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Abstract

Cyber deception is used to reverse cyber warfare
asymmetry by diverting adversaries to false targets
in order to avoid their attacks, consume their
resources, and potentially learn new attack tactics.
In practice, effective cyber deception systems must be
both attractive, to offer temptation for engagement, and
believable, to convince unknown attackers to stay on
the course. However, developing such a system is a
highly challenging task because attackers have different
expectations, expertise levels, and objectives. This
makes a deception system with a static configuration
only suitable for a specific type of attackers. In order
to attract diverse types of attackers and prolong their
engagement, we need to dynamically characterize every
individual attacker’s interactions with the deception
system to learn their sophistication level and objectives
and personalize the deception system to match with
their profile and interest. In this paper, we present
an adaptive deception system, called HoneyBug, that
dynamically creates a personalized deception plan for
web applications to match the attacker’s expectation,
which is learned by analyzing their behavior over
time. Each HoneyBug plan exhibits fake vulnerabilities
specifically selected based on the learned attacker’s
profile. Through evaluation, we show that HoneyBug
characterization model can accurately characterize the
attacker profile after observing only a few interactions
and adapt its cyber deception plan accordingly. The
HoneyBug characterization is built on top of a novel
and generic evidential reasoning framework for attacker
profiling, which is one of the focal contributions of this
work.

1. Introduction

In cyberspace, the relationship between attackers
and defenders is highly asymmetric. On the one
hand, attackers can discover vulnerabilities and exploit
the target systems in a highly stealthy way. On
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the other hand, defenders are usually unaware of the
attackers’ techniques or skills. This asymmetry makes
cyber defense much harder than cyber offense. Cyber
deception systems offer new capabilities to reverse this
asymmetry by (1) learning important information about
attacker’s capabilities and goals, (2) diverting attackers
to false targets and wasting their resources (e.g., time
and effort), and (3) slowing down the attackers in such
a way that allows the defender to timely respond and
harden the security.

Traditional honeypot systems such as honeyd [1] or
nepenthes [2] are examples of cyber deception systems
that construct fake computing systems resembling real
ones for the sake of attracting attackers. If an attacker
interacts with a honeypot, this will allow for observing
the attacker’s actions and learning their attack strategies
and goals, while keeping the attacker distracted from
reaching the real assets.

A major drawback of most existing deception
systems is their static nature that makes them incapable
of blending with the surrounding environment and
reshaping their structures based on the attackers’
characteristics. Blending with the environment (e.g., by
mimicking surrounding cybersystem configurations) is
important to reduce the attackers’ suspicion. However,
itis not enough, and a deception system should also have
the ability to reshape (adaptive reconfiguration) itself to
engage the attacker for a longer time.

Most of the existing honeypot systems have static
configurations. In such systems, administrators have
to decide about the types and sophistication levels
of vulnerabilities the system must expose. Adding
too many vulnerabilities can make the system less
believable (untrusted) by attackers. On the other hand,
enabling too few vulnerabilities can make the system
less compromisable; thus, making it less attractive.

Several works have presented the idea of
context-aware deception systems such as Dynamic
Honeypot [3] and HIDE which can adaptively blend
with the environment. However, the adaptation is only
based on the changes in configurations of neighbor
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systems. To the best of our knowledge, none of
the existing works have proposed an approach that
considers an attacker’s characteristics, such as expertise
level, to adapt its deception plans.

In this paper, we present HoneyBug, an adaptive
deception system for web applications that both blends
seamlessly with the runtime environment, and reveals
different deception plans based on attackers’ expertise
level and interests. = HoneyBug constructs a web
honeypot from an existing production web application
by introducing fake vulnerabilities in its replica. Both
the resulted honeypot and the real web applications are
then placed behind HoneyBug. During its operation,
HoneyBug monitors all the traffic, and based on its
characterization model, decides whether the traffic must
be redirected to the web honeypot. In this process,
HoneyBug also learns attackers’ expertise level and
the attack vector they are interested in, and utilizes
this knowledge to adapt the honeypot by enabling or
disabling the introduced fake vulnerabilities.

HoneyBug is a self-adaptive system that is designed
based on Monitoring, Analyzing, Planning, and
Executing (MAPE) model presented in [4] and offers the
following features:

* Transparency. One of the main disadvantages of
traditional deceptive systems is their limited field of
view, which means they cannot engage an attacker
who is sending traffic toward them. From the users’
perspective, HoneyBug is not separable from the
original web application. As a result, if an attacker
targets the original web application, their attack traffic
will be received by HoneyBug.

