396 research outputs found

    Sound absorption mechanisms in perforated plates

    Get PDF

    Sound absorption mechanisms in perforated plates

    Get PDF

    Hydromechanical Stress and Internal Erosion under Earthen Structures

    Get PDF
    Dam failures by seepage and internal erosion have reportedly been attributed to up to 40% of all dam failures in the United States. Backwards piping erosion either through the embankment or foundation soils has been reported to be the major contributing method to seepage and internal erosion dam failures. This proposed research is motivated by the lack of understanding of the complex stress regimes associated with internal erosion in cohesionless soils under earthen structures. The overall goal of this research is to provide a fundamental understanding of internal erosion and the hydromechanical stress conditions necessary for the initiation and continuation of internal erosion in cohesionless soils under earthen structures. This research project consisted of three experimental tasks to evaluate internal erosion in cohesionless soils. Task 1 consisted of laboratory soil characterization of regional geo-materials representative of typical Missouri earthen dam foundation materials. Task 2 consisted of a conventional finite element method numerical analysis of a typical Missouri embankment dam geometry to determine foundation stresses/strains and hydraulic flow conditions. Task 3 consisted of the bench-scale design, construction, and testing of an Internal Erosion Plane-Stain Direct Simple Shear (PSDSS) device to evaluate internal erosion. The results indicated that within internally unstable soils internal erosion typically initiates and then may terminate or continue depending upon the hydromechanical conditions. Any changes in the hydromechanical conditions can cause the re-initiation and continuation of internal erosion. Internally stable soils did not exhibit the potential for internal erosion when tested under changing hydromechanical conditions --Abstract, p. ii

    ResFrac Technical Writeup

    Full text link
    ResFrac is a combined hydraulic fracturing, reservoir, and hydraulic fracturing simulator. It describes multiphase fluid flow (black oil or compositional), proppant transport, transport of non-Newtonian fluid additives, and thermal transport. It also includes stress shadowing from fracture propagation and porothermoelastic responses from pressure change in the matrix. It uses constitutive equations that smoothly transition between equations for flow through an open crack to flow through a closed crack (with or without proppant). This document provides a detailed technical description of the code, along with validation simulations to confirm numerical accuracy

    Electrical Discharge in Water Treatment Technology for Micropollutant Decomposition

    Get PDF
    Hazardous micropollutants are increasingly detected worldwide in wastewater treatment plant effluent. As this indicates, their removal is insufficient by means of conventional modern water treatment techniques. In the search for a cost-effective solution, advanced oxidation processes have recently gained more attention since they are the most effective available techniques to decompose biorecalcitrant organics. As a main drawback, however, their energy costs are high up to now, preventing their implementation on large scale. For the specific case of water treatment by means of electrical discharge, further optimization is a complex task due to the wide variety in reactor design and materials, discharge types, and operational parameters. In this chapter, an extended overview is given on plasma reactor types, based on their design and materials. Influence of design and materials on energy efficiency is investigated, as well as the influence of operational parameters. The collected data can be used for the optimization of existing reactor types and for development of novel reactors

    Large Scale Synthesis of Nanostructured Carbon Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium Sulfur Pouch Cells

    Get PDF
    Applications of advanced cathode materials with well designed chemical components and or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium sulfur Li amp; 8722;S batteries under practical working conditions, one long term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles C amp; 8722;Ti4O7 using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C amp; 8722;Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro amp; mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C amp; 8722;Ti4O7 based pouch cell endows a high discharge capacity of 1003 amp; 8197;mAh amp; 8201;g amp; 8722;1 at 0.05 amp; 8197;C, a high capacity retention of 83.7 amp; 8201; after 100 amp; 8197;cycles at 0.1 amp; 8197;C, and a high Coulombic efficiency of 97.5 amp; 8201; at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab to large scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li amp; 8722;S pouch cell

