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Summary 

The Wireless Mesh Network (WMN) is quickly emerging as a promising 

solution for low-cost ubiquitous network access. Due to its special characteristics, 

existing wireless network resource management algorithms need to be redesigned to 

fully release WMN’s potential. Association control is one of them. In this thesis, we 

investigate association control mechanisms for WMNs from various aspects. In 

WMNs, a mobile station (STA) associates with one of the nearby mesh access points 

(MAPs) that are connected to a wireless multi-hop backhaul. Unlike the wired 

backhaul in the conventional Wireless Local Area Networks (WLANs), the wireless 

backhaul enables easy network deployment, but at the expense of limitations such as 

limited capacity, inter-flow and intra-flow interferences, and unfairness in the 

backhaul contention, etc. The association between MAPs and STAs determines the 

network logical topology and has significant impact on load distribution, aggregate 

throughput, and user fairness. The state-of-the-art association metrics proposed for 

WMNs still adopt the design methodology from WLANs and cannot make good use 

of the network resource. In addition, there are very few previous works on optimal 

association in WMNs. Therefore, in this thesis, we propose several innovative 

association control schemes including both distributed association-metric-based 

heuristics and centralized optimization-based algorithms, to improve network 

performance of WMNs. 

We first propose two practical heuristic schemes: a cross-layer heuristic 

association scheme that is able to effectively allocate more STAs to the good-

backhaul MAPs and at the same time avoid over-congestion at these MAPs, and a 
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mobility-aware reassociation control scheme that is able to prolong mobile STAs’ 

association time with the good-backhaul MAPs and discover network dynamics in a 

smart and timely way without interrupting normal communication too much. Then we 

formulate the problem of optimal joint association and bandwidth allocation in 

WMNs, considering three types of fairness objectives: max-min fairness, proportional 

fairness, and utility-based fairness. We propose two approximation algorithms for the 

optimization problems and analyse the theoretical approximation ratios as well as the 

corresponding ratio improvement algorithms. As association control, MAP channel 

assignment, and STA bandwidth allocation are closely related to each other, we 

propose a resource management framework that jointly considers the three subjects 

and further improves WMNs performance. In the framework, we propose an efficient 

local-clique based network modeling method whose performance is almost identical 

to that of the exponential-time optimal algorithms. We demonstrate the superior 

performance of the proposed schemes against the state-of-the-art schemes via 

simulations using ns-3 simulator as well as our customized simulator. 
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Chapter 1: Introduction 

1.1. Association Mechanisms in WLANs 

IEEE 802.11 Wireless Local Area Networks (WLANs) support infrastructure mode 

and ad hoc mode. The predominant deployment of WLANs is in infrastructure mode, 

where an access point (AP) and its associated mobile stations (STAs) form a Basic 

Service Set (BSS). Several APs are connected to a Distribution System (DS) via wired 

backhaul links such as Ethernet to form an Extended BSS (EBSS) which is a single MAC 

domain to facilitate auto hand off for mobile users. Traffic between the Internet and 

WLANs is handled by gateway nodes in a DS [7]. 

In infrastructure WLANs, a STA must associate with one of the APs in the vicinity 

to enable data communication. The association in the 802.11 standard is a 3-stage 

procedure. First, the STA discovers available APs in range by active scan or passive scan. 

In active scan, the STA broadcasts a probe request frame and listens for probe response 

frames from the nearby APs. In passive scan, the STA waits for periodic AP beacon 

frames. Because APs may operate in different frequency channels, the scan process 

should be conducted in each channel in order to discover all the available APs. The 

second stage is association decision making. Based on the AP information carried by 

probe response frames or beacon frames in addition to STA’s local measurements, the 

STA chooses the best AP to associate with. There are different association metrics to 

measure the goodness of an AP. The one used in the current IEEE 802.11 standards is 

Received Signal Strength Indicator (RSSI), i.e. the STA associates with the AP from 
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which the strongest signal is received. At the last stage, the STA sends an Association 

Request to the best AP and waits for an Association Response. If the STA receives the 

Association Response indicating a successful association, the association procedure is 

finished and the STA proceeds with the authentication procedure, after which the STA 

has joined the network successfully [7]. 

Nowadays, as more and more APs are deployed to support the fast growing Wi-Fi 

enabled mobile devices, the overlapping of neighbouring AP cells becomes more and 

more significant and it is often the case for a STA to discover several available APs in the 

vicinity. The association between STAs and APs determines the logical network topology; 

therefore has significant impact on the load distribution and the performance of the whole 

network. So it is important for a STA to select the most suitable APs to associate with, 

not only for its own benefit, but also for the sake of the other users.  

The simple RSSI based association in the current IEEE 802.11 standard is incapable 

of load balancing among APs and may lead to poor performance, such as low throughput, 

unfairness among users, and congestion at hot spot areas, etc. It has been shown in [17] 

that load balancing in WLANs is beneficial and improves the overall system performance. 

In the past decade, the association problem in WLANs has been studied a lot and many 

new association schemes have been proposed. These schemes can be classified into two 

categories: distributed AP selection [13]-[23] and centralized association control [24]-

[35]. Distributed AP selection normally uses heuristic methods where a STA chooses the 

best AP based on network condition estimated by local measurements (non-intrusive) or 

information carried by the AP or other STAs’ frames (intrusive). Heuristic methods have 

the advantage of light load, easy deployment and good scalability, but hardly achieve 

global optimum. On the other hand, in centralized association control, a central network 
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control server calculates the optimal association and distributes it to APs and STAs. As 

the optimization problem is always NP-hard, approximation techniques have been used to 

get solutions as close to the optimal as possible. Centralized methods suffer from 

scalability and adaptability problems, as the central server must be aware of the entire 

network condition such as node locations, link rate, current associations, etc. The offline 

optimization algorithm can be triggered periodically or when the network condition has 

significantly changed, while some online heuristic algorithms take care of light network 

changes such as a few STAs joining/leaving the network.  

1.2. Wireless Mesh Network Architecture  

1.2.1. The General WMNs 

The Wireless Mesh Network (WMN) is quickly emerging as a promising solution for 

last few miles access network. Attractive qualities of WMNs include low-cost 

deployment, robustness and its inheritance of useful characteristics from both the ad-hoc 

networking paradigm and the traditional wired infrastructure paradigm [2]. The 

fundamental objective of mesh deployment has been low-cost Internet access. 

Application scenarios of WMNs include broadband home/community/enterprise 

networking, building automation, public area surveillance, remote medical care, traffic 

control system, public services, and integration with sensor monitoring systems, etc.  
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Figure 1.1: Wireless mesh architecture. 

Generally WMNs comprise two types of nodes: mesh routers and mesh clients (See 

Fig. 1.1). Mesh routers have minimal mobility and form a relatively stable multi-hop 

wireless mesh backbone for mesh clients. Certain mesh routers with the gateway/bridge 

functionalities enable integration of WMNs with other networks such as the Internet. 

Mesh clients connect to mesh routers via wireless or wired links. This general form of 

WMNs can be visualized as an integration of two planes where the access plane provides 

connectivity to the clients while the forwarding plane relays traffic between the mesh 

routers. Though WMNs inherit almost all characteristics of the more general ad-hoc 

network paradigm, such as decentralized design, distributed communications etc., there 

are a few differences. Mesh routers are quasi-stationary and have no energy consumption 

limitation. Also the traffic pattern between routers is assumed fairly stable over time.  

Based on whether mesh clients participate in mesh forming, WMNs can be broadly 

classified into two types [1]: infrastructure mesh and hybrid mesh. Infrastructure mesh is 

the most common form of WMNs. Like the STAs in the infrastructure WLAN mode, 
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mesh clients communicate with mesh routers only without forwarding data for any other 

nodes. Hybrid mesh is an emerging vision for the future of WMNs, where clients may 

relay packets for others.  

WLAN mesh has been standardized in the IEEE 802.11s amendment [8], which has 

been published in the latest standard IEEE 802.11-2012 [7]. 820.11s has specified the 

mesh backhaul mechanisms that are necessary for WLAN mesh networking, such as the 

frame structure, the mesh backhaul formation and management, the media access control, 

the path selection, etc [9], [10]. 

1.2.2. The WMNs in the Thesis 

Next we introduce the WMN architecture considered in this thesis. We work on 

802.11 based infrastructure mesh WLANs. The network consists of three types of nodes. 

Following the convention of the 802.11 standards, we name the nodes: client station 

(STA), mesh access point (MAP), and portal. The STA is the mesh client, and may also 

be called end user or mobile station. The STA is equipped with a single 802.11 wireless 

interface and must associate with one of the MAPs to access the network. The MAP has 

two interfaces: one is the access interface that performs the same functionality as AP in 

an infrastructure WLAN; the other is the backhaul interface that operates as a mesh router 

forming the multi-hop wireless backhaul. The portal is the mesh router with gateway 

functionality enabling Internet access. Each MAP accesses the Internet through one portal 

only. Each portal and its associated MAPs form an individual cluster in the WMN.  

A WMN can be viewed as an integration of two types of network: access networks 

formed by MAP access interfaces and their associated STAs, and backhaul network 

formed by MAP backhaul interfaces. Adjacent access network may operate in orthogonal 

channels to minimize interference, while the backhaul network operates in the same 
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channel to maintain backhaul connectivity, i.e. the backhaul is a single-interface single-

channel mesh network. Access links and backhaul links do not interfere with each other, 

which can be realized by adopting different 802.11a/b/g standards or operating on non-

overlapping channels. As for the traffic pattern, we consider Internet traffic only where all 

STAs send and receive packets to and from the Internet, as low-cost Internet access is the 

most common usage of a WMN. 

1.3. Motivation and Objectives 

Association control in WMNs has attracted some research interest in recent years. 

Noticing the backhaul difference between WLANs and WMNs, researchers have 

proposed such association metrics for WMNs that takes into consideration the network 

condition at not only the access network but also the wireless backhaul [36]-[41]. 

However, their association metrics still adopt the design methodology from WLANs and 

cannot make good use of the scarce network resource. In addition, there are very few 

good quality optimization-based association control schemes, e.g. [42] and [43] formulate 

optimal association problems in WMNs without giving general approximation solutions. 

Therefore, in this thesis, by taking account of the special features of WMNs, we aim to 

improve network performance of WMNs through advanced association control schemes 

including both association metric based heuristics and centralized optimization based 

approaches.  

1.3.1. Heuristic Association 

In a conventional WLAN, the APs are connected to a wired backhaul that normally 

has abundant bandwidth. Therefore, STAs only consider the access link condition when 

making association decisions, and load balance among APs is preferred. However, in 
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WMNs, MAPs are connected to a wireless multi-hop backhaul which enables easy 

network deployment, but at the same time may easily become saturated and become the 

bottleneck of the whole network due to limitations such as limited capacity compared to 

the access networks, inter-flow and intra-flow interferences, and unfairness among MAPs. 

When the backhaul is saturated, a lot of packets would be dropped at the backhaul, even 

though they have got through their associated access networks. Therefore, in WMN 

association control, the backhaul plays an important role and should be considered 

together with the access network conditions, and a certain degree of load unbalance 

among MAPs is preferred. 

We can generally classify MAPs into two classes: good-backhaul MAPs and poor-

backhaul MAPs. The good-backhaul MAPs are those with good backhaul conditions such 

as higher backhaul link rate and shorter backhaul path. On the contrary, the poor-

backhaul MAPs are those with poor backhaul condition and low backhaul capacity. A 

successful packet delivery from the good-backhaul MAPs requires a smaller number of 

relays and retransmissions, less transmission time, and therefore consumes less network 

resource compared to transmitting the same packet from the poor-backhaul MAPs. In 

IEEE 802.11 based WMNs, the poor-backhaul MAPs are even more unfavourable due to 

the unfairness in multi-hop network contention as shown in [6] that the MAPs with more 

hops away from the portal yield much lower effective bandwidth.  

Therefore, higher aggregate throughout as well as higher resource utilization 

efficiency can be achieved by allowing more STAs to associate with the good-backhaul 

MAPs and at the same time allocating more network resource (e.g. transmission time, 

orthogonal channels) to those MAPs. However, that must be done properly. Otherwise, if 

too many STAs associate with the good-backhaul MAPs, the access network of these 
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MAPs could be over-congested; in addition, the STAs associated with the poor-backhaul 

MAPs may easily get starved, and severe unfairness may occur. 

In this thesis, we aim to propose innovative association metric based heuristic 

association and reassociation schemes such that more STAs can associate with good-

backhaul MAPs for better network resource utilization and at the same time avoid over-

congestion at the good-backhaul MAPs.  

1.3.2. Optimal Association 

We can get optimal association by jointly considering association control and user 

bandwidth allocation, as shown in [32], [34], [35]. Both association control and 

bandwidth allocation have significant impact on load distribution, aggregate throughput 

and user fairness, and should be essential components of any resource management 

framework. Optimization-based joint association control and bandwidth allocation has 

been studied for WLANs. Previous works on optimal association control schemes for 

WMNs only gave problem formulation without providing general approximation 

solutions. In our optimal association control algorithms, we would not only formulate the 

optimization problems, but also propose approximation algorithms with theoretical 

analysis on the approximation ratios. 

Besides the aggregate throughput, which is determined by resource utilization 

efficiency, user fairness in bandwidth is also an important consideration factor in resource 

management. However, these two objectives usually conflict with each other [57]-[60]. 

For example, as discussed above, we can achieve very high throughput by allocating all 

the transmission opportunities to the good-backhaul MAPs, which is obviously extremely 

unfair to the STAs associated with the other MAPs.  
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There are two commonly used fairness criteria for bandwidth allocation objectives: 

max-min fairness (MM) [61] and proportional fairness (PF) [62]. By MM, the bandwidth 

of any STA cannot be increased without decreasing the allocation of a STA with smaller 

or equal bandwidth. PF is achieved when the sum of the logarithm of each STA’s 

bandwidth is maximized. MM tries to allocate the bandwidth of all STAs as equal as 

possible; on the other hand, PF increases network throughput by sacrificing fairness, 

exploiting the trade-off between the two.  

The IEEE802.11 MAC protocols implicitly enforce max-min throughput fairness 

among users in the long term, i.e. each user gets equal transmission opportunity and 

achieves equal throughput. That would drop the throughput of all the STAs associated 

with one AP to approximately the lowest link rate of the STAs in the cell, resulting in 

network resource under-utilization [4]. Therefore researchers have proposed the concept 

of time-based fairness [60], where all the STAs associated with one AP get equal 

transmission time. It has been shown in [35] that, for a single WLAN cell, time-based 

fairness is equivalent to the proportional fairness.  

In this thesis, we aim to propose centralized optimization based association control 

schemes that find optimal association and bandwidth allocation achieving not only MM 

or PF fairness but also any degree of the trade-off between resource utilization efficiency 

and user fairness. 

Previous works on optimal association, no matter for WLANs or for WMNs, 

assumed careful frequency planning such that no inter-cell interference is considered. In 

this thesis, we would like to propose a centralized algorithm that jointly considers MAP 

channel assignment, association control and user bandwidth allocation. 
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1.4. Contributions and Organization of the Thesis 

In Chapter 2, we do a comprehensive literature review on association control schemes   

for WLANs and WMNs. 

In Chapter 3, we propose a cross-layer heuristic association scheme that takes the 

multi-hop wireless backhaul property into consideration and is able to effectively allocate 

more STAs to the good-backhaul MAPs and at the same time avoid over-congestion at 

these MAPs. We demonstrate the benefit of unbalanced loading in WMNs and the 

improved end-to-end performance of the proposed scheme via simulations using ns-3 

simulator.  

In Chapter 4, we propose a mobility-aware reassociation control scheme, named 

MARA, which takes the wireless backhaul and STAs mobility into consideration. By 

prolonging mobile STAs’ association time with the good-backhaul MAPs, MARA 

improves the network resource utilization. By dynamically adjusting the scan interval, 

MARA is able to discover network dynamics in a smart and timely way without 

interrupting normal communication too much. We demonstrate the improved end-to-end 

performance via ns-3 simulation.  

In Chapter 5, we formulate and propose approximation algorithms for the problem of 

optimal joint association and bandwidth allocation in WMNs, considering max-min 

fairness and proportional fairness objectives. We first relax the integral association 

constraint and get an optimal fractional association solution. Then we propose two 

rounding algorithms to get an integral association solution. We do theoretical analysis on 

the approximation ratios of the proposed rounding algorithms, which reflect the gap 

between the produced solution and the optimal one. To let the theoretical approximation 
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ratio more closely reflect the true performance gap, we propose two approximation ratio 

improvement algorithms. We demonstrate via simulations that the proposed algorithm 

achieves nearly optimal performance and outperforms popular heuristic algorithms. 

In Chapter 6, we formulate an optimal joint association and bandwidth allocation 

problem that achieves a utility fairness objective in WMNs. Utility fairness is more 

general than max-min fairness and proportional fairness and more flexible in controlling 

the trade-off between resource utilization efficiency and user fairness. We introduce a 

user bandwidth boundary constraint to make the trade-off more controllable and at the 

same time prevent extreme unfairness. We demonstrate through simulations how to 

control the trade-off between efficiency and fairness to achieve the desired performance 

by tuning the control parameters. 

In Chapter 7, we propose a network resource management framework for WMNs 

that improves the network performance by jointly managing MAP channel assignment, 

user association, and user bandwidth allocation. The proposed framework is composed of 

three components: a utility-fairness-based bandwidth allocation algorithm, a channel 

assignment algorithm that effectively increases the network capacity by reducing the 

interference at the good-backhaul MAPs, and an optimization based association control 

algorithm. In addition, to model the concurrent transmission constraints in WMNs, we 

propose an efficient local-clique based network modeling method whose performance is 

almost identical to that of the exponential-time optimal algorithms.  

In Chapter 8, we conclude the thesis and discuss about future works. 
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Chapter 2: Literature Review 

2.1. WLAN Association Schemes  

AP selection or association control problem in WLANs has drawn a lot of research 

interest in the past decade. Although the metrics, techniques, and methodologies proposed 

in the WLAN association schemes may not suit the association requirements in WMNs, 

due to the backhaul difference, they provide valuable insights and inspire new ideas.  

2.1.1. Distributed Approaches for WLANs 

In [13], to balance load, overloaded APs force some stations to handoff to under-

loaded APs. The architecture is completely distributed but requires AP load information 

broadcasting in the backhaul. In [14], stations quickly associate with each available AP 

and run a battery of tests to estimate the quality and usability of each AP’s connection to 

the Internet. In our work, we assume all APs are usable and no restriction on Internet 

access. In [15], a queue-based user association management is proposed to handle heavy 

loads in WLANs. Approaches to manage heavily loaded WLANs can be categorized into: 

over-provisioning, selective dropping, load balancing, and traffic shaping. Load balancing 

is of limited help when the total load is high enough to overwhelm all APs. The proposed 

management controls the frequency and duration of user associations with the network by 

using a queue of users requesting network access. In [16], each STA locally makes 

association decision according to an association transition probability that is computed 

based on an annealed Gibbs sampler technique. Assuming a saturated network and only 
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downlink traffic, the aggregate transmission delay (inverse of transmission rate) of all 

STAs is minimized when the algorithm converges. [17] surveys and summarizes load 

balancing approaches according to station based load distribution and network based load 

distribution. They measure the AP’s load and effectiveness of load balancing by AP’s 

effective throughput and show experimentally that effectively balancing AP traffic load 

can increase overall system throughputs. [18] proposes a practical online AP association 

strategy that maximizes minimal throughput for all clients. The authors use a weighted 

congestion game model to prove the superiority of the online strategy over the selfish 

strategy, in terms of convergence and competitive ratio. In the selfish strategy, every user 

keeps moving to associate with the AP that could offer it the best throughput until Nash 

Equilibrium is reached. In the online strategy proposed, a new client will irrevocably 

associate with the AP that will minimize the loads on all the APs within its transmission 

range.  

