86 research outputs found

    Effect of power randomization on saturation throughput of IEEE 802.11 WLAN

    Get PDF
    In this paper, we evaluate the saturation throughput for an IEEE 802.11 based wireless network considering capture effect at the receiver, while nodes transmit with random powers. In this respect, we consider a scenario consisting of a specific number of wireless nodes. Then, we derive the transmission as well as collision probabilities with respect to the perfect capture effect. In order to maximize the saturation throughput we set up an optimization problem and obtain how to compute optimum values for the probabilities corresponding to different power levels. By providing the numerical results, we deduce that power randomization may lead to a significant improvement in saturation throughput

    An alternative to IEEE 802.11ba: wake-up radio with legacy IEEE 802.11 transmitters

    Get PDF
    Current standardization process for Wake-up Radio (WuR) within the IEEE 802.11 Working Group, known as the IEEE 802.11ba, has brought interest to the IEEE 802.11-related technologies for the implementation of WuR systems. This paper proposes a new WuR system, where the Wake-up Transmitter (WuTx) is based on the legacy IEEE 802.11 Orthogonal Frequency Division Modulation (OFDM) Physical Layer (PHY) specification. Using the IEEE 802.11, OFDM PHY makes it possible for an IEEE 802.11a/g/n/ac transmitter to operate as WuTx for this WuR system. The WuTx generates a Wake-up Signal (WuS) coded with an amplitude-based digital modulation, achieving a bit rate of 250 kbps. This modulation, which we call Peak-Flat modulation, can be received using low-power receivers. A simulated proof of concept of the WuTx based on the IEEE 802.11g is presented and evaluated using MATLAB WLAN Toolbox. A method to generate the Peak-Flat modulated WuS from an IEEE 802.11a/g standard-compliant transmitter, using only software-level access, is explained. In addition, two possible low-power Wake-up Receiver (WuRx) architectures capable of decoding the presented modulation are proposed. The design of those receivers is generic enough to be used as a reference to compare the performance of the Peak-Flat Modulation with the other state-of-the-art approaches. The evaluation results conclude that the Peak-Flat modulation has similar performance compared to the other IEEE 802.11 WuR solutions on the reference receivers. Moreover, this solution provides a notorious advantage: legacy OFDM-based IEEE 802.11 transmitters can generate the Peak-Flat modulated WuS.Postprint (published version

    Association Control in Wireless Mesh Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Modelling and performance analysis of mobile ad hoc networks

    Get PDF
    PhD ThesisMobile Ad hoc Networks (MANETs) are becoming very attractive and useful in many kinds of communication and networking applications. This is due to their efficiency, relatively low cost, and flexibility provided by their dynamic infrastructure. Performance evaluation of mobile ad hoc networks is needed to compare various architectures of the network for their performance, study the effect of varying certain network parameters and study the interaction between various parameters that characterise the network. It can help in the design and implementation of MANETs. It is to be noted that most of the research that studies the performance of MANETs were evaluated using discrete event simulation (DES) utilising a broad band of network simulators. The principle drawback of DES models is the time and resources needed to run such models for large realistic systems, especially when results with a high accuracy are desired. In addition, studying typical problems such as the deadlock and concurrency in MANETs using DES is hard because network simulators implement the network at a low abstraction level and cannot support specifications at higher levels. Due to the advantage of quick construction and numerical analysis, analytical modelling techniques, such as stochastic Petri nets and process algebra, have been used for performance analysis of communication systems. In addition, analytical modelling is a less costly and more efficient method. It generally provides the best insight into the effects of various parameters and their interactions. Hence, analytical modelling is the method of choice for a fast and cost effective evaluation of mobile ad hoc networks. To the best of our knowledge, there is no analytical study that analyses the performance of multi-hop ad hoc networks, where mobile nodes move according to a random mobility model, in terms of the end-to-end delay and throughput. This work ii presents a novel analytical framework developed using stochastic reward nets and mathematical modelling techniques for modelling and analysis of multi-hop ad hoc networks, based on the IEEE 802.11 DCF MAC protocol, where mobile nodes move according to the random waypoint mobility model. The proposed framework is used to analysis the performance of multi-hop ad hoc networks as a function of network parameters such as the transmission range, carrier sensing range, interference range, number of nodes, network area size, packet size, and packet generation rate. The proposed framework is organized into several models to break up the complexity of modelling the complete network and make it easier to analyse each model as required. This is based on the idea of decomposition and fixed point iteration of stochastic reward nets. The proposed framework consists of a mathematical model and four stochastic reward nets models; the path analysis model, data link layer model, network layer model and transport layer model. These models are arranged in a way similar to the layers of the OSI protocol stack model. The mathematical model is used to compute the expected number of hops between any source-destination pair; and the average number of carrier sensing, hidden, and interfering nodes. The path analysis model analyses the dynamic of paths in the network due to the node mobility in terms of the path connection availability and rate of failure and repair. The data link layer model describes the behaviour of the IEEE 802.11 DCF MAC protocol. The actions in the network layer are modelled by the network layer model. The transport layer model represents the behaviour of the transport layer protocols. The proposed models are validated using extensive simulations