    Development of Nanoporous Anodic Alumina Technologies for Drug Delivery

    Get PDF
    L'alliberament de fàrmacs és un procediment en què un compost o un dispositiu allibera una molècula de manera controlada. D’aquesta manera, el medicament podrà ser sotmès a absorció, distribució, metabolisme i excreció. Els semiconductors nanoporosos com l'alúmina o el silici s'utilitzen per a la fabricació de vehicles de fàrmacs a causa de les seves característiques distintives, com ara: fabricació de baix cost, estructura de porus/ mida controlable dels nanotubs, química superficial adaptable, gran àrea superficial, capacitat d'alta càrrega, resistivitat química i rigidesa mecànica. Aquesta materials poden tenir un paper especial en la tecnologia d’alliberament de fàrmacs. Tot i que s'ha estudiat l'alliberament de medicaments a partir de materials nanoporosos i mesoporosos, hi ha una manca de comprensió de les cinètiques d'alliberament d'aquestes plataformes i la dinàmica que les regula. Per aquest motiu, el nostre objectiu és explicar la cinètica d'alliberament des de les superfícies nanoporoses i mesoporoses i modelar-les. Aquest model serà dilucidat mitjançant un estudi sistemàtic dels perfils d'alliberament. En conjunt, la tecnologia, la caracterització i les aplicacions presentades en aquesta tesi són força alentadores i proporcionen un punt de partida per desenvolupar estructures intel·ligents innovadores que trobaran aplicacions en sistemes de lliurament de medicaments.La liberación de fármaco es un procedimiento en el que un compuesto o un dispositivo libera una molécula de una manera controlada. Posteriormente, este fármaco podrà someterse a absorción, distribución, metabolismo y excreción. Se utilizan semiconductores nanoporosos como la alúmina o el silicio para fabricar vehículos de fármacos debido a sus características distintivas tales como: fabricación de bajo costo, estructura de poros/tamaño controlable de los nanotubos, química de superficie adaptable, área superficial grande, alta capacidad de carga, resistividad química y rigidez mecánica. Estos materiales pueden tener papel especial en la tecnología de liberación controlada de fármacos. Aunque se ha estudiado la liberación de fármacos a partir de materiales nanoporosos y mesoporosos, existe una falta de comprensión de la cinética de liberación de estas plataformas y de la dinámica que las gobierna. En este sentido, nuestro objetivo es explicar la cinética de liberación de superficies nanoporosas y mesoporosas y modelarlas. Este modelo será elucidado mediante un estudio sistemático de los perfiles de liberación. En conjunto, la tecnología, la caracterización y las aplicaciones presentadas en esta tesis son bastante alentadoras y proporcionan un punto de partida para el desarrollo de estructuras inteligentes e innovadoras que encontrarán aplicaciones en los sistemas de administración de fármacos.Drug release is a procedure in which a composite or a device releases a molecule in a controlled way. Subsequently the drug would be subjected to absorption, distribution, metabolism and excretion. Nanoporous semiconductors like alumina or silicon are used to fabricate carriers because of their distinctive features such as: low-cost fabrication, controllable pore/nanotube structure, tailored surface chemistry, high surface area, high loading capability, chemical resistivity and mechanical rigidity, have affianced a special role in drug delivery technology. Although drug release from nanoporous and mesoporous materials has been studied, there is a lack of understanding of the release kinetics from these platforms and the dynamics governing them. For this reason, our aim is to explain the release kinetics from nanoporous and mesoporous surfaces and model them. This model will be elucidated by means of a systematic study of release profiles. Altogether, technology, characterization and applications presented in this thesis are rather encouraging and are providing a starting point for developing innovative smart structures that will find applications in drug delivery systems

    Structural and chemical modifications of porous silicon for biomedical applications