Various association metrics that estimate the available bandwidth of APs have been 

proposed in [19]-[23]. In [19], the bandwidth a station is likely to receive if it were to 

associate with an AP is estimated based on measurements of delay of beacon frames. The 

scheme assumes beacon frames are transmitted with the same priority as the data frames, 

which is rarely the case in real WLANs. In [20], instead of RSSI, the authors use Signal-

to-Noise Ratio (SNR) as the association metric, which can reflect the link quality more 

realistically and achieve good performance in a network with high interference. But the 

metric is incapable of load balancing. [21] proposes an association metric that takes 

account of both achievable throughput and the impact of the new STA’s association on 

already associated STAs. The achievable throughput calculation considers channel access 

overhead and transmission failure due to packet error, but does not consider packet 

collision. The “impact” value is computed by comparing the average channel occupancy 
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time per STA before and after a new STA association. The authors have also proposed to 

dynamically enlarge or shrink the scan interval so as to avoid unnecessary scanning for 

dynamic reassociation. In [22], stations estimate the available residual bandwidth of a 

WLAN by calculating the RTS collision probability and channel idle ratio based on 

channel state assessment. This method requires a long observing period to get a relatively 

accurate estimation. In [23], the achievable throughput is approximated by the metric that 

takes account of contention from one-hop (associated and non-associated) and 

interference from two-hop neighbours (hidden nodes). Each node has to broadcast its lists 

of neighbours and activity factor introducing large overhead.  

2.1.2. Centralized Approaches for WLANs 

In [24]-[27], a central control server is aware of the network conditions and makes 

the association decisions for STAs. In [24], an admission control server maintains all per-

cell and per-user state and controls use of the wireless bandwidth in the entire network. 

The server instructs the station to associate or roam to the AP that satisfies its QoS 

requirement. In [25], a user senses and delivers the network conditions, such as AP traffic 

loads, to APs; then each AP estimates and returns the potential throughput for the user. 

The user associates with the AP with the maximum potential throughput. The authors 

demonstrated the performance of the proposed method for a single user rather than the 

whole network. [26] proposes a centralized coordination system such that only a set of 

non-interfering APs is activated during any given time of the contention-free period 

(CFP). The number of slots allocated to each AP in the CFP is proportional to its load and 

the system’s performance is optimized by employing efficient scheduling algorithms. In 

[27], the STA activity factor is considered when estimating the average throughput of a 

STA. 
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In [28]-[31], the association is controlled through the AP transmission power control. 

[28] and [29] propose cell-breathing techniques for load balancing in WLANs with 

continuous-power and discrete-power assignment respectively. Cell breathing is 

implemented by controlling the transmission power of an AP’s beacon frames, and does 

not require any change to the client or to the standard. In [28] the association problem is 

modelled as a minimum weighted perfect matching problem by assuming STAs with unit 

demand and rejecting new STAs when the AP capacity has been reached, which makes 

the model less realistic.  [29] targets at the long-term inter-AP fairness with no effort in 

improving the network throughput. The authors give an optimal solution to a variant of 

the NP-hard min-max load balancing problem, where each AP is given a unique priority 

or weight. In [31], an AP power control algorithm is proposed for proportional fairness in 

multi-rate WLANs. It is assumed that all APs operate on the same channel which is rarely 

the case in a real network deployment.  

The power control based association control methods are good at easy 

implementation. However, they achieve sub-optimal performance compared to the 

optimization based association control methods such as [32]-[35]. In [32], max-min 

fairness is achieved through min-max AP load balancing. The optimal association 

problem is formulated as an integer linear programming problem, which is solved by a 

relaxation-then-rounding algorithm that achieves a constant approximation factor of 2. 

[33] proposes to evaluate the quality of an association by the utilities of throughputs, 

where the utility is the logarithm of the throughput. The authors solve a linear relaxation 

of the utility maximizing problem in two simple cases without giving a general solution to 

the optimization problem. In [34], the optimal association for proportional fairness in 

WLANs is modelled as an integer nonlinear programming problem (NLP). The NLP is 

then relaxed to a discretized linear program (DLP) by discretizing the scheduling period 
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of each AP into discrete slots that are as many as the number of STAs. As there are too 

many variables in DLP, solving DLP would be very time consuming if this method is 

applied in WMNs. [35] shares the same problem formulation as [34]; they differ in how 

the optimization problem is relaxed, yielding different approximation ratios. Both [34] 

and [35] adopt the same rounding procedure that is first proposed for the generalized 

assignment problem [65].  

2.2. WMN Association Schemes  

The association problem in WMNs has attracted researchers’ attention in recent 

years as various aspects of WMNs are intensively studied.  

2.2.1. Heuristic Approaches for WMNs 

[36]-[41] have proposed association metrics for WMNs that comprise access link 

cost and backhaul link cost. They are different in the association factors considered in the 

metric. Luo et al. propose Contention Aware Expected Transmission Time (CAETT) in 

[36] and the Load Aware Expected Transmission Time (LAETT) in [37] as the access 

link cost. CAETT is equal to the sum of the Expected Transmission Time (ETT) of the 

already associated stations and the associating station. LAETT metric improves CAETT 

by estimating the effective bit rate of an access link more accurately based on the channel 

idleness ratio. When the idleness ratio is large, the network is lightly loaded and LAETT 

equals to the associating station’s ETT. When the idleness ratio is smaller than a 

threshold, the network is considered saturated and LAETT is similar to CAETT. The 

authors only demonstrate the performance of LAETT in a lightly loaded network.  It is 

not clear how the metric performs in heavy load situations.  



17 
 

In [38], an end-to-end airtime metric is proposed as the association metric. The 

airtime metric is similar to ETT except that it incorporates channel access overhead and 

protocol overhead that are standard-specific constant values. The authors also propose a 

load balancing scheme where a STA increases the weight of the access metric when it 

finds the AP load unbalanced based on the current load balance index as well as the 

threshold value carried in beacons. It proposes a hybrid scheme that incorporates airtime 

metric and SNR metric to handle light load and heavy load respectively. In [39], the 

association metric is the end-to-end delay of one packet including packet transmission 

time as well as protocol and physical overhead, but not considering network load, 

contention or packet error. In the backhaul metric calculation, long-hop routes are given 

more weight to favour short-hop routes, which is preferred by small-sized packets. In [40], 

dynamic association and reassociation oscillation avoidance mechanisms are investigated; 

the channel idle ratio is calculated based on per channel observation. [41] extends LAETT 

by including the uplink and downlink backhaul metric and demonstrates the 

implementation of a cross-layer association scheme on a Linux-based test-bed.  

The state-of-the-art cross-layer association schemes [37], [38], [41] are similar in 

association metric calculation. In particular, they estimate access link available bandwidth 

by distinguishing access network saturation using a pre-defined channel idleness ratio 

threshold. The problem with this method is that the association metric of the MAPs that 

are estimated as saturated are much larger than those that are not estimated as saturated. 

This may prevent incoming STAs associating with the good-backhaul MAPs and result in 

network resource under-utilization. 
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2.2.2. Optimization Approaches for WMNs 

There are very few papers on optimization based association in WMNs, possibly 

because research attention has been focusing on either single-hop WLANs or multi-hop 

backhaul network, but not the interaction between the two networks. In [42], a joint user 

association, backhaul routing and max-min bandwidth allocation problem is formulated 

for WMNs. Instead of approximating the optimal solution, association and routing are 

constructed via a heuristic approach, which makes the algorithm much less optimal. In 

[43], load balancing is done by minimizing the variance of the MAP load, where the load 

is defined as the number of STAs by assuming that STAs have equal data rate and 

demand. Instead of providing sub-optimal solutions to the NP-hard problem, the authors 

compute the optimal solution by enumerating all the possible associations.  
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Chapter 3: A Cross-Layer Association 

Control Scheme for WMNs  

In this chapter, we propose a network resource aware cross-layer association control 

scheme that takes access and backhaul link quality, network load, and backhaul 

contention into consideration. Our simulation results in the context of IEEE 802.11 based 

WMN show that the proposed association scheme is able to achieve improved end-to-end 

performance as well as improved network resource utilization efficiency. 

3.1. Introduction 

As discussed in Section 1.3.1, due to the characteristics of the wireless multi-hop 

backhaul of WMNs, we can make better use of the scarce backhaul network resource by 

associating more STAs with the good-backhaul MAPs, i.e. a certain degree of load 

unbalance among MAPs is preferred. However, as discussed in the literature review on 

heuristic association control schemes for WMNs in Section 2.2.1, the state of the art 

cross-layer association schemes tend to realize load balancing among MAPs, resulting in 

network resource underutilization, because they tend to judge a MAP’s access network as 

saturated and prevent new STAs associating with it.  

In the 802.11 based WMNs, MAPs do not receive fair backhaul bandwidth due to 

multi-hop contention. In [6] it is shown that MAPs with more hops from the gateway 

yield much lower effective bandwidth. In our proposed network resource aware 

association control scheme, unfairness in backhaul contention is taken into consideration 
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and more STAs are associated with the MAPs of higher backhaul capacity. We also 

investigate the benefit of unbalanced loading in WMN. 

3.2. The Cross-layer Association Control Scheme 

Our proposed association control scheme comprises four components: Load Aware 

Airtime metric (LAA), Link Quality Aware airtime metric (LQA), access weight 

adjustment, and load balancing among MAPs of similar backhaul cost. Metrics similar to 

the LAA metric have been studied in [37], [38], [41], while the other three features are 

new. 

3.2.1. Association Metrics 

We adopt an airtime metric as the association metric that reflects the amount of 

channel resource (time) consumed by a successful transmission. The total airtime cost of 

STA j associating with MAP i is calculated as:  

 (1 )ij A ij A iTC AC BC        (3.1) 

where ACij is the access link airtime cost between i and j ; BCi is the backhaul airtime cost 

of the multi-hop path from MAP i to the portal; A is the weight assigned to the access 

link cost and its value has impact on the throughput and MAP load balancing. The access 

link airtime cost is calculated as: 
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where Oca is the channel access overhead; Op is the protocol overhead; Oca + Op is a 

constant value determined by the adopted 802.11 standard, e.g. for the 802.11b standard 

the value is 1.25 microseconds; p is the expected dominant packet size in bits; ej is the 

estimated packet error rate that can be estimated through techniques such as observing 
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past frame loss, sending overhead testing frame, or calculated based on the Signal-to-

Noise Ratio (SNR) measurement; a
ijr is the estimated achievable data rate and can be 

calculated in two ways as in (3.3) and (3.4). 

 a
ij ijr r  (3.3) 

 

' ( )
'

                             

1
          

1 1

i ij i t

a
i tij

j S i
ij ij

r

r

r r

  

 




  
 



  (3.4) 

In (3.3), rij is the physical link rate between MAP i and STA j. In (3.4), rij’ is the 

physical link rate of STA j’ that has already associated with i; i is the channel idleness 

ratio of i and t is the channel idleness ratio threshold below which the access network of 

i is considered saturated. The MAP keeps track of the channel idleness ratio by 

monitoring the time the channel state is idle during a monitoring window.  

We name the total airtime metric where the achievable data rate a
ijr  is calculated 

using (3.3) as Link Quality Aware airtime metric (LQA). On the other hand, if a
ijr  is 

calculated using (3.4), we name the corresponding total airtime metric as Load Aware 

Airtime metric (LAA). The access link cost calculated using the LQA metric is smaller 

than that calculated using the LAA metric. The LQA metric in effect lowers the weight of 

the access link cost in the total association cost. As a result, with the LQA metric, more 

STAs would associate with the MAPs with smaller backhaul cost, and the load 

distribution among MAPs is more unbalanced.  

The backhaul airtime cost of i is calculated using (3.5), which is the accumulated 

airtime cost on each hop along the backhaul path. rk is the physical link rate between 

MAP k and its next hop MAP. 
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3.2.2. Access Weight Adjustment Scheme 

With LQA metric, more STAs would associate with the MAPs with better backhaul 

conditions, i.e. lower backhaul cost. However, as more and more STAs join the network, 

the good-backhaul MAPs will be overloaded. To avoid congestion at these MAPs, we 

propose an access weight adjustment scheme:  
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  (3.6) 

where i and t are the same channel idleness ratio and threshold as in (3.4); Min is the 

minimum access weight; Max is the maximum access weight. The equation is chosen 

such that when there are few STAs in the network and the channel idleness ratio is high, 

the access weight is set to the minimum value, and therefore the backhaul cost of a MAP 

contributes more in the total association cost. As a result, more STAs would associate 

with the good-backhaul MAPs, which would increase the backhaul network capacity as 

well as the aggregate network throughput. As more and more STAs join the network and 

the channel idleness ratio decreases, the access weight will be increased, so that the newly 

joined STAs will be distributed more evenly among the MAPs. As a result, congestion at 

the good-backhaul MAPs could be relieved. The access weight approaches the maximum 

value as the channel idleness ratio approaches zero. 

Combining the LQA metric with the access weight adjustment scheme, we get an 

improved scheme, which is named LQAW. We will see from the simulation results that 

LQAW effectively associates more STAs with the good-backhaul MAPs and at the same 

time avoids overloading these MAPs. 
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The message overhead for cost calculations is the following information element 

fields in MAP access network beacon frames.  

 IeRoutingCost: 4 bytes (backhaul routing airtime cost) 

 IeAccessMetric: 4 bytes (total access link airtime cost of the associated STAs) 

 IeIdleRatio:  2 bytes (access network channel idleness ratio) 

The access network beacon interval is 0.1 second and beacons are transmitted at 

1Mbps data rate. So the overhead in time caused by association scheme in access network 

is 800 microseconds per second (0.08%), which is very small. Therefore, the overhead 

has negligible effect on performance. 

3.2.3. Procedure of the Proposed Association Scheme 

The procedure of the cross-layer network resource aware association scheme is as 

follows: 

1) MAPs broadcast access beacon frames every beacon interval. The modified 

beacons carry additional information elements such as access network load, access 

channel idleness ratio, and backhaul airtime cost. 

2) The STA passively scans each channel. Upon receiving a beacon, the STA records 

the information and calculates the link rate and packet error rate based on the SNR 

of the received beacon.  

3) After scanning the last channel, the STA has gathered information from all the 

available MAPs. Then it calculates the access weight using (3.6) based on the 

smallest channel idleness ratio received.  

4) The STA calculates the total airtime cost of the available MAPs using the LQA 

metric and LAA metric.   
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5) If the function of load balancing among MAPs of similar backhaul cost is 

disabled, the STA associates with the least LQA metric MAP. Otherwise, the STA 

picks up the two MAPs with the least LQA metric and checks whether they have 

similar backhaul cost. If the two MAPs do not have similar backhaul cost, the 

STA associates with the least LQA metric MAP. Otherwise, the STA associates 

with the least LAA metric MAP. 

6) Finally, the STA switches to the channel of the chosen MAP and exchanges 

Association Request frame and Association Response frame with it. Then the 

association process ends successfully. 

3.3. Performance Evaluation 

We have implemented the proposed association scheme in network simulator ns-3 

[11]. In our experiments, we simulate a WMN that consists of 12 MAPs, 1 portal, and 10-

80 STAs in a rectangular field of 280m×210m. The portal is located at the centre. In this 

section we present and discuss the simulation results of two experiments. In the first 

experiment, the MAPs are located in a 4×3 grid topology. With known MAP location 

and association details of each MAP, we investigate how the access weight affects the 

network performance and clearly demonstrate why our proposed scheme outperforms the 

benchmark association metrics. As the grid topology may not be always feasible in a real 

network deployment, in the second experiment, MAPs are randomly placed in the field.  

We choose the 802.11s mesh module in ns-3 as the backhaul protocol. Its default 

routing protocol, Hybrid Wireless Mesh Protocol (HWMP), constructs a routing tree 

rooted at the portal for the wireless multi-hop backhaul. A WiFi physical model named 

yans [44] and ideal rate controller are used. Backhaul links and access links adopt 

802.11a and 802.11g standards respectively so that they do not interfere with each other. 
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STAs are randomly located in the field and remain at the same location throughout the 

experiment. After all STAs have joined the network, the simulator starts to record 

performance data. Each STA sends UDP packets to the Internet, with a packet size of 800 

bytes, and data generation rate of 150 Kbps. The experimental results are averaged over 

20 runs.  

We compare the performance of our proposed association schemes, LQA, LQAW, 

and LQAWLB, against the benchmark metrics SNR and LAA. SNR, like RSSI, can only 

reflect access link quality. LAA is the state-of-the-art cross-layer association metric that 

still adopts the load balancing design methodology from the conventional WLANs. 

LQAW is the LQA airtime metric combined with the access weight adjustment scheme. 

LQAWLB is LQAW with load balancing function enabled. 

3.3.1. Experiment 1: Grid Topology  

 
Figure 3.1: 12-MAP grid topology. 

The location of the MAPs is depicted in Fig. 3.1. According to the different backhaul 

conditions, we categorize the MAPs into three categories: H1 and H2 in the middle are A-

class MAPs as they have the best backhaul condition (the fewest hop, the fastest link rate, 

and the highest backhaul capacity); M1 to M6 are B-class MAPs; C1 to C4 at the corners 
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are C-class MAPs as they have the poorest backhaul condition and the smallest effective 

bandwidth. Node P in the centre is the portal. 

A. Effect of the Access Weight 

Fig. 3.2 shows the association results and performance of 70 STAs using the LQA 

metric under different access weights. In Fig. 3.2 (a), with bigger access weight, the load 

distribution is more even among all MAPs (load balanced), while with smaller access 

weights, the A-class MAPs are more crowded (load unbalanced). In Fig. 3.2 (b), the left 

bar at each access weight is the aggregate end-to-end throughput, which shows that 

neither too much load balance nor too much load unbalance is good and the highest end-

to-end throughput is achieved at an access weight of 0.25. The network bottleneck resides 

in the access network when the access weight is small and in backhaul when the access 

weight is large. For access weights larger than 0.25, although all offered load from STAs 

can get through the access network, a lot of packets are dropped at the MAPs. The reason 

is that contention from the poor-backhaul MAPs (B-class and C-class) decreases the 

transmission opportunities of the good-backhaul MAPs (A-class), resulting in lower 

backhaul capacity and lower resource utilization efficiency.  
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(a) Association Results 

 
(b) End-to-end throughput (left bar) & access network throughput (right bar) 

Figure 3.2: Effect of the access weight. 

