168 research outputs found

    Distributed, decentralised and compensational mechanisms for platoon formation

    Get PDF
    Verkehrsprobleme nehmen mit der weltweiten Urbanisierung und der Zunahme der Anzahl der Fahrzeuge pro Kopf zu. Platoons, eine Formation von eng hintereinander fahrenden Fahrzeugen, stellen sich als mögliche Lösung dar, da bestehende Forschungen darauf hinweisen, dass sie zu einer besseren Straßenauslastung beitragen, den Kraftstoffverbrauch und die Emissionen reduzieren und Engpässe schneller entlasten können. Rund um das Thema Platooning gibt es viele Aspekte zu erforschen: Sicherheit, Stabilität, Kommunikation, Steuerung und Betrieb, die allesamt notwendig sind, um den Einsatz von Platooning im Alltagsverkehr näher zu bringen. Während in allen genannten Bereichen bereits umfangreiche Forschungen durchgeführt wurden, gibt es bisher nur wenige Arbeiten, die sich mit der logischen Gruppierung von Fahrzeugen in Platoons beschäftigen. Daher befasst sich diese Arbeit mit dem noch wenig erforschten Problem der Platoonbildung, wobei sich die vorhandenen Beispiele mit auf Autobahnen fahrenden Lastkraftwagen beschäftigen. Diese Fälle befinden sich auf der strategischen und taktischen Ebene der Planung, da sie von einem großen Zeithorizont profitieren und die Gruppierung entsprechend optimiert werden kann. Die hier vorgestellten Ansätze befinden sich hingegen auf der operativen Ebene, indem Fahrzeuge aufgrund der verteilten und dezentralen Natur dieser Ansätze spontan und organisch gruppiert und gesteuert werden. Dadurch entstehen sogenannte opportunistische Platoons, die aufgrund ihrer Flexibilität eine vielversprechende Voraussetzung für alle Netzwerkarte bieten könnten. Insofern werden in dieser Arbeit zwei neuartige Algorithmen zur Bildung von Platoons vorgestellt: ein verteilter Ansatz, der von klassischen Routing-Problemen abgeleitet wurde, und ein ergänzender dezentraler kompensatorischer Ansatz. Letzteres nutzt automatisierte Verhandlungen, um es den Fahrzeugen zu erleichtern, sich auf der Basis eines monetären Austausches in einem Platoon zu organisieren. In Anbetracht der Tatsache, dass alle Verkehrsteilnehmer über eine Reihe von Präferenzen, Einschränkungen und Zielen verfügen, muss das vorgeschlagene System sicherstellen, dass jede angebotene Lösung für die einzelnen Fahrzeuge akzeptabel und vorteilhaft ist und den möglichen Aufwand, die Kosten und die Opfer überwiegt. Dies wird erreicht, indem den Platooning-Fahrzeugen eine Form von Anreiz geboten wird, im Sinne von entweder Kostensenkung oder Ampelpriorisierung. Um die vorgeschlagenen Algorithmen zu testen, wurde eine Verkehrssimulation unter Verwendung realer Netzwerke mit realistischer Verkehrsnachfrage entwickelt. Die Verkehrsteilnehmer wurden in Agenten umgewandelt und mit der notwendigen Funktionalität ausgestattet, um Platoons zu bilden und innerhalb dieser zu operieren. Die Anwendbarkeit und Eignung beider Ansätze wurde zusammen mit verschiedenen anderen Aspekten untersucht, die den Betrieb von Platoons betreffen, wie Größe, Verkehrszustand, Netzwerkpositionierung und Anreizmethoden. Die Ergebnisse zeigen, dass die vorgeschlagenen Mechanismen die Bildung von spontanen Platoons ermöglichen. Darüber hinaus profitierten die teilnehmenden Fahrzeuge mit dem auf verteilter Optimierung basierenden Ansatz und unter Verwendung kostensenkender Anreize unabhängig von der Platoon-Größe, dem Verkehrszustand und der Positionierung, mit Nutzenverbesserungen von 20% bis über 50% im Vergleich zur untersuchten Baseline. Bei zeitbasierten Anreizen waren die Ergebnisse uneinheitlich, wobei sich der Nutzen einiger Fahrzeuge verbesserte, bei einigen keine Veränderung eintrat und bei anderen eine Verschlechterung zu verzeichnen war. Daher wird die Verwendung solcher Anreize aufgrund ihrer mangelnden Pareto-Effizienz nicht empfohlen. Der kompensatorische und vollständig dezentralisierte Ansatz weißt einige Vorteile auf, aber die daraus resultierende Verbesserung war insgesamt vernachlässigbar. Die