    Get PDF
    The versatility in properties of porous silicon (PSi) has enabled a broad spectrum of applications, ranging from microelectronics and various types of sensors to its use as a biocompatible material in drug delivery. Structural properties of PSi were shown in this work to be adaptable post-fabrication using thermal annealing. Control over the average pore size of the material proved to be beneficial, when adjustments were necessary to accommodate larger biomolecules within the pores of the PSi. Furthermore, a facile method of fabricating PSi nanoparticles was introduced using a multilayer approach with a stepwise electrochemical etching process, where the comminution of the material was guided with formation of fragile, high porosity perforation layers at specific intervals. This method has been proven successful, being utilized in over 70 publications so far. For extended control over biocompatibility and biodistribution of PSi micro- and nanoparticles, two new surface modifications based on hydrolytically stabilized PSi were introduced. Amine-terminated thermally carbonized PSi, capable of carbodiimide crosslinking for further functionalization with biomolecules, and an alkyne-terminated hydrocarbonized PSi, enabling the use of click chemistry -based addition reaction for secondary functionalization. Solid-state properties of confined drug molecules adsorbed into PSi microparticles were also studied. As PSi is known to enhance aqueous dissolution and cellular permeability of poorly soluble drugs, more accurate information was sought on the effects of the mesoscale confinement. Small molecule drugs were observed to partially have a liquid-like behavior according to solid-state NMR analysis and participate in interactions with the pore walls, according the availability of specific functional groups. Slight disruption in short-range order of the adsorbed drugs was also found, as the confinement appeared to reduce the true density of the drug molecules below that of a bulk amorphous state. Study over the conditions for efficient drug adsorption into the pores showed the importance of solvent and drug solution concentration selection. Optimal choices enabled high drug payload within the PSi, without precipitation of crystalline drug on the external surface of the PSi microparticles.Huokoisen piin (porous silicon, PSi) monipuoliset ominaisuudet ovat mahdollistaneet runsaasti erilaisia sovelluksia, lähtien mikroelektroniikasta ja ilmaisimista aina tämän käyttöön bioyhteensopivana materiaalina lääkeannostelussa. Tässä työssä osoitettiin huokoisen piin rakenteen olevan jälkikäteen muokattavissa hallitusti lämpökäsittelyn avulla. Huokoskokoa kasvattamalla mahdollistettiin tarpeen vaatiessa suurempien biomolekyylien pääsy huokosiin. Tämän lisäksi esiteltiin menetelmä huokoisen piin nanopartikkelien valmistamiseksi syövyttämällä sähkökemiallisesti huokoinen monikerrosrakenne, missä tasaisin välimatkoin sijaitsevat hauraat korkean huokoisuuden kerrokset toimivat murtumista edistävinä kohtina. Menetelmää on sittemmin hyödynnetty tähän mennessä yli 70:ssä tieteellisessä julkaisussa. Huokoisen piin mikro- ja nanopartikkelien bioyhteensopivuuden ja kulkeutumisen hallintaan työssä kehitettiin kaksi uutta pintakemiallista muunnosta huokoiselle piille, mikä oli esikäsitelty heikosti veteen liukenevaksi. Muunnokset perustuivat vapaiden amiiniryhmien ja alkyynien saatavuuteen huokoisen piin pinnoilla. Näistä edellinen mahdollisti biologisen funktionalisoinnin karbodi-imidisilloituksen kautta, jälkimmäisen puolestaan mahdollistaen monipuolinen funktionalisointi kupariavusteisen sykloadditioreaktion kautta. Lääkemolekyylien fysikaalista olotilaa nanokokoluokan huokosissa tutkittiin huokoisen piin mikropartikkelien avulla. Huokosiin adsorboitujen niukkaliukoisten lääkeaineiden tiedetään liukenevan tehokkaasti veteen, mutta syitä tälle voi olla useita. Pienmolekyylilääkkeiden havaittiin olevan osittain nestemäisessä muodossa huokosten sisällä NMR-tutkimusten mukaan. Molekyylien lähijärjestys vaikutti myös osittain muuttuneen, huokosiin adsorboituneen lääkeaineen tiheyden ollessa tavallista amorfista tilaa alhaisempi. Lääkeaineen adsorptiota huokosiin pyrittiin myös tehostamaan seuraamalla liuottimen ja lääkeaineliuoksen konsentraation vaikutusta. Sopivin parametrein saavutettiin korkea lääkkeen hyötykuorma, ilman lääkemolekyylien kiteytymistä huokoisen piin mikropartikkelien ulkopinnoille
    corecore