B. Performance of LQAW 

From Fig. 3.3, Fig. 3.4, and Fig. 3.5 we compare the performance of SNR, LAA, 

LQA and LQAW schemes. In the experiments, the channel idleness ratio threshold for 

LAA and LQAW is 0.6. The access weight for LAA is 0.25, while for LQA is 0.25 or 0.4. 

The Min and Max in LQAW is 0.25 and 0.45 respectively. The 95% confidence interval 

range looks a bit large in the figures because the total number of simulation runs is 20. 

The confidence interval would be smaller when the number of runs is larger.  
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Fig. 3.3 depicts the association results of 70 STAs under different metrics. We can 

see that more STAs are associated with the A-class MAPs under LQA and LQAW, 

compared to SNR and LAA. The association result under LQAW is in between LQA with 

access weight 0.25 and LQA with access weight 0.4, which is as expected because the 

changing access weight in LQAW falls between 0.25 and 0.4. Under the uniform user 

topology, the SNR metric evenly distributes the STAs to the MAPs. Therefore, in Fig. 3.3 

we see that, for SNR, the number of STAs associated with different MAP classes matches 

the number of the MAPs in the MAP classes (A-class:B-class:C-class=2:6:4).  

We can see from Fig. 3.4 that LQA and LQAW achieve higher aggregate throughput 

than SNR and LAA because of less contention from the poor-backhaul MAPs. From Fig. 

3.5 we see that LQA0.4 and LQAW achieve the lowest end-to-end average packet delay. 

Comparing LQA0.4 and LAA, the access airtime cost calculated by LQA0.4 is lower, 

resulting in more STAs associated with the A-class MAPs and less STAs associated with 

the C-class MAPs. Due to less contention from the poor-backhaul MAPs, LQA0.4 

achieves higher network capacity, higher aggregate throughput, and lower end-to-end 

packet delay. For the LQA metric without the access weight adjustment function, when 

the access weight is further decreased from 0.4 to 0.25, more STAs are associated with 

the good-backhaul MAPs resulting in even higher aggregate throughput. However, packet 

delay in LQA0.25 is much longer due to heavy congestion at the access links of the good-

backhaul MAPs. LQAW achieves throughput performance that is comparable to that of 

LQA0.25 because the access weight of LQAW almost equals 0.25 when the network load 

is low, resulting in a large number of STAs associated with the good-backhaul MAPs. 

LQAW achieves low packet delay because the weight of the access airtime cost is 

increased when the network load increases, resulting in more balanced load distribution. 
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In Fig. 3.4, for SNR, LQA0.4, and LAA, the throughput starts decreasing when the 

number of stations increases beyond a certain value. This is because the wireless backhaul 

is the bottleneck of the whole network. The aggregate throughput performance is 

determined by the backhaul capacity. When the number of STAs increases beyond a 

certain value, there would be many STAs associated with the poor-backhaul MAPs (they 

are located far from the portal and can hear from poor-backhaul only) and there would be 

a lot of competition in the backhaul from the poor-backhaul MAPs, which will reduce the 

backhaul resource utilization efficiency and lower the backhaul capacity. Therefore, we 

see the aggregate throughput decreases 

From Fig. 3.4 and Fig. 3.5 we find that LQAW achieves the best overall performance 

because it successfully takes advantage of the backhaul contention property and makes 

better use of the backhaul network resource, while at the same time it is able to avoid over 

congestion at the good-backhaul MAPs. 

 
Figure 3.3: Association results under different association metrics. 
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Figure 3.4: Aggregate throughput in the grid MAP topology. 

 

Figure 3.5: Average packet delay in the grid MAP topology. 
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grid topology. Associating more STAs with the short-path MAPs can make better use of 

the network resource, and the simulation results depicted in Fig. 3.6 and Fig. 3.7 are as 

expected showing that LQAW achieves much higher throughput and lower end-to-end 

delay than SNR and LAA. For the same reason as in the grid topology, LQAW is able to 

associate more STAs with the good-backhaul MAPs and less STAs with the poor-

backhaul MAPs and at the same time avoid over-congestion at the good-backhaul MAPs. 

From Fig. 3.7 we see that adding the load balancing function to LQAW can slightly 

improve the delay performance which means the load balancing function is able to find 

some load balancing opportunities among the MAPs with similar backhaul cost. More 

balanced load distribution results in less access network contention and less packet delay. 

For the load balancing is done only among MAPs with similar backhaul condition, the 

network throughput is not sacrificed by the load balancing. 

The throughput shown in Fig. 3.6 is the aggregate throughput of all STAs in the 

network. Sometimes the aggregate throughput can be improved by giving much more 

transmission opportunities to the STAs with fast links, which is unfair to the other STAs. 

We use Jain’s fairness index [12] to measure the fairness among STAs. The fairness 

index F is calculated using (3.7), where bj is the end-to-end throughput of STA j and n is 

the total number of STAs. The index equals to 1 when all STAs achieve the same 

throughput. From Fig. 3.8 we see that the fairness index of LQAWLB is the highest, 

which means its throughput advantage does not sacrifice the user fairness. In SNR and 

LAA, the STAs associated with the poor-backhaul MAPs receive very little bandwidth 

due to the unfairness in the wireless multi-hop backhaul contention. In LQAWLB, more 

STAs are associated with the good-backhaul MAPs, resulting in fewer STAs associated 

with the poor-backhaul MAPs being starved. In addition, contention among STAs 
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associated with the same MAP is much fairer. As a result, LQAWLB achieves higher 

fairness index.  

    2 2
j jF b n b     (3.7) 

 
Figure 3.6: Aggregate throughput in the random MAP topology. 

 
Figure 3.7: Average packet delay in the random MAP topology. 
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Figure 3.8: Fairness index in the random MAP topology. 

 

3.4. Conclusion 
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MAPs with good backhaul condition can make better use of the backhaul network 

resource and improve network performance. Our proposed association schemes LQAW 

and LQAWLB take the multi-hop wireless backhaul property into consideration and are 

able to effectively allocate more loads to the good-backhaul MAPs and at the same time 

avoid over-congestion at these MAPs. Simulation results have demonstrated the improved 

performance of our schemes.  
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Chapter 4: Mobility-aware Reassociation 

Control in WMNs 

In the previous chapter, we consider static STAs and network condition is not rapidly 

changing. In this chapter, we propose a Mobility-Aware Reassociation (MARA) control 

scheme for dynamic networks where the STAs are mobile.  MARA makes better use of 

the network resource by prolonging mobile stations’ association period with the good-

backhaul MAPs. In MARA, STAs adjust their scan intervals and make association 

decisions based on the estimated moving directions and the association cost of the nearby 

MAPs. Our simulation results show that the proposed scheme achieves improved end-to-

end performance consistently under different network scenarios. 

4.1. Introduction 

To maintain network connectivity, a STA may trigger a handoff procedure and 

reassociate with one of the available MAPs when it detects that its connection with the 

currently associated MAP is lost. Alternatively, instead of waiting until the current 

connection becomes unacceptable, STAs may frequently detect the quality of nearby 

MAPs and compare them with that of the associated one, so that STAs can be aware of 

the real time network condition and always associate with the most suitable MAP. A 

layer-2 handoff consists of four stages: i) triggering; ii) discovery; iii) selection; and iv) 

commitment [46], [48]. A STA triggers a handoff when it identifies the need to associate 

with a better MAP. Then it collects information about the MAPs in the vicinity through 
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active scan or passive scan, and identifies the best MAP according to certain reassociation 

MAP selection criteria. Finally, if a new MAP is selected, the STA disassociates from the 

old MAP and reassociates with the new one.  

In this chapter, we propose a Mobility-Aware Reassociation (MARA) control 

scheme that focuses on the selection stage, providing a solution on how to select a MAP 

to associate with so that network resources can be better utilized and end-to-end 

performance can be improved. In order to capture the network dynamics and discover 

better MAPs for reassociation in a timely and adaptive way, we also design a scan 

triggering scheme that adjusts the scan interval between two consecutive scans based on 

the estimated STA’s moving direction as well as comparison on the MAP’s backhaul 

cost. 

A lot of research efforts on layer-2 handoff have been dedicated to reducing the 

interruption period caused by the handoff via shortening the AP discovery time. As for 

reassociation triggering mechanisms, in the current WLANs, a STA detects the loss of 

connection to the associated AP by indicators such as the number of lost beacons, the 

number of consecutive unacknowledged frames, and signal strength or quality lower than 

the threshold. These mechanisms result in unnecessary handoff and control message 

overhead under medium to high load conditions [53]. Network performance can be 

improved by timely reassociation with a better AP before the current connection degrades 

to an unusable level. In [48], STAs continuously monitor the signal strength of the APs 

operating on STA’s current as well as overlapping channels and compare them with the 

associated one. However, in a real deployment, many APs operate in orthogonal channels, 

and this scheme may miss some good APs and result in suboptimal AP selection. In [40], 

STAs periodically scan each channel with a fixed scan interval to discover network 

dynamics. However, the scanning and reassociation processes interrupt the STA’s 
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communication and may cause packet loss. In MARA, we propose a scan interval 

adjustment scheme that prolongs the scan interval if no better MAPs are found and 

shortens the scan interval if MAPs better than the old one is found or the STA is 

estimated to be moving towards a MAP with better backhaul. Therefore, the total number 

of scans conducted will be reduced without missing opportunities to reassociate with a 

better MAP. 

A reassociation threshold is often applied to avoid STAs from frequently changing 

association with certain MAPs. Reassociation with a new MAP is allowed only if the 

performance improvement is higher than the threshold. Instead of a fixed threshold as in 

[40], in MARA, the threshold is adjusted according to a STA’s moving direction. When it 

is moving towards MAPs with smaller/larger backhaul cost, the threshold is lower/higher 

accordingly; as a result, the STA will associate with the better backhaul MAPs for a 

longer time. 

4.2. MARA: Mobility-Aware Reassociation Control 

We adopt the association metric proposed in Chapter 3, Link Quality aware Airtime 

with access Weight adjustment (LQAW), for calculating the total association cost of the 

MAPs. Next we introduce the reassociation procedure of MARA.  

Step1: MAP information collection 

STAs periodically discover MAP information in the vicinity by scanning each 

channel and listening to the MAP beacons that carry additional information such as 

access channel idleness ratio and backhaul cost. Other information about the MAPs, e.g. 

link rate and packet error rate, are estimated from the SNR of the received beacons. After 
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scanning the last channel, the STA calculates and updates the total association cost of the 

MAPs discovered during the scan.  

Step2: Moving direction estimation 

At the end of a scan, a STA estimates its moving direction (Direction) based on the 

MAPs’ backhaul costs and the change of distances to the MAPs as given in Algorithm 4.1. 

At the same time, the total association cost improvement threshold (TTC) is also 

determined, which is to be used in Step3.  

Algorithm 4.1: Moving Direction Estimation  

if , 1 ,: 0.8  i A i t i t thi BC BC D D D       then 

Direction ←MovingToGood 
TTC←TTC_Low 

elseif , 1 ,: 0.8 1.2A i A i t i t thi BC BC BC D D D         then 

Direction ←MovingToMiddle 
TTC←TTC_Middle 

elseif , 1 ,: 1.2i A i t i t thi BC BC D D D       then 

Direction ←MovingToBad 
TTC←TTC_High 

else 
Direction ←Static 
TTC←TTC_Middle 

  
where i is a MAP in the vicinity of the STA; BCi and BCA are the backhaul costs of MAP 

i and the currently associated MAP, respectively; Di, t-1 and Di,t are the distances to i 

measured in two consecutive scans; Dth is the distance threshold above which a STA is 

considered moving towards a MAP.  

The first reason for setting the backhaul cost threshold 0.8 and 1.2 is to set a range of 

backhaul cost that is around the backhaul cost of the currently associated MAP, so that we 

make sure the STA is indeed moving towards a better-backhaul MAP or a bad-backhaul 

MAP rather than a similar-backhaul MAP. Take the network depicted in Fig. 4.1 for 

example. Theoretically, the backhaul cost of the Class2 MAPs (M1, M2, M3, and M4) 
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(1/24+1/18) is 130% higher than that of the Class1 MAPs (1/24) and 36% lower than that 

of the Class3 MAPs (1/24+1/18+1/18). In simulations, due to network dynamics, the 

measured backhaul cost of the Class2 MAPs may not be the same among themselves. By 

setting the (0.8, 1.2) range, we make sure the STAs estimated moving towards better-

backhaul or bad-backhaul MAPs are indeed moving towards the Class1 MAPs or the 

Class3 MAPs rather than the Class2 MAPs.  

The second reason for setting the backhaul cost threshold is to guarantee the 

performance improvement obtained by STA moving direction estimation. For example, 

when the STA is estimated moving towards a good-backhaul MAP, it will lower its 

reassociation threshold and decrease its scan interval to the lowest value so that it can 

associate with the good-backhaul MAP as early as possible. It is not necessary to conduct 

these actions if the backhaul of the new MAP is only marginally better than that of the 

current associated MAP.  

The distance to a MAP can be estimated by a path loss model that properly 

characterizes the particular wireless environment. Alternatively, it can be estimated from 

the STAs’ location information which can be determined by any localization methods that 

make use of the signal strength information of multiple MAPs obtained during one scan. 

We do not propose any specific localization method to use. The moving direction 

estimation in MARA does not require very accurate position information; only the change 

of location during a time interval of tens of seconds needs to be detected. In fact, the 

localization error does not impact much on the performance of MARA as will be shown 

in the simulation results.  
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Step3: Find MAPBest and compare it with MAPAssociated 

The STA searches for the MAP with the smallest total association cost (MAPBest) in 

the set of discovered MAPs. Then it selects either MAPBest or the current associated MAP 

(MAPA) as a candidate for reassociation (MAPAssociating) as in (4.1) where TC is the total 

association cost and TTC is the reassociation threshold determined in Step2.  To avoid 

association oscillation between MAPs with similar cost, MAPBest is selected only if the 

total association cost improvement of MAPBest over MAPA is larger than the reassociation 

threshold TTC. When the STA is moving towards the good or bad backhaul MAPs, TTC is 

lower or higher accordingly, so it is more likely for STAs to associate with the good-

backhaul MAPs.  

 
  ( )

     ( )
Best A Best TC A

Associating
A A Best TC A

MAP TC TC T TC
MAP

MAP TC TC T TC

  
    

  (4.1) 

Step4: Look for MAPBB and determine MAPToAssociate 

Another association candidate is the MAP with better backhaul (MAPBB), i.e. the 

MAP with the smallest total association cost among all the MAPs whose backhaul cost is 

smaller than that of MAPAssociating. The final MAP selected for reassociation (MAPToAssociate) 

is determined as in (4.2). By considering MAPBB as an association candidate, there are 

more chances for STAs to associate with the good-backhaul MAPs and the network 

resource can be better utilized. 

 

        ( 1.4 )

( 1.4 ) 
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BB BB Associating

ToAssociate Associating BB Associating
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MAP TC TC

MAP MAP TC TC

MAP MAP
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
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


 (4.2) 
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Step5: Schedule next scan 

Update the scan interval and schedule next scan. Adequate number of scans is 

necessary for timely discovery of the network status. But too many scans will cause 

packet loss and disturb normal communication, and is unnecessary especially when the 

network dynamics are low, e.g. when STAs are static.  

In MARA, the scan interval (TInterval) is prolonged by 1.5 times if the current 

associated MAP is found to have the smallest total association cost, until reaching the 

maximum scan interval allowed (TInterval_Max). Otherwise, if MAPs that are better than the 

associated one are found or the STA is moving towards the good-backhaul MAPs, the 

scan interval is reduced to the minimum value (TInterval_Min) so that reassociation 

opportunities can be discovered in time.  

Step6: Reassociation 

Finally, if a new MAP is selected as MAPToAssociate, the STA disassociates with the 

old MAP and reassociates with the new one by exchanging corresponding management 

frames. Otherwise, the STA switches back to the old MAP’s channel and stays associated 

with it. 

4.3. Performance Evaluation 

We have implemented the proposed reassociation scheme in network simulator ns-3. 

We simulate 12 MAPs in a grid or random topology and one portal at the centre of a 

rectangular field of 480m×140m. STAs are randomly located and moving along random 

directions at certain speeds until the field boundary; then they continue moving along 

another random direction. We use the 802.11s mesh module in ns-3 for the backhaul 
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routing and peer management. Each STA sends UDP packets to the portal at the data 

generation rate of 150Kbps. The result shown is the average of 16 runs. 

We compare the performance of MARA with two benchmark schemes: SNR and PF. 

In the SNR scheme, a STA does not conduct a scan until the SNR of the current MAP 

drops below the threshold, which indicates poor link quality. In our simulation the 

unusable link SNR is about 0.7. If the re-association threshold of SNR is set closer to 0.7, 

the STAs would start looking for new MAPs when its current link quality is very poor, 

resulting in very poor performance. We set the SNR threshold for SNR-based 

reassociation control scheme to be 1.05 to improve the performance of the original SNR-

based reassociation scheme. On the other hand, if the threshold is larger than 1.05, there 

will be STAs that keep conducting scans and cannot continue with normal 

communication because they are located at the edge of their associated MAPs’ coverage 

range. The PF scheme stands for periodic scan with fixed scan interval and fixed 

reassociation threshold. All three schemes use LQAW as the association metric. 

Comparing the reassociation procedure, SNR and PF only conduct Step1, Step3, and 

Step6 of that in MARA. 

The protocol parameters are set as follows, for LQAW: t = 0.6, Min = 0.25, Max = 

0.45; for PF: TInterval = 10s, TTC = 0.1; for MARA: Dth = 1m, TTC_Low = 0, TTC_Middle = 0.1, 

TTC_High = 0.6, TInterval_Min = 10s, TInterval_Max = 60s. 

 
Figure 4.1: The grid MAP topology. 
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Fig. 4.1 shows the grid MAP topology. According to the MAPs’ backhaul condition, 

12 MAPs can be categorized into three classes: H1-H4 are Class1 MAPs as they have the 

best backhaul condition and the highest backhaul capacity; M1-M4 are Class2 MAPs; C1-

C4 are Class3 MAPs and their effective bandwidths are the smallest. 

4.3.1. Performance of MARA 

Fig. 4.2 and Fig. 4.3 depict the performances of the three schemes in the grid 

topology when the STA speed is 1m/s and localization error is 3m. It is clear that MARA 

achieves the highest aggregate throughput and the lowest average end-to-end packet delay. 

When the number of STAs is smaller than 30, the backhaul is not saturated and is able to 

handle all offered load from the STAs. When the number of STAs is larger than 30, the 

backhaul is saturated and becomes the bottleneck of the whole network. Fig. 4.4 shows 

where packets are lost when the number of STAs is 50. We can see that the majority of 

packet loss occurs at the backhaul. MARA achieves the lowest packet loss at both access 

networks and the backhaul. Next we analyse how MARA achieves that performance.  

MARA achieves much less packet loss at the backhaul because STAs are associated 

with the good-backhaul MAPs for a longer time. It can be seen from Fig. 4.5 that with 

MARA, STAs have the longest association time with Class1 MAPs and the shortest 

association time with Class3 MAPs. MARA achieves that by reducing the reassociation 

threshold and shortening the scan interval when STAs are moving towards the good-

backhaul MAPs and further lowering the reassociation threshold if any better-backhaul 

MAPs are found. As discussed previously, transmission from the good-backhaul MAPs 

consumes less network resource. So when more loads from STAs are transmitted by the 

good-backhaul MAPs, the network resource is better utilized and the backhaul network 

capacity is higher.  
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Figure 4.2: Aggregate throughput in the grid topology. 

