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Abstract	
 
The rapid growth in mobile communications due to the exponential demand for wireless access 

is causing the distribution and maintenance of cellular networks to become more complex, 

expensive and time consuming. Lately, extensive research and standardisation work has been 

focused on the novel paradigm of self-organising network (SON). SON is an automated 

technology that allows the planning, deployment, operation, optimisation and healing of the 

network to become faster and easier by reducing the human involvement in network 

operational tasks, while optimising the network coverage, capacity and quality of service. 

However, these SON autonomous features cannot be achieved with the current drive test 

coverage assessment approach due to its lack of automaticity which results in huge delays and 

cost. Minimization of drive test (MDT) has recently been standardized by 3GPP as a key self-

organising network (SON) feature. MDT allows coverage to be estimated at the base station 

using user equipment (UE) measurement reports with the objective to eliminate the need for 

drive tests. However, most MDT based coverage estimation methods recently proposed in 

literature assume that UE position is known at the base station with 100% accuracy, an 

assumption that does not hold in reality. In this work, we develop a novel and accurate 

analytical model that allows the quantification of error in MDT based autonomous coverage 

estimation (ACE) as a function of error in UE as well as base station (user deployed cell) 

positioning. We first consider a circular cell with an omnidirectional antenna and then we use 

a three-sectored cell and see how the system is going to be affected by the UE and the base 

station (user deployed cell) geographical location information errors. Our model also allows 

characterization of error in ACE as function of standard deviation of shadowing in addition to 

the path-loss.  
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CHAPTER	1 	
 

1 Introduction 
 

 Context and Background 
 

Every day more and more people are using their mobile devices to access the internet and the 

demand for wireless access is increasing exponentially which results in a rapid growth in 

mobile communications. The amount of IP data handled by wireless networks has increased 

significantly, and with this rate the amount will have increased 127-fold from 2005 to 2021. In 

2016, global IP traffic was 1.2 ZB (ZB; 1000 Exabytes) per year and with this rate it will reach 

3.3 ZB by 2021 with a compound annual growth rate of 24 percent from 2016 to 2021 [1] [2].  

Consequently, the rapid growth is causing the distribution and maintenance of cellular 

networks to become more and more complex, expensive, and time consuming. Hence, there is 

an urgent need for a new functionality in cellular networks which would cope with this 

increased complexity, while reducing the cost and maintenance time. 

Self-organisation (SO) is an adaptive functionality where the network can detect changes and 

based on these detected changes, makes intelligent decisions to maximise or minimise the 

effects of the changes [3]. Self-organisation is effectively the only feasible way of achieving 

optimal performance in future wireless cellular networks in a cost-effective manner [4]. Hence, 

standardisation bodies for long term evolution (LTE) and LTE advance (LTE-A) have 
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identified SO as not just an optional feature but an inevitable necessity in the future wireless 

systems [5]. 

Lately, extensive research and standardisation work has been focused on the novel paradigm 

of self-organising network (SON). SON aims at reducing the capital and operational 

expenditures (CAPEX & OPEX) significantly by reducing human involvement in network 

operational tasks, while optimising the networks coverage, capacity and quality of service [6]. 

In general, SON concept involves the integration of self-configuration, self-optimisation and 

self-healing functionalities into an automated process requiring minimal manual intervention 

[4] [6] [7]. SON is an automated technology that allows the planning, deployment, operation, 

optimisation and healing of the network to become faster and easier [8] [9]. However, these 

autonomous features cannot be achieved with the current drive test based coverage assessment 

approach, as it lacks automaticity and therefore results in huge delay and cost.  

In legacy, cellular network cell outages are generally detected through, field drive tests, 

hardware or software failure alarms at the operation and maintenance centre (OMC), and 

complaints raised by the costumers. There are a few issues with these methods, firstly, these 

methods are manual and suffer from delays, also, the reliability of these methods is limited due 

to the human error factor in addition to the low spatiotemporal granularity of the reports and 

alarms available at OMC or measurements gathered through drive tests. On the other hand, in 

wake of 5G, cell densification is emerging as a dominant strategy for increasing cellular system 

capacity and quality of service [10]. With the increase in the cell density, the rate of cell outage 

is also bound to increase; hence, the manual cell outage detection methods cannot cope with 

the complexity and the expected rate of the cell outage in emerging ultra-dense networks, in a 

reliable and cost effective manner.  

To overcome this challenge, 3GPP has standardized a SON use case, called minimization of 

drive test (MDT) [11], [12]. Hapsari et al. [11] describes in detail the solution adopted in 3GPP 

MDT whilst Baumann et al. [12] demonstrates that MDT can reduce drive tests. With MDT 

standardized, base stations will have access to the user equipment (UE) reported measurements 

that will consist of reference signal received power (RSRP) of the serving and neighbouring 

cells among other measurement reports. These measurements are called MDT measurements. 

Using MDT measurements level of coverage in an area of interest can be estimated without 

conducting expensive and time consuming drive tests or waiting for customer complaints. Cell 
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outages can thus be detected by applying data analytics and machine learning techniques of 

various types [13] [14] on the MDT reports.  

However, most of these recently proposed methods that estimate coverage using MDT with 

different algorithms e.g., grey prediction, k-nearest neighbour anomaly detector (k-NNAD) 

[13] are facing a common challenge. These methods assume that UE position is accurately 

known at the base station. This assumption does not reflect the reality as even the most accurate 

UE positioning methods have a non-zero error range [15], [16]. 

Location information can be obtained by using positioning techniques, such as observed time 

difference of arrival (OTDOA) or assisted global positioning system (A-GPS) [15], [16]. For 

indoor environments, position estimation techniques based on WLAN, radio frequency 

identification (RFID) and ultrasonic have been proposed [17]− [18]. All these techniques are 

prone to errors. For example, the accuracy of A-GPS has been evaluated as 10 m, 10−20 m and 

10−100 m for rural, suburban and urban environments, respectively. On the other hand, the 

average accuracy of indoor techniques is about 2m, however, they require installing specialised 

devices [17]− [18].  

By exploiting the measurement reports gathered by the UEs and their location information, an 

autonomous coverage estimation (ACE) can be developed. In such a system, UEs measurement 

report such as received signal strength (RSS) are tagged with their geographical location 

information, which are obtained from the position estimation techniques, and sent to their 

serving base station. The serving base station after retrieving the measurements, further 

appends its geographical location information and forwards them to a trace collection entity 

(TCE), which then generates the autonomous coverage map. Since the position estimation 

techniques are prone to errors, the measurement reports may be tagged to a wrong location.  

 

Enabling self-organisation is a key as we try to implement self-organisation in future networks 

by decreasing the amount of human intervention gradually to eventually reach zero intervention 

in deploying, optimising and managing future cellular networks. The main self-organisation 

enablers would be the seamless algorithms for autonomous coverage estimation, service 

estimation, cell boundary estimation, independent energy consumption and quality of service 

estimation. These estimation algorithms will provide the necessary data to help towards the full 

self-organisation and eliminating the need for human intervention in future networks. 
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The aim of the project is to perform self-organising coverage estimation for 5G cellular 

networks in an energy efficient manner. To do so, it’s considered having a heterogeneous 

networks (HetNet) and splitting the C-plane and the U-plane. Also, phantom cells are used 

which are different to conventional “cells”. So, the signalling and the data are split in which 

the signalling part is done by the macro base station and the phantom cells (data access points) 

deal with high capacity data transfers FIGURE 1.1. 

The aim is that the base station by detecting the exact position of the users will decide how 

many small cells are required to be activated to cover all the users and then giving orders to 

the small cells to tilt their antennas in order to increase or decrease their coverage area to cover 

all the users. However, no matter what method it’s used the position estimation of the users is 

not 100% accurate. This results in calculating the effects of inaccurate user position estimation 

and observing how this will affect the self-organising coverage estimation. Also, due to the 

fact that in future networks there are user deployed cells, hence the position estimation needs 

to be considered for the user deployed cells as well. This results in the need for calculating the 

effects of inaccurate position estimation for the user deployed cells in addition to the user 

position estimation error. 

In addition, as green communication is becoming more important and more of a necessity for 

future networks. Hence, the aim is to achieve all these in an energy efficient manner. Through 

multi-cell cooperation, the number of active base stations can be decreased. 

 

FIGURE 1.1: Umbrella Cell 
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 Main Contributions and Achievements  
 

Using MDT measurements level of coverage in an area of interest can be estimated without 

conducting expensive and time consuming drive tests or waiting for customer complaints. Cell 

outages can thus be detected by applying data analytics and machine learning techniques of 

various types on the MDT reports. However, all the methods assume that UE position is 

accurately known at the BS. This assumption does not reflect the reality as even the most 

accurate UE positioning methods have non-zero error range. 

In this work, we address this challenge by analysing and quantifying the error in coverage 

estimation caused by the error in UE positioning. We investigate the impact of inaccurate 

position estimation on the ACE scheme by deriving its cell coverage probability over the area 

of interest where the data are gathered from.  

We then extend the work by incorporating the impact base station position inaccuracy into the 

quantification of error in coverage estimation when the shadowing is considered in addition to 

the case with path loss only channel model. Significance of this work lies in the fact that results 

obtained can be used to calibrate the estimated coverage through MDT, for given values of 

standard deviation of shadowing and UE and base station positioning error range, in area under 

consideration. 

Furthermore, we considered a three-sectored cell instead of the omnidirectional cell and 

investigated the impact of inaccurate UE and base station geographical position estimations on 

the sectors and how they will cause the UEs to be assigned to the wrong sector. 

• A detailed ACE scheme is derived. 

• The impact of UE position estimation on the ACE scheme is Investigated and shown.  

• The base station (user deployed cell) positioning error is then added to the problem and 

the impact of it is investigated and shown. 

• These errors are investigated for both cases of when shadowing is considered in 

addition to when the path loss only channel model is considered.  
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• At first an omnidirectional antenna is considered and then a 3-sector directional antenna 

is replaced. 

• The impact of the UE and base station positioning errors are investigated on the 3-sector 

directional antenna. 

 

1.2.1 List of Publications 

 

During this PhD, the following publications have been produced: 

 

Journal Papers: 

• I. Akbari, O. Onireti, A. Imran, M.A. Imran, and R. Tafazolli, “How Reliable is MDT-

Based Autonomous Coverage Estimation in the Presence of User and BS Positioning 

Error?,” IEEE Wireless Communications Letters, vol. 5, no. 2, pp. 196-199, 2016. 

Conference Papers: 

• I. Akbari, O. Onireti, M.A. Imran, A. Imran, and R. Tafazolli, “Effect of Inaccurate 

Position Estimation on Self-Organising Coverage Estimation in Cellular Networks,” 

20th European Wireless Conference. EW2014, pp. 1-5, Spain, Barcelona, 2014. 

• I. Akbari, O. Onireti, A. Imran, M.A. Imran, and R. Tafazolli, “Impact of Inaccurate 

User and Base Station Positioning on Autonomous Coverage Estimation,” in proc. 

IEEE 20th International Workshop on Computer Aided Modelling and Design of 

Communication Links and Networks. CAMAD2015, pp. 114-118, UK, Surrey, 2015. 

 

 Structure of Thesis  
 

The remainder of this thesis is organised as follows: 
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Chapter 2: “Background and Literature Survey” 

This chapter reviews the state of the art on self-organisation, capacity coverage estimation and 

minimisation of drive tests for future cellular networks. More precisely, in the first step, the 

concept of heterogeneous networks and phantom cells are reviewed. This is followed by a 

thorough review of self-organising networks, which involves self-configuration, self-

optimisation and self-healing aspects. Next, the coverage capacity optimisation is reviewed 

with the inclusion of antenna parameters (antenna tilting and antenna pattern). This is followed 

by the conflicts avoidance in self organising networks which brings the essential need for 

coordination among self-organising functions. This is then followed by a detailed review of 

the drive test approaches. And finally, a thorough review of the position estimation is given. 

 

Chapter 3: “Preliminary Investigations – Only Considering User Uncertainty” 

This chapter provides the preliminary investigations on enabling SON. The impact of user 

geographical positioning error (GPS error) on the cell coverage is investigated. A single cell 

scenario is considered in which the cell coverage probability estimation for both the path-loss 

only channel model and when shadowing is added is derived. Some of the results in this chapter 

have been published in [19]. 

 

Chapter 4: “Autonomous Coverage Estimation – Considering Base Station and User 

Errors” 

In this chapter, the effect of error in the user and base station geographical location information 

on the cell coverage estimation is investigated. An autonomous coverage estimation (ACE) 

schemes is introduced that exploits the measurement reports gathered by the UEs. The error in 

coverage estimation due to such autonomous scheme is evaluated by assessing the reliability 

of radio frequency (RF) coverage on the measurement based on the fundamental metric of cell 

coverage probability. This has been done for a single cell scenario and for both path-loss only 

channel model and the shadowing model. The results from this chapter have been published in 

[20] and [21]. 