vorgestellten Mechanismen stellen einen neuartigen Ansatz zur Bildung von Platoons dar und geben einen aussagekräftigen Einblick in die Mechanik und Anwendbarkeit von Platoons. Dies schafft die Voraussetzungen für zukünftige Erweiterungen in der Planung, Konzeption und Implementierung effektiverer Infrastrukturen und Verkehrssysteme.Traffic problems have been on the rise corresponding with the increase in worldwide urbanisation and the number of vehicles per capita. Platoons, which are a formation of vehicles travelling close together, present themselves as a possible solution, as existing research indicates that they can contribute to better road usage, reduce fuel consumption and emissions and decongest bottlenecks faster. There are many aspects to be explored pertaining to the topic of platooning: safety, stability, communication, controllers and operations, all of which are necessary to bring platoons closer to use in everyday traffic. While extensive research has already made substantial strides in all the aforementioned fields, there is so far little work on the logical grouping of vehicles in platoons. Therefore, this work addresses the platoon formation problem, which has not been heavily researched, with existing examples being focused on large, freight vehicles travelling on highways. These cases find themselves on the strategic and tactical level of planning since they benefit from a large time horizon and the grouping can be optimised accordingly. The approaches presented here, however, are on the operational level, grouping and routing vehicles spontaneously and organically thanks to their distributed and decentralised nature. This creates so-called opportunistic platoons which could provide a promising premise for all networks given their flexibility. To this extent, this thesis presents two novel platoon forming algorithms: a distributed approach derived from classical routing problems, and a supplementary decentralised compensational approach. The latter uses automated negotiation to facilitate vehicles organising themselves in a platoon based on monetary exchanges. Considering that all traffic participants have a set of preferences, limitations and goals, the proposed system must ensure that any solution provided is acceptable and beneficial for the individual vehicles, outweighing any potential effort, cost and sacrifices. This is achieved by offering platooning vehicles some form of incentivisation, either cost reductions or traffic light prioritisation. To test the proposed algorithms, a traffic simulation was developed using real networks with realistic traffic demand. The traffic participants were transformed into agents and given the necessary functionality to build platoons and operate within them. The applicability and suitability of both approaches were investigated along with several other aspects pertaining to platoon operations such as size, traffic state, network positioning and incentivisation methods. The results indicate that the mechanisms proposed allow for spontaneous platoons to be created. Moreover, with the distributed optimisation-based approach and using cost-reducing incentives, participating vehicles benefited regardless of the platoon size, traffic state and positioning, with utility improvements ranging from 20% to over 50% compared to the studied baseline. For time-based incentives the results were mixed, with the utility of some vehicles improving, some seeing no change and for others, deteriorating. Therefore, the usage of such incentives would not be recommended due to their lack of Pareto-efficiency. The compensational and completely decentralised approach shows some benefits, but the resulting improvement was overall negligible. The presented mechanisms are a novel approach to platoon formation and provide meaningful insight into the mechanics and applicability of platoons. This sets the stage for future expansions into planning, designing and implementing more effective infrastructures and traffic systems