 
Figure 4.3: Average end-to-end packet delay in the grid topology. 
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Figure 4.4: Packet loss at the access networks and at the backhaul. 

 
Figure 4.5: Average association time with 3 MAP classes. 
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lists the average number of scans conducted per STA during the simulation period of 500s. 

Although a very small number of scans are conducted in SNR, SNR has the largest 

number of packet loss at the access networks, as shown in Fig. 4.4, because of the low 

access network capacity and poor average link quality due to more STAs at the cell edge. 

For PF and MARA, the main reason for the packet loss at the access networks is the 

periodic scans. MARA’s dynamic scan interval adjustment reduces the number of scans 

conducted without missing network dynamics.  

Table 4-1: AVERAGE NUMBER OF SCANS CONDUCTED PER STA 

Protocol SNR PF MARA 

No. of Scans per STA 2 49 31 

 

4.3.2. Adaptability of MARA 

We investigate the adaptability of MARA under different STA speeds and different 

localization errors. Fig. 4.6 shows the performance of 50 STAs under speeds from 0m/s to 

8m/s, MARA achieves the highest throughput at all speeds. We simulate the STA 

location estimated by certain RSSI-based localization method by adding random error to 

STA’s true location. From Table 4-2, we can see that localization error has very little 

impact on MARA’s performance. MARA does not require very accurate location 

information to estimate the moving direction; only the change of distances to MAPs 

between two scans is needed. Even if the estimated moving direction is incorrect, 

reassociation decision is made mainly based on the MAP backhaul metric which is not 

affected by the error. Lastly, wrong direction estimation does not worsen the performance 

and there are so many correct estimations that the performance is still good. 
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Figure 4.6: Aggregate throughput under different moving speeds. 

   

Table 4-2: IMPACT OF THE MEAN LOCALIZATION ERROR 

Mean Error (m) 1 3 6 9 12 

Throughput (Mbps) 5.99 5.97 5.96 5.95 5.95 
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placed MAPs. Compared to the grid topology, though multi-hop paths still exist in the 

random topology, there could be more MAPs that are one-hop away from the portal 

resulting in higher backhaul capacity. As the backhaul condition difference among MAPs 

is smaller in the random topology, the performance improvement of MARA over PF is 

slightly lowered compared to in the gird topology. 
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Figure 4.7: Aggregate throughput in the random topology. 

 
Figure 4.8: Average end-to-end packet delay in the random topology. 

4.4. Conclusion 

In this chapter, we have proposed MARA, a Mobility-Aware ReAssociation control 

scheme, which takes the wireless backhaul and stations mobility into consideration. By 

prolonging stations’ association time with the good-backhaul MAPs, MARA improves 

the backhaul network resource utilization as well as the end-to-end network performance. 

By dynamically adjusting scan interval, MARA is able to discover network dynamics in a 

smart and timely way. Simulation results have demonstrated the improved performance of 

MARA under different network scenarios.   
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Chapter 5: Optimal Association in WMNs 

In Chapter 3 and Chapter 4, we have proposed distributed heuristic association 

control schemes for static and dynamic WMNs, respectively. In this chapter, we propose 

and analyse centralized optimization-based association control schemes. We formulate 

the optimization problems of optimal joint association and bandwidth allocation in 

WMNs, considering max-min fairness (MM) and proportional fairness (PF) objectives. In 

our proposed approximation algorithms, we first relax the integral association constraint 

and get an optimal fractional association solution. Then we propose two rounding 

algorithms, Largest Fraction Rounding and Bipartite Graph Rounding, to get an integral 

solution, and analyse their theoretical approximation ratios. Lastly, we propose two 

approximation ratio improvement algorithms so that the improved approximation ratio 

can more accurately reflect the true performance gap between the produced solution and 

the optimal one. Our simulation results show that the proposed algorithms achieve 

performances that are close to the optimal and outperform popular heuristic algorithms. 

We also compare the performance of PF and MM in WMNs in terms of network 

throughput and fairness in user bandwidth. Finally, we compare the performances of the 

proposed rounding algorithms and show that the approximation ratio can be reduced to 1-

2 by the proposed ratio improvement algorithms. Therefore, our proposed algorithm is 

able to achieve nearly optimal association control as well as bandwidth allocation 

considering MM or PF fairness, with small approximation ratios, in wireless mesh 

networks. 
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5.1. Introduction 

The association between STAs and MAPs determines the logical network topology; 

therefore it has significant impact on the load distribution and the performance of the 

whole network such as the aggregate throughput and fairness among STAs. Association 

control and user bandwidth allocation are closely related to each other, and should be 

jointly considered for optimal network resource management, which have been 

demonstrated in [32]-[35]. Network throughput and user fairness usually are two 

conflicting objectives in bandwidth allocation algorithms [57]. There are two commonly 

used fairness criteria: max-min fairness (MM) [61] and proportional fairness (PF) [60]. 

MM tries to allocate the rate of all flows as equal as possible; PF, on the other hand, 

increases the network throughput by sacrificing fairness, exploiting the tradeoff between 

the two.   

For association control in WMNs, most of the previous research works have been on 

metric based heuristic schemes [36]-[41]. Their association metrics consider both access 

and backhaul network condition, and are often a weighted sum of the two. As there are 

always some parameters to set, such as access weight or channel idleness ratio threshold, 

it is difficult for heuristic schemes to perform well in all network scenarios, which we will 

demonstrate in our simulation results. Therefore there is a need for centralized optimal 

association control schemes for WMNs, on which very few previous works exist. 

We have reviewed previous works on optimization-based association control 

algorithms for WLANs [32]-[35] and WMNs [42], [43] in Section 2.1.2. Our proposed 

association control method adopts an optimization based approach just like [32]-[35], [42]. 

Instead of studying either max-min fairness or proportional fairness as in the previous 

works, we formulate optimal association problems for both fairness objectives. Unlike 
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[33] and [42] we provide approximation algorithms with approximation ratio analysis in 

addition to the optimization problem formulation. Our algorithm adopts a relaxation-

rounding approximation framework similar to those in [32], [34], [35], with significant 

modification to take account of the wireless backhaul constraint of WMNs. In addition, 

we propose approximation ratio improvement algorithms which are not seen in the 

previous works.  

In this chapter, we formulate the problem of joint association and bandwidth 

allocation in WMNs as an optimization problem with the objective functions considering 

either max-min fairness or proportional fairness. As the problem is a 0-1 integer program 

and NP hard, we propose approximation algorithms to get a solution that is as close to the 

optimal one as possible. The proposed algorithm first relaxes the integer variable 

constraints and gets a fractional association solution, which is then rounded to an integral 

solution by using one of the rounding algorithms we propose: Largest Fraction Rounding 

(LFR) and Bipartite Graph Rounding (BGR). We refer to the gap between the 

approximated solution and the optimal solution as the approximation ratio. We analyse 

the approximation ratio theoretically and propose two algorithms to improve the 

approximation ratios of LFR and BGR respectively. Our simulation results show that the 

proposed algorithm achieves bandwidth allocation that is very close to the optimal one 

and outperforms the state of the art heuristic algorithms. We also show via simulations 

that the approximation ratio can be reduced to 1-2 by the proposed approximation ratio 

improvement algorithms. 

5.2. Network Model 

In this chapter, we assume carefully planned channel allocation among MAP access 

networks so that adjacent cells do not interfere with each other. We assume the access 
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link rates between STAs and MAPs as well as the backhaul link rates between MAPs are 

known. We assume the wireless multi-hop backhaul logical topology is a tree structure 

rooted at the portal and the routing has been done by a routing protocol such as Hybrid 

Wireless Mesh Protocol (HWMP), which is the default routing protocol in IEEE 802.11s 

[8]. In the HWMP, each MAP finds its shortest path towards the portal. Fig. 5.1 shows an 

example of a backhaul routing tree constructed by HWMP for 5 MAPs, where node P is 

the portal and all the links shown are equal-length and non-directional. 

5421
l1 l2

l3

l5

3

P
l4

 

Figure 5.1: A 5-MAP backhaul routing tree. 

 Backhaul links that do not interfere with each other can transmit at the same time. 

To count the spatial reuse of the backhaul links, we make use of the concept of backhaul 

clique to represent the backhaul link transmission constraint. A backhaul clique is defined 

as a maximal set of backhaul links that are in mutual conflict with each other, i.e. at any 

time, only a single link within a backhaul clique is allowed to transmit. For example, in 

Fig. 5.1, only link l1 and l5 can transmit at the same time and there are 2 backhaul cliques 

in total, which are clique1={l1, l2, l3, l4} and clique2={l2, l3, l4, l5}. 

We briefly introduce how backhaul cliques are constructed here. We assume a fixed 

transmission range TransR and a fixed interference range IntR. Given the backhaul 

routing graph, we know all backhaul links as those shown in Fig. 5.1, i.e. {l1, l2, l3, l4, l5}.  

Backhaul links are directional if we consider only upstream or downstream traffic and bi-

directional if we consider both upstream and downstream traffic. We next construct a 
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conflict graph where vertices represent backhaul links and an edge exists between two 

conflicting links. Two links are in conflict with each other if one’s receiver is within the 

interference range of the other’s transmitter. If the backhaul links are bi-directional, the 

two nodes connected by a link should be considered as both transmitter and receiver.  

Finally, we can find all maximal cliques within the constructed conflict graph by using 

algorithms such as the Bron-Kerbosch algorithm [63]. Take the network in Fig. 5.1 as an 

example, where the interference range is 1.2 times of the link length. Any pair of 

backhaul links are conflict with each other expect the pair of links (l1, l5). By constructing 

the corresponding conflict graph and applying the Bron-Kerbosch algorithm on the 

conflict graph, we get the set of all the backhaul cliques {clique1, clique2} as given above.  

Next we introduce the notations used in this chapter. We use M, S, and KB to denote 

the set of MAPs, the set of STAs, and the set of backhaul cliques, respectively, while 

using i, j, and k to denote individual MAP, STA, and backhaul clique, respectively. We 

denote the access link rate between MAP i and STA j by rij. We use yki to indicate 

whether MAP i’s backhaul path passes through clique k, i.e. yki =1 if there exists a link 

l k  such that ( )l path i , where ( )path i is the set of links on the routing path between i 

and the portal. If yki =1, we use rki to denote the effective backhaul link rate for i in k. rki is 

defined as in (5.1), which represents the time consumed for transmitting one bit of i’s 

traffic in k. 

 
: ( )

1 1

l l k l path iki lr r  

    (5.1) 

We use xij to indicate the association between i and j. {0,1}ijx   for integral 

association where each STA is allowed to associate with only one MAP. xij=1 if j is 

associated with i; otherwise 0. [0,1]ijx   for fractional association by which the integral 

association constraint is relaxed such that each STA is allowed to fractionally associate 
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with multiple MAPs. In both cases, we have : 1iji M
j S x


   . We use bj and Bi to denote 

the bandwidth allocated to j and i, where i ij jj S
B x b


  . We use bij to denote the 

bandwidth allocated to j to communicate with i in a fractional association, so we have 

j iji M
b b


  , i ijj S

B b


  , and ij ij jx b b . We denote the set of MAPs that have 

fractional association with j as M(j), i.e. ( ) { : 0}ijM j i x  , and denote the set of STAs 

that are fractionally associated with i as S(i), i.e. ( ) { : 0}ijS i j x  . The final result of our 

algorithm is an association matrix {xij} and a bandwidth allocation vector {bj}, which is 

denoted as (X, B). 

5.3. Optimal Joint Association and Bandwidth Allocation 

Algorithm 

5.3.1. Optimization Problem Formulation  

We formulate the optimal integral association problem (iAP) in WMNs as a set of 

optimization problems. iAP for max-min fairness is denoted as iAP-MM; iAP for 

proportional fairness  is denoted as iAP-PF. 

iAP-MM is formulated in (5.2)-(5.9). Denote the minimum STA bandwidth in a 

feasible rate vector as bmin. In the first step of iAP-MM, we maximize bmin and get an 

optimal solution *
minb .  In the second step, the network throughput is maximized. iAP-MM 

is a mixed integer nonlinear program and hard to solve optimally, which can be proved by 

using a simple reduction from the partition problem in [64]. 
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iAP-MM: 

Step1: 

Max   minb    

s.t.    :     1j
ij

i M ij

b
j S x

r

              (5.2) 

:    1j
ij

j S ij

b
i M x

r

      (5.3) 

:  1ki
B ij j

i M j Ski

y
k K x b

r 

       (5.4) 

:      =1ij
i M

j S x


      (5.5) 

min:      jj S b b      (5.6) 

min, :    {0,1},   0iji M j S x b       (5.7) 

Step2: 

Max   j
j S

b

                

s.t.    constraints (5.2)-(5.5),and 

*
min:     jj S b b      (5.8) 

, :    {0,1}iji M j S x       (5.9) 

Constraint (5.2) states that the total transmission time of one STA is less than 1. (5.3) 

says that the total transmission time of one MAP communicating with all of its associated 

STAs is less than 1. (5.4) states that the total transmission time of the backhaul links in 

one backhaul clique is less than 1, where the traffic load carried by the clique originates 

from all the STAs whose associated MAPs’ backhaul paths towards the portal pass 

through the clique. (5.5) says that each STA is associated with one MAP only as (5.7) and 

(5.9) require integral association. (5.6) states that the bandwidth allocated to each STA is 

no less than the minimum one bmin. 

iAP-PF is formulated in (5.10). It shares most of the constraints with iAP-MM, 

despite different objective functions. iAP-PF is also a mixed integer nonlinear program 
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and hard to solve optimally, which can be proved by slightly adapting the procedure in 

[65]. 

iAP-PF: 

Max   log( )j
j S

b

  

s.t.    constraints (5.2)-(5.5), and 

, :    {0,1},   0ij ji M j S x b       (5.10) 

5.3.2. Introducing the Approximation Algorithm 

Algorithm JABA: 

1. Relax iAP to fAP. 

2. Solve fAP and get an optimal fractional solution (X’, B’). 

3. Round the fractional association X’ to an integral one ˆ 'X  by one of the 

rounding algorithms. 

4. Solve iAP with ˆ 'X X  as input and get an integral bandwidth allocation ˆ 'B . 

5. ˆ ˆ( ', ')X B  is the output. 

 

The integral association problem is hard to solve due to the exponentially increasing 

solution space that is on the order of 2M N where M and N are the number of MAPs and 

STAs in the network. Therefore, we propose an approximation algorithm, named Joint 

Association and Bandwidth Allocation (JABA), to get a working solution in polynomial 

time, whose approximation ratio is analysable. The algorithm is summarized in Fig. 5.2. 

In the first step, we relax the integral association constraint by allowing STAs to 

fractionally associate with multiple MAPs. The relaxed fractional association problem is 

referred to as fAP. fAP is either linear or convex, and therefore can be solved to the 

desired precision in polynomial time. In the second step, we solve fAP and get an optimal 

solution, denoted as (X’, B’), which is an upper bound for any integral solution due to less 

Figure 5.2: Algorithm JABA. 
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restriction in the optimization constraints. In the third step, we get an integral association 

matrix, denoted as ˆ 'X , by rounding the fractional solution X’ using one of the rounding 

algorithms we are proposing, namely Largest Fraction Rounding (LFR) and Bipartite 

Graph Rounding (BGR). In the fourth step, we optimally solve iAP with ˆ 'X X as input 

and get an integral bandwidth allocation ˆ 'B . Finally ˆ ˆ( ', ')X B is the output of JABA.  

5.3.3. Optimization Problem Relaxation 

We relax iAP by introducing a fractional bandwidth allocation matrix {bij}. fAP can 

be derived from iAP by replacing bj with iji M
b

  and replacing ij jx b  with bij. The 

fractional association problem for max-min fairness (fAP-MM) is formulated in (5.11)-

(5.18). 

fAP-MM: 

Step1: 

Max   minb    

s.t.    :    1ij

i M ij

b
j S

r

                   (5.11) 

:   1ij

j S ij

b
i M

r

      (5.12) 

:  1ki
B ij

i M j Ski

y
k K b

r 

       (5.13) 

min:     ij
i M

j S b b


      (5.14) 

min:     jj S b b      (5.15) 

min, :   0,   >0iji M j S b b       (5.16) 

Step2: 

Max   ij
j S i M

b
 
  

s.t.    constraints (5.11)-(5.13), and 
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*
min:     ij

i M

j S b b


      (5.17) 

, :   0iji M j S b       (5.18) 

 Using the same relaxation method as for max-min fairness, the fractional association 

problem for proportional fairness (fAP-PF) is formulated in (5.19)-(5.20). 

fAP-PF: 

Max   log( )j
j S

b

  

s.t.    constraints (5.11)-(5.13), and 

:     >0j ij
i M

j S b b


      (5.19) 

, :   0iji M j S b       (5.20) 

fAP-MM is a linear program; fAP-PF is a convex program. We can solve them in 

polynomial time and get an optimal fractional association and bandwidth allocation 

solution (X’, B’). 

5.3.4. Rounding Algorithms 

We propose two rounding algorithms, LFR and BGR, to round the fractional 

association '{ }ijx  to binary integer so that each STA associates with only one MAP. A 

good rounding algorithm gives an integral solution that is as close to the optimal solution 

as possible, i.e. approximation ratio is as close to 1 as possible. 

A. Largest Fraction Rounding 

Denote the set of MAPs that have fractional association with STA j as 

'( ) { : 0}ijM j i b  . By LFR, j associates with MAP 'i  that carries the largest portion of the 

bandwidth allocated to j, i.e. ' '
'   : ( ), 'i j ijb b i i M j i i    . 
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B. Bipartite Graph Rounding 

Algorithm BGR: 

Given the optimal fractional solution of fAP, ({xij’},{bj’}). 

1. Calculate ' '
i ijj S

B b


  for each i M . 

2. Formulate a generalized assignment problem using {Bi’} and {bj’}. 

3. Construct a bipartite graph BG(X’) and corresponding fractional matching 

weight y and utility u on the edges. 

4. Find a maximum-utility integer matching Match(y) that exactly matches all 

STA nodes in BG(X’) by solving a linear program named Maximum Utility 

Matching Problem (MUMP) (5.27)-(5.29).  

5. For each edge ( , ), ( )i s je Match y , associate STA j with MAP i, i.e. set 'ˆ 1ijx  . 

The integral association matrix 'ˆ{ }ijx  is the output.  

 

The idea of rounding fractional solution using a bipartite graph was first proposed in 

[66] for the generalized assignment problem in scheduling unrelated parallel machines. 

Our proposed BGR algorithm is summarized in Fig. 5.3. Compared to the algorithm in 

[66], BGR have two modifications to take into consideration the wireless backhaul 

constraint: the generalized assignment problem formulation and the sorting criteria in 

bipartite graph construction. 

(a). Generalized Assignment Problem Formulation 

Given the fractional solution {bij’}, we can calculate the fractional bandwidth 

allocation for each STA and MAP using ' '
j iji M

b b


 and ' '
i ijj S

B b


  . With {bj’} and 

{Bi’} known, we reformulate the association problem as a generalized assignment 

problem (GAP) as in (5.21)-(5.24). 