	 8	

 

Chapter 5: “Sectored Cell ACE” 

In this chapter, the effect of error in the user and base station geographical location information 

on the cell coverage estimation is investigated, this is done whilst considering a three-sectored 

cell. An ACE scheme is introduced that exploits the measurement reports gathered by the UEs. 

The error in coverage estimation due to such autonomous scheme is evaluated and the effect 

of using a three-sectored cell instead of an omnidirectional antenna is investigated. This has 

been done for a single cell scenario. 

 

 

Chapter 6: “Conclusion and Future Work” 

In this chapter, a conclusive summary of the findings obtained by the work presented in the 

previous chapters is provided. Also, future research paths are proposed as a future work 

extension to continue the work presented in this thesis. 
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CHAPTER	2 	
 

2 Background and Literature Survey 
 

This chapter reviews the state of the art on self-organisation, capacity coverage estimation and 

minimisation of drive tests for future cellular networks.  

More precisely, in the first step, the concept of heterogeneous networks and phantom cells are 

reviewed. This is followed by a thorough review of self-organising networks, which involves 

self-configuration, self-optimisation and self-healing aspects. 

Next, the coverage capacity optimisation is reviewed with the inclusion of antenna parameters 

(antenna tilting and antenna pattern). 

This is followed by the conflicts avoidance in self organising networks which brings the 

essential need for coordination among self-organising functions. 

This is then followed by a detailed review of the drive test approaches. And finally, a thorough 

review of the position estimation is given. 

 

 Heterogeneous Networks (HetNet) 
 

Traditional wireless networks are optimised for homogeneous traffic. However, with the 

remarkable growth in cellular traffic, these traditional wireless networks face unprecedented 
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challenges to meet the demand in a cost-effective manner. Recently, the Third-Generation 

Partnership Project (3GPP) LTE-A has started to investigate heterogeneous networks (HetNet) 

deployments as an effective way to improve capacity as well as effectively enhance network 

coverage. 

Unlike the traditional heterogeneous networks that deal with interworking of wireless local 

area networks and cellular networks, a HetNet is a network containing nodes with different 

characteristics such a radio frequency (RF) coverage area, radio access technologies and 

transmission power. In this system, the low power femto nodes and the high-power macro 

nodes can be maintained by the same service provider and they can share the same frequency 

band that the operator provides. So, to ensure the coverage of low power nodes, a joint resource/ 

interference management needs to be provided [22].  

Although heterogeneous networks are envisioned to support the increasing data traffic demand 

and meet the requirements imposed for mobile networks, they also lead to new technical 

challenges. To successfully operate HetNets, radio resource allocator, control and management 

along with radio access and networking technologies are crucial.  

In order to cope with the wireless traffic demand explosion, operators are underlying their 

microcellular networks with lower power base stations in a more dense manner buy using 

HetNets, or ultra-dense small cell networks.  

Deployment of HetNets, require several challenges in terms of backhauling, capacity provision 

and dynamics in continuum fluctuating traffic load. This is where SON comes in as it has been 

defined to overcome these challenges [23]. 

As shows in FIGURE 2.1, heterogeneous cellular networks that consist of Macro and small 

cells can offer significant capacity gain by utilising the resources of the small cells. But to 

achieve this, the interference between the small cells and the macro cells must be carefully 

managed.  
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FIGURE 2.1: Heterogeneous Networks [24] 

 

Noh et al. [25] proposes an uplink intercell interference control (ICIC) scheme which is a 

combination of the ICIC approach for the handover based and rate-split based interference 

controls. 

It shows that the ICIC scheme works in distributed manner with low-complexity due to its 

controlled resource allocation so that it can be applied to self-organising network as well as 

heterogeneous networks.  

Future cellular networks face a great challenge to meet the overwhelming demand for network 

capacity. Also, the increasing demand for higher data rates is leading to a rapid growth in power 

consumption and operating costs of cellular networks. One potential solution is to address these 

issues by overlaying small cell networks with macro cell networks to provide higher network 

capacity and better coverage.  

However, such multi-tier network will raise issues regarding its energy efficiency implications 

due to the dense and random deployment of small cells.  

Another technique to improve the energy efficiency in cellular networks is by introducing 

active/sleep moves in macro cell base stations. 

Soh et al. [26] investigates the design and the associated trade-offs of energy efficient cellular 

networks through the employment of base station sleep mode strategies in addition to small 

cells. It derives the success probability and energy efficiency in homogeneous macro cell and 
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heterogeneous K-tier wireless networks for different sleeping policies using a stochastic 

geometry based model. 

Karvounas et al. [27] considers a coverage and capacity optimisation problem in heterogeneous 

networks, where small cells are deployed within the area of macro base station. In order to 

maximise the users throughput without causing any interference to the other users, the small 

cells are configured to the optimal power level. At the same time, the redundant small cells are 

switched off to reduce the networks energy consumption.  

 

2.1.1 Phantom Cell Concept 

 

Over the last few years with the increased usage of smartphones and tablet devices, there has 

been a remarkable growth in cellular traffic. If this growth continues with this rate, current 

cellular capacity will not be able to support the future demand [28]. The current network 

deployment contains several capacity solutions for indoor environments such as Wi-Fi and 

femtocells. However, for high traffic outdoor environments, there is a lack of capacity solutions 

especially for the ones that can support good mobility and connectivity. 

By using HetNet, significant capacity enhancements can be achieved. This is done by densely 

deploying various types of small cells in addition to the conventional macro cells. However, 

dense deployment of small cells in a co-channel deployment can result in interference between 

the small cells and the macro cells. As the macro cells provide the fundamental network 

coverage, hence, operators won’t deploy small cell solutions if there’s a chance that they would 

impact the key performance indicators of macro cell. Therefore, the phantom cell concept is 

introduced which is based on macro-assisted small cells. This concept is introduced as a 

capacity solution that offers good mobility support whilst capitalising on the excising Long 

Term Evolution (LTE) network [29].  

In the phantom cell concept, the C-plane/U-plane are split (FIGURE 2.2). In this configuration, 

the C-plane must be supported by a continuous and more reliable coverage layer at lower 

frequency band while the U-plane can be provided by high capacity smaller cells. As it’s shown 

in FIGURE 2.2, the C-plane of User Equipment (UE) in small cells is provided by macro cells 

in a lower frequency band to maintain good connectivity and mobility, while for the UE in 
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macro cells both the C-plane and U- plane are provided by the serving macro cell in the same 

way as in the conventional systems. On the other hand, the U-plane of the UE in small cells is 

provided by small cells in a higher frequency band. This is done so to boost the user data rate. 

 

FIGURE 2.2: Phantom cell 

 

These small cells (phantom cells) are not conventional “cells” because they are not configured 

with the cell specific signal and channels such as primary/secondary synchronisation signals 

and cell-specific reference signals (CRS). These cells visibility to the UE relies on the macro 

cell signalling. These macro-assisted small cells are called phantom cells dues to the fact that 

they are intended to transmit UE-specific signals only, and the radio resource control (RRC) 

connection procedures between the UE and the phantom cells are managed by macro cells.  

There are a lot of benefits that come with the phantom cell concept. One of the benefits is that, 

network operators can maintain basic mobility and connectivity performance whilst they 

deploy only a small number go high frequency band cells. In addition to this, the phantom cell 

provides benefits such as energy saving efficiency, lower interference and so higher spectral 

efficiency by using the new carrier type (NCT) which contains reduced (or no) legacy cell 

specify signals.  
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At the moment, the 3GPP is standardising enhanced local area (eLA) small-cell heterogeneous 

architecture for inclusion in Long term evolution (LTE) release 12 as a solution offering high 

data rate to UEs along with high system capacity through spatial reuse of the spectrum.  

Energy efficiency is becoming an important factor in evaluating the next generation of small 

cell networks. 

Mukherjee et al. [30] focuses on phantom cell architecture which is a eLA architecture. It uses 

the results from stochastic geometry to compare the energy efficiency of the phantom cell 

architecture versus the baseline small cell network, defined as conventional frequency division 

duplex (FDD) LTE pico-cell deployment that uses the same spectrum as the underlying macro 

cellular network. 

The 3GPP standardisation body has initiated studies on LTE rel. 12 to cope with the expected 

growth in mobile data traffic by 2020 [31]. 

Cellular networks are usually modelled by placing the base station on a grid, with mobile users 

either randomly scattered or placed deterministically. These models suffer from being both 

highly idealised and not very tractable, so complex system-level simulations are used to 

evaluate coverage/outage probability and rate.  

Andrews et al. [32] develops new general models for the multi-cell signal to interference plus 

noise ratio (SNIR) using stochastic geometry. The presented framework is significantly more 

tractable than the traditional grid-based models, and appears to track a real deployment as 

accurately as the traditional grid model. In addition to being more tractable, the presented 

models may better capture the increasingly opportunistic and dense placement of base stations 

in future networks. 

 

 Self-Organising Networks (SON) 
 

Self-Organisation (SO) has been defined in various fields including biology and computer 

science. In general, self-organisation is the spontaneous often seemingly purposeful formation 

of spatial, temporal, spatiotemporal structures or functions in systems composed of few or 

many components. 
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Self-Organisation can be seen in both animate and inanimate worlds. In animate world, objects 

grow, change in form and function without being created by humans. Even human brain may 

be considered as a self-organising system. On the other hand, in the inanimate world, planetary 

systems and the galaxies are examples of as self-organisation [33].  

In definition, SO is referred to as an intelligent system that would learn from the environment 

and adapt to statistical variations in input stimuli to achieve highly reliable communications 

whenever and wherever needed [34]. In networks, the term self-organising networks is 

generally taken to mean a cellular network in which the configuration, the operation and the 

optimisation tasks are largely automated [35].  

 

The increase in user applications requires an increase in the capacity of cellular systems. Also 

with the growth of technology, users are expecting to receive better quality of service (QoS). 

As a result, the operators are looking for ways to increase the capacity and the quality of 

service. Since higher capacity and QoS will result in a higher capital expenditure (CAPEX) 

and operating expenditure (OPEX), and since users may be reluctant to pay proportionally 

higher bills for improved services; the operators aim to reduce and minimise CAPEX and 

OPEX whilst enabling a gratifying user experience even under adverse conditions such as 

congested traffic [4]. Also with radio networks like the ones used for LTE and other cellular 

technologies becoming more complex, network planning needs to be made easier. As a result, 

the concept of self-organising networks is growing in interest and use. The increasing in data 

usage has resulted in more dense and complicated networks, this in turn has caused the network 

planning and maintenance to be more complicated than in the early days. Most of this is due to 

the introduction of LTE in which ensures the total minimum capacity has been met by 

increasing the node density with low power nodes such as micro cells, femtocells and relay 

points [36].  	

 

Self-organisation has been investigated in different types of communication networks. In 

context of wireless cellular networks however, self-organisation is a relatively new yet rapidly 

growing area when compared to ad hoc networks or wireless sensor networks.  

 

SON has been introduced with the main following aims: 



	 16	

1. Reducing OPEX by decreasing the level of human intervention in the design, build and 

operation of the network. 

2. Reducing CAPEX by making use of the available resources and optimising them. 

3. Protecting revenue for the operators by reducing the number of human errors. [36] 

Using SO-enabling systems [37], small cells can sense, learn from their environment, and 

autonomously tune their transmission strategies toward an optimal performance. Moreover, 

many advantages can be obtained with SO technologies, such as minimising human 

intervention in networking processes and allowing operators to streamline their operations [38]. 

SON solutions can be divided into three main categories, self-configuration, self-optimisation 

and self-healing. The SON architecture can be centralised, distributed or a hybrid solution [39]. 

 

 

2.2.1 Self-Configuration 

 

Configuration of base stations/eNodeBs, relay stations and femtocell is required during 

deployment, extension and upgrade of network terminals. It may also be needed when there’s 

a change in the system, for example a failure of a node. In future systems, the conventional 

process of manual configuration needs to be replaced by self-configuration. In self 

configuration, the aim is for the base stations to become essentially plug and play items. So, 

through SON new cell sites can be added to the network using plug and play and they should 

need as little manual intervention in configuration as possible. This will reduce the level of 

installer input so the skill level of the installer can also be reduced, therefore, saving cost while 

improving the reliability of the system by the reduction of installer input. Accordingly, this is 

a major element within SON [4] [36].  

