18,289 research outputs found

    Critters in the Classroom: A 3D Computer-Game-Like Tool for Teaching Programming to Computer Animation Students

    Get PDF
    The brewing crisis threatening computer science education is a well documented fact. To counter this and to increase enrolment and retention in computer science related degrees, it has been suggested to make programming "more fun" and to offer "multidisciplinary and cross-disciplinary programs" [Carter 2006]. The Computer Visualisation and Animation undergraduate degree at the National Centre for Computer Animation (Bournemouth University) is such a programme. Computer programming forms an integral part of the curriculum of this technical arts degree, and as educators we constantly face the challenge of having to encourage our students to engage with the subject. We intend to address this with our C-Sheep system, a reimagination of the "Karel the Robot" teaching tool [Pattis 1981], using modern 3D computer game graphics that today's students are familiar with. This provides a game-like setting for writing computer programs, using a task-specific set of instructions which allow users to take control of virtual entities acting within a micro world, effectively providing a graphical representation of the algorithms used. Whereas two decades ago, students would be intrigued by a 2D top-down representation of the micro world, the lack of the visual gimmickry found in modern computer games for representing the virtual world now makes it extremely difficult to maintain the interest of students from today's "Plug&Play generation". It is therefore especially important to aim for a 3D game-like representation which is "attractive and highly motivating to today's generation of media-conscious students" [Moskal et al. 2004]. Our system uses a modern, platform independent games engine, capable of presenting a visually rich virtual environment using a state of the art rendering engine of a type usually found in entertainment systems. Our aim is to entice students to spend more time programming, by providing them with an enjoyable experience. This paper provides a discussion of the 3D computer game technology employed in our system and presents examples of how this can be exploited to provide engaging exercises to create a rewarding learning experience for our students

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Do Robots Dream of Virtual Sheep: Rediscovering the "Karel the Robot" Paradigm for the "Plug&Play Generation"

    Get PDF
    We introduce ”C-Sheep”, an educational system designed to teach students the fundamentals of computer programming in a novel and exciting way. Recent studies suggest that computer science education is fast approaching a crisis - application numbers for degree courses in the area of computer programming are down, and potential candidates are put off the subject which they do not fully understand. We address this problem with our system by providing the visually rich virtual environment of ”The Meadow”, where the user writes programs to control the behaviour of a sheep using our ”CSheep” programming language. This combination of the ”Karel the Robot” paradigm with modern 3D computer graphics techniques, more commonly found in computer games, aims to help students to realise that computer programming can be an enjoyable and rewarding experience and intends to help educators with the teaching of computer science fundamentals. Our mini-language-like system for computer science education uses a state of the art rendering engine offering features more commonly found in entertainment systems. The scope of the mini-language is designed to fit in with the curriculum for the first term of an introductory computer program ming course (using the C programming language)

    (MU-CTL-01-12) Towards Model Driven Game Engineering in SimSYS: Requirements for the Agile Software Development Process Game

    Get PDF
    Software Engineering (SE) and Systems Engineering (Sys) are knowledge intensive, specialized, rapidly changing disciplines; their educational infrastructure faces significant challenges including the need to rapidly, widely, and cost effectively introduce new or revised course material; encourage the broad participation of students; address changing student motivations and attitudes; support undergraduate, graduate and lifelong learning; and incorporate the skills needed by industry. Games have a reputation for being fun and engaging; more importantly immersive, requiring deep thinking and complex problem solving. We believe educational games are essential in the next generation of e-learning tools. An extensible, freely available, engaging, problem-based game platform that provides students with an interactive simulated experience closely resembling the activities performed in a (real) industry development project would transform the SE/Sys education infrastructure. Our goal is to extend the state-of-the-art research in SE/Sys education by investigating a game development platform (GDP) from an interdisciplinary perspective (education, game research, and software/systems engineering). A meta-model has been proposed to provide a rigourous foundation that integrates the three disciplines. The GDP is intended to support the semi-automated development of collections of scripted games and their execution, where each game embodies a specific set of learning objectives. The games are scripted using a template based approach. The templates integrate three approaches: use cases; storyboards; and state machines (timed, concurrent, hierarchical state machines). The specification templates capture the structure of the game (Game, Acts, Scenes, Screens, Challenges), storyline, characters (player, non-player, external), graphics, music/sound effects, rules, and so on. The instantiated templates are (manually) transformed into XML game scripts that can be loaded into the SimSYS Game Play Engine. As a game is played, the game play events are logged; they are analyzed to automatically assess a player’s accomplishments and automatically adapt the game play script. Currently, we are manually defining a collection of games. The games are being used to ensure the GDP is flexible and reliable (i.e., the prototype can load and correctly run a variety of game scripts), the ontology is comprehensive, and the templates assist in defining well-organized, modular game scripts. In this report, we present the initial part of an Agile Software Development Process game (Act I, Scenes 1 and 2) that embodies learning objectives related to SE fundamentals (requirements, architecture, testing, process); planning with Gantt charts; working with budgets; and selecting a team for an agile development project. A student player is rewarded in the game by getting hired, scoring points, or getting promoted to lead a project. The game has a variety of settings including a classroom, job fair, and a work environment with meeting rooms, cubicles, and a water cooler station. The main non-player characters include a teacher, boss, and an evil peer. In the future, semi-automated support for creating new game scripts will be explored using a wizard interface. The templates will be formally defined, supporting automated transformation into XML game scripts that can be loaded into the SimSYS Game Engine. We also plan to explore transforming the requirements into a notation that can be imported into a commercial tool that supports Statechart simulation

    A survey of real-time crowd rendering

    Get PDF
    In this survey we review, classify and compare existing approaches for real-time crowd rendering. We first overview character animation techniques, as they are highly tied to crowd rendering performance, and then we analyze the state of the art in crowd rendering. We discuss different representations for level-of-detail (LoD) rendering of animated characters, including polygon-based, point-based, and image-based techniques, and review different criteria for runtime LoD selection. Besides LoD approaches, we review classic acceleration schemes, such as frustum culling and occlusion culling, and describe how they can be adapted to handle crowds of animated characters. We also discuss specific acceleration techniques for crowd rendering, such as primitive pseudo-instancing, palette skinning, and dynamic key-pose caching, which benefit from current graphics hardware. We also address other factors affecting performance and realism of crowds such as lighting, shadowing, clothing and variability. Finally we provide an exhaustive comparison of the most relevant approaches in the field.Peer ReviewedPostprint (author's final draft

    Reviews

    Get PDF
    Europe In the Round CD‐ROM, Guildford, Vocational Technologies, 1994
    corecore