 

Figure 5.3: Algorithm BGR. 
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GAP: 

Max   ij ij
j S i M

x u
 
  

s.t.    :     =1ij
i M

j S x


                   (5.21) 

'

:    1j
ij

j S ij

b
i M x

r

      (5.22) 

' ':    ij j i
j S

i M x b B


      (5.23) 

, :    {0,1}iji M j S x       (5.24) 

where the utility function uij equals bj’ for max-min fairness as in (5.25) and log(bj’) for 

proportional fairness as in (5.26). Though the objective function of GAP is a constant as 

shown in (5.25) and (5.26), we need the utility function in step-4 of BGR, i.e. finding a 

maximum utility matching.  The access network transmission time constraint in iAP is 

satisfied when (5.22) is satisfied. The backhaul network constraints in iAP are satisfied 

when (5.23) is satisfied. 

 ' '
ij ij ij j j

j S i M j S i M j S

x u x b b
    

      (5.25) 

 ' 'log( ) log( )ij ij ij j j
j S i M j S i M j S

x u x b b
    

      (5.26) 

(b). Bipartite Graph Construction 

Next we introduce how to construct the bipartite graph BG(X’)=(S,V,E) where one 

side of the graph consists of the set of STA nodes S, and the other side consists of MAP 

slots ,{ : , 1,..., }i s iV v i M s k    where '
i ijj S

k x


    ; there are ki nodes ,{ : 1,..., }i s iv s k

corresponding to MAP ,i i M . 

For each positive coordinate of {xij’}, there will be one or two corresponding edges 

in BG(X’). We define a value y(i,s),j for each edge ( , ),i s je E in the graph as edge weight, 
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which will have the property that 
( , ),

'
( , ),: i s j

ij i s js e E
x y


  . The utility of each edge ( , ),i s je E

is defined to be u(i,s),j = uij. 

The edges in BG(X’) and the corresponding weights y are constructed in the 

following way.  

For each MAP i , define the set of STAs that have positive fractional association with 

it as '( ) { : ^ 0}ijS i j j S x   . We sort the STAs in S(i) in non-increasing order of a sorting 

criteria variable of i: { ( , ) : ( )}iscv scv i j j S i  . scvi is determined according to the 

dominating constraint for i in GAP as follows. If '
ij ir B  for each STA ( )j S i , we say 

that the dominating constraint for i is the access network constraint (5.22) and set

'( , ) j ijscv i j b r . On the other hand, if '
ij ir B  for each STA ( )j S i , we say that the 

dominating constraint for i is the backhaul network constraint (5.23) and set

' '( , ) j iscv i j b B . Otherwise, we cannot determine the bottleneck constraint for i and set 

' ' '( , ) j ij j iscv i j b r b B  . 

For simplicity of notation, let for the moment [1, ( ) ]j S i  be the sequence number of 

the STAs in the sorted set S(i), i.e. assume ( ,1) ( , 2)scv i scv i   ( , ( ) )scv i S i . The 

pseudo code for constructing the edges and edge weights in the bipartite graph for MAP i 

is given below.  
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Pseudo code for constructing the bipartite graph for MAP i : 
 
if  ki = 1 then 
     for ( )j S i  

            add e(i,1),j to E; '
( ,1),i j ijy x  

     end for 
else 
     for [1, 1]is k   

            find min.  js :
'

1

sj

ijj
x s


  

            for 1[ 1, 1]s sj j j    

                   add e(i,s),j to E; '
( , ),i s j ijy x  

            end for 

            add ( , ), si s je to E; 1 '
( , ), 1

s

s

j

i s j ijj
y s x




   

            if '

1

sj

ijj
x s


 then 

                add e(i,s+1),j to E; '
( , 1), 1

s

s

j

i s j ijj
y x s 

   

            end if 
      end for 

      for 1( , ]
ik ij j S  

             add ( , ),ii k je to E; '
( , ),ii k j ijy x  

      end for 
end if 

 

If ki = 1, there is only one node ,1iv V corresponding to i. For each ( )j S i , add edge 

e(i,1),j to E and set '
( ,1),i j ijy x . Otherwise, for each 1,2,..., 1is k  , find the minimum index js 

such that '

1

sj

ijj
x s


 . Define 0 0j  . For 1 1,..., 1s sj j j    add edges e(i,s),j to E and set

'
( , ),i s j ijy x . For j = js, add edges e(i,s),j to E and set 1 '

( , ), 1

s

s

j

i s j ijj
y s x




  . If '

1

sj

ijj
x s


 , add 

edges e(i,s+1),j to E and set '
( , 1), 1

s

s

j

i s j ijj
y x s 

  . Finally, for each 1ikj j   add an edge 

( , ),ii k je to E and set '
( , ),ii k j ijy x . By now, we have constructed, for MAP i, the edges 

between MAP slots 
,{ : 1, ..., }i s iv s k  and STA nodes { : ( )}j j S i as well as the 
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corresponding edge weights. After repeating this procedure for all MAPs in M, we have 

got the final bipartite graph BG(X’). 

(c).Maximum Utility Matching 

With BG(X’), next we find an integral matching ( ) ( ')Match y BG X that exactly 

matches all STA nodes by solving a linear program: maximum utility matching problem 

(MUMP) that is given in (5.27)-(5.29) [67]. 

MUMP: 

Max   
( , ),

( , ), ( , ),
( , ): i s j

i s j i s j
j S i s e E

u y
 
   

s.t.    
( , ),

( , ),
( , ):

:         1
i s j

i s j
i s e E

j S y


                 (5.27) 

( , ),

, ( , ),
:

:       1
i s j

i s i s j
j e E

v V y


      (5.28) 

( , ), ( , ),:       0i s j i s je E y      (5.29) 

    

where (5.27) says that, for each STA node j, there is exactly one edge of Match(y) 

incident to j; (5.28) says that, for each MAP slot node vi,s, there is at most one edge of 

Match(y) incident to vi,s. 

By Theorem 11.1 in [67], the linear program MUMP has the property that each 

extreme point is integer. Therefore we can find an optimal integral solution 
( , ),ˆ{ }i s jy in 

polynomial time. Finally, for each edge ( , ), ( )i s je M y , i.e.
( , ),ˆ 1i s jy  , by associating STA j 

with MAP i, i.e. setting 'ˆ 1ijx   , we get an integral association matrix 'ˆ{ }ijx  as the output 

of BGR. 
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5.3.5. Integral Bandwidth Allocation 

In the final step of JABA, with the integral association matrix 'ˆ{ }ijx that is obtained 

from either the LFR or BGR rounding algorithm, as input to iAP, we can optimally solve 

iAP and get an integral rate vector 'ˆ{ }jb . Finally ˆ ˆ( ', ')X B is the integral association and 

bandwidth allocation solution of JABA. 

JABA is a centralized optimization-based algorithm. The centralized algorithms 

generally outperform distributed algorithms as the central controller is aware of the whole 

network condition and optimization algorithms can be implemented. In the centralized 

algorithms, it is assumed that the central controller is aware of the entire network 

topology as well as the achievable link rates between each pair of MAPs and STAs. The 

network topology and achievable link rates are assumed to be stable. It is also assumed 

that these information can be sent to the central controller from the MAPs and STAs 

efficiently and reliably.  

In practical implementation, the scalability could be an issue because the central 

controller needs to know the entire network condition. Another issue would be the 

algorithm triggering mechanism. The centralized algorithm should be triggered if the 

network condition has adequately changed, such as joining/leaving of MAPs/STAs and 

change of the backhaul routing (including broken or blocked paths). The triggering 

mechanism could be periodic time based or based on real time measurement of the 

network condition. Finally single point failure could be another issue with centralized 

system. Unlike distributed algorithms, if the central controller collapsed, the whole 

network cannot function, and therefore a backup/recovery mechanism is needed. 
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For centralized algorithms, we would expect more overhead than in the distributed 

algorithms as the MAPs and STAs need to report their link rates and association status to 

the central controller and the central controller needs to distribute its control messages to 

the MAPs. There will be overhead due to control message exchange. Depending on how 

fast the network condition changes, the amount of the overhead would be different. If the 

network is stable, the amount of control messages would be small. For example, each 

MAP may update the central controller with its current association information once 

every 10 seconds.  

We conducted simulations in Matlab where no MAC protocol was simulated. Given 

the STA link rates, the bandwidth allocation is done through transmission time allocation 

within unit time. A centralized MAC protocol that is capable of allocating link 

transmission time/opportunities, such as 802.11 PCF, is assumed to be available. 

5.4. Approximation Ratio Analysis and Improvement 

In this section, we do theoretical analysis on the approximation ratio of JABA- LFR 

and JABA-BGR. We then propose an approximation ratio improvement algorithm for 

each of them. 

5.4.1. Approximation Ratio Analysis 

A. Analysis of JABA-LFR 

Theorem 5.1: Consider an optimal integral association solution * *ˆ ˆ( , )X B of iAP and 

an integral solution ' 'ˆ ˆ( , )X B produced by the proposed JABA-LFR algorithm. It holds that

*
' ' *

ˆ
ˆ ˆ ˆ( , ) ( ,{ })j

AP AP
LFR

b
f X B f X


 , where ( )APf is the objective function value of iAP and fAP; 
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LFR is the approximation ratio of JABA-LFR algorithm and equals max{ ( ) : }M j j S , 

where ( )M j  is the number of MAPs with which STA j has fractional association in the 

fractional solution (X’, B’) of fAP. 

Proof: Consider a STA j that is associated with MAP i’ in the integral solution 

produced, i.e. '
'ˆ 1i jx  . Consider another integral bandwidth allocation vector ''B  where the 

bandwidth of j, ''
jb , is equal to the fractional bandwidth received from i’, '

'i jb , in the 

fractional solution, i.e. '' '
'j i jb b . As (X’, B’) is a feasible solution to fAP and

' '

( )j iji M j
b b


  , it is clear that ' ''ˆ( , )X B is a feasible solution to iAP. By LFR, '

'i jb  is the 

largest among all fractional bandwidth allocations of j, so we have '' ' '
' ( )j i j jb b b M j  . 

Therefore, ' 'ˆ( ,{ ( )})jX b M j is also a feasible solution to iAP. As 'B̂  is the optimal 

bandwidth allocation when the association matrix is 'X̂ , we have 

 
'

' ' 'ˆ ˆ ˆ( , ) ( ,{ })
( )
j

AP AP

b
f X B f X

M j
 .  (5.30) 

( , )APf X B is the objective function value of iAP and fAP; and it is a function of B when   

(X, B) is feasible. We have shown that ' 'ˆ( ,{ ( )})jX b M j is feasible to iAP and it is clear 

that ' '( ,{ ( )})jX b M j is feasible to fAP. Therefore, we have 

 
' '

' 'ˆ( ,{ }) ( ,{ })
( ) ( )
j j

AP AP

b b
f X f X

M j M j
  (5.31) 

 Due to the relaxed constraint on X, the fractional solution (X’, B’) achieves better 

objective function value than that of any optimal integral solution, i.e. 

' ' * *ˆ ˆ( , ) ( , )AP APf X B f X B . Therefore, we have 
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' *

' *
ˆ

ˆ( ,{ }) ( ,{ })
( ) ( )
j j

AP AP

b b
f X f X

M j M j
   (5.32) 

Combining (5.30), (5.31), and (5.32) we have 

' ' *
' ' ' ' *

ˆ
ˆ ˆ ˆ ˆ( , ) ( ,{ }) ( ,{ }) ( ,{ })

( ) ( ) ( )
j j j

AP AP AP AP

b b b
f X B f X f X f X

M j M j M j
    

So the performance of the integral solution given by JABA-FLR is at least as good as 

the optimal integral bandwidth allocation divided by max{ ( ) : }M j j S . This finishes the 

proof.                        □ 

B. Analysis of JABA-BGR 

Lemma 5.1: Consider an integral solution ' 'ˆ ˆ( , )X B  that is the result of applying BGR 

on the fractional solution (X’, B’) of a fAP and the corresponding constructed GAP. It 

holds that the integral association matrix 'X̂  is feasible if the associated STAs of a MAP i 

are allocated with bandwidth that equals their fractional solution divided by an 

approximation ratio, i.e. 
'

' 'ˆ ˆ( ,{ | : 1})
( )

j
ij

b
X i x

AppRatio i
 is a feasible solution of iAP, where 

AppRatio(i) is the approximation ratio of i determined by the dominating constraint for i 

in GAP and is defined in (5.33)-(5.35). The dominating constraint is the access constraint 

in (5.33) and the backhaul constraint in (5.34). In (5.35) i has no dominating constraint. 

 '( ) 1 max{ : ( )}j ijAppRatio i b r j S i    (5.33) 

 ' '( ) 1 max{ : ( )}j iAppRatio i b B j S i     (5.34) 

 ' ' '( ) 2 max{ : ( )}j ij j iAppRatio i b r b B j S i      (5.35) 

Proof: by a simple reduction from the proof of Theorem 11.2 in [67], we can get the 

following property of the constructed bipartite graph. For each MAP i M : 



67 
 

 ' 'ˆ ( , ) max{ ( , ) : } ( , )ij i ij
j S j S

x scv i j scv i j j S x scv i j
 

      (5.36) 

When the dominating constraint for i in GAP is the access constraint (5.22), we have

'( , ) j ijscv i j b r and '
ij ir B  for each STA ( )j S i . Equation (5.36) becomes  

' ' ' ' '

'

ˆ max{ : ( )}

                 max{ : ( )} 1

                 ( )

ij j ij j ij ij j ij
j S j S

j ij

x b r b r j S i x b r

b r j S i

AppRatio i

 

  

  



 

, 

where the second inequality is due to that (X’, B’) is feasible to fAP and the equality is by 

(5.33). Therefore, we have 

 
'

' ( )
ˆ 1j

ij
j S ij

b AppRatio i
x

r

 . (5.37) 

As '
ij ir B  for each STA ( )j S i , we have 

 
'

' 'ˆ
( )

j
ij i

j S

b
x B

AppRatio i

   (5.38) 

Eq. (5.37) shows that ' 'ˆ( ,{ ( )})jX b AppRatio i  satisfies the access constraint (5.3) in 

iAP. In fAP, the backhaul constraint is satisfied when the MAPs are allocated bandwidth

'{ }iB . Eq. (5.38) shows that ' 'ˆ( ,{ ( )})jX b AppRatio i allocates bandwidth to each MAP no 

more than its bandwidth in '{ }iB , therefore the backhaul constraint (5.4) in iAP is satisfied. 

As 'X̂ is the result of an integer complete matching for STAs, each STA is associated with 

one MAP only and the integrity constraint (5.5) in iAP is satisfied. For an integral 

association, the STA transmission time constraint (5.2) is satisfied when (5.3) is satisfied. 

Therefore, ' 'ˆ( ,{ ( )})jX b AppRatio i , where AppRatio(i) is defined in (5.33), satisfies all of 

the constraints in iAP and is a feasible solution to iAP. 
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When the dominating constraint for i in GAP is the backhaul constraint (5.23), we 

have ' '( , ) j iscv i j b B and '
ij ir B  for each STA ( )j S i ; when i has no dominating 

constraint in GAP, we have ' ' '( , ) j ij j iscv i j b r b B  . Using a similar procedure as for the 

first case, we can prove that ' 'ˆ( ,{ ( )})jX b AppRatio i  is a feasible solution to iAP, where 

AppRatio(i) is as defined in (5.34) and (5.35), respectively. Thus, we have finished the 

proof.                                         □ 

Theorem 5.2: Consider an optimal integral association solution * *ˆ ˆ( , )X B of iAP and 

an integral solution ' 'ˆ ˆ( , )X B produced by JABA-BGR algorithm. It holds that

' ' * *ˆˆ ˆ ˆ( , ) ( ,{ })AP AP j BGRf X B f X b  where BGR is the approximation ratio of JABA-BGR 

algorithm and equals max{ ( ) : }AppRatio i i M . 

Proof: By Lemma 5.1, we know ' 'ˆ( ,{ })j BGRX b  is feasible to iAP, where BGR is as 

defined in the theorem. By replacing ( )M j in (5.30), (5.31) and (5.32) with BGR , we get 

the equation below and finish the proof. 

  
' ' *

' ' ' ' *
ˆ

ˆ ˆ ˆ ˆ( , ) ( ,{ }) ( ,{ }) ( ,{ })j j j
AP AP AP AP

BGR BGR BGR

b b b
f X B f X f X f X

  
           □ 

5.4.2. Approximation Ratio Improvement Algorithms 

The approximation ratio LFR  and BGR  given by the above analysis is loose. The gap 

between the optimal integral solution and the one generated by JABA is much smaller in 

fact. For example, consider a network scenario with one STA and m MAPs where the 

access link rates between the STA and the MAPs are equal, denoted as ra, and much 

smaller than the MAP’s backhaul link rate. In the fractional solution (X’, B’) of fAP, the 

STA would have equal fractional associations with all MAPs, and the fractional 
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bandwidth allocation to the STA and MAPs would be '
j ab r and '

i aB r m . So we have the 

approximation ratio LFR m   and 1BGR m   . However, the integral bandwidth of the 

STA 'ˆ
jb  produced by JABA is the same as the optimal one, which equals ra, and the true 

approximation ratio is 1. 

To better understand the true gap between the approximated solution and the optimal 

one, we propose two approximation ratio improvement (ARI) algorithms for LFR and 

BGR respectively. The basic idea is to reduce LFR  or BGR  by gradually removing 

fractional associations from the chosen MAP *i  or STA *j  while keeping the objective 

function value non-decreasing. We divide the fractional association matrix{ }ijx  into two 

sets, xRemoved { : 0}ij ijx x   and xRemain { : 0}ij ijx x  . In each iteration, a fAP with 

xRemain as unknown variables is solved; if one fractional association * *i j
x  is selected to 

be removed from xRemain to xRemoved, the available bandwidth is redistributed among 

the rest of xRemain. The details of the proposed ARI algorithms are shown in Fig. 5.4 and 

Fig. 5.5. In the previous example, after applying the ARI algorithms, the STA will have 

fractional association with only one of the MAPs and the approximation ratio becomes 

LFR  = 1 and BGR  = 2, which are the best results we can get for LFR and BGR. 

To analyse the computational complexity of the approximation ratio improvement 

algorithms (ARIAs) in the worst case, consider a WMN consisting of n STAs and m 

MAPs, where all access link rates between the STAs and the MAPs are equal and all 

backhaul link rates between the MAPs and the portal are equal. As the STAs are facing 

the identical network condition, the fractional associations in xRemain for each STA are 

equal. Therefore, in the initial fractional association solution that is the input to ARIAs, 

there are in total m n  fractional associations (each STA having m identical 
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associations). In each iteration of ARIAs, one fractional association is removed and one 

linear program or convex program needs to be solved. In the output of ARIAs, there 

remain n associations in total (each STA having 1). Therefore, the total number of 

iterations carried out is ( 1)m n  . As linear program and convex program can be solved 

in polynomial time, ARIA for both LFR and BGR are polynomial time algorithms. 