 Indistinguishability. = Based on the structure of
the web application and its appearance, an attacker
cannot distinguish whether they are working with the
production web application or with the HoneyBug
web application.

* Adaptivity. HoneyBug transforms the web
environment by interpreting the attacker’s behavior
and considering their goals. This transformation
occurs on the fly and in a way that will not make the
attackers suspicious about it.

2. Related work

In the late ’90s, the interest in defensive cyber
deception picked up by the advent of honeypot systems
and the formation of the Honeynet Project. In
early 2000s, several seminal works such as [5, 6,
7, 8, 9] proposed different type of honeypots like
honeyd, honeytokens, honeyfile, dynamic honeypots,
and honeyfarms to enhance the security of information
systems by giving insight about attackers to defenders

and by diverting attackers from production systems.

Mueter et al. [10] proposed HIHAT, a generic tool
to create a standalone high-interaction web honeypot
from an existing web application by adding extra code
to the original web application such that it logs all
receiving web inputs at runtime. HoneyBug differs
from HIHAT in a number of important ways. First,
to create a web honeypot, HoneyBug modifies the
code of the original web application to introduce fake
vulnerabilities. Second, during runtime, HoneyBug
characterizes attackers by observing their traffic. Based
on these characterizations, it decides which of the
implanted fake vulnerabilities must be activated to make
the system more engaging and also to prevent honeypot
mapping attacks. Last but not least, in HoneyBug,
the constructed web honeypot and the original web
application are hosted on web servers residing behind
HoneyBug deception controller; thus, all web request
destined to the original web application also passes
through HoneyBug system.

Rist et al. presented Glastopf [11], which is
an open-source low-interaction web honeypot that
emulates different types of web vulnerabilities such as
Remote File Inclusion (RFI) and Local File Inclusion
(LFD) to collect data about web attackers targeting a
Glastopf honeypot. It monitors the web traffic, and
when detects attack requests, it emulates vulnerabilities
and generates responses that the attacker expects in the
case of successful exploitation. Glastopf honeypot is
a standalone web application and hence suffer from
the limited field of view problem; it is useless if
attack traffic does not reach to the web honeypot.
In addition, attackers can launch honeypot mapping
attacks [12] as it is a low-interaction honeypot and
has a more deterministic behavior than high-interaction
honeypots. In contrast, HoneyBug is a high-interaction
honeypot that creates a personalized environment for
each attacker; which makes honeypot mapping attacks
much more difficult if not impossible.

Recently several works such as HIDE [13] and
HoneyPatch [14] have been proposed that address the
limited field of view problem. HIDE uses Random
Host Mutation (RHM) and K-anonymity to enhance
the likelihood of trapping an attacker by increasing
the chance of an attacker’s encounter with honeypot
systems on a network. HoneyPatch system intermingles
with a production network service by wrapping around
the known vulnerabilities in the service and redirecting
any traffic that aims to exploit such vulnerabilities to a
honeypot system.

Although HIDE can significantly reduce the field of
view problem at a network level, HIDE is blind when
an attacker knows the domain address of their target and
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uses it to reach the target, which is a typical scenario
for web attackers who know the domain address of
their target. HoneyPatch does not have the above
limitation as it intermingles with a production network
service by inserting codes around known vulnerabilities
in the service and redirecting requests that attempt
to exploit these guarded vulnerabilities to a honeypot
system; hence HoneyPatch can reveal targeted attacks.
Although HoneyPatch is proposed for network services,
its idea can be extended to web applications by guarding
known web vulnerabilities in them. However, according
to W3Tech [15] more than 47 percent of websites
are customized web applications. In order to use
HoneyPatch in such web application, one must first find
bugs in the application, which is a hard task, and then
guard the discovered one with HoneyPatch. HoneyBug
takes another approach: instead of guarding known
vulnerabilities, it implants fake vulnerabilities to address
the limited field of view problem.

