1,712 research outputs found

    FLIC-Overlap Fermions and Topology

    Get PDF
    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F_mu_nu in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(a^4)-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice.Comment: Lattice2002(chiral

    Renormalization Group Therapy

    Get PDF
    We point out a general problem with the procedures commonly used to obtain improved actions from MCRG decimated configurations. Straightforward measurement of the couplings from the decimated configurations, by one of the known methods, can result into actions that do not correctly reproduce the physics on the undecimated lattice. This is because the decimated configurations are generally not representative of the equilibrium configurations of the assumed form of the effective action at the measured couplings. Curing this involves fine-tuning of the chosen MCRG decimation procedure, which is also dependent on the form assumed for the effective action. We illustrate this in decimation studies of the SU(2) LGT using Swendsen and Double Smeared Blocking decimation procedures. A single-plaquette improved action involving five group representations and free of this pathology is given.Comment: 18 pages, 9 figures, 9 table

    An accurate calculation of the nucleon axial charge with lattice QCD

    Full text link
    We report on a lattice QCD calculation of the nucleon axial charge, gAg_A, using M\"{o}bius Domain-Wall fermions solved on the dynamical Nf=2+1+1N_f=2+1+1 HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, mπ∼{310,220,130}m_\pi\sim\{310,220,130\} MeV. Three lattice spacings (a∼{0.15,0.12,0.09}a\sim\{0.15,0.12,0.09\} fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the mπ∼220m_\pi\sim220 MeV, a∼0.12a\sim0.12 fm point, a dedicated volume study is performed with mπL∼{3.22,4.29,5.36}m_\pi L \sim \{3.22,4.29,5.36\}. Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of gAg_A with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is gA=1.278(21)(26)g_A = 1.278(21)(26), with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.Comment: 17 pages + 11 pages of references and appendices. 15 figures. Interested readers can download the Python analysis scripts and an hdf5 data file at https://github.com/callat-qcd/project_gA_v
    • …
    corecore