    Estrategia de enrutamiento para la maniobra del enlace a un convoy de vehículos en entornos urbanos, robusta a la incertidumbre en los tiempos de recorrido

    Get PDF
    Esta tesis propone una estrategia de enrutamiento óptima para unidades de transporte inteligente que se mueven de manera autónoma por un entorno urbano conocido. El entorno está definido por un conjunto de calles y cruces (nodos), y en su interior un grupo de unidades móviles independientes se encuentran realizando tareas específicas. Dicho entorno está rodeado por una ruta periférica por la que se mueve continuamente un convoy compuesto por un líder y un número determinado de unidades seguidoras, sin enlace mecánico entre ellos. La misión del convoy es concentrar las unidades independientes antes y después de que hayan realizado, de forma independiente, su tarea. Básicamente, el trabajo se centra en dar solución a la maniobra de enlace consistente en lograr que la unidad independiente (perseguidora), partiendo de su ubicación actual en el interior del mapa, logre alcanzar el nodo periférico idóneo para unirse al convoy. Considerando que este último está limitado a circular por la ruta externa y por tanto no tiene acceso al interior del entorno, el enlace se realizará en uno de los nodos periféricos. El convoy sigue indefinidamente su trayectoria, por lo que la maniobra se considera exitosa siempre que la unidad independiente alcance el nodo de enlace antes que el convoy. El primer objetivo es resolver la maniobra de enlace considerando conocidos los tiempos de recorrido entre los nodos del mapa. Objetivo que incluye dos fases: cálculo del nodo óptimo de enlace y de la ruta que lleve a la unidad perseguidora hasta el mismo. Se entiende por nodo óptimo de enlace aquél que garantiza un tiempo mínimo de maniobra. Además, se ha diseñado un algoritmo de enrutamiento que explora el menor número de nodos posibles lo que garantiza su eficiencia computacional y su idoneidad para su ejecución en tiempo real, de especial interés en entornos complejos. El segundo objetivo es extender estos algoritmos a un entorno donde los tiempos de recorrido entre nodos no son conocidos. Esta incertidumbre, inherente a los tiempos de recorrido de todas las unidades, es propia de escenarios de transporte reales y tiene su origen en diversas fuentes como densidad variable de tráfico, condiciones meteorológicas, momento del día, etc. Para caracterizarla se ha propuesto un modelo gaussiano, donde los tiempos de recorrido son tratados como variables aleatorias parametrizadas por su valor medio y varianza. Por otra parte, este comportamiento no determinista impide garantizar de forma absoluta el éxito seguridad la maniobra de enlace. Por ello, se introduce el parámetro de diseño "Factor de Riesgo", que limita la probabilidad de fallo de la maniobra de enlace. Este factor condiciona además el tiempo de maniobra y el número de re-planificaciones intermedias hasta llegar al nodo final. En la solución propuesta se incluye un centro remoto al que están conectadas de forma inalámbrica todas las unidades de transporte. En el centro remoto se registran los tiempos de recorrido entre nodos consecutivos proporcionados por las unidades de transporte y se estiman los parámetros estadísticos temporales entre nodos no consecutivos mediante técnicas recursivas de Programación Dinámica. Finalmente, se ha procedido a la validación experimental de la propuesta global. En una primera fase se ha recurrido a la herramienta Player/Stage para validar mediante simulación los cálculos desarrollados a partir de un mapa diseñado al efecto. Superada esta, se ha utilizado un demostrador real donde la función de unidad líder y unidad perseguidora ha sido desarrollada por robots Pioneer P3-DX

    Estrategia de enrutamiento para la maniobra del enlace a un convoy de vehículos en entornos urbanos, robusta a la incertidumbre en los tiempos de recorrido