3. Threat Model

W3Tech [15] reports that in August 2018, more than
47 percent of web applications on the Internet were
not using readily available content management systems
(CMS). This means many web applications on the
Internet are propriety software where web attackers do
not have access to the actual code. In this paper, we also
assume that the attacker does not have prior knowledge
about the implementation of the target web application.
In other words, the application is proprietary, and
the attacker does not have access to its code before
launching their attack. In this way, the only way to
test and find vulnerabilities on the web application is
to interact with it while hosted by the defender (online
scanning). In other words, the attacker cannot test the
application on their side to find a vulnerability (offline
scanning) and then use their knowledge, the discovered
vulnerability, to launch the attack. It is worth noting that
this is also a typical attack scenario on the Web.

4. HoneyBug Architecture

HoneyBug is a self-adaptive system in the sense that
during runtime and based on the attacker’s interactions,
it adapts itself to maximize the attacker’s engagement
with the system; leading them to a false reality. To
achieve this goal, its architecture is designed based
on Monitoring, Analyzing, Planning and Executing
(MAPE) model, which presented by Salehie et al. [4]
for self-adaptive systems. Figure 1 illustrates the overall
architecture of HoneyBug, which is comprised of the
following three subsystems: (I) Deception Controller
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Figure 1. HoneyBug Architecture

(IT) Shadow Web Honeypot, and (III) HoneyBug
Transformer Engine (HTE). The first two subsystems
work side by side during the operation of HoneyBug
system, while the third subsystem is only used one
time to construct the Shadow Web Honeypot from the
original web application during HoneyBug deployment
phase.

Deception controller is the main subsystem of
HoneyBug and is responsible for reshaping the
deception environment, i.e. the Shadow Web Honeypot,
based on observed attack traffic. It sits in front of
the production web server on the defender side and
acts as a reverse proxy; all the traffic that are destined
to the production server pass through this controller.
It inspects the traffic, decides which request must be
redirected to the Shadow Web Honeypot instead of
the production web application. It also configures the
Shadow Web Honeypot such that it would be appealing
to the attacker while maintaining the inherent constraints
of the production system.

Shadow Web Honeypot is the deception environment
that attackers interact with. It is a variant of the original
web application and is constructed by HoneyBug
Transformer Engine (HTE). Both shadow and original
web applications have the same web interface. However,
Shadow Web Honeypot has a number of remotely
controllable vulnerabilities on its back-end source code.
These vulnerabilities are inactive by default, which
means no one can exploit them. However, upon
activation, these vulnerabilities can be exploited by
attackers. Deception Controller activates or deactivates
these vulnerabilities during HoneyBug operation.

4.1. HoneyBug Transformer Engine (HTE)

HoneyBug Transformer Engine (HTE) is responsible
for creating a Shadow Web Honeypot from a
production web application by implanting controllable
vulnerabilities. The current implementation of the HTE
can only transform web applications that are written in
PHP, which according to W3Techs is used by more than
79.1 percent of web applications as of September 2018
[16]. A PHP application is composed of a set of PHP
files, some of which receive inputs directly from the
web clients. Each of these files and their associated

Page 1897



include files can be considered as a logical subsystem
of the back-end web application. HTE analyzes and
transforms each of these subsystems independently from
others. HTE has two components: 1. Data Flow
Analysis (DFA) engine 2. Rewriter engine. In a
nutshell, DFA engine statically analyzes the source
code of the logical subsystems in the web application
to determine the locations that vulnerabilities can
be introduced. Rewriter engine modifies the code
to insert controllable vulnerabilities at the identified
locations. At runtime, these controllable vulnerabilities
can be activated/deactivated by Deception Controller
subsystem; hence modifying the vulnerability exposure
of each logical subsystem on the fly.

To detect the location for introducing vulnerabilities,
HTE conducts data flow analysis similar to [17]. First,
HTE constructs the control flow graph (CFG) of each
web page in the web application. Then HTE selects
those control flow paths that are started from an input
variable and end up accessing one of the sink functions
offered by PHP.

In PHP, all external inputs are accessed via
superglobal variables such as $_GET, $_POST, and
$_COOKIE. Sink functions are those built-in functions
that are used by developers to interact with other
external entities such as a database or local filesystem.
HTE marks the conditions in the selected execution
paths that are affected by built-in security-related
functions in PHP. We call these conditions “critical
checkpoints”. In addition, it determines which
truth value of each critical checkpoints leads to sink
functions.

