482 research outputs found

    Enabling self organisation for future cellular networks.

    Get PDF
    The rapid growth in mobile communications due to the exponential demand for wireless access is causing the distribution and maintenance of cellular networks to become more complex, expensive and time consuming. Lately, extensive research and standardisation work has been focused on the novel paradigm of self-organising network (SON). SON is an automated technology that allows the planning, deployment, operation, optimisation and healing of the network to become faster and easier by reducing the human involvement in network operational tasks, while optimising the network coverage, capacity and quality of service. However, these SON autonomous features cannot be achieved with the current drive test coverage assessment approach due to its lack of automaticity which results in huge delays and cost. Minimization of drive test (MDT) has recently been standardized by 3GPP as a key self- organising network (SON) feature. MDT allows coverage to be estimated at the base station using user equipment (UE) measurement reports with the objective to eliminate the need for drive tests. However, most MDT based coverage estimation methods recently proposed in literature assume that UE position is known at the base station with 100% accuracy, an assumption that does not hold in reality. In this work, we develop a novel and accurate analytical model that allows the quantification of error in MDT based autonomous coverage estimation (ACE) as a function of error in UE as well as base station (user deployed cell) positioning. We first consider a circular cell with an omnidirectional antenna and then we use a three-sectored cell and see how the system is going to be affected by the UE and the base station (user deployed cell) geographical location information errors. Our model also allows characterization of error in ACE as function of standard deviation of shadowing in addition to the path-loss

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Coverage measurements of NB-IoT technology

    Get PDF
    Abstract. The narrowband internet of things (NB-IoT) is a cellular radio access technology that provides seamless connectivity to wireless IoT devices with low latency, low power consumption, and long-range coverage. For long-range coverage, NB-IoT offers a coverage enhancement (CE) mechanism that is achieved by repeating the transmission of signals. Good network coverage is essential to reduce the battery usage and power consumption of IoT devices, while poor network coverage increases the number of repetitions in transmission, which causes high power consumption of IoT devices. The primary objective of this work is to determine the network coverage of NB-IoT technology under the University of Oulu’s 5G test network (5GTN) base station. In this thesis work, measurement results on key performance indicators such as reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indicator (RSSI), and signal to noise plus interference (SINR) have been reported. The goal of the measurement is to find out the NB-IoT signal strength at different locations, which are served by the 5GTN cells configured with different parameters, e.g., Tx power levels, antenna tilt angles. The signal strength of NB-IoT technology has been measured at different places under the 5GTN base station in Oulu, Finland. Drive tests have been conducted to measure the signal strength of NB-IoT technology by using the Quectel BG96 module, Qualcomm kDC-5737 dongle and Keysight Nemo Outdoor software. The results have shown the values of RSRP, RSRQ, RSSI, and SINR at different locations within several kilometres of the 5GTN base stations. These values indicate the performance of the network and are used to assess the performance of network services to the end-users. In this work, the overall performance of the network has been checked to verify if network performance meets good signal levels and good network coverage. Relevant details of the NB-IoT technology, the theory behind the signal coverage and comparisons with the measurement results have also been discussed to check the relevance of the measurement results

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    Energy efficiency comparison between 2.1 GHz and 28 GHz based communication networks