    Get PDF
    Esta tesis propone una estrategia de enrutamiento óptima para unidades de transporte inteligente que se mueven de manera autónoma por un entorno urbano conocido. El entorno está definido por un conjunto de calles y cruces (nodos), y en su interior un grupo de unidades móviles independientes se encuentran realizando tareas específicas. Dicho entorno está rodeado por una ruta periférica por la que se mueve continuamente un convoy compuesto por un líder y un número determinado de unidades seguidoras, sin enlace mecánico entre ellos. La misión del convoy es concentrar las unidades independientes antes y después de que hayan realizado, de forma independiente, su tarea. Básicamente, el trabajo se centra en dar solución a la maniobra de enlace consistente en lograr que la unidad independiente (perseguidora), partiendo de su ubicación actual en el interior del mapa, logre alcanzar el nodo periférico idóneo para unirse al convoy. Considerando que este último está limitado a circular por la ruta externa y por tanto no tiene acceso al interior del entorno, el enlace se realizará en uno de los nodos periféricos. El convoy sigue indefinidamente su trayectoria, por lo que la maniobra se considera exitosa siempre que la unidad independiente alcance el nodo de enlace antes que el convoy. El primer objetivo es resolver la maniobra de enlace considerando conocidos los tiempos de recorrido entre los nodos del mapa. Objetivo que incluye dos fases: cálculo del nodo óptimo de enlace y de la ruta que lleve a la unidad perseguidora hasta el mismo. Se entiende por nodo óptimo de enlace aquél que garantiza un tiempo mínimo de maniobra. Además, se ha diseñado un algoritmo de enrutamiento que explora el menor número de nodos posibles lo que garantiza su eficiencia computacional y su idoneidad para su ejecución en tiempo real, de especial interés en entornos complejos. El segundo objetivo es extender estos algoritmos a un entorno donde los tiempos de recorrido entre nodos no son conocidos. Esta incertidumbre, inherente a los tiempos de recorrido de todas las unidades, es propia de escenarios de transporte reales y tiene su origen en diversas fuentes como densidad variable de tráfico, condiciones meteorológicas, momento del día, etc. Para caracterizarla se ha propuesto un modelo gaussiano, donde los tiempos de recorrido son tratados como variables aleatorias parametrizadas por su valor medio y varianza. Por otra parte, este comportamiento no determinista impide garantizar de forma absoluta el éxito seguridad la maniobra de enlace. Por ello, se introduce el parámetro de diseño "Factor de Riesgo", que limita la probabilidad de fallo de la maniobra de enlace. Este factor condiciona además el tiempo de maniobra y el número de re-planificaciones intermedias hasta llegar al nodo final. En la solución propuesta se incluye un centro remoto al que están conectadas de forma inalámbrica todas las unidades de transporte. En el centro remoto se registran los tiempos de recorrido entre nodos consecutivos proporcionados por las unidades de transporte y se estiman los parámetros estadísticos temporales entre nodos no consecutivos mediante técnicas recursivas de Programación Dinámica. Finalmente, se ha procedido a la validación experimental de la propuesta global. En una primera fase se ha recurrido a la herramienta Player/Stage para validar mediante simulación los cálculos desarrollados a partir de un mapa diseñado al efecto. Superada esta, se ha utilizado un demostrador real donde la función de unidad líder y unidad perseguidora ha sido desarrollada por robots Pioneer P3-DX

    A human geographical exploration of adventure motorcycling : freedom to move, freedom to feel, freedom to choose

    Get PDF
    Freedom is a term that is used often when an adventure motorcyclist is asked what it is all about and when asked what it is what he or she experiences and why he or she engages in this activity. This thesis explores what adventure motorcycling is all about and how the sense of freedom that is experienced can be explained. Accepting that freedom is quite a broad, elusive and yet over-determined umbrella term, and focusing on several modalities of adventure motorcycling that all come with their own approach to what is dubbed as ‘freedom’, this thesis moves towards a more concrete understanding of what the adventure motorcyclist means when he refers to the simple term of ‘freedom’. The core modalities that are discussed in this thesis are firstly the interaction or combination of human and machine (motorcycle), secondly, the experience of the landscape, and thirdly, the philosophy behind adventure and challenge itself, which is approached as a rite of passage. With the help of adventure travel narratives, artwork and films, all embedded in a theoretical framework that runs from Latour’s idea of assemblages to Merleau-Ponty’s Primacy of Perception, and from J.B. Jackson’s ‘Abstract World of the Hot-Rodder’ to the Arnold van Gennep’s schéma of the Rite of Passage, exploration of these core modalities of adventure motorcycling provide an insight into the world of the motorcyclist and what is meant when ideas of freedom are mentioned

    Truck Platooning:Planning and Behaviour

    Get PDF

    Truck Platooning:Planning and Behaviour

    Get PDF
    corecore