71 
 

ARI algorithm for LFR: 

Input: fractional solution (X’, B’) 
' '( , )optimal APf f X B  

'{ : 0, }ij ij ijxRemain x x x X    

' '( , ) ( , )R RX B X B   

Terminate false 
while  Terminate = false do 

Based on ( , )R RX B , find M(j) and bj for each STA j 

Sort STAs in non-increasing order of ( )M j ; sort STAs with the same ( )M j  in 

non-decreasing order of bj 
Denote the first STA in the sorted sequence of STAs as j* 

* * *( , , )i X B  FindMAPToRemove(j*) 

if  * 0i   then 
Terminate true 

 else 

* *i j
xRemain xRemain x   

* *( , ) ( , )R RX B X B  

end if 
end while 

return ( , )R RX B  

 

Function * * *( , , )i X B = FindMAPToRemove(j*) 

Sort the MAPs in *( )M j in non-decreasing order of *ij
b  

1n   {let i(n) represent the nth MAP in the sorted *( )M j } 

while  *( )n M j  do 

*

'' ''

( )
( , ) fAP( )

i n j
X B xRemain x   

'' '' ''( , )APf f X B  

if  ''
optimalf f  then 

 return '' ''( ( ), , )i n X B  

else 
 1n n   
end if 

end while 
return (0,0,0) 

 
Figure 5.4: Approximation ratio improvement algorithm for LFR. 
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ARI algorithm for BGR: 

Input: fractional solution (X’, B’) 
' '( , )optimal APf f X B  

'{ : 0, }ij ij ijxRemain x x x X    

' '( , ) ( , )R RX B X B   

Terminate false 
while  Terminate = false do 

Based on ( , )R RX B , find AppRatio(i) for each MAP i 

Sort MAPs in non-increasing order of AppRatio(i) 
Denote the first MAP in the sorted sequence of MAPs as i* 

* * *( , , )j X B  FindSTAToRemove(i*) 

if  * 0j   then 

Terminate true 
 else 

* *i j
xRemain xRemain x   

* *( , ) ( , )R RX B X B  

end if 
end while 

return ( , )R RX B  

 

Function * * *( , , )j X B = FindSTAToRemove(i*) 

Denote the set of STAs *

* *{ : 0, ( , ) ( )}
i j

j x scv i j AppRatio i   as *
max ( )S i  

Sort the STAs in *
max ( )S i in non-decreasing order of jb  

1n   {let j(n) represent the nth STA in the sorted *
max ( )S i } 

while  *
max ( )n S i  do 

*

'' ''

( )
( , ) fAP( )

i j n
X B xRemain x   

'' '' ''( , )APf f X B  

if  ''
optimalf f  then 

 return '' ''( ( ), , )j n X B  

else 
 1n n   
end if 

end while 
return (0,0,0) 

 Figure 5.5: Approximation ratio improvement algorithm for BGR. 
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5.5. Performance Evaluation 

5.5.1. Simulation Setting 

We present simulation results for a WMN that consists of 20 MAPs, 1 portal, and 

150 STAs. The MAPs are uniformly placed at random in a rectangular field of 300m

200m, where the portal is located at the centre of the lower left quarter field. We 

investigate two user distributions: uniform topology where the STAs are uniformly 

distributed in the covered area at random; hotspot topology where the STAs are 

distributed in a circle shape hotspot of radius 60m located at the centre of the field. We 

have also conducted simulations on other configurations, such as grid MAP topology and 

different number of STAs; their results are qualitatively similar to those of the presented. 

We assume a transmission range of 100m and an interference range of 120m. A 

backhaul routing tree rooted at the portal is constructed using the 802.11s HWMP routing 

protocol. The backhaul cliques are found using the Bron-Kerbosch algorithm. We adopt 

the log-distance path loss model, 

 0 10 0( ) ( ) 10log ( )l Tx Rx lP d P P P d n d d    , 

where ( )lP d is the path loss in dB for path length d; TxP and RxP are the transmitting power 

and the received power in dBm; n is the path loss exponent; 0( )lP d is the reference loss at 

the reference distance d0. In our simulation, d0 = 100m, 0( )lP d = 83, n = 2.2 and TxP = 

17dBm. 

We assume perfect frequency allocation among the access networks such that we do 

not count the interference from other cells. Assuming a receiver noise 0N of -80 dBm, we 

can get the Signal-to-Noise Ratio (SNR) at the receiver by SNR=PRx-N0.  The link rate is 
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determined by the SNR at the receiver.  In our simulations, the access links operate on the 

802.11n standard with one spatial stream on 20MHz channels. The access link rate model 

is shown in Table 5-1, where the minimum SNR value for the corresponding link rate is 

taken from [68] and the required SNR equals the minimum SNR plus a 9dB fade margin. 

As MAPs are more powerful than STAs, we consider two types of link rates for backhaul 

links: one is equal to the access link rates; the other is quadruple of the access link rates. 

We refer to the two configurations as LinkRateRatio=1 and LinkRateRatio=4. The second 

can be achieved by applying 4 spatial streams on 20MHz channels or 2 spatial streams on 

40MHz channels. 

Table 5-1: LINK RATE MODEL FOR 802.11N WITH ONE SPATIAL STREAM ON 
20MHZ CHANNELS 

Rate(Mbps) 6 12 18 24 36 48 54 60 

Minimum 
SNR(dB) 

5 7 9 13 17 20 22 23 

Required SNR(dB) 14 16 18 22 26 29 31 32 

Maximum Path 
Length (m) 

100 81 66 43 28 21 17 15 

 

We measure the performance of different algorithms in terms of aggregated network 

throughput, individual user bandwidth, and Jain’s fairness index [12]  

    2
2

j jj S j S
F b S b

 
    (5.39) 

which is between 0 and 1. F equals 1 when all STAs have equal rate and decreases as the 

rate vector deviates from the ideal equal-rate vector. 

5.5.2. Performance of Association Algorithms and Fairness Objectives 

We compare the performances of the following association protocols: 
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 SS: Strongest Signal is the default association metric in 802.11 standards which 

says a STA associates with the MAP from which the received signal strength is 

the highest. 

 CL: Cross Layer association metric based heuristics proposed for association 

control in WMNs [37], [38], [41]. According to CL, a STA associates with the 

MAP with which total association cost is the smallest. The total association cost 

is a weighted sum of the access cost (AC) and the backhaul cost (BC) as in(5.40), 

which reflects the estimated amount of channel time consumed by a successful 

end-to-end packet transmission. In our simulation, the weight A
 =0.3. 

 , , (1 )i j A i j A iTC AC BC       (5.40) 

 FRAC: Fractional association solution that is obtained by solving fAP problems. 

FRAC allows a STA to associate with multiple MAPs, and its bandwidth 

allocation vector is an upper bound of any integral solution. 

 JABA: our proposed approximation algorithm. 

We also compare the performances of two fairness objectives in the context of WMNs: 

 PF: proportional fairness. 

 MM: max-min fairness. 

Fig. 5.6 depicts per-STA bandwidth performance of the association algorithms under 

different network settings of STA topology and LinkRateRatio. The results presented are 

averaged over 50 runs. In each run, the STA location is different and we sort the STAs in 

non-decreasing order of their allocated bandwidth. So the bandwidth of a STA indexed x 

in the figure indicates the average bandwidth of the x-th lowest bandwidth in each run. 
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We also give some numerical results of the aggregate throughput and Jain’s fairness 

index in Table 5-2 where LinkRateRatio=4. 

Comparing the performances of SS, CL and JABA, we can see that, for both MM 

and PF, the performance of SS is significantly poorer than the other two. The reason is 

that, unlike CL and JABA, SS only considers the access network condition, resulting in a 

lot of STAs associated with MAPs with poor backhaul condition and underutilizing 

backhaul network resource.  

Comparing CL and JABA, the performance is as expected in that JABA outperforms 

CL since CL is a heuristic scheme without any optimization attempt. In Fig. 5.6 (a) and 

(b), where LinkRateRatio=1, CL follows JABA closely which indicates CL is a good 

heuristic considering its much simpler implementation. However, when the backhaul link 

rate is four times of the access link rate as in Fig. 5.6 (c) and (d), the performance gap 

between CL and JABA is significantly larger. That is due to the fundamental limitation of 

heuristic association schemes: it is difficult for CL to adapt to network dynamics. The 

access weight A
 = 0.3 is a good setting for CL when LinkRateRatio=1, but it is no longer 

good when LinkRateRatio is increased. In the second case, the backhaul cost is lower and 

contributes less to the total association cost. As a result, more STAs are associated with 

MAPs with poor backhaul condition, and the same as in the SS case, the backhaul 

capacity is lowered.  

Comparing JABA and FRAC, we can see that in Fig. 5.6 (a) (b) and (c), for both PF 

and MM, JABA and FRAC have almost coinciding performances, which is the optimal 

performance one can achieve. The results indicate that the true approximation ratio in the 

simulated network is very close to 1. As for the hotspot topology in Fig. 5.6 (d), JABA 

has again nearly optimal performance for PF, but the gap between JABA and FRAC is 
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wider for MM. The reason is that most of the STAs are associated with the hotspot MAPs, 

making the access network of hotspot MAPs very congested. Max-min fairness tries to 

allocate equal bandwidth to all STAs no matter what their link rate is. The STAs at the 

cell edge have very low link rate and their transmission consumes too much access 

network resource, which further lowers the access network capacity of hotspot MAPs [4]. 

As a result, the bottleneck of the hotspot STAs is at the congested access networks and 

their bandwidth is slightly lower than that in the corresponding fractional solution, as seen 

on the left and middle of Fig. 5.6 (d). For non-hotspot STAs, their bandwidth is 

determined by the backhaul capacity available to their associated MAPs. The lower the 

hotspot MAPs’ access network capacities are, the less backhaul resource they consume, 

and the more bandwidth is for non-hotspot STAs. That is why we see the few STAs on 

the right of Fig. 5.6 (d) have bandwidth much larger than the corresponding fractional one.  

PF is known to be able to achieve higher aggregate throughput than MM by 

sacrificing certain degree of user fairness. As shown in Table 5-2, for JABA algorithm, 

PF achieves 27% more aggregate throughput than MM in the uniform topology and the 

improvement is 5% in the hotspot topology. Depending on how to perceive fairness, we 

can measure fairness performance in two ways: (1) Jain’s fairness index considering the 

bandwidth of all 150 STAs; (2) Jain’s fairness index considering the bandwidth of the 

STAs indexed from 1 to 140. In the second measurement, we exclude a small number of 

STAs whose bandwidth is much larger than that of the majority. When Jain’s index takes 

into account all the STAs’ bandwidth, JABA-PF achieves better fairness than JABA-MM 

in both uniform (0.83 vs. 0.73) and hotspot (0.94 vs. 0.91) scenarios. When Jain’s index 

excludes the highest 7% bandwidth (10 STAs), JABA-MM achieves better fairness than 

JABA-PF in both uniform (1 vs. 0.84) and hotspot (1 vs. 0.96) scenarios. In summary, 

considering the aggregate throughput, JABA-PF is better than JABA-MM; considering 
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the fairness in throughput, either JABA-PF or JABA-MM can be the winner depending 

on how we perceive fairness.  

To test the scalability of JABA, we have conducted simulations of a larger scale 

topology where 80 MAPs and 500 STAs are randomly placed in a rectangular field of 

600m 500m, and LinkRateRatio=16. Fig. 5.7 (a) and (b) depicts the average per-STA 

bandwidth performance for MM and PF fairness respectively. We can see that the 

performance improvement of JABA is consistent with that in Fig. 5.6. Fig. 5.7 (c) and (d) 

depicts the per-STA bandwidth standard deviation (S.D.) results for MM and PF fairness 

respectively. Compared to SS and CL, the S.D. of FRAC and JABA is slightly higher for 

the low-bandwidth STAs, and significantly lower for the high-bandwidth STAs. So 

considering all STAs, the overall performance of JABA is more stable than that of SS and 

CL. 

 
(a) Uniform topology, LinkRateRatio=1 
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(b) Hotspot topology, LinkRateRatio=1 

 
(c) Uniform topology, LinkRateRatio=4 
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(d) Hotspot topology, LinkRateRatio=4 

 

 
(e) Uniform topology, LinkRateRatio=4, 95% confidence interval, PF 
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(f) Uniform topology, LinkRateRatio=4, 95% confidence interval, MM 

Figure 5.6: Per-STA bandwidth performance of the association protocols. 

 

Table 5-2: AGGREGATE THROUGHPUT AND JAIN’S FAIRNESS INDEX 
RESULTS 

 
Uniform Hotspot 

SS CL JABA FRAC SS CL JABA FRAC 

PF 

Throughput 47.4162 56.0307 63.6921 63.7492 42.829 58.4748 68.5416 68.5593 

F for all STAs 0.6538 0.7281 0.8252 0.8261 0.8271 0.7828 0.9388 0.9438 

F for 140 
STAs 

0.7227 0.7563 0.8392 0.84 0.9129 0.8621 0.9567 0.9611 

MM 

Throughput 37.5071 41.1223 50.1366 49.7494 36.821 57.576 65.316 64.2497 

F for all STAs 0.5736 0.8393 0.7273 0.8152 0.9604 0.2386 0.9096 1 

F for 140 
STAs 

0.9956 0.9988 0.9997 1 1 0.9908 0.9968 1 
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(a) Average per-STA bandwidth, MM 

 
(b) Average per-STA bandwidth, PF 

 
(c) Per-STA bandwidth standard deviation, MM  
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(d) Per-STA bandwidth standard deviation, PF 

Figure 5.7: Per-STA bandwidth performance for large networks. 

5.5.3. Comparison of the Rounding Algorithms 

We compare the performance of rounding algorithms BGR and LFR and examine the 

performance of the corresponding approximation ratio improvement (ARI) algorithms 

BGR-ARI and LFR-ARI. Fig. 5.8 depicts per-STA bandwidth performance of the 

rounding algorithms. Table 5-3 gives the approximation ratio (A.R.) results in terms of 

A.R. mean and variance based on the results of 20 runs.  

In Fig. 5.8 (a) and (b), we can see that BGR with and without ARI have consistent 

performance, for both PF and MM and both uniform and hotspot topologies, which is 

almost the same as that of the upper bound performance of FRAC.  

In Fig. 5.8 (c) and (d), LFR-ARI performance is quite close to that of FRAC. In Fig. 

5.8 (d), we can see that LFR-ARI significantly improves the performance of LFR. The 

reason is that using LFR, a lot of STAs are associated with hotspot MAPs, lowering the 

hotspot MAP capacity. Using LFR-ARI, the STAs fractionally associated with the 
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hotspots and improved throughput performance. Fig. 5.9 depicts the standard deviation of 
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the per-STA bandwidth presented in Fig. 5.8 (d). We can see that, compared to LFR, the 

standard deviation (S.D.) curve of LFR-ARI is closer to that of FRAC and the overall 

performance of LFR-ARI is more stable.  

A.R. represents the largest possible gap between the approximated solution and the 

optimal solution. The closer to 1 the A.R. value is, the more confident in the produced 

solution we are. From Table 5-3 we can see that BGR-ARI achieves A.R. close to 2 and 

LFR-ARI achieves A.R. between 1 and 2; both are much smaller than that of 

corresponding non-ARI algorithms. Comparing the A.R. values of the two rounding 

methods, without ARI algorithms, BGR significantly outperforms LFR; on the other hand, 

with ARI algorithms, LFR-ARI achieves even better performance than BGR-ARI. Note 

that the theoretical A.R. presented here is not necessarily the true gap between the 

approximated solution and the optimal solution. As seen in Fig. 5.6 and Fig. 5.7, JABA 

and FRAC have almost similar performances, which is the optimal performance one can 

achieve. The results in Fig. 5.6 and Fig. 5.7 indicate that the true approximation ratio in 

the simulated network is almost 1, although the theoretical A.R. is around 2. 

In summary, if we consider bandwidth performance only, BGR without ARI is a 

suitable choice. If we want the best approximation ratio only, LFR with ARI is the best 

algorithm. Otherwise, if we want a balance between the two performances, BGR with 

ARI is recommended.  
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(a) Uniform topology, BGR 

 
(b) Hotspot topology, BGR 
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(c) Uniform topology, LFR 

 
(d) Hotspot topology, LFR 

Figure 5.8: Performance of the rounding algorithms. 
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(a) MM 

 
(b) PF 

Figure 5.9: Per-STA bandwidth standard deviation, hotspot topology, LFR 
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Table 5-3: APPROXIMATION RATIO RESULTS 

 
Uniform Hotspot 

BGR LFR 
BGR-
ARI 

LFR-
ARI 

BGR LFR 
BGR-
ARI 

LFR-
ARI 

PF 
A.R. Mean 2.87 8.5 2.252 1.857 4.595 6.643 2.122 2 

A.R. Var. 3.333 1.654 0.18 0.132 7.508 9.016 0.003 0 

MM 
A.R. Mean 2.424 8.214 2.332 1.143 4.843 6.5 2.105 1.214 

A.R. Var. 0.537 2.489 0.554 0.132 11.024 9.808 0.001 0.181 

 

5.6. Conclusion 

In this chapter, we have formulated and proposed approximation algorithms for the 

problem of optimal joint association and bandwidth allocation in wireless mesh networks 

considering max-min fairness (MM) and proportional fairness (PF) objectives. In the 

proposed approximation algorithms, named JABA, we first relax the integral association 

constraint and get an optimal fractional association solution. Then we propose two 

rounding algorithms, LFR and BGR, to get an integral association solution. We have 

analysed the approximation ratios of the proposed rounding algorithms, which reflect the 

gap between the produced solution and the optimal one. To let the theoretical 

approximation ratio more closely reflect the true performance gap, we propose two 

approximation ratio improvement algorithms. We demonstrate via simulations that the 

proposed JABA algorithm achieves nearly optimal performance and outperforms popular 

heuristic algorithms. We have seen that PF outperforms MM in network throughput and 

either one can achieve better user fairness depending on how fairness is defined. Finally, 

we have shown that BGR achieves nearly optimal bandwidth allocation performance and 

the approximation ratio improvement algorithm for LFR can improve the approximation 

ratio to 1-2.  
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Chapter 6: Utility Fairness via Association 

Control in WMNs 

6.1. Introduction 

In Chapter 5, we have studied the optimal association control achieving MM and PF 

user bandwidth allocation. In previous works on optimization-based association control 

[32]-[35], [42], their objective functions also consider either MM or PF fairness. It has 

been shown that PF is able to increase the network throughput by trading off certain 

degree of fairness in user bandwidth. With PF, the degree of the tradeoff, i.e. the 

preference of the fairness over throughput, is fixed. However, depending on the 

application scenarios and user portfolios, network operators may have various 

requirements on the network performance in terms of aggregate throughput and user 

fairness, i.e. sometimes more fairness is preferred while in some situations throughput is 

the main concern.  

In this chapter, we study the problem of utility fair bandwidth allocation via 

association control in WMNs. Utility fairness is more general than other commonly used 

fairness objectives in resource management such as MM and PF. It is more flexible in 

controlling the tradeoff between resource utilization efficiency and user fairness. We 

formulate and approximately solve an optimization problem that achieves a utility 

fairness objective. In addition, we introduce control mechanisms to restrict the range of 

the allowed user bandwidth to make the tradeoff more controllable and at the same time 
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prevent extreme unfairness. We demonstrate through simulations how to control the 

tradeoff between efficiency and fairness to achieve the desired performance by adjusting 

the corresponding control parameters. We also demonstrate which part of the STAs’ 

bandwidth is compromised for higher efficiency by showing the relationship between 

STAs’ allocated bandwidth and their associated MAP’s backhaul condition. 