As self-configuration is of use for this work, we’ll focus more on it in the next section. 
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2.2.2 Self-Optimisation 

 

After the initial self-configuration phase where the system has been set up, it is necessary to 

optimise the operational characteristics to best meet the needs of the overall network and 

continuously optimise the system parameters to ensure performance of the system is efficient 

if all its optimisations are to be maintained. This is achieved by self-optimisation routines 

within the overall SON. In general, optimisation is required to ensure that when a cell has been 

installed, it operates at its best level of efficiency. Self-optimisation network techniques can 

analyse the performance of the network and change it to best meet the needs of the operator 

and the users [4] [36].  

Self-optimisation is important for HetNet implementations for achieving automatic 

optimisation decisions and procedure executions [37] [40].  

Self-optimisation functionality monitors and analyses performance management data, and 

when necessary, automatically triggers optimisation action on the affected network node(s). 

This significantly reduces manual interventions and replaces them with automatically triggered 

re-optimisations, re-configurations, or software reloads/upgrades thereby helping to reduce 

operating expense [41].  

SON self-optimisation also includes: 

• Load balancing  

• Handover parameter optimisation  

• Interference control  

• Capacity and coverage optimisation 

• Random access channel (RACH) optimisation 

As capacity and coverage optimisation is of use for this work, we’ll focus more on it in the 

next section. 

 

 



	 18	

2.2.3 Self-Healing 

 

Most system will develop faults from time to time and this is the same in wireless cellular 

systems. This can be due to component malfunction or natural disaster. The faults caused can 

cause major inconvenience of the users, however, it is often possible for the network to change 

its characteristics to mask the effects of the fault temporarily while the repairs are being 

effected on the cellular networks. To do so the boundaries of the adjacent cells can be increased 

by increasing the power levels and changing antenna elevation levels, etc. [4].  

The self-healing aspect of SON is an increasingly important element of the overall cellular 

networks. It involves remote detection, diagnostic and triggering compensation or recovery 

action to mitigate the effect of the faults in the network equipment’s [36] [42]. 

 

According to architectural categorisation, the SON approach can be designed by using the 

following different classes depending on the location of optimisation algorithms: centralised 

SON, distributed SON, localised SON and hybrid SON [43]. A hybrid SON is usually required 

in practice. In centralised SON, a large number of cells are involved in the optimisation and 

due to the long-term statistics being processed, slower parameter update rates are faced. In 

centralised solutions, the SON functionality is located at a high level in the architecture such 

as network management system (NMS). The use cases in centralised SON are such that they 

require many cells to be treated simultaneously, e.g., if the antenna tilt of a base station is 

changed; it must be considered in the neighbouring cells due to the changed interference 

situation [44]. Distributed SON is applied in the optimisation processes that involve only a few 

cells (e.g., two cells). In distributed SON the optimisation algorithm are executed in the base 

station. Localised SON is applied to the single cell processes. These don’t have significant 

impact on their neighbours [45].  

Lateef et al. [46] presents a self-coordination framework which builds on the comprehensive 

identification and classification of potential conflicts that are possible among the major self-

organising functions envisioned by the 3GPP so far. 

The classification is achieved by analysing network topology mutation, temporal and spatial 

scopes, parametric dependencies, and logical relations that can affect the operation of self-



	 19	

organising functions in reality. and it outlines a solution approach for a conflict free 

implementation of multiple self-organising functions in LTE/LTE-Advanced networks. 

Diagnosis for configuration troubleshooting in femtocell networks is extremely important for 

end users and network operators. But because the small sized femtocells only serve several 

users, the historical data are insufficient. This makes traditional cellular troubleshooting 

solution which require a large amount of historical data not applicable. 

Wang et al. [47] proposes a transfer learning framework for diagnosing femtocell configuration 

problems which is based on transfer learning technology to address the data scarcity to enhance 

the accuracy of the diagnosis model. To do so it extracts additional diagnosis knowledge by 

transferring data information from other femtocells. It’s also shown that by doing extensive 

evaluations, this approach can achieve higher accuracy than traditional methods in self-

organising femtocell network scenarios. 

 

The general idea of a SON is to integrate network planning, configuration, and optimization 

into a unified automatic process requiring minimal manual intervention [37]. 

Parodi et al. [48] presented a general framework for self-configuration of future LTE networks 

that addresses the problems associated with autonomous deployment of a new site i.e. without 

the need for any human intervention. In future cellular networks, nodes should be able to self-

configure all the initial parameters including IP addresses, neighbour lists and radio access 

parameters. 

3GPP Releases 8 and 9 specify the most important SON related objectives, include interference 

control, coverage capacity optimisation (CCO), mobility load balancing, mobility robustness 

optimisation (MRO), and energy saving management for homogeneous topology [37] [49]. 

For this work we focus more on the CCO. 
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 Coverage Capacity Optimisation (CCO) 
 

The concept behind CCO is to adapt parameters such as antenna tilts and transmitter power 

levels to maximise coverage while optimising the capacity by insuring inter-cell interference 

levels are minimised. This can create some significant advantages that can be very time 

consuming and expensive to manage manually [50]. 

The objective of CCO is to provide optimal coverage and capacity for the radio network. This 

needs to be done whilst considering a trade-off between capacity and coverage. 

Coverage optimisation is very important within cellular networks. It is important that in the 

network, the cells provide a complete coverage without having areas with no coverage at all. 

The coverage area of each cell is determined through multiple factors; position of antenna, 

transmission power and antenna tilt. 

To reach the CCO targets, the following parameters may be optimised [51] [50]: 

• Downlink transmit power: The transmitter power optimization is more challenging 

than optimising antenna parameters. There are issues with amplifier behaviour and 

issues with reciprocity with the handsets. It is possible to increase the transmitted power 

so that the handset receiver can receive the base station further away, but it may not be 

possible for the handset to increase its power sufficiently to match any improvements 

specially at the cell edge where it may already be operating close to its maximum level. 

• Antenna parameters (tilt and azimuth): To achieve CCO using the adjustment of 

the antenna parameters, a remote electric tilt (RET) is required. The adjustments can be 

made either electrically or mechanically, however, sometimes both are needed for a 

wider range. The antenna tilt needs to be carefully adjusted to not produce coverage 

holes or increase the interference by tilting too much or too little. The antenna azimuth 

is the direction that the antenna is pointing (only for directional antennas, not 

omnidirectional antennas). 

 

To optimize coverage within the network, since these can be executed remotely, usually a 

sequence of power and tilt adaptations is used. Then the situation is re-evaluated after each 
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change through the analysis of measurement reports. The results of these evaluations are used 

to determine whether additional adaptions are required or not [52]. 

The use case of CCO is to enable detection of following problems: 

• Priority 1: coverage problems, e.g. coverage holes 

• Priority 2: capacity problems 

The work on the detection methods is to be coordinated with the progress of other SON 

functionalities, in particular, mobility robustness optimisation (MRO) and minimisation of 

drive tests (MDT) [49]. 

 

2.3.1 Antenna Tilting  

 

Antenna tilt is one of the most important system parameters in coverage and capacity 

optimisation as tilt determines the service coverage boundary and level of inter-cell 

interference in the system [53]. 

There are two ways of tilting the vertical pattern of an antenna, mechanical tilting and electrical 

down-tilt [54]. 

 

Mechanical tilting  

The easiest way of beam tilting is to mechanically tilt the entire sector antenna using brackets. 

But this is a less favourable way of beam tilting as it has a significant downside. This technique 

does not reduce the converge consistently across the horizon over whole sector. Mechanical 

tilting reduces coverage more in the bore sight - the direction along which the gain is maximum 

is called the antenna bore sight for a directional antenna [55]- direction and less at other angles 

away from the bore sight. This results in an inconsistent decrease in the cell coverage area 

which is referred to as pattern blooming. 
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Electrical down-tilt 

Normally to reduce the network inefficiencies, the acceptable amount of pattern blooming 

should not exceed 10% of the antennas azimuth beam width. Higher levels of pattern blooming 

will generate interference levels that can cause network inefficiencies and diminish the quality 

of service. 

A more preferred method for tilting the vertical pattern of a sector antenna is by using electric 

down-tilt. The way this technique works is that by using phase shifters, it manipulates the 

electric phase derived to each antenna element to achieve beam tilting. The antenna itself 

remains mounted upright and is not tilted (mechanically) while the RF signal shifts and the 

resulting elevation pattern is tilted consistently over the entire 360 degrees, reliably shrinking 

the coverage area. This method won’t affect the amount of pattern blooming and pattern 

blooming won’t increase regardless of the amount of electric down-tilt. 

Another advantage of this method (electric down-titling) is that by connecting a motor to the 

phase shifter mechanism, the whole thing can be done remotely. This advantage is becoming 

more important by the increased use of the next generation air interface technologies such as 

LTE [54].  

SON is linked closely to LTE. wherein the network re-optimises itself routinely based in 

demand levels. For the full SON concept implementation, flexible coverage adjustment 

techniques such as electric down-tilt are required. 

Performance and efficiency of a cellular network antenna can be enhanced by properly 

adjusting the antenna tilt settings. Antenna tilt is one of the most important radio parameters 

that determine the service coverage boundary and level of intercell interference in cellular 

systems.  

In addition, tilt tuning is an effective technique in radio network optimisation to affect a better 

load balance among cells for effective utilisation of spare radio resources. the variability of 

user traffic distribution makes it more challenging for operators to ensure the required service 

capacity and quality with acceptable capital and operational expenditures. 

Kifle et al. [56] investigates the potential performance gains of tilt optimisation for differently 

placed user traffic concentrations. It shows using simulations that the users at traffic hot spot 

area suffering from resource sharing can achieve significant performance gains (resulting from 
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coverage change due to tilt adaptation leading to the signal to interference plus noise ration 

(SINR) improvement of hot spot areas) from traffic oriented tilt optimisation. 

Popup traffic hotspots are a time persistent reason behind poor user experience in wireless 

cellular systems. The unpredictability of these hotspots makes them difficult to be designed out 

in the planning phases of the cellular system, hence, dynamic and adaptive solutions are 

required to deal with this.  

Imran et al. [57] presents a novel solution to address the popup traffic hotspots issue by 

dynamically enhancing spectral efficiency in hotspot region through optimisation of system 

wide base station antenna tilts in distributed fashion. The solution provided, unlike most of the 

existing works, doesn't rely on load transferring to neighbour cells; rather it dynamically 

enhances the overall spectral efficiency and thus the capacity of the system by jointly 

optimising antenna tilts of multiple adjacent cells with respect to hotspot locations in those 

cells. A pre-determined set of neighbouring cells jointly optimise their tilts to focus their 

antenna gains at the centre of gravity e.g., hotspots in those cells. 

 

2.3.2 Antenna Azimuth 

 

Azimuth refers to the rotation of the whole antenna around a vertical axis. The antenna azimuth 

is the direction that the antenna is pointing (only for directional antennas, not omnidirectional 

antennas). The azimuth plane pattern is formed by slicing the 3D pattern through the horizontal 

plane (the x-y plane). This can be seen in FIGURE 2.3. 

 

2.3.3 Antenna Pattern 

 

Antenna pattern is the graphical representation of the radiation properties of the antenna as a 

function of space. In other words, the antenna’s pattern describes how the antenna radiates 

energy out into space (or how it receives it) [58]. 
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The antenna pattern is three-dimensional. This is due to the fact that an antenna radiates energy 

in all directions. This 3D pattern is described with two planar pattern called the principal plane 

patterns. These principal plane patterns that are commonly referred to as the antenna patterns 

are shown in FIGURE 2.3 and FIGURE 2.4. 

 

The terms azimuth plane pattern and elevation plane pattern are commonly used regarding 

antenna patterns. Azimuth and elevation are angles used to define the apparent position of an 

object in the sky [59]. The terms azimuth and elevation are normally referenced to the horizon 

and the vertical respectively whereas the azimuth angle is the compass bearing and the 

elevation angle is the altitude [60]. This is shown in FIGURE 2.3. 

 

 

FIGURE 2.3: Graphical explanation of antenna azimuth and elevation [61] 
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FIGURE 2.4: Radiation pattern in polar and Cartesian coordinates showing various types of 

lobes [58] 

 

 

 Conflict Avoidance 
 

Self-organising functions may have complex relations and parameter/logical inter-

dependencies which can induce conflicts among self-organising functions and eventually 

undermine the network operation. Therefore, to ensure the stable operation of wireless 

networks, in addition to avoiding objective/parameter conflicts, coordination among self-

organising functions is essential. 

It is vital to figure out the optimum way of designing self-optimisation algorithms in 

conjunction with self-coordination for efficient radio resource management and reduction of 

OPEX. If for example, the self-optimisation and the self-coordination are executed 

independently, this will cause the algorithm part of the self-optimisation function to be 

executed without the subsequent knowledge or rejection of the action requested by self-

coordination function. This in turn may result in numerous self-optimisation algorithms to be 

executed without any performance gains [46]. 