Security-related functions in PHP can be divided
into four categories:

* Escaping database parameters: addslashes,
pg-escape_string, pg-_escape_literal, mysqli_real_
escape_string,  mysql_real_escape_string, mysql-
escape_string, mysqli_escape_string

* Escaping html tags: htmlspecialchars, mb_encode_
numericentity, htmlentities

* Checking data type: isset, empty, is-int, is_long,
is_bool, is_null

* Checking file format: finfo_file, exif_imagetype,
mime_content_type, getimagesize

HTE rewrites each of the identified critical checkpoints
such that they can be short-circuited remotely.
To do so, HTE generates a unique identifier for
each of these checkpoints. It, then, passes this
identifier along with the result of the original
boolean expression inside the checkpoint, and the
truth value that would bypass this security check
to a function called HoneyBug_controller.
HoneyBug_controller reads the value of
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Figure 2. HoneyBug Deception Controller

HoneyBugDeceptionPlanner  header field,
which is inserted by Deception Controller, and decides
whether to return the result of the provided boolean
expression or the truth value; hence control whether the
security check must be performed or bypassed.

To illustrate, suppose the generated identifier
for if (expl) is 123 and when exp is true the
program halts itself with a die statement; otherwise,
the control flow can reach to a sink function.
In this example, HTE replaces the condition with
if(HoneyBug_controller (123, expl, false)). If the
value of HoneyBugDeceptionPlanner header
field in the HTTP request contains 123, then
HoneyBug_controller returns false, otherwise it
returns the result of the expression.

4.2. Deception Controller (DC)

Deception Controller (DC) is the central part of
HoneyBug and is responsible for monitoring users’
traffic, and deciding where each of the web requests
must be redirected to. It forwards the requests of benign
users to the original application while redirects the
requests of attackers to personalized web environments
that are simulated by Shadow Web Honeypot. To
be more specific, when an attacker sends a request
to a particular web page, DC determines the set of
vulnerabilities that more likely engage that specific
attacker and instructs Shadow Web Honeypot to allow
only such vulnerabilities to be exploited by the attacker.
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In other words, different attackers will discover different
sets of vulnerabilities on Shadow Web Honeypot, based
on the techniques and tactics that they have already
used while interacting with the system. Figure 2 is
a high-level flowchart delineating the overall process
carried out by DC when a new HTTP request is received.

Deception controller has five main modules: Session
Tracker, User Behavior Characterizer (UBC), Deception
Planner, Deception Actuator, and Response Analyzer.

All incoming web requests to DC, first pass through
Session Tracker module which marks all the requests
that are originated from a specific user with a unique
session id. Then, the requests are handed over to
User Behavior Characterizer (UBC) module. UBC
module examines each request, and reasons about the
capability of the user that generated the request. To
be more specific, it inspects all users’ web requests
with a set of generic attack detection rules, and
based on the triggered rules, it characterizes the users.
In current HoneyBug implementation, UBC rule set
contains OWASP ModSecurity Core Rule Set (CRS)
rules available in [18]. However, any security rule that
is written with ModSecurity RuleSec grammar can be
added to the UBC rule set.

To characterize a user, UBC utilizes a novel
evidential reasoning model, which is described in details
in section 5. In a nutshell, each OWASP ModSecurity
rule is associated with a set of belief functions that
each represents our belief about an attacker from a
specific angle such as their skill level, or their interested
attack vector. For each attacker, UBC characterization
model combines all the sets of belief functions that are
associated with the attack detection rules matched with
the attacker’s traffic, and comes up with a new set of
belief functions. This resulted set represents our belief
about the attacker based on their activity history. If UBC
believes that a user is an attacker with a high probability,
then it sends the request and its knowledge vector to
the Deception Planner. Deception Planner has prior
knowledge about the structure of the target PHP file and
based on the UBC knowledge vector decides how the
control flow of the PHP file should be modified. The
output of the planner is a set of critical checkpoints that
the actuator must relax. Actuator changes the request
by inserting a new header field to instruct Shadow Web
Honeypot to bypass the selected critical checkpoints.

It is worth noting that the probability distributions
that are assigned to each detection rule are subjective
probabilities that are assigned by an expert. It is quite
plausible that a benign user is miss-identified as an
attacker and migrated to the Shadow Web Honeypot if
they trigger one of these detection rules by accident. As
an example, suppose a user enters a comma in the last

name field in the registration form as their last name
is O’Brian. This comma in the input will trigger one
of the detection rules for SQL injection attacks; upon
updating its belief states, DC may identify this user
as an attacker as the probability of being an attacker
will increase drastically by the triggered rule. However,
it is highly unlikely that the benign user’s requests
continually triggers other detection rules; as a result,
after observing some requests, the system updates its
belief about them and corrects its conclusion, hence
redirecting them to the original application.

