-validation
(LPGOCV) method for 20 iterations each time
considering 30% of the data as the validation set. The
empirical results presented in Section 5 were generated
using the RandomForestClassifier, StandardScalar, and
KMeans libraries from from scikit-learn.

1The clustering algorithm partitions the data into groups of similar
points (clusters), according some distance metric. The centroid
represents the center of a particular cluster.
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Procedure 1 ClassifyAspect

Input: A ∈ {confusion,self-doubt,confidence,
frustration,surprise},

Parameters: kh, kl
Training Stage:

1: Perform feature selection using random forest selection. For each
of the 12 possible features, a feature is selected if its Gini Importance
exceeds 0.02.

2: Scale the training data so that the resulting set of features have zero
mean and unit variance.

3: Using only data labeled 1, perform k-means clustering provided a
target of kh centroids. Afterwards, using only data labeled 0,
perform k-means clustering provided a target of kl centroids.

Validation Stage:
Validate the training set using shuffled leave-p-groups-out for 20
iterations considering each time 30% of the data as the validation set,
and performing steps 1)-3) in the training stage.

In order to get an indication of how well individual
participants can be categorized into different behavioral
groups, we ran k-means clustering on all 12 features
and measured the inertia2 as a function of the number
of clusters using the data from all the participants
(regardless of their TSQ scores). The inertia dropped
from over 12000 to roughly 1500 when the number
of clusters was increased from 1 to 20. Increasing
the number of clusters beyond 20 resulted in a less
significant decrease and the resulting inertia for 30
clusters for instance was around 1000. Motivated by this
observation, the prototype classifiers considered in the
next section will have no more than 20 centroids.

5. Results

For each of the five emotional aspects, we ran the
ClassifyAspect approach outlined in Procedure 1
where we allowed kl and kh to each range independently
from 2 to 10. Figure 3 displays the result of selecting
for each emotional aspect, the parameters kl and kh that
maximize the accuracy of the resulting classifier along
with the total number of centroids used for each one.

As can be seen from Figure 3, each of the resulting
classifiers have an accuracy of between 59% and 69%.
From our data set, we were able to infer high/low levels
of confidence and self-doubt with the highest accuracy
whereas we were only able to determine frustration
accurately around 59% of the time. There does not
appear to be a strong correlation between the number of
centroids and the accuracy of the resulting classifier. For
instance, the confidence and frustration classifiers have
8 and 7 centroids, respectively, yet the accuracy of the
frustration classifier is much lower than confidence.

We found that certain behaviors (under our
first-order behavioral Markov model) are more

2The inertia is the sum of the Euclidean distances between each
data point and its centroid.
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Figure 3. Emotional Aspects Classifiers

correlated with high/low levels of various emotional
aspects than others. Table 1 displays the values of kh,
kl that achieved the maximum average accuracy. The
average accuracy of the classifier appears in the third
column3. The fourth column shows the average number
of centroids found during the validation step described
in Procedure 1 that had precision exceeding 70%. For
example, the fifth column, second row of indicates that
on average there was a set, say S of 8.9 centroids with
the property that when the input data point was closest
in Euclidean distance to one of the centroids in S, then
the output of the classifier (which indicates a high/low
level of confusion) is correct at least 70% of the time.

kl kh accuracy # precise
confusion 10 10 0.63 8.9
self-doubt 8 9 0.68 8.75
confidence 5 3 0.69 3.7

surprise 7 10 0.61 7.05
frustrated 3 4 0.59 1.95

Table 1. Centroid count and accuracies

In Figure 4, we show the 5 most important features
using the Gini Importance measure for each of our 5
classifiers. For example, the first set of 5 bars show the 5
features with the largest Gini Importance for confusion.
The feature which counts the number of idle seconds
is denoted as “idle” on the x-axis. The remaining
features are related to transition probabilities in our
first-order behavioral Markov model. We abbreviated
these transitions using the notation “state 1 -> state 2”
where we denote the states by their first letters only. For
example, “R -> I” represents recon to intrusion. 4

From Figure 4, notice that the set of top 5 features
are the same for each of our classifiers, and the
number of idle seconds consistently had the highest Gini
Importance score. However, the relative importance
of the remaining 4 (of the top 5 features) varied

3Note that for our setup, we are considering the average accuracy
over each of the validation sets.