6.2. Utility Fair Bandwidth Allocation and Association Control 

We first introduce the utility function that composes the objective function of utility 

fairness. Then we present the optimization problem formulation for integral association 

and bandwidth allocation. Lastly we present the approximation algorithm. 

6.2.1. Utility Fairness 

Utility fairness is less egalitarian than max-min fairness and more flexible than 

proportional fairness in balancing efficiency and fairness. The utility of a user’s allocated 

bandwidth is a convenient way to represent the user’s satisfaction and can be calculated 

by a concave function U() that is called utility function. The utility function used in our 

algorithm is (6.1) that was first proposed in [69]. 

 
1 1

log ,              if =1
( )

(1 ) ,  if 1

j

j

j

b
U b

b
 



  

 
 

 (6.1) 

 is the parameter that represents the priority of fairness and can be used to control 

the tradeoff between efficacy and fairness. When =0 , the objective is to maximize 

network throughput, with no consideration to fairness. When =1 , proportional fairness is 

the objective. As   increases, fairness becomes more and more important and finally 

absolute fairness dominates when   approaches infinity. 
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6.2.2. Problem Formulation 

By adopting the same network model and conventions as those in Chapter 5, the 

problem of optimal integral Association and Bandwidth Allocation (iABA) for utility 

fairness is formulated in (6.2)-(6.9). iABA consists of 2 steps. Denote the minimum STA 

bandwidth in a feasible rate vector as bmin. In the first step, we maximize bmin and get an 

optimal solution *
m inb  that is the largest possible bmin in any feasible bandwidth allocation. 

In the second step, we maximize the total network utility. Besides the fairness control 

parameter  , we introduce two bandwidth boundary constraint parameters in (6.8), Blower 

and Bupper, which are used to control the lower bound and upper bound of the STA 

bandwidth, so that we can make sure no STA starves and no STA gains extremely larger 

bandwidth than the others.   

iABA: 

Step1: 

Max   minb    

s.t.    :     1j
ij

i M ij

b
j S x

r

              (6.2) 

:    1j
ij

j S ij

b
i M x

r

      (6.3) 

:  1ki
B ij j

i M j Ski

y
k K x b

r 

       (6.4) 

:      =1ij
i M

j S x


      (6.5) 

min:      jj S b b      (6.6) 

min, :    {0,1},   0iji M j S x b       (6.7) 

Step2: 

Max   ( )j
j S

U b

              

 s.t.    constraints (6.2)-(6.5) and 
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* *
min min:     lower j upperj S B b b B b        (6.8) 

, :    {0,1}iji M j S x       (6.9) 

6.2.3. Approximation Algorithm 

As the problem iABA is a mixed integer nonlinear program, we propose a relaxation-

rounding approximation algorithm, named approximated Association and Bandwidth 

Allocation (aABA), to get a working solution in polynomial time.  

In the first step of aABA, we relax the integral association constraint by allowing 

STAs to fractionally associate with multiple MAPs. The relaxed fractional association 

problem is convex and named fractional Association and Bandwidth Allocation (fABA). 

By introducing the fractional bandwidth allocation matrix {bij}, fABA can be derived 

from iABA by replacing bj with iji M
b

  and replacing ij jx b with bij.  

In the second step, we solve fABA and get an optimal fractional solution, denoted as 

( ', ')X B , which is an upper bound for any integral solution due to less restriction in the 

optimization constraints.  

In the third step, the fractional association 'X is rounded to an integral one, denoted 

as ˆ 'X , via randomization rounding. Denote the set of MAPs that have fractional 

association with STA j in 'X  as M(j). By randomization rounding, STA j randomly 

selects one of the MAPs in M(j) to associate with. The approximation ratio of 

randomization rounding is hard to analyse theoretically, although the final integral 

solution won’t have much difference, which can be seen in Fig. 6.1 that aABA and FRAC 

have almost similar performance. In fact, we can adopt either LFR or BGR from Chapter 

5 as the rounding algorithm in Chapter 6 too, and their theoretical approximation ratios 

are analysable. 
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In the fourth step, we optimally solve iABA with ˆ 'X X as input and get an integral 

bandwidth allocation vector 'ˆ{ }jb . Finally ˆ ˆ( ', ')X B is the output of aABA. 

6.3. Performance Evaluation 

We present simulation results for a WMN that consists of 20 MAPs, 1 portal, and 

100 STAs. The MAPs are uniformly placed at random in a rectangular field of 300m×

200m, where the portal is located at the centre of the lower-left quarter field. We 

investigate two user distributions: uniform topology where the STAs are uniformly 

distributed in the coverage area at random; hotspot topology where the STAs are 

distributed in a circle shape hotspot of radius 60m located at the centre of the field. We 

have also conducted simulation on other configurations, such as grid MAP topology and 

different number of STAs; their results are qualitatively similar to those presented. We 

adopt the same transmission and link rate model as that used in Chapter 5. The backhaul 

LinkRateRatio equals 4. 

We measure the fairness of a bandwidth allocation {bj} using Jain’s fairness index F 

(5.39). We measure the resource efficiency of {bj} using the efficiency index 

 0
j jj S j S

E b b 
 

    (6.10) 

where 0{ }jb  is the rate vector when 0  , i.e. when network throughput is maximized. 

The efficiency index is between 0 and 1. 

6.3.1 Comparison of the Association Algorithms 

We compare the performance of aABA against the benchmark schemes SS, CL, and 

FRAC, which have been introduced in Chapter 5, in the context of utility fairness. Fig. 

6.1 depicts the per-STA bandwidth performance of the association algorithms where the 
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fairness control parameter  is set to be 1 and 10 to simulate PF and MM fairness 

respectively.  

 
(a) Uniform topology 

 
(b) Hotspot topology 
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(c) Uniform topology, 95% confidence interval, alpha=1 

 
(d) Uniform topology, 95% confidence interval, alpha=1 

Figure 6.1: Per-STA bandwidth performance of the association protocols. 
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backhaul network condition. CL has no optimization attempt and it has no consideration 

of utility fairness objective when making association decision. Therefore, it is as expected 

that CL performance is significantly poorer than that of FRAC and aABA. Our proposed 

aABA algorithm achieves nearly optimal performance, which can be seen from the 

almost coinciding lines of aABA and FRAC. 

6.3.2. Tradeoff between Efficiency and Fairness 

We show the tradeoff between resource efficiency and user fairness by tuning the 

fairness control parameters. The results shown below are for uniform topology; the 

hotspot topology has similar results.  

Fig. 6.2 depicts the efficiency index and fairness index for rate vectors obtained 

under different α values and different rate boundary constraints (Blower, Bupper). When α is 

small, high network throughput is achieved by sacrificing fairness. As α increases, 

fairness index increases approaching 1 and efficiency index decreases approaching a 

steady state value. In other words, as α increases, user fairness becomes dominant in the 

utility function and the two indexes approach the value that would be obtained if max-min 

fairness is the objective.  

We can also see in Fig. 6.2 that the changing rates of the two indexes are very high 

when α is small, i.e. the majority of the tradeoff is done within a small range of α value. 

When there are no boundary constraints and α is small, the fairness is very poor; in 

addition, it is difficult to get a desired level of fairness, as a small change in α would 

cause a large change in the performance. Therefore we introduce the boundary constraints 

(Blower, Bupper) that prevent extreme unfairness and make the tradeoff smoother and more 

controllable.  
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Fig. 6.3 depicts the per-STA bandwidth allocation results. It is clear that as α 

decreases, STAs on the right, whose bandwidth are larger than the average, are getting 

more and more bandwidth while STAs on the left are getting less and less, i.e. it is getting 

more and more unfair. When there are no boundary constraints and α is small, we can see 

in Fig. 6.3 (a) that some STAs receive extremely low bandwidth while a few STAs 

receive excessively high bandwidth. With the boundary constraints introduced, in Fig. 6.3 

(b), no STA is starved and we can more effectively control the bandwidth allocation.   

Next we are interested in finding which part of STAs is sacrificed for higher 

efficiency. Fig. 6.4 shows the relationship between a STA’s allocated bandwidth and the 

backhaul cost (BC) of its associated MAP. The BC of MAP i is calculated by

( )
1i ll path i

BC r


 . A lower BC indicates higher backhaul link rates or shorter backhaul 

path, and better backhaul condition. As discussed before, transmission from these MAPs 

consumes less network resource, therefore improves resource efficiency. In Fig. 6.4, it is 

as expected that STAs with higher bandwidth are those associated with lower backhaul 

cost MAPs. 

 
Figure 6.2: Efficiency index and fairness index. 
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           (a) with no boundary                              (b) with boundary (0.5,2) 

Figure 6.3: Per-STA bandwidth performance for varying α value. 

  

 

Figure 6.4: STA bandwidth and MAP backhaul cost. 

 

6.4. Conclusion 

Utility fairness is less egalitarian than max-min fairness and more flexible than 

proportional fairness in balancing efficiency and fairness. In this chapter, we have studied 

0 50 100
0

0.5

1

1.5

STA index

P
er
−S

TA
 B

an
dw

id
th

 (M
bp

s) alpha=0
alpha=1
alpha=2
alpha=10

0 50 100
0

0.5

1

1.5

STA index

P
er
−S

TA
 B

an
dw

id
th

 (M
bp

s) alpha=0
alpha=1
alpha=2
alpha=10

0 20 40 60 80 100
0

0.5

1

1.5

2

P
e

r-
S

T
A

 B
a

n
d

w
id

th
 (

M
b

p
s)

STA index

 

 

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

B
a

ck
h

a
u

l C
o

st
 o

f t
h

e
 a

ss
o

ci
a

te
d

 M
A

Pbandwidth, max-min
bandwidth, alpha=1
backhaul cost,  alpha=1



99 
 

the problem of utility fair bandwidth allocation via association control in wireless mesh 

networks. We have formulated and approximately solved an optimization problem 

considering utility fairness objective. We have shown in our simulations how to control 

the tradeoff between resource efficiency and user fairness to achieve the desired 

performance by tuning the control parameters including the proposed bandwidth 

boundary constraints. 
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Chapter 7: A Network Resource 

Management Framework for WMNs 

In this chapter, by taking the features of WMNs and the inter-cell interference into 

consideration, we propose a network resource management framework for WMNs that 

improves the network performance by jointly managing MAP channel assignment, MAP-

STA association, and user bandwidth allocation. The proposed framework is composed of 

three components: a utility-fair bandwidth allocation algorithm, a channel assignment 

algorithm that effectively increases the network capacity by reducing the interference at 

the good-backhaul MAPs, and an optimization-based association control algorithm. In 

addition, to model the concurrent transmission constraints in WMNs, we propose an 

efficient local-clique-based network modeling method whose performance is almost 

identical to that of the exponential-time optimal algorithms. We demonstrate the superior 

performance of the proposed algorithms over the other state-of-the-art schemes through 

simulations with various network topologies and conditions. 

7.1. Introduction 

Almost all of the existing studies on association control [28]-[43], no matter it is for 

WLANs or WMNs, and no matter it is distributed algorithm or centralized algorithm, 

assume carefully planned network deployment such that there is no interference between 

adjacent cells. However, that is rarely the case in reality. In this chapter, we take the 

interference among co-channel MAP cells into consideration. We propose a centralized 
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optimization-based association control scheme as one component of the proposed 

resource management framework, based on a realistic WMN network model that 

considers both access and backhaul network transmission constraints. 

  As more and more APs are deployed to support the fast growing Wi-Fi enabled 

mobile devices, the inter-cell interference becomes more and more inevitable. In the 2.4 

GHz frequency band of the IEEE 802.11 standards, there are only 3 or 4 non-overlapping 

20MHz-wide channels and the number is 12 or 13 for the 5 GHz frequency band [70]. If 

the new standard such as 802.11ac that supports channel bandwidth up to 160MHz is 

considered, the number of non-overlapping channels is even smaller. Many channel 

assignment schemes have been proposed for WLANs in the literature [70]. The objective 

of these schemes is usually minimize the total interference experienced by either APs or 

STAs. However, in WMNs, as discussed above, it is preferred that the good-backhaul 

MAPs carry more traffic. As a result, it makes sense to reduce the interference at these 

MAPs with priority so that they can accommodate more STAs. In this chapter, we 

propose a channel assignment scheme as another component of the proposed resource 

management framework, which iteratively improves the channel assignment using a 

metric of total weighted interference where the weight of a MAP is its traffic load. 

 
Figure 7.1: An association control and channel assignment example. 

We take the network in Fig. 7.1 as an example to illustrate the importance of joint 

association control (AC) and channel assignment (CA). There are 3 MAPs, 4 STAs and 1 

portal in Fig. 7.1 and the access link rates are labelled next to the links. STA S1, S2, and S3 
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are associated with MAP M1, M2, and M3 respectively. STA S4 needs to associate with 

either M2 or M3. Suppose the backhaul links do not interfere with the access links and 

have enough bandwidth to support all the traffic of the STAs. Suppose there are totally 2 

non-overlapping channels {ch1 and ch2} to be assigned to the MAPs, and at any time, 

only one of the MAPs assigned with the same channel can transmit or receive. Suppose 

the STAs on the same channel get equal transmission time. To see how AC makes 

difference, we first consider a CA in which M1, M2, and M3 are assigned with ch1, ch2, 

and ch1 respectively. If S4 is associated with M2, the aggregate throughput would be 

57Mbps (54/2+36/2+18/2+6/2). On the other hand, if S4 is associated with M3, the 

aggregate throughput would be 62Mbps (54/3+36+18/3+6/3). Next we illustrate how CA 

makes a difference by changing the channel of M3 from ch1 to ch2. Now the aggregate 

throughput is further increased to 73Mbps (54+32/3+18/3+6/3). Later we will show how 

our proposed CA algorithm gets the second CA from the first one.  

A survey of channel assignment schemes for WLANs is given in [70]. Least 

Congested Channel Search (LCCS) [71] is a widely used channel selection method in 

current WLANs, in which each AP autonomously searches every channel and switches to 

operate on the channel with the fewest number of STAs or the least amount of traffic. In 

[16], each AP locally measures the interference power experienced on every channel and 

switches to operate on a random channel according to a switching probability that is 

computed based on an annealed Gibbs sampler technique; the global interference is 

minimized when the algorithm converges. Graph colouring is another classic approach for 

channel assignment, i.e. treat the APs as vertices of a graph and assign colours (channels) 

to the vertices such that the number of colours used is minimal or the number of same 

coloured interfering (connected) nodes is minimal. Optimal colouring is NP-hard. In [72], 

a heuristic vertex colouring algorithm using the “degree of saturation” (so called 
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“DSATUR”) is introduced, where a vertex with the largest number of differently coloured 

neighbours is chosen to be coloured in each iteration. If there are more than one vertices 

of the highest saturation degree, the selection is made in the order of decreasing number 

of the uncoloured neighbours. Unlike the above AP-centric approaches, [73] is a client-

driven approach for channel management. With a model that classifies various 

interference scenarios, the algorithm repeatedly assigns a channel to each AP such that 

the number of the conflict-free clients is maximized until that number cannot be improved 

any more. Instead of using the objectives such as the interference at the AP, the number 

of coloured APs, and the number of conflicting clients as above that implicitly translate to 

clients’ throughput, our channel assignment algorithm repeatedly invokes an optimal 

bandwidth allocation procedure to iteratively improve the utility objective function value 

which explicitly counts the bandwidth of each client. In addition, in the process of finding 

the best channel for each MAP, we make use of a metric of total-weighted-interference 

that takes into consideration the load carried by the MAP; through that, the interference at 

the good-backhaul MAPs can be reduced and the network capacity of the entire WMN 

can be improved. 

The last essential component of our resource management framework is a utility 

maximization based STA bandwidth allocation algorithm. In the previous example, we 

only compare the aggregate throughput without considering user fairness. Network 

aggregate throughput and user fairness in bandwidth are usually two conflicting 

objectives in bandwidth allocation algorithms. For example, in the example network in 

Fig. 7.1, we can get the maximum aggregate throughput of 90 Mbps by allowing only S1 

and S2 to transmit and starving S3 and S4, which is obviously very unfair to S3 and S4. The 

IEEE 802.11 MAC protocols implicitly enforce max-min throughput fairness among 

users in the long term, i.e. each user gets equal transmission opportunity and achieves 
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equal throughput [4]. Researchers have proposed other definitions of fairness such as 

proportional fair [62] and time-based fairness [60] to make better use of the network 

resource. Instead of targeting at any single type of fairness as above, our bandwidth 

allocation algorithm achieves utility-based fairness which is flexible in adjusting the 

trade-off between resource utilization efficiency and user fairness, which makes it a 

desirable feature of balanced network operation. 

7.2. Network Model 

We adopt a protocol-based transmission model to simulate the transmission 

constraints in a CSMA/CA-alike MAC protocol, where each node has a fixed 

transmission range and a fixed interference range. To take account of both upstream and 

downstream traffic, we consider two links conflicting with each other if either end of one 

link is in the interference range of either end of the other link. Then we can construct a 

conflict graph for the backhaul links and conflict graphs for the access links on different 

channels.  

We make use of the concept of “clique of links” to model the concurrent 

transmission constraint of links. A clique is a set of links that are in mutual conflict with 

each other, i.e. at any time, only a single link within a clique is allowed to transmit. With 

the constructed conflict graphs, we can find all maximal cliques using algorithms such as 

Bron-Kerbosch algorithm [63]. However, finding all the maximal cliques over the entire 

network is NP-hard [63] and not scalable for large networks with thousands of links. 

Therefore we propose two clique modeling methods, for the backhaul network and the 

access networks respectively, which approximate the optimal maximal cliques by finding 

local-maximal cliques. We will see in the simulation results in section 7.4 that the 
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performance of the proposed methods is almost identical to that of the exponential-time 

optimal algorithm. 

Backhaul-link Cliques 

Given the set of the backhaul links LB and the backhaul conflict graph (BCG), we can 

find a set of backhaul-link cliques by finding a set of local-maximal backhaul-cliques for 

each link Bl L . We first find the set of links that are in conflict with link l: 

 ( ) { ' : ' ( , ') 1}cfl BL l l l L BCG l l    , 

where BCG(l, l’)=1 means link l and l’ are in conflict with each other. Then we can find 

all the local-maximal cliques among the links in Lcfl(l) using the Bron-Kerbosch algorithm:  

' ' ' ' ' ' ' '
1 2 1 2 1 2 1 2( ) { { '}: , : , ( ) ( , ) 1}cfl cflK l k l l l k l l L l l l BCG l l         . 

Including the link l itself, we get the set of local-maximal cliques at l:  

 ( ) {{ }: ( )}cflk l l k k K l  . 

After combining and simplifying the local-maximal cliques of all the backhaul links, we 

finally get the set of backhaul-link cliques: 

 { ( ) : }B BK k l l L  .  