4.3. Shadow Web Honeypot

The client-side application of Shadow Web
Honeypot is completely the same as the original
application. The only difference between these two
applications is the existence of controllable critical
checkpoints in the back-end of Shadow Web Honeypot.

All the critical checkpoints on the original
application are transformed by the HTE in a way
that they can be short-circuited by Deception Planner at
runtime. Each of these critical checkpoints has a control
identifier and can be bypassed by HoneyBug_controller
header of the HTTP request. This header contains the
list of control identifiers that must be short-circuited
while processing the current request.  The exact
mechanism to short-circuit a checkpoint is described in
section 4.1.

Shadow Web Honeypot is hosted on its own web
server; separated from the original web application. It
interacts with its own database which is a variation of
the original database. In this variation, the sensitive data
is redacted, and some honeytokens [19] are added to
the database. Response analyzer in HoneyBug
Deception Controller monitors the returned responses
from Shadow Web Honeypot to detect any leakage
of implanted honeytokens. Upon detection of such
violation, Response analyzer determines whether
the leakage of information is caused by any of the active
implanted vulnerabilities in the Shadow Web Honeypot
or it is because the attacker has found a zero-day
vulnerability.

5. Characterization Model

In this section, we present the HoneyBug
Characterization Model (HCM) that is used by the User
Behavior Characterizer (UBC) module in HoneyBug
Deception Controller. This model helps UBC to gain
knowledge about the attackers by observing their web
requests. To be more specific, by employing HCM,
UBC can answer to a set of predefined questions, such
as "What is the skill level of the attacker?” and "What
is the attack vector?”’, about each attacker.
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HCM is an evidential reasoning model based on
Dempster-Shafer theory (DST) [20]. In HCM model,
we have a set of predefined questions () that we are
interested in knowing their answers for each attacker.

Q=1{q1,92, - qx} ey
The set of all possible answers for ¢; is denoted by
©, and is called the frame of discernment for ¢;. We
assume that the frame of discernment for each question
represents a closed world situation which means that
the set of answers is complete; the true answer to
the question is a member of the frame. It should be
noted that it is trivial to convert a frame of discernment
with open-world assumption to a closed world one by
introducing a new answer such as other, unknown to
the frame of discernment to represent unknown answers.
In general, each attacker request is a source of
evidence. It can give the system some clue about the
correct answers to the predefined questions for that
specific attacker. For example, the system can conclude
that attacker x is more likely to be an expert because
of the complexity of their request. However, to capture
these clues and to reason about them, the model must
have prior knowledge about all possible requests, which
is not possible in reality. To address this problem, HCM
has prior knowledge about a set of attack pattern rules,
which is represented by P. It attempts to determine
which rules are matched with the attacker request by
using ¢ function. This function returns true if the input
request matches with the input attack pattern.

P = {plap2a "'apn} (2)
Y:Rx P — BOOLEAN 3)
req, pattern — {true, false} 4

Each of these n attack patterns is associated with
a set of k mass functions. The first mass function
describes a probability distribution over the power set of
frame of discernment for the first question. The second
mass function describes the distribution over the power
set of the frame for the second question and so on. ( is a
function which is used to map a pattern to a vector that
contains the corresponding k& mass functions.

M = {My, My, ..., My} o)
My = {mi1,m12,...,m1p} (6)
Mg = 291 = [0...1] (7
where ©; is the frame of discernment for g;.
(:P— My x My x ... x My )
pattern =< mig, Moy, ..., My > )

T is a function that returns the attack patterns that are
matched with the latest r requests issued by attacker a
at time ¢.

I': Number x String x Number — 2P (10)

time, sessionld, count — matchedPatterns (11)

HCM employs Yong’s rule of combination [21] rather
than conventional Dempster’s rule of combination to
combine n mass functions with the same frame of
discernment but represent mutually independent bodies
of evidence. The reason that we choose Yong’s
rule of combination is that, unlike Dempster’s rule of
combination, this rule considers the distances between
mass functions and gives more weights to mass
functions that are supported by more evidence, in this
way lessen the impact of outliers.