In [62] the initial challenges of characteristics, parametric, and measurement conflicts when 

integrating SON functions into next generation wireless networks were described. However, 



	 26	

none of these works provide comprehensive identification, annotation, and classification of 

SON function conflicts. 

Bandh et al. [63] presents an experimental system for SON function coordination based on 

flexible policy based decisions. Coverage and capacity optimisation (CCO) is presented as a 

use case to demonstrate successful coordination of multiple independent SON functions. CCO 

is performed through adaptations of throughput power (TXP) and antenna tilt (RET). 

Subsequent CCO(TXP) and CCO(RET) requests for changing the respective parameters need 

to be coordinated because they depend on the changes previously performed at a cell. 

In [46] the authors have identified and annotated several possible conflicts among the range of 

self-organising functions anticipated to be implemented in LTE and LTE-Advanced. It has also 

presented a comprehensive taxonomy of these conflicts, which classifies them based on 

network topology mutation, key performance indicator (KPI), output parameters 

direction/magnitude, measurement and logical dependency conflicts. However, the resolution 

of SON conflicts requires a deeper analysis, modelling, and classification.  

With the introduction of SON, there may be a risk for conflict and dependencies between SON 

functions, which may result in a suboptimal performance. Schmelz et al [64] concludes that, a 

SON Coordinator may be beneficial to prevent from network instabilities and/or to improve 

the performance; in case several conflicting SON functions are implemented in a network. 

This deeper analysis, modelling, and classification can be seen in [65] where a comprehensive 

classification of SON function conflicts, which leads the way for designing suitable conflict 

resolution solutions among SON functions and implementing SON in real world is presented. 

The analytical model of these conflicts is presented using reference signal received power plot 

in multi-cell environments, which helps to dig into the complex relations among SON 

functions.  

In [52], based on a detailed analysis of the requirements for the coordination, a policy-based 

approach to realise the coordination-related decision making based on the network 

configuration and SON function context is presented. Results for two use cases are presented 

to show the applicability of the developed approach to diverse SON use cases. 
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 Drive Test Approaches 
 

To provide a good network coverage and QoS, mobile communication networks are required 

to be monitored and optimised. The cellular network operators have the important task of drive 

testing to constantly assess the quality of their networks.    

Drive tests are used to collect data from mobile networks and use these data for the 

configuration and maintenance of the networks. Conventional drive testing is a manual process 

in which the operator would be required to send engineers to the field to collect radio 

measurements in a hand-operated manner. In turn this helps them to discover network problems 

such as coverage holes in their networks and to be able to enhance the quality of their networks. 

However, such conventional drive tests consume significant time and human efforts to obtain 

and require a large OPEX while the collected measurements only cover a certain area of the 

network and can only give limited snap shots of the entire networks [62] [11]. 

These issues have been discussed by the operators in the Next Generation Mobile Networks 

(NGMN) alliance - a non-standardisation organisation- where the requirements for the 

automated drive tests and the recommendation solutions were delivered [66].  

To reduce the effort and expense of drive tests, the 3GPP studied and specified solution in 

release 9 under the name “Minimisation of Drive Tests” (MDT) scoping two Radio Access 

Technologies (RATs), LTE and Universal Mobile Telecommunication Systems (UMTS). The 

main concept is to take advantage of UEs measurement capabilities to use each device which 

is logged in the network for collecting measurement data. The work was finalised as part of 

3GPP release 10 specification [67] [11] [12].  

In [67], the main use cases for MDT are defined by the 3GPP Technical Specification Group 

Radio Access Networks (RAN). They are; coverage optimisation, mobility optimisation, 

capacity optimisation, parametrisation for common channels and QoS verification.  

With MDT, in addition to OPEX reduction, the data collected reflects the real-time network 

quality of where the users are actually located. This cannot be achieved by conventional drive 

tests and is an essential value of MDT. An operator, with the effective use of MDT, can 

potentially eliminate frequent needs for traditional drive tests and realise the real-time 

optimisation of networks [11]. 
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Baumann et al. [12] talks about MDT and how it can reduce drive tests; especially for coverage, 

capacity and QoS. But there are still use cases where MDT cannot replace drive tests. For 

example, for a detailed detection of coverage holes or hidden neighbourhoods, a drive test is 

needed. 

Johansson et al. [68] describes the MDT enhancements added in 3GPP release 11 specification 

in order to provide a more complete view of the network performance. These MDT 

enhancements, enable the operators to collect measurements indicating the users’ real-life 

throughput and connectivity issues in addition to those indicating the network coverage 

conditions. This results in a wider application of use cases that allows network optimisation 

without dependence on conventional drive tests.  

In [69], measurement reports from UEs are used for MDT. In this MDT system, UEs upload 

the measurement reports periodically or upon request and based on these measurement reports, 

the MDT system learns the knowledge about the communication environment. 

A generic measurement architecture for automating the collection of UE radio measurements 

in order to minimise the need for manual drive tests in HetNet small cell networks is proposed 

in [70]. 

A user satisfaction classification for MDT QoS verification is proposed in [71]. It introduces a 

data mining framework which allows to distinguish between satisfied and unsatisfied users in 

LTE mobile networks on the basis of limited number of KPIs. 

 

 Position Estimation 
 

Various location based services in wireless communication networks depend on mobile 

positioning. commercial examples range from low-accuracy method based on cell 

identification to high-accuracy methods combining wireless network information and satellite 

positioning. These methods are typically network centric, where the position is determined in 

the network and presented to the user via a specific service.  

A position estimation method is demanded to provide location-based services such as 

navigation in recent years. Such services require the real-time position of the user. Global 
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positioning system (GPS) is one of the well-known position estimation methods. However, 

GPS cannot accurately determine the position in indoor environments.  

For indoor environments, many position estimation methods using WLAN [72], RFID [73], 

ultrasonic [74] and etc. have been proposed. However, these methods require installing 

specialised devices to the environment [75].  

Today, the global navigation satellite system (GNSS) is the most effective positioning 

technology in the outdoor open environments [76]. However, it has limitations such as poor 

performance in built-up areas and high power consumption. which has led to the development 

of positioning techniques that are based on the wireless networks. These technologies include 

a variety of angle of arrival, time of arrival and location fingerprinting techniques. 

RF fingerprinting refers to a database correlation method where the position is estimated by 

comparing the radio measurements e.g., the RF fingerprint of the UE with the training 

fingerprint consist of received signal strength (RSS) radio measurement from several base 

stations that are used to provide a fingerprint of the radio conditions at a specific geographical 

location. normally this location is determined with an accurate positioning method (i.e. GNSS). 

hence, fingerprinting is a positioning method that make the most of the already existing 

infrastructures such as cellular networks [77] and WLANS. 

Mondal et al. [78] estimates the position using the grid based radio frequency fingerprint 

position estimation. It proposes a novel technique to enhance the performance of this grid based 

RF fingerprint position estimation framework by introducing an overlapping grid layout to 

form training signatures and by estimating the location of the testing signature to be a weighted 

geometric centre of a set of nearest grid units. The enhancements can increase the number of 

training signatures that is required to be analysed for finding the nearest grid but the position 

accuracy is increased. 

Kaneto et al. [75] proposes a method for estimating the user position in an indoor environment 

where the user is holding a microphone (phone). In this method, digital watermarking for audio 

signals is used. A model of the detection strengths is constructed and using the model the user 

position is estimated in real life. The estimation accuracy of the case has been evaluated for 

both static user and moving user. However, this method is dependent on the area of the 

environment and the number of loudspeakers. 
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Tsuji et al. [79] proposes a users’ position and behaviour estimation method using sensors such 

as GPS device, an acceleration sensor and an ultrasonic sensor, to alert important information 

to the user at the right time. In the work the aim was not detecting the precise users’ location 

but rather estimating the users rough position and rough behaviour (walking, running and etc.). 

Hoseintabatabaei et al. [80]presents a novel approach for mobile phone centric observation of 

a user's facing direction, relying solely on built-in accelerometer and magnetometer. This 

approach achieves greater accuracy and independence by an automatic detection of the wearing 

position of the mobile device on the user's body and subsequent selection of an optimum 

strategy for estimating the user direction. 

In order to observe a users’ directionality, current approaches make use of, ambient sensors, 

body sensor networks (BSN) and localisation with wireless transceivers (e.g. GPS or Wi-Fi) 

or GPS sensors. Most of these have limitations to either the location or the duration of the 

observation. The limitations are either due to dependency of ambient sensors and wireless 

technologies on infrastructures deployed in an environment or the effect of the environment 

(e.g. indoor signal blockage or GPS) on the utilised techniques.  

As the algorithm only relies on embedded accelerometer and magnetometer sensors of the 

mobile phone, it is not susceptible to shadowing effect as GPS. 

 

Summary 
 

In this chapter, the state of the art on self-organisation, capacity coverage estimation and 

minimisation of drive tests for future cellular networks is reviewed. More precisely, in the first 

step, the concept of heterogeneous networks and phantom cells are reviewed. This is followed 

by a thorough review of self-organising networks, which involves self-configuration, self-

optimisation and self-healing aspects. Next, the coverage capacity optimisation is reviewed 

with the inclusion of antenna parameters (antenna tilting, azimuth and antenna pattern). This is 

followed by the conflicts avoidance in self organising networks which brings the essential need 

for coordination among self-organising functions. This is then followed by a detailed review 

of the drive test approaches. And finally, a thorough review of the position estimation is given.  
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CHAPTER	3 	
 

3 Coverage Estimation Considering User 
Position Uncertainty 

 

In this chapter, the effect of inaccurate user position estimation (GPS error) on the cell coverage 

is investigated. A single cell scenario is considered in which the cell edge and coverage 

probabilities for both shadowing and non-shadowing cases are derived. 

 

 Technical Approach 
 

We consider that, self-reports of measured received power at each reporting user-equipment 

are collected in a central location. All these measurements are tagged with the geo-location of 

the user (which is estimated by the user using some mechanism that is prone to error such as 

GPS).  We aim investigating the impact of the position estimation error on the coverage 

estimation. 

In the works that has been carried away for this research, in order to be able to investigate the 

cell and its surroundings easier, the cell has been assumed to be circular with a radius of R and 

is positioned at the coordinates (a, b). 

Also, it has been assumed that the system (GPS) that is responsible for estimating the position 

of the user has a resultant error radius of r from the actual position of the user with coordinates 
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(c, d). Hence, this results in an imaginary circle with radius r being drawn around the actual 

position of the user in which the system may take any point in this imaginary circle as the 

estimated position. The cell and the way the user is positioned can be seen in FIGURE 3.1(a). 

 

FIGURE 3.1: (a) UE with reported position o, its actual position lies within the circular disc 

with radius r centred o. (b) shows the triangle created in (a). 

 

To find the probability of inaccurate position estimation, the area of the imaginary circle that 

lies outside the cell needs to be calculated. 

 

Area Calculation 

 

The first step is to find the distance between the centre of the cell to the exact user position, as 

shown in (1): 

 𝑝 = 	 (𝑐 − 𝑎)* + (𝑑 − 𝑏)*.  (1) 

 

By drawing the radius of the cell perpendicular to the line connecting the intersecting points 

(between the cell and the imaginary circle around the user), a triangle will be produced as 

shown in FIGURE 3.1(b). 
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(a) Cell and user positioning (b) Calculating the angle 
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Using the produced triangle shown in FIGURE 3.1(b) and some trigonometry, the angles q and 

b can be calculated. The results are shown as followed in (2) and (3). 

 

 𝜃 = 2. cos56
𝑅* + 𝑝* − 𝑟*

2. 𝑝. 𝑅
 (2) 

   

 𝛽 = 2. cos56
𝑅* − 𝑝* − 𝑟*

2. 𝑝. 𝑟
 (3) 

 

By taking and the cell sector and the line connecting the intersecting points (between the cell 

and the imaginary circle around the user), the area of the first segment shown in FIGURE 3.2(b) 

can be calculated using (4). 

 

 𝐴6 = 1 2 . 𝜃 − sin 𝜃 . 𝑅* (4) 

 

Now by taking the sector in the imaginary circle around the user and the line connecting the 

intersecting points, the area of the second segment shown in FIGURE 3.2(a) is calculated and 

can be seen in (5). 

 

 𝐴* = 1 2 . 𝛽 − sin 𝛽 . 𝑟* (5) 

 

From (4) and (5), the area of the imaginary circle positioned outside of the cell (FIGURE 

3.2(c)) can be calculated by subtracting the area of the first segment from the area of the second 

segment as shown in (6). 

