269 research outputs found

    BER Performance Simulation of Generalized MC DS-CDMA System with Time-Limited Blackman Chip Waveform

    Get PDF
    Multiple access interference encountered in multicarrier direct sequence-code division multiple access (MC DS-CDMA) is the most important difficulty that depends mainly on the correlation properties of the spreading sequences as well as the shape of the chip waveforms employed. In this paper, bit error rate (BER) performance of the generalized MC DS-CDMA system that employs time-limited Blackman chip waveform is presented for Nakagami-m fading channels. Simulation results show that the use of Blackman chip waveform can improve the BER performance of the generalized MC DS-CDMA system, as compared to the performances achieved by using timelimited chip waveforms in the literature

    Performance of asynchronous orthogonal multicarrier CDMA system in frequency selective fading channel

    Get PDF
    An asynchronous multicarrier (MC) direct-sequence (DS) code-division multiple-access (CDMA) scheme for the uplink of the mobile communication system operating in a frequency selective fading channel is analyzed. Bit error rate performance of the system with either equal-gain combining or maximum-ratio combining is obtained. Numerical results indicate that the system performs better than that of the conventional DS-CDMA system and another MC-DS-CDMA system.published_or_final_versio

    Performance Analysis of Multicarrier Code Division Multiple Access (MC-CDMA) Systems

    Get PDF
    A thesis presented to the faculty of the College of Science and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Pravinkumar Patil on August 11, 2008

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Wavelet based multicarrier CDMA system

    Get PDF
    Emerging demands for high data rate services, high user capacity and low power consumption systems are the key driving forces behind the continued technology evolution in wireless communications. Multicarrier Modulation techniques support variety of services requiring different data rates and different QoS (quality of service) levels. Multicarrier CDMA is a wireless communication system that can be seen as a combination of direct sequence CDMA and Orthogonal Frequency Division Multiplexing techniques. The main benefits of this system are its robustness to inter symbol interference and multipath propagation in fading channels. This paper studies and simulates the Discrete Wavelet Transform based Multicarrier CDMA and compares it with the  Discrete Fourier Transform based one using different number of sub carriers, and different modulation techniques. The results shows that the Wavelet based system outperforms the Fourier based one since it has lower bit error rate BER performance, lower peak to verage power ratio PAPR and higher user capacity

    MULTIPLE ACCESS INTERFERENCE REDUCTION FOR DS-CDMA IN THE PRESENCE OF RAYLEIGH FADING

    Full text link
    This paper proposes an alternative transmission structure to the existing direct-sequence code division multiple access (DSCDMA) technique in order to alleviate the decision variable from a substantial portion of the multiple access interference (MAI) incurred over an asynchronous slow varying Rayleigh fading channel. The proposed technique uses a dual frequency switching system that shifts lagging interference components to an alternative frequency band thus reducing the degree ofMAI incurred in the considered symbol-by-symbol matched _lter recovery. Bit-error rate (BER) performance comparisons are offered for the use of both Gold andWalsh-Hadamard (WH) codes. The proposed technique successfully reduces the amount of MAI experienced, however, this reduction comes at the cost of an increased bandwidth

    Equalization with oversampling in multiuser CDMA systems

    Get PDF
    Some of the major challenges in the design of new-generation wireless mobile systems are the suppression of multiuser interference (MUI) and inter-symbol interference (ISI) within a single user created by the multipath propagation. Both of these problems were addressed successfully in a recent design of A Mutually Orthogonal Usercode-Receiver (AMOUR) for asynchronous or quasisynchronous code division multiple access (CDMA) systems. AMOUR converts a multiuser CDMA system into parallel single-user systems regardless of the multipath and guarantees ISI mitigation, irrespective of the channel locations. However, the noise amplification at the receiver can be significant in some multipath channels. In this paper, we propose to oversample the received signal as a way of improving the performance of AMOUR systems. We design Fractionally Spaced AMOUR (FSAMOUR) receivers with integral and rational amounts of oversampling and compare their performance with the conventional method. An important point that is often overlooked in the design of zero-forcing channel equalizers is that sometimes, they are not unique. This becomes especially significant in multiuser applications where, as we will show, the nonuniqueness is practically guaranteed. We exploit this flexibility in the design of AMOUR and FSAMOUR receivers and achieve noticeable improvements in performance

    Multicarrier CDMA: A very promissing multiple access scheme for future wideband wireless networks

    No full text
    International audienceIn this paper, multicarrier techniques are studied in the context of the future wideband wireless networks. After a brief presentation of the third generation mobile networks, MC-CDMA systems are considered for the downlink of the future high rate cellular networks. The performance of different mono-user and multi-user detection techniques are compared with the help of Monte Carlo simulations over a frequency selective Rayleigh channel. Thus, the efficiency of MC-CDMA as a very promising multiple access and robust modulation scheme is successfully demonstrated for the downlink of the future wideband mobile networks. Finally, the first results concerning the performance of Multicarrier CDMA technique combined with space-time block coding in order to build a Multiple Input Multiple Output/MC-CDMA system are presented over a Rayleigh channel
    • 

    corecore