To combine n mass functions with Yong’s rule of
combination, HCM, first, calculates the similarity score
of any pair of mass functions m; and m; which is

defined by

stm(m;, m;) = 1 — dist(m;, m;) (12)
where dist is the distance function proposed by
Jousselme et al. [22] and is defined by

. L2 o2 .
dwt(mi?mg‘)\/Q(llmill + s l1" = 2 (s, i)

(13)
Where ||| is (17, m) and (17, o) is the scalar
product defined by
St 404
iy, i) = ma(A)ma(Aj) = (14)
< 1 2> ;; 1( ) 2( J)|A1UA3|

Where A;, A; € P(©) fori,j =1,...,2N.
Then, HCM calculates the support degree for each of

the mass function which can be calculated by

sup(m;) = Z sim(m;, m;) (15)
i=1,j7i
Then the credibility of each mass function is
calculated by
sup(m;)
ST, sup(m)
Finally, HCM calculates the combination of mass
functions by Yong’s rule of combination as defined
below:

erd; = (16)

mpoa = Z(crdi X 1m;) 17)
i=1

In HoneyBug, to decide about the set of active
vulnerabilities on a web page, Deception Controller
needs to determine the answer to the following questions
about the attacker: (I) Skillfulness: what is the skill
level of the attacker, and (II) Attack vector: what is the
attack vector that the attacker is using. For each generic
attack detection rule, we have subjectively defined the
mass function for each of these questions based on
expert knowledge. For the first question, the frame of
discernment contains the following four answers: (I)

elite, (II) intermediate, (III) script kiddie, (IV) benign.
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6. Deception planner

HCM represents the beliefs that the system is
reached about the attacker while observing their attack
traffic. In order to decide which vulnerabilities on a
requested page should be enabled, deception planner
converts the calculated belief functions to probability
functions by using the pignistic transformation
presented in [23].

Palt)= 3 m(m) 2P

$#BC2°
Then, deception planner randomly selects the answer
for each of the question based on the corresponding
probability function P,,(A). At this point, DC
concludes that the attack vector of interest is x, and the
attacker type is y.

For each page, deception planner knows which
control paths can lead to what kind of vulnerabilities,
and for each of such paths, it knows the controllable
checkpoints and their strength score. This information
is created by HTE module while analyzing the original
application. Deception planner determines the PHP file
that is the target of the attacker’s request. Then, it
selects all control paths that can be used by the attacker
to launch their attack by using a specific attack vector
such as XSS that the system believes that the attacker is
currently testing. For each of such paths, the controller
selects the most difficult checkpoint that has not been
already bypassed. If the total difficulty level of the
remaining checkpoints is below a given threshold, the
planner discards the selection. Otherwise, it will add its
identifier to HoneyBug_controller header of the request.

NYACO (18)

7. Evaluation

In this section, we present our evaluation of
HoneyBug system in an experimental setting. In
HoneyBug, our primary goal is to maximize the
engagement of attackers with HoneyBug system. To
achieve this goal, the system must be attractive in the
sense that it must exhibit vulnerabilities that can be
exploited by the attacker. It also must adapt itself
when the attacker changes their attack vector. As we
do not know attackers beforehand, the system needs to
make decisions in an online fashion and in a fraction
of seconds to prevent differential timing attacks. In
the rest of this section, we investigate these properties
by conducting several experiments. Each experiment
was repeated 10,000 times, and their averages were
reported.

7.1. Attractiveness

To increase the attractiveness of Shadow Web
Honeypot, HoneyBug must enable those vulnerabilities

Probablity

—#—Random, E[X]=10
—5—HCM RS1, E[X]=2.38 |
HCM RS2, E[X]-0.56

2 4 6 8 10 12 1 16 1 2
Page
Figure 3. The probability of observing a vulnerability
x of interest after visiting n pages when (1) selecting
vulnerabilities randomly (I1) selecting vulnerabilities
based on the knowledge that is gained from HCM.

in the web honeypot that can be exploited by the
attacker. These vulnerabilities should appear as early
as possible before the attacker gives up examining the
web application. To measure attractiveness, we define
attractiveness score A which is defined in Eq. 19:

E[X]
[pages|

Where X is the number of pages that are visited by
an attacker before reaching a page with a vulnerability
that they can exploit, and F(X) is the expected value of
X. The attractiveness score is a real number between
0 and 1 inclusive. If the attractiveness score of a
system is 1, it means attackers can find a suitable
vulnerability on the first page that they visit. However,
in reality, where the system does not know the attacker
beforehand and therefore does not have any clue about
the kind of vulnerabilities that the attacker is interested
in, the system cannot reach this maximum score unless
it enables all vulnerabilities on all pages which makes it
too vulnerable and hence too suspicious.