 

 𝐴 = 𝐴* − 𝐴6 = 1 2 . 𝛽 − sin 𝛽 . 𝑟* − 𝜃 − sin 𝜃 . 𝑅*  (6) 
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FIGURE 3.2: (a) Area of the first segment, (b) area of the second segment, and (c) area outside 

of the cell. 

 

However, there is a special case where the area that lies outside of the cell can’t be calculated 

using (6). This case happens when the user is positioned somehow that the line connecting the 

intersecting points is on the other side of the user (the user is closer to the edge of the cell). 

This can be seen in FIGURE 3.3(a). In this case, the angle passes the 180 degrees (π) mark and 

is obtuse. 

Similar to the previous section, the area of the first segment (FIGURE 3.3(b)) is calculated 

using (4). However in this case, the area found using (5), calculates the area of the shaded 

segment inside of the cell as shown in FIGURE 3.3(c). 

Therefore, in order to calculate the area that lies outside of the cell, the area of the first segment 

is added to the area of the second segment and then subtracted from the whole area of the 

imaginary circle. This can be calculated using (7). 
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 𝐴 = 𝜋. 𝑟* − 𝐴* + 𝐴6 = 𝑟*. 𝜋 −
𝛽 − sin 𝛽

2
−

𝜃 − sin 𝜃 . 𝑅*

2
 (7) 

 

 

 

FIGURE 3.3: (a) Area of the first segment, (b) area of the second segment, and (c) area outside 

of the cell for the special case. 

 

(6) and (7) can be simplifies into (8) as,  

 

 𝐴 =
𝐴* − 𝐴6, 𝑖𝑓	𝛽 < 𝜋

	𝜋. 𝑟* − 𝐴* + 𝐴6 , 𝑖𝑓	𝛽 > 𝜋. (8) 
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 System Model and Performance Metrics 
 

Two fundamental measures of reliability of RF coverage are utilised, i.e., cell edge reliability 

and cell coverage probability, to demonstrate the effect of inaccurate position estimation in 

self-organising cellular networks. 

 

3.2.1 Propagation Model 

 

The degradation of the signal quality is usually assumed to be due to three different causes: 

fast fading, path loss and slow fading, also known as shadowing. The main focus for this work 

has been on path loss and shadowing. The signal propagation model that is employed is shown 

as followed. 

 

 𝑃F 𝑝 = G
GH

5I JK
JL(GH)

Φ, (9) 

 

where Pr(p), Pt, p and η denote received signal strength (RRS), transmitted power, propagation 

distance and path-loss exponent respectively. The parameter p0 denoted to the reference 

distance with a known path-loss, Pl(po). The shadowing effect is modelled by the random 

variable, Φ, which follows a log-normal distribution such that 10log10Φ follows a zero mean 

Gaussian distribution with a standard deviation σ in dB.  

 

3.2.2 Cell Edge Reliability 

 

In cellular networks, a minimum signal strength γ is usually required to maintain the desired 

QoS.  The cell edge reliability is defined as the probability that the received power strength 

measured on a circular contour at the desired cell edge will exceed or meet a desired quality 
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threshold. In addition, the reliability metric can also be defined for any point within the cell 

coverage, i.e. ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸 , ∀ 0 ≤ p ≤ R, where R is the radius of the cell. 

 

3.2.3 Cell Coverage Probability 

 

The cell coverage probability, 𝒞, is defined as the fraction of the cell area where the received 

power is above the minimum required signal strength γ. The cell coverage probability is 

obtained by integrating the contour probability over the entire coverage area of the cell, i.e. 

across all contours of the cell including the cell edge and dividing it by the cell area. Hence, 

the cell coverage probability is expressed as 

 

 𝒞 =
1
𝒜

𝑝. 𝑃 𝑃F 𝑝, 𝜙 ≥ 𝛾 𝑑𝑝	𝑑𝜙	,
𝒜

 (10) 

 

where 𝒜 denotes to the cell area illustrated in Figure 3.1. Single cell deployment has been 

considered for this work. 

 

3.2.4 GPS Error Modelling  

 

We consider that a central controller utilises GPS to estimate the position of each UE. The GPS 

system has an uncertainty region of radius r (as discussed in chapter 3.1), which implies that 

given the UE reported coordinates are (c, d), the actual UE position is a point with coordinates 

(x, y) that satisfies  

 

 𝑥 − 𝑐 * + 𝑦 − 𝑑 * ≤ 𝑟* (11) 
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Considering a HetNet where the macro cells provide ubiquitous coverage while the small cells 

are for high data rate transmissions. Furthermore, the macro cells are aware of the exact 

position of the small cells and they allocate UEs to each small cell based on the GPS report of 

the UEs position.  

As a result of the uncertainty in GPS estimations, some of the UEs might not be in the coverage 

of their allocated small cells. 

 

 Coverage Probability Estimation  
 

In this section, the modified expression of the cell edge reliability and the cell coverage 

probability that take into consideration the GPS estimation error are derived. Firstly, for the 

simplified case without shadowing, and then we extend it for the shadowing case. 

 

3.3.1 Case without Shadowing  

 

When the GPS uncertainty and shadowing are neglected, the cell edge reliability and cell 

coverage probability and equivalent and can be expressed as in (12). 

 

 ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 ≡ 	𝒞 =
1, 𝑝 ≤ 𝑝\

𝛾	𝑃𝑙(𝑝\)
𝑃

I

0, 𝑝 > 𝑝\
𝛾	𝑃𝑙 𝑝\

𝑃

I (12) 

  

When the GPS uncertainty is considered, in order to estimate the cell edge reliability, we need 

to estimate the area of all possible UE positions. Given the cell centre coordinates, (a, b), cell 

coverage radius, 𝑹 =	𝒑𝟎 𝜸𝑷𝒍(𝒑𝟎) 𝑷𝒕 𝜼 , and the reported UE coordinates, (c, d); we are 

interested in finding the area of the dotted circle that lies within the cell coverage as illustrated 
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in FIGURE 3.1. By using laws of trigonometry and equations derived in section 3.1, the area 

is obtained as shown in (13). 

 

 𝐴 =

𝜋𝑟*		, 0 < 𝑝 ≤ 𝑅 − 𝑟

𝜋𝑟* −
𝛽 − sin 𝛽 𝑟*

2
−

𝜃 − sin 𝜃 𝑅*

2
, 𝑅 − 𝑟 < 𝑝 ≤ 𝑅* − 𝑟*

𝛽 − sin 𝛽 𝑟*

2
+

𝜃 − sin 𝜃 𝑅*

2
, 𝑅* − 𝑟* < 𝑝 < 𝑅

 (13) 

 

The parameter p is the distance between the reported UE position and the cell centre (1). 

Consequently, the reliability of the received signal at any point in the interval 0 ≤ p ≤ R can be 

expressed as  

 

 

ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 =
𝐴
𝜋𝑟*

≡

1		, 0 < 𝑝 ≤ 𝑅 − 𝑟

1 −
𝛽 − sin 𝛽

2𝜋
−

𝜃 − sin 𝜃
2𝜋

𝑅
𝑟

*

, 𝑅 − 𝑟 < 𝑝 ≤ 𝑅* − 𝑟*

𝛽 − sin 𝛽
2𝜋

+
𝜃 − sin 𝜃

2𝜋
𝑅
𝑟

*

, 𝑅* − 𝑟* < 𝑝 < 𝑅

, 
(14) 

 

for the case without shadowing.  

This clearly shows that 100% reliability is only obtained when the reported UE position is at a 

distance such that 0 ≤ p ≤ R-r. Therefore, the cell area coverage probability according to (2) 

as, 

 

 

𝒞ef =
𝑅* − 𝑅 − 𝑟 *

𝑅*

+
1
𝜋𝑅*

𝑝 1 − 𝐴6 𝑑𝑝
g.5F.

g5F
+ 𝑝 𝐴6 + 2𝐴* 𝑑𝑝

g

g.5F.
 

(15) 
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for the case without shadowing, where 𝐴6 and 𝐴* are defined as followed in (16) and (17) 

respectively. 

 

 𝐴6 =
𝛽 − sin 𝛽

2𝜋
−

𝜃 − sin 𝜃
2𝜋

𝑅
𝑟

*

 (16) 

 

and, 

 𝐴* =
𝜃 − sin 𝜃

2𝜋
𝑅
𝑟

*

 (17) 

 

with θ and β defined in (2) and (3) respectively. 

Note that the modified reliability and coverage probability expressions in (14) and (15) 

respectively, reverts to the expression in (12) when the GPS error radius r is zero, r = o. 

 

3.3.2 Case with Shadowing  

 

Here we consider the scenario where both shadowing and path-loss are the dominant factors in 

the channel propagation model. The probability that the reported received signal strength (RSS) 

(in dB) at a distance p from the base station will exceed the threshold γ, i.e., ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸  

can be obtained from [81] and [82] as in (18). 

 

 ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 = 	
1
2
−
1
2
	𝑒𝑟𝑓 𝑎 + 𝑏 ln

𝑝
𝑅

 (18) 

 

In the same way, the cell coverage probability without the error in location information can be 

expressed as in (19). 
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 𝒞 =
1
2
−
1
𝑅*

𝑝. 𝑒𝑟𝑓 𝑎 + 𝑏 ln
𝑝
𝑅

𝑑𝑝
g

\
 (19) 

 

where a and b are defined in (20) and (21) as shown below. 

 

 𝑎 =
𝛾 𝑑𝐵𝑚 − 𝑃 𝑑𝐵𝑚 + 𝑃𝑙 𝑝l 𝑑𝐵 + 10𝜂 log6\

𝑅
𝑝l

𝜎 2
 (20) 

 

and, 

  

 𝑏 = 10𝜂 log6\ 𝑒 𝜎 2 (21) 

 

when there is no error in UE location information. 

Given the reliability expression in (18), now we consider the case with error in the geographical 

location information reported by the UE to their serving BS. As stated earlier, the actual 

location of a UE lies within a circular disc centred at the reported location. Consequently, its 

actual location with reference to its reported location can modelled as  

 

 𝑝(𝜅, 𝜙) = 𝑝* + 𝜅* − 2𝑝𝜅 cos𝜙 (22) 

 

such that 0 ≤ κ ≤ r and 0 ≤ ϕ ≤ 2π	defines every possible point due to GPS error. The PDF of 

the distance and the direction of UE’s actual location with respect to its reported position are 6
F
 

and 6
*q

, respectively. Therefore, the modified ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸  as a result of the inaccuracies in 

the UE’s location information can be obtained as in (23). 
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ℙ𝑟f 𝑃F(𝑝) ≥ 𝛾 = 𝔼s,t ℙr Pw(p(κ, ϕ)) ≥ γ

=
1
2𝜋𝑟

ℙr Pw(p(κ, ϕ)) ≥ γ
*q

\
𝑑𝜙𝑑𝜅

F

\
 

(23) 

 

where 𝔼 is the expectation. This further simplifies as 

 

 ℙ𝑟f 𝑃F(𝑝) ≥ 𝛾 =
1
2𝜋𝑟

1
2
−
1
2
	𝑒𝑟𝑓 𝑎 +

𝑏
2
ln

𝑝(𝜅, 𝜙) *

𝑅*
*q

\
𝑑𝜙𝑑𝜅

F

\
 (24) 

 

by substituting (18) into (23). consequently, the actual percentage of the area 𝒜 in coverage 

when the shadowing is considered, can be expressed according to (10) as shown below in (25). 

 

 

𝒞f =
1
𝒜

ℙ𝑟f 𝑃F(𝑝) ≥ 𝛾 𝑑𝒜

=
1

𝜋𝑟𝑅*
𝑝
1
2

*q

\

F

\

g

\

−
1
2
	𝑒𝑟𝑓 𝑎 +

𝑏
2
ln

𝑝(𝜅, 𝜙) *

𝑅*
𝑑𝜙𝑑𝜅𝑑𝑝 

(25) 

 

 

The modified reliability expression and coverage probability derived in (24) and (25) 

respectively for the case where the GPS error and shadowing were considered, revert back to 

the expression (18) and (19), when the GPS error radius is zero, r = 0, since κ and ϕ will also 

be zero. 

 

 

 



	 43	

 Numerical Results and Discussions  
 

In this section, we verify the accuracy of our modified reliability and the cell coverage 

probability expressions that were derived for both shadowing and non-shadowing cases 

numerically.  

For the purpose of this work, we consider the scenario with a single base station transmitting 

at a fixed power, Pt = 46 dBm. Also, we assume that the minimum received signal that the UE 

can effectively decode is Pmin = -84.5 dBm. Hence, we obtain the cell coverage radius, R, from 

(9) with Φ = 1 and by using the parameters in Table I [83]. 