4The data shown below for Gini Importance was derived
using the RandomForestClassifier available from scikit-learn
(Scikit-Learn, 2022).
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depending on the particular classifier. For example, the
recon to intrusion transition probability was the second
highest feature for confusion, surprise, and frustration
whereas the transition probability from intrusion to
intrusion was the second highest scoring feature for
self-doubt and confidence. Another interesting trend
from the observed data is that the transition probabilities
involving intrusion and recon seem more important than
transition probabilities involving exploit. None of the
features involving the exploit state appear in Figure 4.

In order to better capture behaviors that are
correlated with high/low levels of various emotional
aspects, we first perform the same procedure as
described in Procedure 1 except for two key differences:
(1) In the training stage, we do not perform feature
selection (step 1)), and (2) Rather than perform
leave-p-groups out cross-validation, we set aside 30%
of the data set (randomly chosen) for validation and train
on the remaining 70%. For shorthand, we will refer to
the resulting procedure as ClassifyAspect2.

We ran ClassifyAspect2 for confidence with
kl = 5 and kh = 3. Note that this number of clusters
gave the highest accuracy with respect to confidence
according to Table 1. Figure 5 depicts the centroid with
the label 0 that had the highest precision (from among
the 5 possible centroids) and the centroid with the label 1
with the highest precision (from among the 3 possible).
For instance, the feature corresponding to the transition
probability from recon to intrusion for the centroid on
the right has value 0.3333 and the feature corresponding
to the transition probability from recon to recon for
the same centroid has value 0.66667. We display
the features associated with the transition probabilities
graphically to better convey these two centroids where
the high confidence centroid is displayed on the left and
the low confidence on the right in Figure 5. Note that
since these plots are representing centroids (and are not
actual conditional probabilities), the sum of the arrows
going out from any fixed state need not sum to one.

Perhaps not surprisingly, a low confidence attacker
is more likely to remain in the recon state than a

Figure 5. High/Low Confidence Centroids

high confidence attacker. Furthermore, as expected,
high confidence individuals are more likely to launch
an intrusion than low confidence individuals. For
the centroids depicted, we can see that individuals
associated with the high confidence centroid are more
likely to go from the recon state to the intrusion state.

Running ClassifyAspect2 for self-doubt with
kl = 8 and kh = 9 gives Figure 6 where the image
on the left and right represent the transition probability
features for the highest precision centroids labeled 1
and 0, respectively. We see a similar pattern here as in
Figure 5 where a low self-doubt attacker is more likely
to to launch an intrusion provided they are already in the
intrusion state, and a high self-doubt attacker is more
likely to remain in the recon stage.

Figure 6. High/Low Self-Doubt Centroids

6. Relationship to Threat Potential

Recall that the TSQ scores were self-reported at the
end of the day, and not broken down into 30 minute
windows, as the PCAP data was in the classifier model.
This temporal difference in measurement between
emotional state and behavior may have impacted our
ability to get highest possible classifier accuracy. To
help address this, the relationship between emotional
state and overall behavior was assessed another way
using maximum threat potential ratings, which have
better temporal concordance with the TSQ scores. To
test the relative strength of the association between
explicit emotional state (TSQ) and behavior, we also
included implicit measures (BFI, GDMSI) of attacker
cognition for comparison.