In HoneyBug, deception planner uses HCM output
to determine the type of vulnerabilities that the attacker
is looking for, and enables such vulnerabilities in the
Shadow Web Honeypot. As we mentioned in section
5, HCM is an evidential reasoning model that enables
HoneyBug to gain knowledge about the attacker by
observing their interactions with the system. An
alternative strategy that deception planner can use is to
randomly enable vulnerabilities on the target shadow
web pages.

Figure 3 shows the cumulative distribution function
(CDF) of finding a particular vulnerability type t,
out of 10 vulnerability types, for the first time when
visiting n pages in a web application with twenty
web pages when deception planner activates implanted
vulnerabilities with the strategies mentioned above.

A =mazx(0,1 —

) 19)
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Figure 4. The effect of request windows size on the
convergence of HCM model toward the true answer

Each web page in this application contains all the ten
types of vulnerabilities, which can be activated by the
deception planner on demand. In this experiment, only
one type of vulnerabilities can be activated on each page;
the planner can also decide to keep all the vulnerabilities
deactivated in a web page. Therefore, the planner
has 11 options for each page in the web application.
In random strategy, the planner chooses type t with
probability p(t) = 1/11. In HCM RSl strategy, we
assume attack traffic matches with attack detection rules
that are associated with belief functions that assign mass
value 1/11 to "vulnerability type ¢ is the vulnerability of
interest” (m(t) = 1/11) and mass value 1 — 1/11 to all
answer (m(©) = 1—1/11), which means that the rules’
ignorance about the true answer is 0.91. In HCM RS2
strategy, the rules are more concrete (m(f) = 0.5 and
m(©) = 0.5); the ignorance level is 0.5.

As it is shown in figure 3, when the deception
planner makes decision-based on the output of HCM
model, the attacker finds, with higher probability, the
vulnerability of interest earlier than when it selects
vulnerabilities randomly. In other words, the expected
value of X, the number of observed web pages before
finding a suitable vulnerability, is lower in case of
relying on HCM outputs; the resulted honeypot will
have a higher attractiveness score. In addition, when
the attack detection rules can give more evidence about
the true answer (i.e., more precisely they can provide
information about the attack vector that the attacker is
looking for), the HCM output converges more rapidly.

7.2. Adaptiveness

Attackers may change their attack vectors during
their operations. Therefore, deception controller must
be able to capture these shifts and re-adapt itself
accordingly. HoneyBug deception controller uses HCM
model, a DST model, to gain knowledge about the
attacker. Traditionally, Dempster’s rule of combination
[24] is used to combine bodies of evidence; we also used

it in our early implementation of HCM.

However, in our experiments, we observed that
most of the time when the attacker, after a few steps,
changes their attack vector, the HCM model could
not re-converge to the new answer. In such cases,
the belief function about the attack vector that HCM
calculated before the change is in complete conflict with
the mass function raised after the change; which makes
their combination, with Dempster’s rule of combination,
undefined. Through experimentation, we found Yong’s
rule of combination more flexible in combining a set of
mass functions with conflict as it assigns a weight to
each of them based on their similarities and averages
them. As a result, outliers will have lower weights
and thus have a lesser influence. Moreover, HCM only
considers attack detection rules that are raised by the last
w requests and combine their associated mass functions.
As a result, aged requests will not be considered in
characterizing the attacker.

In our current implementation, HCM has 58 attack
detection rules that are taken from ModSecurity CRS
and its request window size is 14. For each of these
rules, we defined two mass functions one to determine
skillfulness and one for the attack vector. HCM rule
set contains 21 SQL injection, 22 Cross-Site Scripting
(XSS), 4 Remote File Injection, 2 Local File Injection,
and 9 Unix Command Expression attack detection rules.
Figure 4 shows the effect of request windows size on
the convergence of HCM model toward the true answer.
In these experiments, only attack detection rules for a
specific attack vector are raised. As the window size
increases the HCM model converges towards the result
sooner, and it is more steady. Figure 5 shows how HCM
re-adapt its belief when an attacker changes their attack
vector on page 14 from SQL injection to XSS. As it
is shown in the figure, after a few pages, the HCM
model captures the changes that occurred on page 14.
During their operation, an attacker may also raise some
detection rules that are associated with attack vectors
that are not in their interest. Figures 6 shows how HCM
readjust if 10 percent of the raised attack rules do not
represent the attack vector that the attacker is interested
in.