 

Table I - List of Parameters 

Parameters Symbol Value (unit) 

Standard Deviation σ  7 

Path-loss Exponent η  3.5 

Reference Distance P0 1m 

Path-loss at p0 Pl(p0) 34.5dB 

Power Transmitted Pt 46dBm 

Threshold γ  -84.5dBm 

 

 

For MATLAB simulation, 100,000 UEs are randomly positioned within the coverage of the 

cell, to represent the reported positions. We incorporate the GPS error to the reported position 

of each UE by adding a random displacement, (ŕi, δ), for each UE, such that 0 ≤ ŕi ≤ r, and 0 ≤ 

δ ≤ 2π to obtain the exact UE position.  

For the case without shadowing, in order to verify the coverage probability 𝒞ns in (15), we 

simply evaluate the signal strength at exact UE position, i.e. Pr, using (9) with Φ = 1. Therefore, 

we obtain the percentage of UE with Pr ≥ γ, which refers to as the simulation approach coverage 

probability. 
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In FIGURE 3.4, the exact coverage probability obtained from (15) and the coverage probability 

using the simulation approach for GPS approximation radius, r, ranging from 5 to 100, when 

shadowing is not considered is compared. As it can be seen in the figure, the GPS error 

modified coverage probability expression tightly matches with the simulation approach. 

 

 

FIGURE 3.4: The coverage probability as a fraction of GPS error radius when shadowing is not 

considered. 

 

Furthermore, it can be seen that the coverage probability reduces linearly with the GPS error 

radius. At r = 20m, approximately 2% of the UE will be out of coverage, which is further 

degraded to about 6% at r = 70m. Hence, the GPS error results into coverage gaps in the 

network.  It can also be observed that as GPS radius r → 0, the coverage probability 𝒞ns → 1, 

which is as expected. 

For the case with GPS error and shadowing, in order to get more accurate results, 10,000,000 

UEs are randomly positioned within the coverage of the cell, to represent the reported position. 

Similar to the previous (non-shadowing) case, the simulation approach coverage probability is 
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obtained by finding the percentage of UEs with Pr ≥ γ, where Pr calculated from (9) and 

10log10Φ follows a zero mean Gaussian distribution with standard deviation σ. The results 

(FIGURE 3.5) shows that, while shadowing in considered, the GPS error modified coverage 

probability in (25) matches tightly with the simulation approach. 

 

  

FIGURE 3.5: The coverage probability of the user under shadowing for different uncertainties 

(r). 

 

Similar to the non-shadowing case, the coverage probability reduces with the GPS error radius. 

Also, the GPS error results into coverage gaps in the network, since the coverage probability 

with GPS error, i.e. r > 0, is lower than that without GPS error, i.e. r = 0. It can also be seen 

that as the GPS error radius r → 0, the coverage probability 𝒞s → 𝒞 in (19), which is as 

expected. 
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Figure 3.6 shows the plot of the performance degradation (PD), as a result of GPS error, for 

shadowing standard deviations σ	= 7,9 and 12dB. The performance degradation is defined as 

PD = (𝒞s - 𝒞)/	𝒞, where 𝒞 defined in (19) is the cell coverage probability for the shadowing 

case without GPS error. 

It can be seen in FIGURE 3.6 that the performance becomes more degraded as the shadowing 

standard deviation 𝝈 reduces. This implies that the GPS approximation error is less severe on 

the coverage as 𝝈 increases. This is due to the fact that by increasing 𝝈, more randomness is 

introduced to the received signal; hence, uncertainty/randomness created by the GPS error 

would have more impact on a lower 𝝈. 

FIGURE 3.7 shows the plot of the reliability of the RF signal received by the UE positioned at 

a distance p from the centre of the cell, i.e. ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸  such that 0 ≤ p ≤ R, γ = -84.5dBm, 

𝝈 = 7dB and r = 50, for both the shadowing and non-shadowing cases. 

For the non-shadowing case with GPS error, it can be seen that the reliability, 

ℙ𝒓𝒏𝒔 𝑷𝒓(𝒑) ≥ 𝜸 = 𝟏 when p ≤ R-r, and depreciates from this value when p > R-r. Whereas, 

ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸 = 𝟏, ∀0 ≤ p ≤ R, when there is no GPS error and shadowing. 

For the case with shadowing, as it’s shown in FIGURE 3.7, the reliability ℙ𝒓𝒔 𝑷𝒓(𝒑)  obtained 

when there is GPS error is always less than the reliability without GPS error. 
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FIGURE 3.6: Coverage degradation as a result of GPS error. 

 

FIGURE 3.7: Reliability of UE at a distance p from the cell centre, for the shadowing and non-

shadowing cases. 
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Summary 
 

In this chapter, the preliminary investigations on enabling SON is provided. The impact of user 

geographical positioning error (GPS error) on the cell coverage is investigated. A single cell 

scenario is considered in which the cell coverage probability estimation for both the path-loss 

only channel model and when shadowing is added is derived. Some of the results in this chapter 

were published in [19].  
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CHAPTER	4 	
 

4 Coverage Estimation Considering User 
and Access Point Position Uncertainty  

 

In this chapter, the effect of inaccurate user and base station position estimation (GPS error) 

on the cell coverage is investigated. A single cell scenario is considered in which the cell edge 

and coverage probabilities for both shadowing and non-shadowing cases are derived. 

 

 Autonomous Coverage Estimation Framework 
 

We consider an autonomous coverage estimation (ACE) scheme which exploits the 

measurement reports gathered by the UEs. In such a system, UEs measurement reports are 

tagged with their geographical location information and sent to their serving base station. The 

serving base station after retrieving the measurements, further appends its geographical 

location information and forwards them to a trace collection entity (TCE), which can then 

generate the coverage map.  

The reported geographical coordinates of the UEs and base stations are obtained from 

positioning techniques, such as observed time difference of arrival (OTDOA) or assisted global 

positioning system (A-GPS) [15], [16]. However, these techniques are prone to errors, and, 

hence the reports may be tagged to a wrong location. In this chapter, given a reported UE 
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position, o, with coordinates (c, d), we assume that its actual location is within a circular disc 

with radius r which is cantered at o, as illustrated in FIGURE 3.1(a). Furthermore, we assume 

that errors in base station positioning can be resolved such that its displacement from its 

reported position, e, is known.  

For analytical tractability, we consider a single cell deployment scenario where RSS 

measurement reports are gathered by the UE. The signal propagation model we employ for 

obtaining the RSS is as shown in (9).  

 

The error in coverage estimation due to such autonomous scheme is evaluated by assessing the 

reliability of radio frequency (RF) coverage on the measurement based on the fundamental 

metric of cell coverage probability. 

 

4.1.1 Cell Coverage Probability 

 

In general, the cell coverage probability can be defined as, 

 

 𝒞 =
1
𝒜

ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 𝑑𝒜 (26) 

 

and can be thought of equivalently as the average fraction of the UE who at any time achieves 

a target reference signal received power (RSRP), γ, i.e. the average fraction of network area 

that is in coverage at any time. Hence, given a circular radial distance R from the base station, 

we are interested in computing the percentage of area with RSRP greater than or equal to γ.  
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4.1.2 Error in Coverage Estimation via ACE 

 

The cell coverage probability obtained from (26) will be the same as the ACE scheme when 

the tagged geographical location information’s are accurate. However, the ACE scheme 

becomes sub-optimal when the reported UE and base station positions deviate from the actual, 

thus leading to a much lower cell coverage probability. Hence, we define the error in coverage 

estimation via ACE, which quantifies how its estimated coverage probability deviates from the 

actual cell coverage probability over a fixed area, as followed in (27). 

 

 𝒟� =
𝒞 − 𝒞���

𝒞
∗ 100% (27) 

 

where 𝒞 and 𝒞ACE are the actual cell coverage probability given in (26) and the coverage 

probability estimated from the ACE scheme, respectively, over a fixed area, 𝒜. In the 

following section, we derive the coverage probability of the ACE scheme.  

 

 Cell Coverage Probability with ACE 
 

In this section, the modified expression for the actual coverage probability from the ACE 

scheme is derived when there are errors in UE and base station geographical location 

information. Firstly for the case with shadowing in addition to path-loss, and then for the path-

loss only channel model. 
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4.2.1 ACE Coverage Probability: Path-Loss and Shadowing Channel Model 

 

Here we consider the scenario where both shadowing and path-loss are the dominant factors in 

the channel propagation model. The probability that the reported RSRP (in dB) at a distance p 

from the base station will exceed the threshold γ, i.e., ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸  as shown in (18), when 

there are no error in UE and base station location information. In the same way, the cell 

coverage probability of the ACE scheme without error in location information is shown in (19). 

In addition to the UE’s position error (considered in chapter 3), we consider here the scenario 

where the geographical location information reported by the serving base station to the TCE is 

displaced at a distance e from its actual location, as depicted in FIGURE 4.1. Hence, the 

measurement reports stored in the TCE are also tagged with a wrong base station position, thus 

resulting in the generation of a wrong coverage map. In order to estimate the actual coverage 

probability of the ACE scheme over the area 𝒜 (circular area) centred at the reported base 

station position 𝑋, we estimate the fraction of the measurement reports that will still be in 

coverage based on the actual base station position 𝑋.  

 

FIGURE 4.1: Base station with reported position at 𝑿 has an actual location 𝑿, which is 

displaced from 𝑿 by e. 
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Consider R as the radius of the area of interest 𝒜 centred at 𝑋 , we can create a virtual 

representation of 𝒜 centred at 𝑋 such that both intersects at S1	and	S2,	as	shown	in	FIGURE 

4.1. The intersecting points are characterised by the angle α, 𝛼 = 𝜋 − cos56 �
*g

. Hence, using 

this property, we define two regions, 𝒜1	and	𝒜2,	which	are	the	shaded	and	unshaded	areas	

in	the	area	of	interest,	respectively,	and	from	that	we	estimate	the	actual	fraction	of	UE	in	

coverage	based	on	the	actual	base	station	position	𝑋.  

It can be noted that, the sum of the areas of the two regions 𝒜1	and	𝒜2 is equal to 𝒜, 𝒜6 +

𝒜* = 𝒜. 

The distance between the reported UE position in region 𝒜1	and	𝒜2 with respect to the actual 

base station positions can be expressed as followed in (28) and (29) respectively. 

 

 𝑝𝒜6 𝜃 = 𝑅* + 𝑒* − 2𝑅𝑒 cos 𝜋 − 𝜃 − sin56
𝑒 sin 𝜃
𝑅

 (28) 

 

 𝑝𝒜* 𝜃 = sin 𝜃 − sin56
𝑒 sin 𝜋 − 𝜃

𝑅
sin 𝜋 − 𝜃

𝑅

56

 (29) 

 

where 𝝅 − 𝜶 ≤ 𝜽 ≤ 𝟐𝝅 − 𝜶  and 𝟐𝝅 − 𝜶 ≤ 𝜽 ≤ 𝟑𝝅 − 𝜶  for 𝒑𝓐𝟏 𝜽  and 𝒑𝓐𝟐 𝜽  

respectively.  

Consequently, the actual coverage probability of the ACE scheme over the area 𝒜 can be 

expressed as in (30) 

 

 
𝒞��� =

2
𝜋𝑅*

𝑝ℙ𝑟 𝑃F(𝑝) ≥ 𝛾
G𝒜�  

\

q5¡

\
𝑑𝑝𝑑𝜃

+ 𝑝ℙ𝑟 𝑃F(𝑝) ≥ 𝛾
G𝒜.  

\

¡

\
𝑑𝑝𝑑𝜃  

(30) 
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when there are errors in both UE and base station geographical location information.  

 By substituting the expression of ℙ𝑟 𝑃F(𝑝) ≥ 𝛾  in (24) into (30), the actual coverage 

probability of the ACE scheme can be further expressed as  (31). 

 

 

𝒞��� =
2
𝜋𝑅*
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1
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*q

\
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2
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𝑑𝜙𝑑𝜅 𝑑𝑝𝑑𝜃
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1
2

*q

\

F

\

G𝒜.  

\

¡

\

−
1
2
	𝑒𝑟𝑓 𝑎 +

𝑏
2
ln

𝑝(𝜅, 𝜙) *

𝑅*
𝑑𝜙𝑑𝜅 𝑑𝑝𝑑𝜃  

 (31) 

 

 

4.2.2 ACE Coverage Probability: Path-Loss Only Channel Model 

 

Here we consider the scenario where the path-loss is the prominent factor in channel 

propagation model. We further assume that the cell coverage radius R is such that 𝑹 =

𝒑𝟎
𝜸𝑷𝒍 𝒑𝟎
𝑷𝒕

𝜼
. Hence, for the case with no error in geographical location information and no 

shadowing, ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 = 1, while 0 ≤ p ≤ R. Consequently from (26), in this case, the cell 

coverage probability over the circular radial distance, R, is 1, 𝒞 = 1. 