    Coexistence and interference mitigation for WPANs and WLANs from traditional approaches to deep learning: a review

    Get PDF
    More and more devices, such as Bluetooth and IEEE 802.15.4 devices forming Wireless Personal Area Networks (WPANs) and IEEE 802.11 devices constituting Wireless Local Area Networks (WLANs), share the 2.4 GHz Industrial, Scientific and Medical (ISM) band in the realm of the Internet of Things (IoT) and Smart Cities. However, the coexistence of these devices could pose a real challenge—co-channel interference that would severely compromise network performances. Although the coexistence issues has been partially discussed elsewhere in some articles, there is no single review that fully summarises and compares recent research outcomes and challenges of IEEE 802.15.4 networks, Bluetooth and WLANs together. In this work, we revisit and provide a comprehensive review on the coexistence and interference mitigation for those three types of networks. We summarize the strengths and weaknesses of the current methodologies, analysis and simulation models in terms of numerous important metrics such as the packet reception ratio, latency, scalability and energy efficiency. We discover that although Bluetooth and IEEE 802.15.4 networks are both WPANs, they show quite different performances in the presence of WLANs. IEEE 802.15.4 networks are adversely impacted by WLANs, whereas WLANs are interfered by Bluetooth. When IEEE 802.15.4 networks and Bluetooth co-locate, they are unlikely to harm each other. Finally, we also discuss the future research trends and challenges especially Deep-Learning and Reinforcement-Learning-based approaches to detecting and mitigating the co-channel interference caused by WPANs and WLANs

    Konoritsu musen rokaru eria nettowaku ni okeru tagen akusesu hoshiki ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3738号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2012/7/25 ; 早大学位記番号:新6109Waseda Universit

    Improving the Performance of Medium Access Control Protocols for Mobile Adhoc Network with Smart Antennas

    Get PDF
    Requirements for high quality links and great demand for high throughput in Wireless LAN especially Mobile Ad-hoc Network has motivated new enhancements and work in Wireless communications such as Smart Antenna Systems. Smart (adaptive) Antennas enable spatial reuse, increase throughput and they increase the communication range because of the increase directivity of the antenna array. These enhancements quantified for the physical layer may not be efficiently utilized, unless the Media Access Control (MAC) layer is designed accordingly. This thesis implements the behaviours of two MAC protocols, ANMAC and MMAC protocols in OPNET simulator. This method is known as the Physical-MAC layer simulation model. The entire physical layer is written in MATLAB, and MATLAB is integrated into OPNET to perform the necessary stochastic physical layer simulations. The aim is to investigate the performance improvement in throughput and delay of the selected MAC Protocols when using Smart Antennas in a mobile environment. Analytical methods were used to analyze the average throughput and delay performance of the selected MAC Protocols with Adaptive Antenna Arrays in MANET when using spatial diversity. Comparison study has been done between the MAC protocols when using Switched beam antenna and when using the proposed scheme. It has been concluded that the throughput and delay performance of the selected protocols have been improved by the use of Adaptive Antenna Arrays. The throughput and delay performance of ANMAC-SW and ANMAC-AA protocols was evaluated in details against regular Omni 802.11 stations. Our results promise significantly enhancement over Omni 802.11, with a throughput of 25% for ANMAC-SW and 90% for ANMC-AA. ANMAC-AA outperforms ANMAC-SW protocol by 60%. Simulation experiments indicate that by using the proposed scheme with 4 Adaptive Antenna Array per a node, the average throughput in the network can be improved up to 2 to 2.5 times over that obtained by using Switched beam Antennas. The proposed scheme improves the performances of both ANMAC and MMAC protocols but ANMAC outperforms MMAC by 30%
    corecore