7.3. Scalability

In this section, we evaluate the time and space
overheads that are imposed by HoneyBug and show that
its overheads are minimal and hence it can be employed
in a real environment to protect a real web application.

HoneyBug adds a custom header field to HTTP
requests forwarded to Shadow Web Honeypot to
instruct the honeypot to bypass a subset of its critical
checkpoints. The field value of the inserted field is a
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Figure 5. Convergence of HCM when the attack
vector is changed from SQLI to XSS at time 14.
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list of critical checkpoint identifiers that are separated
by commas. The length of each identifier is fixed and is
16 characters. The size of this field in a request depends
on the number of critical checkpoints that the deception
control demands to be bypassed by web honeypot while
processing the request. Although there is no limitation
on the size of HTTP header field, a modern web server,
such as Apache HTTP Server and IIS, sets an upper limit
on the length of a header field. For instance, in Apache
HTTP Server v2.4, the limit is 8KB [25].

As we discussed in Section 4, HoneyBug has
two main subsystems which work with each other
at runtime: Shadow Web Honeypot and Deception
Controller (DC). Shadow Web Honeypot is constructed
from a production web application. The main difference
between these two web applications is that in Shadow
Web Honeypot, some of the security checkings can be
bypassed. As a result, the performance of Shadow
Web Honeypot is quite similar to the production web
application. DC acts as a reverse proxy and processes all
the requests sent by users. The main processing in DC
takes place in UBC module. Figure 7 shows the time that
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Figure 7. The impact of windows size on rule

combination processing time

HCM model requires to combine n mass function using
Yong’s rule of combination. It is worth noting that the
delay introduced by DC affects all benign and malicious
requests; thus, it cannot be directly used to determine
whether a request is being redirected to Shadow Web
Honeypot.

8. Scope and Limitations

In this section, we discuss a few limitations of
HoneyBug.  First, the accuracy of HoneyBug is
bound to the accuracy of its embedded detection
rules. For example, if an attacker sends malicious
requests that do not trigger any of the detection rules,
then HoneyBug concludes that the user is benign.
Second, an informed attacker can attempt to remain
on the production application by interleaving malicious
requests among a great number of benign requests
to reduce the probability that HoneyBug UBC marks
them as an attacker; nevertheless, this will prolong
the scanning process. Third, an attacker may discover
a zero-day vulnerability when examining the Shadow
Web Honeypot; however, they cannot distinguish such
a vulnerability from the fake ones. The attacker can
act as a benign user for a while to be redirected
to the production web application and then test the
discovered vulnerability to determine whether it is
real. Since with a high probability, the discovered
vulnerability is fake, this strategy significantly slows
down the attacker. Moreover, if the attacker exploits
the zero-day vulnerability while they are on the Shadow
Web Honeypot, then the deception controller may
detect the exploit as the data stored on the Shadow
database contains honeytokens. Finally, in the current
implementation, public data in the production database
is replicated with the Shadow database. During session
redirection, stored information about the user, annotated
by developers, is also migrated to the Shadow database.
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However, no temporary data, stored in the memory, is
transfered between the production and shadow systems.
Such capability can be implemented by utilizing the
approach mentioned in [14]. In the future, we plan to
investigate different approaches that can be employed to
reduce the discrepancy between the two systems at the
data level.

9. Conclusion

In this paper, we present HoneyBug, a novel adaptive
deception system for web applications. HoneyBug
is based on MAPE (monitor, analyze, plan, execute)
architecture [4] that changes its deception plans based
on the characterization of attackers, which makes it
immune against honeypot fingerprinting attacks as the
deception environment dynamically changes from one
attacker to another. The HoneyBug Characterization
Model (HCM) enables HoneyBug to attribute the
attackers by observing their interactions. In addition,
the HoneyBug Planner changes the control flow of the
application to select the most appropriate exploit path
for attackers. Our evaluation shows that HoneyBug
exhibits high attractiveness score based on our metrics.
It also shows that HoneyBug can scale to handle a
large number of simultaneous request and attackers
as it exhibits a low-performance overhead. In the
future, we plan to further investigate the effectiveness
of HoneyBug system against human attackers through
red teaming experiments and also deploy it in the wild
to evaluate its effectiveness against real-world attackers.
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