 

It can be seen that when we consider the path-loss only channel model and the base station 

error is neglected, ℙ𝑟 𝑃F(𝑝) ≥ 𝛾  in (23) is equivalent to the fraction of the circular disk that 

lies within the cell radius R (Figure 3.1). Hence, using some trigonometry, it can be obtained 

as (32), when 0 ≤ 𝑝 ≤ 𝑅. From (32), the coverage probability of it over the area 𝒜 can be 

defined as (33) for when there’s not shadowing and only the UE positioning error is considered. 
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 ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 =
𝛽 − sin 𝛽

2𝜋
+
𝜃 − sin 𝜃

2𝜋
𝑅
𝑟

*

 (32) 

 

 
𝒞��� =

1
𝒜

ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 𝑑𝒜

=
1
𝜋𝑅*

𝑝
𝛽 − sin 𝛽

2𝜋
+
𝜃 − sin 𝜃

2𝜋
𝑅
𝑟

*g

\
𝑑𝑝

*q

\
 

(33) 

 

Following a similar approach with the shadowing case, we derive the cell coverage probability 

for the case with errors in both the UE and base station geographical location information. The 

cell coverage probability of the ACE for the case with path-loss as the dominant factor in the 

channel propagation model can also be expressed as in (30), but with ℙ𝑟 𝑃F(𝑝) ≥ 𝛾  defined 

for the non-shadowing case as ℙ𝑟 𝑃F(𝑝) ≥ 𝛾 = ¢5£¤¥¢
*q

+  5£¤¥ 
*q

g
F

*
. We thus arrive at (34). 

 

 
𝒞��� =

2
𝜋𝑅*

𝑝
𝛽 − sin 𝛽
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𝜃 − sin 𝜃
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𝑑𝑝𝑑𝜃
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𝑅
𝑟
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\

¡

\
𝑑𝑝𝑑𝜃  

(34) 

 

 Numerical Results and Discussions 
 

In this section, we present numerical results to verify the accuracy of the proposed analytical 

methodology against simulations, as well as to show the impact of errors in reported 

geographical location information on the actual coverage estimated by the ACE scheme. We 

consider measurement reports gathered for a single cell, with the parameters specified in Table 

II [83] and we estimate the cell coverage probability over a circular coverage region of area 

𝜋𝑅*, where 𝑅 = 𝑝\
¦JL GH

JK

I
≈ 553.1681 m. 
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For the simulation part, 1,000,000 UEs are distributed following a uniform distribution over 

the circular cell region of radius R around the base station and their positions are taken as 

reported positions. 

The actual position of the 𝒾th UE with coordinated (c𝒾, d𝒾) is generated as 𝑐𝒾 +

𝑟 𝑢𝒾 cos 2𝜋𝑣𝒾 , 𝑑𝒾 + 𝑟 𝑢𝒾 sin 2𝜋𝑣𝒾 . This is where 𝓊𝒾 and 𝓋𝒾 are pseudo random, pseudo 

independent numbers uniformly distributed in [0,1]. 

For the part with base station position error, the actual coordinates of the base station are 

obtained using the error ℯ; such that if the reported coordinates were (𝓍, 𝓎), the actual 

coordinates would be obtained as (𝓍+ℯ, 𝓎). 

The RSRP at the actual generated UE position 𝑃F(𝑝), is estimated according to (9) based on 

the distance between the actual base station and UE positions; where for the path-loss only 

channel model, Φ =1.  

The cell coverage probability from the ACE scheme is then evaluated as the percentage of UE 

with 𝑃F(𝑝) ≥ 𝛾. 

 

Table II - List of Parameters 

Parameters Symbol Value (unit) 

Standard Deviation σ  7,9,12 dB 

Path-loss Exponent η  3.5 

Reference Distance P0 1m 

Path-loss at p0 Pl(p0) 34.5dB 

Power Transmitted Pt 46dBm 

Threshold γ  -84.5dBm 

UE Position Error r 10-100m 

Base Station Position Error e 20m 

 

In FIGURE 4.2 and  FIGURE 4.3, we validate the derived cell coverage probability expressions 

of the ACE scheme for both cases of having only error in UE geographical location 

information, and when we have error in base station geographical location information in 
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addition to the error in UE geographical location information; and compare them. For both 

these figures, the base station (user deployed cell) position error has been fixed to 20. Since we 

have only considered one BS, the error is fixed with respect to all UEs (so no need for angle in 

BS error). 

 

 

FIGURE 4.2: Error in coverage estimated via ACE for the path-loss only case, with e=20 in 

(34). 

 

In  FIGURE 4.3, we compare our analytical results on the error in coverage with ACE scheme 

over the area 𝒜 = π R2, i.e., 𝒟𝒜, with the simulated results, for the case when path-loss and 

shadowing are the dominant factors in the signal propagation model. Whereas, a comparison 

for the case with path-loss as the dominant factor is presented in FIGURE 4.2. We note that in 

both figures, our analytical results tightly match with the simulation.  
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The results in FIGURE 4.2 and FIGURE 4.3 further show that the estimated error in the cell 

coverage probability as measured by the ACE scheme increases as the UE position error 

increases. Furthermore, having errors in base station location information further degrades the 

performance of the ACE scheme.  

 

 FIGURE 4.3: Error in coverage estimated via ACE when shadowing is considered in addition 

to the path-loss, with e=20 in  (31). 

 

FIGURE 4.4 shows the coverage probability at the reported UE position 𝑝, which is at an angle 

θ to the reported base station position. For this case, the base station position error and the UE 

position error have been fixed on 100 m, i.e., e = 100 and r = 100. 

It can be seen that the coverage probability obtained via the ACE scheme is much lower when 

there are errors in the base station and UE geographical location information, for the selected 

θ values.  
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FIGURE 4.4: Coverage probability at the cell edge when e=100 and r=100. 

 

 

In FIGURE 4.5, we plot the coverage estimation error as a result of using the ACE scheme, 

𝒟𝒜, against the UE position error, for shadowing standard deviation σ = 7, 9, 12 dB and base 

station position error e = 0.20 m. We define the coverage estimation error, 𝒟𝒜, as in (27).  

FIGURE 4.5 shows that the performance of the ACE scheme in estimating the actual coverage 

depreciates as the error in UE position increases. It can be seen that as the error in UE 

geographical location information increases, the percentage of error in coverage estimation via 

ACE increases. Furthermore, it can be observed that the performance of the ACE scheme 

becomes more degraded and the percentage error in the coverage estimation via ACE increases 

as the shadowing standard deviation σ reduces. 
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This implies that errors in UE and base station position estimations are less severe on the 

coverage as standard deviation σ increases. The reason for this is that increasing standard 

deviation σ introduces more randomness to the received signal; this results in the randomness 

created by the error in UE geographical location information to have more impact on a lower 

standard deviation σ.  

 

 

FIGURE 4.5: Cell Coverage Degradation with ACE. 

 

In FIGURE 4.6 and FIGURE 4.7, we plot the 3D figure of the error in the coverage via ACE 

against UE position error radius, r, and base station position error, e. The results show that the 

performance of the ACE scheme depreciates as the error in the UE and base station 

geographical location information increases; this is the case for both the path-loss only channel 

model and when there’s shadowing in addition to path-loss.  It can be seen that as the error in 
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UE geographical location information increases, the percentage of error in coverage estimation 

via ACE increases. 

In FIGURE 4.7, it can be further observed that the performance of the ACE scheme becomes 

more degraded as the shadowing standard deviation σ reduces.  

This implies that the errors in UE and base station position estimations are less severe on the 

coverage as standard deviation σ increases. The reason for this is that increasing standard 

deviation σ introduces more randomness to the received signal; this results in the randomness 

created by the error in UE geographical location information to have more impact on a lower 

standard deviation σ. 

 

 

FIGURE 4.6: Error in Coverage Estimated via ACE: Path-loss only model. 

10

20

30

40

50
10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

U E posi tion
error radius , r(m

)

B
S

pos i tion
error, e(m

)

(%
)e
r
r
o
r

in
co

v
er

a
g
e

es
ti
m
a
ti
o
n
,
D

A



	 62	

 

FIGURE 4.7: Error in Coverage Estimated via ACE: both Shadowing and Path-loss. 

 

 

Summary 
 

In this chapter, the effect of error in the user and base station geographical location information 

on the cell coverage estimation is investigated. An autonomous coverage estimation (ACE) 

schemes is introduced that exploits the measurement reports gathered by the UEs. The error in 

coverage estimation due to such autonomous scheme is evaluated by assessing the reliability 

of radio frequency (RF) coverage on the measurement based on the fundamental metric of cell 

coverage probability. This has been done for a single cell scenario and for both path-loss only 

channel model and the shadowing model. The results from this chapter have been published in 

[20] and [21].  
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CHAPTER	5 	
 

5 Sectored Cell ACE 
 

In this chapter, the effect of inaccurate user and base station position estimation (GPS error) 

on the cell coverage is investigates. This is done whilst considering a single cell scenario where 

the cell is divided into 3 sectors. 

 

 Framework 
 

Similar to the previous chapter, we consider an ACE scheme which exploits the measurement 

reports gathered by the UEs but instead of considering a circular cell with an omnidirectional 

antenna, a 3-sectored cell is used. In this system, UEs measurement reports are tagged with 

their geographical location information and sent to their serving base station. The serving base 

station after retrieving the measurement, assigns the UEs to their serving sectors. 

The reported geographical coordinates of the UEs and base stations are obtained from 

positioning techniques such as the observed time difference of arrival (OTDOA) and A-GPS; 

however as discussed before, these techniques are prone to error which in turn would cause 

some of the UEs to be tagged to a wrong location. 

In this chapter, give a reported UE position, o, with coordinates (c, d), we assume that the actual 

location of the UE is within a circular disc with radius r, as shown in FIGURE 3.1(a). Also, we 
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assume the base station positioning errors can be resolved such that its displacement from its 

reported position, e, is known, as illustrated in FIGURE 4.1. However, this time the circular 

cell has been divided into three sectors instead of having one big cell for all the UEs, as in 

FIGURE 5.1.   

For analytical tractability, we consider a single cell deployment scenario where RSS 

measurement reports are gathered by the UE. The signal propagation model we employ for 

obtaining the RSS is as shown in (9). 

 

FIGURE 5.1: Circular cell has been divided into three sectors, it has a reported position at 𝑿 

with an actual location 𝑿, which is displaced from 𝑿 by e. 

 

The probability that the reported RSRP (in dB) at a distance p from the base station will exceed 

the threshold γ, i.e., ℙ𝒓 𝑷𝒓(𝒑) ≥ 𝜸  as shown in (18), when there are no error in UE and base 

station location information. In the same way, the cell coverage probability of the ACE scheme 

without error in location information is shown in (19). 

In addition to the UE and base stations position error (considered in chapter 3 and 4), we 

consider here the scenario where the antenna cell is not omnidirectional and we’re having 

sectored cell.  
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The measurement reports stored in the TCE are also tagged with a wrong base station position, 

thus resulting in the generation of a wrong coverage map. In order to estimate the actual 

coverage probability of the ACE scheme over the area 𝒜 (one sector of the circular area) 

centred at the reported base station position 𝑋, we estimate the fraction of the measurement 

reports that will still be in coverage based on the actual base station position 𝑋.  

 

 Cell Coverage Probability with ACE 
 

In this section, the modified expressions for the actual coverage probability from the ACE 

scheme is investigated. This is done whilst considering the antenna patterns for a 3-sectored 

cell with UE and base station errors in the geographical location information.   

 

As we’re considering a sectored cell, we need to make use of antenna pattern to modify the 

expressions we had for the ACE coverage probability and see how the results are affected when 

there are UE and base station positioning errors.  

In order to make use of the antenna pattern parameters, we need to find the antenna azimuth 

and the tilt. The azimuth, 𝜑 𝑖, 𝑘 , is the angle between antenna main lobe centre and line 

connecting sector ‘i’ and UE ‘k’ in radians in horizontal plane whilst the tilt, 𝜃 𝑖, 𝑘 , is the 

angle between antenna main lobe centre and line connecting sector ‘i’ and UE ‘k’ in radians in 

vertical plane. The azimuth and tilt angles can be found using (35) and (36) respectively and 

are shown in FIGURE 5.2 and FIGURE 5.3. 