107 subjects were used to analyze the relationships
between cognition (TSQ, BFI, GDMSI) and maximum
threat potential. In this section, relationships between
psychological traits and maximum threat ratings were
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assessed using all the TSQ scores rather than just the
extremes (as in Section 5) to allow for linear modeling
of the variance. First, separate individual correlations
were run between attacker traits (TSQ, BFI and GDMSI
measures) and maximum damage ratings, to assess the
underlying relationships between the variables. Next,
a step-wise linear regression with backwards selection
was run in R (R-Project, 2022) using the stepAIC
function. The outcome variable was the maximum
threat ratings, and the entered candidate variables
were emotional states (TSQ), personality (BFI) and
decision-making styles (GDMSI). The top predictors
were chosen based on smallest akaike information
criterion (AIC) for the model. The output took the
form of a linear model, ŷi = B̂0 + B̂1x1 + ϵ̂, where
ϵ̂ is sampled from N(0, σ2). B̂0 is the intercept,
B̂1 is the estimate coefficient for the first independent
variable in the model (followed by other independent
variables if more than one was included), and ϵ̂ is
calculated using the residual standard error (σ). For
step-wise regression, the final model was: ŷi = 6.64 −
0.26x1+ 0.14x2−0.02x3− 0.02x4− 0.03x5−0.04x6+
0.04x7 + ϵ̂ with Adjusted R2 = 0.29, F (7, 99) =
7.08, p < 0.001. The top independent variables
were confusion (TSQ), confidence (TSQ), extraversion
(BFI), agreeableness (BFI), openness (BFI), avoidant
(GDMSI) and spontaneous decision-making styles
(GDMSI), and correspond in order to x1 through
x7, see Figure 8. Together, these explain 28.7% of
variance in maximum threat potential, and the strongest
associations to maximum threat potential were the
emotional states.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.64 0.71 9.41 0.00
Confusion -0.26 0.07 -3.94 0.00
Confidence 0.14 0.06 2.35 0.02
Extraversion -0.02 0.01 -2.29 0.02
Agreeableness -0.02 0.01 -1.49 0.14
Openness -0.03 0.01 -2.34 0.02
Avoidant -0.04 0.01 -3.10 0.00
Spontaneous 0.04 0.02 2.37 0.02

Outcome variable: Maximum threat potential 

Table 2. Final Step-Wise Regression Model

Since pre-existing relationships between
independent variables (i.e., multi-collinearity) could
have affected the final linear model, a correlation matrix
was used to quantify the amount of overlap within TSQ
measures. Most TSQ measures were significantly (p
< 0.0125, Bonferroni corrected) correlated with each
other, except confidence, which was not significantly
correlated to surprise or frustration (p > 0.05), see
Figure 8. The direction of the associations were as

expected (e.g. lower self-doubt was associated with
higher confidence; Spearman’s Rho = −0.42), and the
amount of overlap between the TSQ measures ranged
from 17% to 5.8% (Spearman’s Rho2), with confidence
and confusion showing the lowest overlap, see Figure 7.

Building on this, variance inflation factors (VIF)
were calculated to quantify the amount of collinearity
between all independent variables in the step-wise
regression. VIFs were calculated (1/(1−R2)) using the
VIF function in R (Naimi et al., 2014). Variables with
VIF > 10 should be dropped from the model because
they display a strong relationship to other independent
variables (typically demographic variables such as age,
sex). For our results, VIFs were less than 2.8 for all
variables in the final model, suggesting that the influence
of collinearity was minimal (Welton et al., 2020).
Although there was some degree of correlation between
some TSQ measures (Figure 7, left), total collinearity
between independent variables in the final model was
small.

Figure 7. TSQ Correlation Matrix

7. Conclusions, Limitations, Future Work

One of the primary challenges of cyber defense
is overcoming the asymmetry between attacker and
defender: where an attacker only needs to find a single
weakness in the network, while the defender must keep
the whole network safe. Overcoming this asymmetry by
allocating ever more resources to defense is untenable,
so gaining special insight into attacker psychology
could help reverse the asymmetry and provide defenders
another tool for protecting information systems.

The current study takes steps towards that goal
by demonstrating that an attacker’s emotional state is
closely associated with their behavior on a network.
Specifically, in Figure 6 we demonstrate that emotions
such as confidence (low vs. high) are associated
with an attacker staying in the recon stage rather
than proceeding to the intrusion stage. Preliminary
analysis across multiple days has been promising
as well, suggesting that the trends discussed in
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Sections 4 and 5 may hold in more general settings.
Table 2 demonstrates that explicit emotional states
are unique compared to implicit measures (BFI or
GDMSI) by explaining the bulk of the variance in
maximum threat potential; higher confidence and
spontaneous decision-making, and lower confusion
and agreeableness was associated with greater threat
potential. More work is needed to fine-tune defensive
responses to maximize negative impact on attacker
activity, especially more cyber-relevant experiments
built upon the emotional state of attackers (Johnson,
2022).