    Get PDF
    Mobile communications have revolutionized the way we communicate around the globe, making communication easier, faster and cheaper. In the first three generations of mobile networks, the primary focus was on voice calls, and as such, the traffic on the networks was not as heavy as it currently is. Towards the fourth generation however, there was an explosive increase in mobile data traffic, driven in part by the heavy use of smart phones, tablets and cloud services, that is in turn increasing heavy energy consumption by the mobile networks to meet increased demand. Addition of power conditioning equipment adds on to the overall energy consumption of the base stations, necessitating deployment of energy efficient solutions to deal with the impacts and costs of heavy energy consumption. This thesis investigates the energy efficiency performance of mobile networks in various scenarios in a dense urban environment. Consideration is given to the future deployment of 5G networks, and simulations are carried out at 2.1 GHz and 28 GHz frequencies with a channel bandwidth of 20 MHz in the 2.1 GHz simulation and 20 MHz in 28 GHz scenario. The channel bandwidth of the 28 GHz system is then increased ten-fold and another system performance evaluation is then done. Parameters used for evaluating the system performance include the received signal strength, signal-to-interference-plus-noise-ratio, spectral efficiency and power efficiency are also considered. The results suggest that deployment of networks using mmWave frequencies with the same parameters as the 2.1 GHz does not improve the overall performance of the system but improves the throughput when a bandwidth of 200 MHz band is allocated. The use of antenna masking with down tilting improves the gains of the system in all three systems. The conclusion drawn is that if all factors are the same, mmWave systems can be installed in the same site locations as 2.1 GHz systems. However, to achieve better performance, some significant modifications would need to be considered, like the use of antenna arrays and beam steering techniques. This simulation has considered outdoor users only, with indoor users eliminated. The parameters in a real network deployment might differ and the results could change, which in turn could change the performance of the system

    Traffic-Driven Energy Efficient Operational Mechanisms in Cellular Access Networks

    Get PDF
    Recent explosive growth in mobile data traffic is increasing energy consumption in cellular networks at an incredible rate. Moreover, as a direct result of the conventional static network provisioning approach, a significant amount of electrical energy is being wasted in the existing networks. Therefore, in recent time, the issue of designing energy efficient cellular networks has drawn significant attention, which is also the foremost motivation behind this research. The proposed research is particularly focused on the design of self-organizing type traffic-sensitive dynamic network reconfiguring mechanisms for energy efficiency in cellular systems. Under the proposed techniques, radio access networks (RANs) are adaptively reconfigured using less equipment leading to reduced energy utilization. Several energy efficient cellular network frameworks by employing inter-base station (BS) cooperation in RANs are proposed. Under these frameworks, based on the instantaneous traffic demand, BSs are dynamically switched between active and sleep modes by redistributing traffic among them and thus, energy savings is achieved. The focus is then extended to exploiting the availability of multiple cellular networks for extracting energy savings through inter-RAN cooperation. Mathematical models for both of these single-RAN and multi-RAN cooperation mechanisms are also formulated. An alternative energy saving technique using dynamic sectorization (DS) under which some of the sectors in the underutilized BSs are turned into sleep mode is also proposed. Algorithms for both the distributed and the centralized implementations are developed. Finally, a two-dimensional energy efficient network provisioning mechanism is proposed by jointly applying both the DS and the dynamic BS switching. Extensive simulations are carried out, which demonstrate the capability of the proposed mechanisms in substantially enhancing the energy efficiency of cellular networks

    Improving relay based cellular networks performance in highly user congested and emergency situations

    Get PDF
    PhDRelay based cellular networks (RBCNs) are the technologies that incorporate multi-hop communication into traditional cellular networks. A RBCN can potentially support higher data rates, more stable radio coverage and more dynamic services. In reality, RBCNs still suffer from performance degradation in terms of high user congestion, base station failure and overloading in emergency situations. The focus of this thesis is to explore the potential to improve IEEE802.16j supported RBCN performance in user congestion and emergency situations using adjustments to the RF layer (by antenna adjustments or extensions using multi-hop) and cooperative adjustment algorithms, e.g. based on controlling frequency allocation centrally and using distributed approaches. The first part of this thesis designs and validates network reconfiguration algorithms for RBCN, including a cooperative antenna power control algorithm and a heuristic antenna tilting algorithm. The second part of this thesis investigates centralized and distributed dynamic frequency allocation for higher RBCN frequency efficiency, network resilience, and computation simplicity. It is demonstrated that these benefits mitigate user congestion and base station failure problems significantly. Additionally, interweaving coordinated dynamic frequency allocation and antenna tilting is investigated in order to obtain the benefits of both actions. The third part of this thesis incorporates Delay Tolerate Networking (DTN) technology into RBCN to let users self-organize to connect to functional base station through multi-hops supported by other users. Through the use of DTN, RBCN coverage and performance are improved. This thesis explores the augmentation of DTN routing protocols to let more un-covered users connect to base stations and improve network load balancin
    • …
    corecore