16,650 research outputs found

    Chiral discrimination in optical binding

    Get PDF
    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported

    Analysis of Photoassociation Spectra for Giant Helium Dimers

    Full text link
    We perform a theoretical analysis to interpret the spectra of purely long-range helium dimers produced by photoassociation (PA) in an ultra-cold gas of metastable helium atoms. The experimental spectrum obtained with the PA laser tuned closed to the 23S1↔23P02^3S_1\leftrightarrow 2^3P_0 atomic line has been reported in a previous Letter. Here, we first focus on the corrections to be applied to the measured resonance frequencies in order to infer the molecular binding energies. We then present a calculation of the vibrational spectra for the purely long-range molecular states, using adiabatic potentials obtained from perturbation theory. With retardation effects taken into account, the agreement between experimental and theoretical determinations of the spectrum for the 0u+0_u^+ purely long-range potential well is very good. The results yield a determination of the lifetime of the 23P2^3P atomic state

    Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules

    Full text link
    We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.Comment: 15 pages, 12 figures, 4 table

    Formation of ultracold SrYb molecules in an optical lattice by photoassociation spectroscopy: theoretical prospects

    Full text link
    State-of-the-art {\em ab initio} techniques have been applied to compute the potential energy curves for the SrYb molecule in the Born-Oppenheimer approximation for the ground state and first fifteen excited singlet and triplet states within the coupled-cluster framework. The leading long-range coefficients describing the dispersion interactions at large interatomic distances are also reported. The electric transition dipole moments have been obtained as the first residue of the polarization propagator computed with the linear response coupled-cluster method restricted to single and double excitations. Spin-orbit coupling matrix elements have been evaluated using the multireference configuration interaction method restricted to single and double excitations with a large active space. The electronic structure data was employed to investigate the possibility of forming deeply bound ultracold SrYb molecules in an optical lattice in a photoassociation experiment using continuous-wave lasers. Photoassociation near the intercombination line transition of atomic strontium into the vibrational levels of the strongly spin-orbit mixed b3ÎŁ+b^3\Sigma^+, a3Πa^3\Pi, A1ΠA^1\Pi, and C1ΠC^1\Pi states with subsequent efficient stabilization into the vâ€Čâ€Č=1v^{\prime\prime}=1 vibrational level of the electronic ground state is proposed. Ground state SrYb molecules can be accumulated by making use of collisional decay from vâ€Čâ€Č=1v^{\prime\prime}=1 to vâ€Čâ€Č=0v^{\prime\prime}=0. Alternatively, photoassociation and stabilization to vâ€Čâ€Č=0v^{\prime\prime}=0 can proceed via stimulated Raman adiabatic passage provided that the trapping frequency of the optical lattice is large enough and phase coherence between the pulses can be maintained over at least tens of microseconds

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure

    Giant Helium Dimers Produced by Photoassociation of Ultracold Metastable Atoms

    Full text link
    We produce giant helium dimers by photoassociation of metastable helium atoms in a magnetically trapped, ultracold cloud. The photoassociation laser is detuned red of the atomic 23S1−23P02^3S_1 - 2^3P_0 line and produces strong heating of the sample when resonant with molecular bound states. The temperature of the cloud serves as an indicator of the molecular spectrum. We report good agreement between our spectroscopic measurements and our calculations of the five bound states belonging to a 0u+0_u^+ purely long-range potential well. These previously unobserved states have classical inner turning points of about 150 a0a_0 and outer turning points as large as 1150 a0a_0.Comment: 4 pages, 4 figure

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic
    • 

    corecore