This study builds on previous work
(Ferguson-Walter et al., 2018, 2021b) to demonstrate
that the psychology of a cyber adversary is associated
with their actions on a network. As next steps,
it would be valuable to investigate associations
between certain psychological features and behavior at
different temporal stages of an attack, since Section 5
demonstrated that emotional state during early stages of
the kill chain is correlated with behavior at later stages.
It would be interesting to investigate how behavior
can be manipulated through coordinated deployment
of deception to keep attackers in the recon stage by
affecting psychological features like confidence and
self-doubt. Regarding limitations, the ability to collect
certain features likely affected our results. PCAP
data was collected every 30 minutes, whereas TSQ
data was only collected at the end of the day, thereby
reducing our ability to match varying cognitive states
with performance throughout the day. Thus, cognitive
measures are more likely to reflect overall features of
attackers rather than precise changes in psychology as
they performed the task. Despite this limitation, our
results still indicated a significant correlation between
PCAP data and TSQ measures. This suggests that
even generalized measures of cognitive state can be
captured using PCAP data, at least to some degree.
Future experiments with more temporal precision would
be informative. Another limitation was that we were
not able to fully examine the effects of psychological
deception and decoy presence due to a high attrition rate
in participants. For example, although 130 participants
were initially recruited only 107 had intact PCAP
and TSQ data sets, this reduction across deception
conditions limited the current study’s statistical power.
Future studies which specifically examine this impact
of deception would be highly valuable.

The ability to identify and measure a cyber
attacker’s emotional state sets the stage for shifting
the advantage to defenders. Recent work on
understanding decision-making biases of cyber attackers
further demonstrates the utility of understanding and

manipulating an attacker’s mental state for defensive
advantage (Johnson et al., 2021). Exploitation of the
Sunk Cost Fallacy is one notable example. HSR using
the CYPHER game indicates that this decision-making
bias exists in cyber-relevant progress decisions, and can
be induced by presenting certain kinds of scenarios to
the cyber attacker (Johnson, 2022). While CYPHER
investigated the role of uncertainty, results were
inconclusive, and other emotional states were not
explored. As the linkage between explicit emotional
traits and cyber attack behavior become clearer, our
work on emotional state classification can augment this
kind of HSR by providing additional indicators of when
the bias elicitation is effective, or when its use is most
warranted.

Adaptation of deceptive elements like honeypots,
decoys, and honeythings, are quickly moving from
manual to automated (Al-Shaer et al., 2019). However,
how and when these deceptive elements should be
adapted is still an open question. If it can be shown
that emotional state has a causal effect on an attacker’s
success, then learning how to influence the attacker’s
emotional state could be a first step towards preventing
network penetration.
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A. Data Curation Process

Data used for this analysis were extracted from the
Tularosa network traffic packet captures (PCAPs). Data are
categorized into one of three types of events: reconnaissance
(recon), exploits, and intrusions.

To generate this dataset, a cyber expert reviewed screen
recordings for participants with high levels of activity and
successes such as gaining access to the domain controller
or compromising multiple Windows boxes. The expert
selected actions which were frequently observed among the
participants, examined the cyber event in the network data
using tools such as Wireshark and developed python scripts to
automatically identify and extract these events from the PCAP
data. This list of events was validated by the data analysis
team by informally comparing those actions to other cyber data
sources such as the participant’s self-report logs, keystrokes,
and IDS alerts. The cyber events used for this analysis are
described in Table 3.

There are a few limitations to this dataset. The cyber
activity was only evaluated by a single cyber expert, and while
the most impactful and most prevalent events were prioritized,
it is not exhaustive of all events. Additionally, the data points
identified here are not comprehensive—many smaller attacks
used by a subset of participants, or the same attacks executed
in a unique way—will not be identified by the script looking
for specific indicators of that attack. However, these events
are prolific among the entire participant pool and demonstrate
nearly universal paths to success on the cyber task. Data
collected from this selection is robust enough to apply, learn,
and test multiple hypotheses.