 

 𝜑 𝑖, 𝑘 = 	𝛾 𝑖, 𝑘 − 	𝜉(𝑖) (35) 

 

where ξ is the antenna bearing at sector ‘i’ in radians and 𝛾 𝑖, 𝑘  is the mobile bearing which 

can be found using atan2 of the UE and BS separation x-axis and y-axis. 

 



	 66	

 𝜃 𝑖, 𝑘 = 	𝜔 𝑖, 𝑘 − 	𝜁(𝑖) (36) 

 

where 𝜔 𝑖, 𝑘  is the antenna mobile line of sight angle in radians and ζ is the corrected down 

tilt angle at sector ‘i’ in radians.  

 

FIGURE 5.2: Mobile bearing orientation diagram - azimuth. 

 

FIGURE 5.3: Mobile bearing orientation diagram - tilt. 

 

For 3-sectored cell sites with fixed antenna patterns, 𝜑 𝑖, 𝑘  in (35) can be used to find the 

horizontal antenna pattern 𝐴¹ 𝜑  as show in (37). 
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 𝐴¹ 𝜑 = 	−min 12
𝜑

𝜑º»¼

*
, 𝐴½  (37) 

 

where 𝐴½ represents the maximum front to back ratio in dB and 𝜑º»¼ represents the horizontal 

half power bandwidth (az 3dB) in radians. 

It can be noted that the horizontal antenna pattern is zero for omnidirectional antennas, 

𝐴¹ 𝜑 = 0 (omnidirectional). 

Similarly, for a 3-sectored cell sites with fixed antenna patter, 𝜃 𝑖, 𝑘  in (36) can be used to 

find the vertical antenna pattern 𝐴¾ 𝜃  as shown in (38). 

 

 𝐴¾ 𝜃 = 	−min 12
𝜃 −	𝜃�^¿L^
𝜃º»¼

*

, 𝑆𝐿𝐴¾  (38) 

 

where 𝑆𝐿𝐴¾ represents the side lobe attenuation level, 𝜃º»¼ represents the vertical half power 

bandwidth (az 3dB) in radians and 𝜃�^¿L^ represents the electric antenna down-tilt. 

 Making use of the horizontal and the vertical antenna patterns and by combining both ((37) 

and (38)), a representation of the combined 3D antenna pattern can be shown as in (39).  

  

 𝐴¹ 𝜑, 𝜃 = 	−min − 𝐴¹ 𝜑 + 𝐴¾ 𝜃 , 𝐴½  (39) 

 

Using (39) and by adding the boresight antenna again, the total antenna gain, 𝐺Ãe^, is found. 

This help to find the area mean power, mx, as shown in (40). 

 

 𝑚𝑥 = 𝑝^ +	𝐺Ãe^ −	 10𝜂 log6\ 𝑑  (40) 
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where 𝑝^ is the transmitted power, η is the path-loss exponent and d is the T-R separation. 

 

 An approach for evaluating the coverage is to evaluate the radius R based on the threshold and 

then find the fraction of the area that will not be covered as the result of the geographical error. 

Alternatively, the number of points on a circular radius defined based on R with RSS (path-

loss, transmit power and antenna gain – which is equal in all directions for omnidirectional 

antennas) greater than or equal to the threshold , γ, can be evaluated. Both methods should give 

the same results for the case with omnidirectional antennas and no shadowing. However, for 

the case with shadowing, the first approach is not applicable and the second approach needs to 

be used. 

For the case where we have sectored antenna and no geographical location errors, the number 

of UEs with RSS greater than or equal to the threshold is evaluated; this is then normalised. 

Due to the sectored nature of this part, D > R can be selected where D is the T-R separation.  

Then for the case with geographical location errors, the number of UEs that were covered when 

there were no geographical location errors are used and it’s evaluated to see if these UEs will 

still be covered when we add UE and base station geographical errors. 

  

 

 Numerical Results and Discussions 
 

In this section, we represent the numerical results to show the impact of errors in the reported 

geographical location information on the actual coverage estimated by the ACE scheme. We 

consider measurement reports gathered for a single cell, with parameters specified in Table III 

[83] and we estimate the coverage probability over a circular coverage region of area 𝜋𝑅* 

where the cell is divided into three sectors and R is assumed to be 500m. 
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Table III - List of Parameters 

Parameters Symbol Value (unit) 

Standard Deviation σ  7,9,12 dB 

Path-loss Exponent η  3.5 

Reference Distance P0 1m 

Path-loss at p0 Pl(p0) 34.5dB 

Power Transmitted Pt 46dBm 

Threshold γ  -84.5dBm 

UE Position Error r 10-100m 

Base Station Position Error e 20m 

Horizontal Half Power Bandwidth 𝜑º»¼ 70°  
Max Front to Back Ratio 𝐴½ 25db 

Vertical Half Power Bandwidth 𝜃º»¼ 10°  
Side Lobe Attenuation Level 𝑆𝐿𝐴¾ 20dB 

Electric Antenna Down-tilt 𝜃�^¿L^ 15°  
Boresight Antenna Gain GBoresight  14 dbi 

Base Station Antenna Height hBS 32m 

UE Antenna Height hUE 1.5m 

 

For the simulation part, 100,000 UEs are distributed following a uniform distribution over the 

circular cell region of radius R around the base station and their positions are taken as reported 

positions. 

The actual position of the 𝒾th UE with coordinated (c𝒾, d𝒾) is generated as 𝑐𝒾 +

𝑟 𝑢𝒾 cos 2𝜋𝑣𝒾 , 𝑑𝒾 + 𝑟 𝑢𝒾 sin 2𝜋𝑣𝒾 . This is where 𝓊𝒾 and 𝓋𝒾 are pseudo random, pseudo 

independent numbers uniformly distributed in [0,1]. 

For the part with base station position error, the actual coordinates of the base station are 

obtained using the error ℯ; such that if the reported coordinates were (𝓍, 𝓎), the actual 

coordinates would be obtained as (𝓍+ℯ, 𝓎). 
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The RSRP at the actual generated UE position 𝑃F(𝑝), is estimated according to (9) based on 

the distance between the actual base station and UE positions; where for the path-loss only 

channel model, Φ =1.  

The cell coverage probability from the ACE scheme is then evaluated as the percentage of UE 

with 𝑃F(𝑝) ≥ 𝛾. 

 

In FIGURE 5.4, we show and compare the coverage probability expression of the ACE scheme 

for both cases of having only error in the UE geographical location information, and when the 

base station geographical location information error is added in addition to the error in the UE 

geographical location information. This is done by using firstly the horizontal antenna pattern 

and the by using the combined 3D antenna pattern. It can also be noted that the base station 

position error has been fixed to 20m. 

 

FIGURE 5.4: Coverage probability estimation via ACE, with e=20. 
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The results in FIGURE 5.4 shows that the error in the cell coverage probability as measured 

by the ACE scheme increases as the UE position error increases. Also, having base station 

geographical location information error further degrades the performance of the ACE scheme. 

It can also be seen that the coverage probability estimation results gathered via using the 

combined 3D antenna pattern are much less than when we use only the horizontal antenna 

pattern, the effects of it can be seen more when the base station geographical location 

information is also included. 

 

 

 

In FIGURE 5.5, we show the percentage of the UEs assigned to the wrong sectors due to the 

errors in the UE and base station geographical location information. Firstly, this is done for the 

case where we only have UE geographical location information error and then for when the 

error in the base station geographical location information is added in addition to the UE 

positioning error. 

The results in FIGURE 5.5 shows that the percentage of UEs assigned to the wrong sector 

increases as the UE position error, r, increases. Furthermore, the percentage of the UE’s 

assigned to the wrong sector are much more when base station positioning error is added. It 

can also be seen that the difference between the percentage of the UEs assigned to the wrong 

sectors (both lines on the figure) when UE position error is smaller is much more than when 

the UE position error it’s at its highest. 
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FIGURE 5.5: The percentage of the users assigned to the wrong sectors due to the UE and base 

station geographical location information errors. 

 

 

Summary 
 

In this chapter, the effect of error in the user and base station geographical location information 

on the cell coverage estimation is investigated, this is done whilst considering a three-sectored 

cell. An ACE scheme is introduced that exploits the measurement reports gathered by the UEs. 

The error in coverage estimation due to such autonomous scheme is evaluated and the effect 

of using a three-sectored cell instead of an omnidirectional antenna is investigated.  
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CHAPTER	6 	
 

6 Conclusions and Future Work 
 

This chapter outlines the main technical contributions of this thesis and proposes future 

research directions as an extension to the work presented here. 

 

 Summary of Insights and Conclusions 
 

We have investigated the impact of inaccurate user equipment (UE) and base station 

geographical location information on the coverage estimated through a minimisation of drive 

test (MDT) based autonomous coverage estimation (ACE) scheme. 

We have derived the expression of the actual cell coverage probability that can be obtained 

from such scheme while considering: errors in UE geographical location information and; 

errors in both UE and base station geographical location information. This had been done for 

path-loss only channel model in addition to when the shadowing is also considered. 

The accuracy of the derived expressions has been shown through numerical results for a range 

of UE and base station positioning errors. The proposed geographical location information 

error modified coverage probability estimation expressions tightly match the simulation 

approach. 
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We showed that the coverage probability is decreased with the geographical location 

information error radius in both the shadowing and non-shadowing cases. The reliability of the 

shadowing case was shown to be approximately equal to 1 when the UE is positioned close to 

the cell centre, with a steady depreciation as the UE moves away from the cell centre. 

Furthermore, it can be observed that the performance of the ACE scheme becomes more 

degraded and the percentage error in the coverage estimation via ACE increases as the 

shadowing standard deviation σ reduces. This implies that the errors in UE and base station 

position estimations are less severe on the coverage as standard deviation σ increases. 

We showed that the performance of the ACE scheme will be suboptimal as long as there are 

errors in the reported geographical location information. Hence, to utilise such ACE scheme, 

appropriate correction factors that can be calculated using the proposed model must be used. 

It’s important to note that in this work, RSRP based ACE using MDT measurement report has 

been presented. Since interference is a key limiting factor in cellular communication, SINR 

based ACE, which exploits RSRQ (Reference Signal Received Quality) MDT measurement 

reports, deserves attention in future study. 

Also, we considered a three-sectored cell instead of the omnidirectional cell and investigated 

the impact of inaccurate UE and base station geographical position estimations on the sectors 

and how they will cause the UEs to be assigned to the wrong sectors. 

 

 

 

 

 Future Work 
 

This section proposes future research guidelines as an extension to the work presented in this 

thesis. 
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6.2.1 Antenna Tilt 

 

Antenna tilt is one of the most important system parameters in coverage and capacity 

optimisation as tilt determines the service coverage boundary and level of inter-cell 

interference in the system [53]. 

This is also important in the work proposed in this project as you can determine the coverage 

of small cells (including the user deployed cells) and at the same time reduce the interference 

by changing the antenna tilt. So, the next step will be to calculate the antenna tilt angles as a 

future work. To do so, the macro base station by considering the position of the small cells 

(including the user deployed cells) and the users, will decide on the coverage of the small cells 

by telling them to tilt their angles accordingly 

 

6.2.2 Multi Cell 

 

By the increase use of communication networks, the global energy consumption of cellular 

networks is increasing rapidly. Therefore, greening cellular networks is crucial to reducing the 

carbon footprint of information and communications technology. This is where multi cell 

cooperation solution comes into place to improve the energy efficiency of cellular networks 

[84] [85]. 

As a future work, the aim is to do all the previous steps but now consider multiple cells (user 

deployed or fixed operator deployed cells) serving the users and working together to cover all 

the users (multi cell cooperation). 

As shown in [86], green multi cell cooperation (GMC) can be achieved in HetNets facilitated 

with hybrid energy sources. 
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6.2.3 Active/Sleep Mode 

 

In order to conserve energy, future radio access networks will activate and deactivate base 

stations depending on the activity of the users. The UEs that are not in range of a single base 

station can be reached using cooperative transmissions from base stations. Also when some 

base stations cooperate, other base stations can be deactivated [87]. 

This can also be achieved by the traffic-intensity-aware multiple cooperation as discussed in 

Han et al. [84]. This adapts the network layout of cellular networks according to user demands 

in order to reduce the number of active base stations.  

HetNets composed of various tiers of cells can attain energy savings thanks to the lower 

operational and transmit power consumptions of small cells. To address the inter-cell 

interference problem yet achieving network energy conservation, multi cell cooperation 

facilitating cooperative transmission and sleep mode operation paves a way toward future green 

HetNets [88]. 

For the future work, the next step is to include this active/sleep mode scenario for the small 

cells. If there are not enough users, one (or many) small cells can go to sleep mode in order to 

reduce the power consumption. 
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