B. Generation of Feature Data Points

For the purposes of this study, we only included data
from individuals who rated high or low on the TSQ survey
provided at the end of the first day. Table 4 summarizes
how we determined high/low levels of the various emotional
aspects along with the number of attackers that were
subsequently characterized as possessing high/low levels of
certain emotional aspects accordingly. For example, the
second row conveys that individuals who reported a score of 1
for confusion on the TSQ survey are labeled as low-confusion
while those who reported a score of 4 or 5 are labeled
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Recon Events Description
Port/Service Scan Repeat RST/ACK flags indicating

“port closed” messages.
SMB Scan
(enum4linux, etc.)

SMB auth attempt with username
“NULL”.

DNS Query Standard DNS Query
NMap (SMB)
Script Scan

Hard-coded values of \\winreg
and \\router used during nmap
SMB script scanning.

Nmap HTTP Scan Web scans with “Nmap” in
user agent string.

Nikto HTTP Scan Web scans with “Nikto” in
user agent string.

Web Request Web scan with other
user agent.

Exploit Events Description
MS-08 010:
Eternalblue
Attempt

Metasploit payload includes the
distinct memory offset of a string
of ‘A’s.

Eternalblue
117 Byte Negotiate

Initial Eternalblue packet, useful
to detect attacks on decoys, invalid
targets.

vsFTPd v. 2.3.4
Backdoor Attempts

Attempt to log into FTP with a
“:)” username.

SMB MS09-050
Attempt

Metasploit attack on Win. Vista
& Win. 8, despite targets absent
from network.

Intrusion Events Description
SMB Logon
Attempt

SMB connection from host to
target with messagetype ==
NTLMSSP AUTH. Successful if
subsequent packet stream matches
login, and frame higher than login.

SMB Logon
Failure

SMB response packet contains
failure code 0xc000006d.

Reverse Shell
(Successes)

Successful TCP sessions initiating
from target back to attack machine
on high ports (>1000). Most
subjects used default port 4444.

VNC Connection A VNC authorization sent to
connect to a target.

Table 3. Cyber Activities Identified in PCAP Data

high-confusion. According to this labeling, there are 17
high-confusion individuals and 10 low-confusion individuals.
The confusion classifier was trained and validated using data
from these 27 individuals.

Although different numbers of individuals were used to
generate high/low data points, the data was normalized so
that (for each aspect) the number of datapoints labeled high
was equal to the number of datapoints equal to 0. Because
we partitioned each participant’s data into non-overlapping
intervals of 30 minutes, each participant could contribute up

to 18 data points5. Our implicit assumption in this approach
was that even when the emotional state is known, the attacker
behavior is not necessarily homogeneous.

C. Additional Results and Observations

Table 5 includes additional details not discussed in
Section 5. In particular, this table shows the total number
of features used on average by the respective classifiers along

59 hours × 2 data samples per hour

Low High # High # Low
confusion 1 [4, 5] 17 10
self-doubt 1 [4, 5] 10 18
confidence 1 5 6 11

surprise 1 [4, 5] 31 26
frustrated 1 5 17 12

Table 4. High/Low Data Points

with the average number of clusters that had precision at least
65%, which appears as the fourth column, along with the
average number of clusters with precision at least 70%, which
is displayed in the fifth column. Notice that the information in
the fifth column of Table 5 is the same information contained
in the last column (fifth column) of Table 1. From Table 5,

accuracy features ≥ 65 ≥ 70
confusion 0.63 9.05 10.3 8.9
self-doubt 0.68 9.15 9.85 8.75
confidence 0.69 7.2 4.6 3.7

surprise 0.61 9.85 9.15 7.05
frustrated 0.59 8.6 2.3 1.95

Table 5. Centroid count and precise centers

it can be observed that the number of features was fairly
consistent amongst the five different classifiers where the
average number of features ranged from 7.2 for confidence to
9.85 for surprise. Overall, there doesn’t seem to be a strong
relationship between the number of features and accuracy of
the classifier. Both the most and least accurate classifiers had
the smallest number of features and the second most accurate
classifier (self-doubt) had a rather large number of features.

The recall, precision and F1 scores for each of our five
classifiers is displayed in Figure 8. The performance of our
classifiers with respect to these metrics varies significantly.
Both the confidence and self-doubt classifiers have precision
above 70%. Recall for self-doubt is 0.72. However, these
scores are much lower for our other classifiers – recall and
precision for frustration is only 0.48 and 0.63 respectively.
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Figure 8. Additional Metrics
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