Access-link Cliques 

Given the set of MAPs M, the set of STAs S, the transmission range TransR, the 

interference range IntR, and the locations of the MAPs and STAs, we can find a set of 

access-link cliques by finding a set of local-maximal MAP cliques among the interfering 

MAPs of each MAP i M . We first find the set of MAPs that are within the interference 

range of i: 

 ( ) { ' : ' ( ', ) }IRM i i i M dis i i IntR    , 

the set of STAs that are within the interference range of i:  
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 ( ) { : ( , ) }IRS i j j S dis j i IntR    , 

and the set of STAs that are within the transmission range of i:  

 ( ) { : ( , ) }TRS i j j S dis j i TransR    , 

where dis( , ) is the distance between the two nodes. Given a channel assignment C={ci}, 

where ci is the channel assigned to MAP i M , we can find two sets of interfering 

MAPs of i. One is the set of MAPs that are within the interference range of i: 

 ,1 '( ) { ' : ' ' ( )}itf i i IRM i i i M c c i M i      ; 

the other is the set of MAPs that are outside the interference range of i, but have access 

links interfering with i:  

,2 '( ) { ' : ' \ ( ) ( : ( ') ( ))}itf IR i i TR IRM i i i M M i c c j j S i j S i         . 

Combining the two, we get 

 ,1 ,2( ) ( ) ( )itf itf itfM i M i M i  . 

Applying the Bron-Kerbosch algorithm among the MAPs in Mitf(i), we can find all the 

local-maximal MAP cliques of i:  

' ' ' ' ' ' ' ' ' '
1 2 1 2 1 2 1 2 2 1( ) { { '}: , : , ( ) ( ) ( )}itf itf IR IRQ i q i i i q i i M i i i i M i i M i           . 

For each MAP clique ( )itfq Q i , we get an access-link clique: 

' ,1 ' ,2( , ) { : } { : ' ( ), } { : ' ( ), ( )}ij i j itf i j itf IRk i q l j S l i q M i j S l i q M i j S i         , 

where lij is the access link between MAP i and STA j. The set of local access-link cliques 

at i is 

 ( ) { ( , ) : ( )}itfk i k i q q Q i  . 

After combining and simplifying the local access-link cliques of all the MAPs, we finally 

get the set of access-link cliques 

 { ( ) : }AK k i i M  . 
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Figure 7.2: A clique modeling example. 

We take the network in Fig. 7.2 as an example to illustrate how our clique modeling 

method works. The set of backhaul links is {l1, l2, l3, l4}. The interference range of MAPs 

is longer than one-hop distance and shorter than two-hop distance. The optimal set of all 

maximal backhaul-link cliques is MCB = {{l1, l2, l3}, {l2, l3, l4}}. In our modeling 

framework, taking link l2 for example, we have Lcfl(l2) = {l1, l3, l4}, Kcfl(l2) = {{l1, l3}, {l3, 

l4}}, k(l2) = {{l1, l2, l3}, {l2, l3, l4}}. Combining k(l2) with the local-maximal cliques at l1, 

l3, and l4, we get KB that is the same as the optimal MCB.  

The set of access links in Fig. 7.2 is {l11, l15, l22, l33, l44}. MAP M1, M2, and M3 

operate on ch1, while M4 operates on ch2. STA S5 is in the interference range of M3, while 

S1 is not. The optimal set of all maximal access-link cliques is MCA = {{l11, l15, l22}, {l15, 

l22, l33}, {l44}}. In our modeling framework, taking MAP M3 for example, we have 

Mitf,1(M3) = {M2}, Mitf,2(M3) = {M1}, Qitf(M3) = {{M1, M2}}, k(M3) = {l15, l22, l33}. 

Combining k(M3) with the local cliques at M1, M2, and M4, we get KA that is the same as 

the optimal MCA. 
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Table 7-1: NOTATIONS 

Symbol Semantics 

M The set of all MAPs {i}. 

S The set of all STAs {j}. 

CH The set of all non-overlapping channels {ch1, ch2, …, chN-CH}. 

X A STA-MAP association matrix {xij}. 

B A STA bandwidth allocation vector {bi}. 

C A channel assignment vector {ci}. 

KB The set of all backhaul-link cliques. 

yki Indicating whether backhaul clique k is on MAP i’s backhaul path. 

rki
 The effective backhaul link rate of MAP i in backhaul clique k. 

rij The access link rate between MAP i and STA j. 

bij The bandwidth allocated to STA j to communicate with MAP i. 

Mitf(i) 
The set of MAPs that have access links interfering with MAP i on the 
same channel. 

Qitf(i) The set of maximal MAP cliques among the MAPs in Mitf(i). 

 

Table 7-1 summarizes some of the notations used in this chapter. The outcome of our 

resource management framework is a channel assignment vector {ci}, an association 

matrix {xij}, and a bandwidth allocation vector {bj}, which is denoted as (C, X, B). 

7.3. A Network Resource Management Framework for WMNs 

Our resource management framework consists of three components: bandwidth 

allocation (BA), channel assignment (CA), and association control (AC). First, we 

formulate the optimal utility fair bandwidth allocation problems. Then we introduce a 

joint channel assignment and bandwidth allocation algorithm. Finally, we present an 

optimization-based association control scheme as well as the complete resource 

management framework. 
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7.3.1. Utility-based Bandwidth Allocation  

The objective of our bandwidth allocation algorithm is to maximize the sum of the 

utility of user bandwidth. The utility function we use is given in (7.1) that has been 

introduced in Chapter 6.  

 
1 1

log ,              if =1
( )

(1 ) ,  if 1

j

j

j

b
U b

b
 



  

 
 

 (7.1) 

Our bandwidth allocation algorithm is named Utility-based Bandwidth allocation 

(UBa) and given in Fig. 7.3. Given the network topology and a channel assignment C, we 

can construct the set of backhaul-link cliques, KB, and the set of local maximal cliques of 

the interfering MAPs, Qitf(i), for each MAP i. If we are given an integral association 

matrix X, we formulate an optimization problem named Integral Problem (IntP) as in (7.2)

-(7.6), where each STA is allowed to associate with one MAP only. By solving IntP, we 

get an integral bandwidth allocation vector {bj}. On the other hand, if the integral 

association is unknown, we formulate another optimization problem named Fractional 

Problem (FracP) as in (7.7)-(7.11), where each STA is allowed to fractionally associate 

with multiple MAPs. By solving FracP, we get a fractional bandwidth allocation matrix 

{bij}. 
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Algorithm UBa: 

Given: the network topology, the backhaul routing tree, the backhaul link set LB 
Input: (C, X) 
1. Construct a backhaul link conflict graph BCG 

2. Find Lcfl(l) and Kcfl(l) for each link Bl L  

3. Find KB, {yki}, {rki} 
4. for each MAP i M do 

a. Find MIR(i), SIR(i), STR(i) 
b. Find Mitf,1(i), Mitf,2(i), and Mitf(i) 
c. Construct a conflict graph for MAPs in Mitf(i) 
d. Find Qitf(i) 

end for 
5. if X=0 then 
         Formulate and solve the problem FracP 
        return the fractional BA solution {bij} 

else 
        Formulate and solve the problem IntP 
        return the integral BA solution {bj} 
end if 

 

IntP: 

Max   ( )j
j S

U b

    

s.t.    :     =1ij
i M

j S x


                     (7.2) 

:     1j
ij

i M ij

b
j S x

r

      (7.3) 

:  1ki
B ij j

i M j Ski

y
k K x b

r 

       (7.4) 

' '
': ' ' ( ) ': ' ' ( ) ( )' '

( ), :

1
IR IR IR

itf

j j j
ij i j i j

j S i i q i M i j S i i q i M i j S iij i j i j

q Q i i M

b b b
x x x

r r r        

  

      
  (7.5) 

, :    {0,1},   0ij ji M j S x b       (7.6) 

FracP:  

Max   ( )j
j S

U b

  

Figure 7.3: Algorithm UBa 
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s.t.    :     j ij
i M

j S b b


                     (7.7) 

:     1ij

i M ij

b
j S

r

      (7.8) 

:  1ki
B ij

i M j Ski

y
k K b

r 

       (7.9) 

' '

': ' ' ( ) ': ' ' ( ) ( )' '

( ), : 1
IR IR IR

ij i j i j
itf

j S i i q i M i j S i i q i M i j S iij i j i j

b b b
q Q i i M

r r r        

            

                                                                                                                   (7.10) 

, :   0iji M j S b       (7.11) 

Constraint (7.2) states that each STA is associated with one MAP only. (7.3)  states 

that the total transmission time of one STA is less than the unit time 1. (7.4) states that the 

total transmission time of the backhaul links in one backhaul clique is less than 1, where 

the traffic load carried by the clique originates from all the STAs whose associated MAP 

backhaul paths towards the portal pass through the clique. (7.5) states that the total 

transmission time of the access links belonging to one access clique is less than 1, where 

the access clique consists of the links of a MAP i and the links that interfere with i and 

belonging to a set of MAPs that mutually conflict with each other. By introducing the 

fractional bandwidth allocation matrix {bij}, FracP is derived from IntP by replacing bj 

with 
iji M

b
 and replacing ij jx b with bij. 

7.3.2. Joint Channel Assignment and Bandwidth Allocation 

We propose a channel assignment scheme, named Joint Channel assignment and 

Bandwidth allocation (JCaBa), which iteratively improves channel assignment and 

network performance by invoking the bandwidth allocation algorithm UBa and makes use 

of an interference metric that measures the interference experienced by a MAP as well as 

the interference caused by the MAP to the others. Algorithm JCaBa is given in Fig. 7.4.  
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Algorithm JCaBa: 

C* ← random CA 
B* ← UBa(C*,0) 
Loadself *  ← CalculateLs( B*) {sort Loadself * in non-increasing order} 
n ← 1 {let i(n) represent the nth MAP in the sorted vector Loadself *} 
Mallocated  ←   
change ← 0 

while n M  do 

if ( ) allocatedi n M  then 

c0 is the current channel of i(n) in C* 

 for 0\c CH c  do 

change the channel of i(n) to c, denote the new CA as Cc  
loadc ← CalculateWI(Cc, B*, i(n)) 

end for 

min 0min{ : \ }cload load c CH c  , denote the corresponding CA as C’ 

B’ ← UBa(C’,0) 
Loadself ’  ← CalculateLs(B’) 
 if  futility(B’) > futility(B*) then 

{assign i(n) with the new channel} 
C* ← C’; B* ← B’; Loadself* ← Loadself’; n ← 1; change ← 1               

else  
n ← n+1 {keep the channel of i(n) unchanged} 

end if 
Add i(n) to Mallocated  

else  
n ← n+1 {the channel of i(n) has been assigned already} 

end if 

if  1n M   and change = 1 then 

n ← 1; change ← 0; Mallocated  ←   
end if   

end while 
return C* and  futility(B*) 

 

Given a CA C, we can get an optimal fractional BA matrix B = {bij} by applying 

algorithm UBa with input (C,0). Denote the utility objective function value of B as 

futility(B). For each MAP i M , denote the total traffic to be carried by i for its associated 

STAs as loadself(i), i.e. self-load of i: 

Figure 7.4: Algorithm JCaBa. 
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 ( )self ij
j S

load i b


 . (7.12) 

For each MAP ' ( )itfi M i , i.e. i’ is one of the interfering MAPs of i, denote the 

traffic that is carried by i’ and interferes with i as loaditf(i,i’), i.e. interference-load to i 

from i’: 

 
' ,1

' ,2
( )

,         if ' ( )

( , ')
,     if ' ( )

IR

i j itf
j S

itf

i j itf
j S i

b i M i

load i i
b i M i





 


 







 (7.13) 

Denote the total self-load of i and its interfering MAPs in Mift(i) as loadt-self(i): 

 
' ( )

( ) ( ) ( ')
itf

t self self self
i M i

load i load i load i


    (7.14) 

We define a metric of total weighted interference for i, denoted as loadt-w-itf(i). The 

metric is formulated in (7.15) and consists of two parts. The first part is the total 

interference experienced by i, weighted by loadself(i) / loadt-self(i). The second part is the 

total interference to MAPs in Mitf(i) caused by i, weighted by loadself(i’) / loadt-self(i) for 

each ' ( )itfi M i . By weighting a MAP with its self-load divided by the total load, the 

interference experienced by the heavy-self-load MAPs contributes more to the total 

interference. As introduced previously, in WMNs, it is preferred that the good-backhaul 

MAPs carries more traffic load. Therefore, by reducing the total-weighted-interference 

metric defined in (7.15), we reduce the interference experienced by the good-backhaul 

MAPs and increase the network capacity.  

 
' ( ) ' ( )

( ) ( ')
( ) ( , ') ( ', )

( ) ( )
itf itf

self self
t w itf itf itf

i M i i M it self t self

load i load i
load i load i i load i i

load i load i 
  

      (7.15) 

In Fig. 7.4, the function CalculateLs(B) calculates the  self-load vector Loadself 

={loadself (i)} using (7.12). The function CalculateWI(C, B, i) calculates the total-

weighted-interference loadt-w-itf(i) for MAP i using (7.15), when the CA is C and the BA 
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is B. We sort MAPs in decreasing order of their self-load so that the MAPs carrying 

heavier load are assigned channels first. In one round of the while-loop, the sorted MAPs, 

one by one from the beginning, decide to stay in the current channel or switch to a new 

channel. In order to make that decision, a MAP first searches for the channel with the 

least total-weighted-interference; denote the corresponding CA and BA as C’ and B’ 

respectively, while the current CA and BA are C* and B*. If the objective function value 

of the new BA, futility(B’), is larger than that of B*, the MAP switches to the new channel; 

otherwise, it stays with the current channel. The algorithm terminates if no MAP switches 

channel in the last round of the while-loop. In our simulations, the algorithm always 

terminates within a few rounds of the while-loop.  

Revisit the network in Fig. 7.1. Suppose we are given a CA C0 = {ch1, ch2, ch1} that 

is produced by a vertex colouring algorithm. We demonstrate how the JCaBa algorithm 

improves C0 and find a better CA. With C0, the best aggregate throughput is 62 Mbps that 

is obtained when S4 associates with M3, and the corresponding self-load vector is {18, 36, 

8}. In the first round of the while-loop: M2 exams CA {ch1, ch1, ch1}, for which the 

aggregate throughput is 28.5 Mbps, and decides to stay with ch2; then M1 exams CA {ch2, 

ch2, ch1}, for which the best aggregate throughput is 57 Mbps, and decides to stay with 

ch1; finally, M3 exams CA {ch1, ch2, ch2}, for which the aggregate throughput is 74 Mbps, 

and decides to switch to ch2. In the second round of the while-loop, as no MAP can find a 

better CA, the algorithm terminates and returns CA {ch1, ch2, ch2}. 
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7.3.3. The Resource Management Framework 

Algorithm JCBA: 

1. CA: Apply the JCaBa algorithm a few times and select the best CA C’. 

2. AC: Generate an integral association ˆ 'X by applying the oAC algorithm: 

1) Get a fractional BA B’ by the algorithm UBa(C’, 0). 

2) Generate a fractional association X’ from B’. 

3) Round X’ to ˆ 'X by the randomization rounding.  

3. BA: Get an integral BA ˆ 'B using the algorithm UBa( ˆ', 'C X ). 

ˆ ˆ( ', ', ')C X B is the output.  

 

Our resource management framework jointly considers CA, BA, and AC, so we 

name it Joint Channel assignment, Bandwidth allocation and Association control 

algorithm (JCBA), which is given in Fig. 7.5. It has been shown in [74] that CA should be 

conducted prior to AC for better network performance. It makes sense as CA determines 

the interference between cells in large scale and should be performed less frequently 

compared to AC. Therefore, the first step of JCBA is to determine a proper CA by 

applying the JCaBa algorithm a few times with different initial random CAs. The reason 

to do that is JCaBa locally searches for better channels and rarely generates a global 

optimal CA in a single run. The CA that achieves the largest objective function value is 

selected and denoted as C’.  

The second step of JCBA is to generate an integral association, denoted as ˆ 'X , by 

applying an association control algorithm, named optimization-based Association Control 

(oAC). The first step of oAC is to find a fractional BA, B’, by applying the UBa 

algorithm with (C’, 0) as input. Then we convert B’ to a fractional association matrix X’ 

according to the equation 

Figure 7.5: Algorithm JCBA. 
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In the third step of oAC, X’ is rounded to the integral solution ˆ 'X , via randomization 

rounding. Denote the set of MAPs that have fractional association with STA j in X’ as 

M(j), i.e. '( ) { : 0}ijM j i b  . By the randomization rounding, j randomly selects one of the 

MAPs in M(j) to associate with.  

In the final step of JCBA, we get an integral BA, denoted as ˆ 'B , by applying the 

UBa algorithm with ( ˆ', 'C X ) as input. Finally, ˆ ˆ( ', ', ')C X B is the output of the JCBA 

algorithm. 

7.4. Performance Evaluation 

We present simulation results for a WMN that consists of 20 MAPs, 100 STAs, and 

1 portal. The MAPs are randomly placed in a square field of size 250m 250m. The 

portal is located at the centre of the lower-left quarter field. We simulate two user 

topologies: uniform topology where the STAs are randomly placed in the field; hotspot 

topology where the STAs are distributed in two randomly located hotspots of radius 50m 

each. We provide two network topology examples in Fig. 7.6, one for uniform topology 

and the other for hotspot topology. In Fig. 7.6, we use diamond, bigger circles, and 

smaller circles to represent the portal, the MAPs, and the STAs, respectively; the 

backhaul links are displayed in red lines.  
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(a) Uniform topology 

 
(b) Hotspot topology 

Figure 7.6: Network topology examples. 

We assume a transmitter power of 17dBm and a receiver noise power of -80dBm. 

We adopt a log-distance path loss model, Pl(d)=92+4*10log10(d/100), where Pl(d) is the 

path loss in dB for a path of length d m. Considering a normal Clear Channel Access 
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(CCA) threshold of -76dBm [7], our protocol-based network model simulates a MAC 

protocol similar to the CSMA/CA with a transmission range of 100m and an interference 

range of 150m. In our simulation, the access networks operate on 4 non-overlapping 

20MHz channels in the 2.4GHz frequency band, while the backhaul network operates on 

a single 160MHz channel in the 5GHz frequency band. The backhaul routing tree rooted 

at the portal is constructed using the 802.11s HWMP routing protocol. We model the 

transmission constraints at the backhaul and the access networks using the local-clique-

based modeling methods introduced in section 7.2.  

Using the transmission model above, an access link rate model is constructed and 

given in Table 7-2, where the required minimum Signal-to-Noise Ratio (SNR) is taken 

from [68]. As the wireless backhaul carries the aggregate traffic of the entire network and 

the MAPs are more powerful than the STAs, in our simulation, the backhaul link rates are 

16 times of the access link rates, which can be achieved by applying two spatial streams 

on the 160MHz backhaul channel. We have done simulations with other configurations, 

such as different MAP/portal topologies, different number of STAs, and different 

backhaul/access link rate ratios; their results are qualitatively similar to those we are 

presenting. 

Table 7-2: LINK RATE MODEL FOR ACCESS LINKS 

Rate(Mbps) 6 12 18 24 36 48 54 60 

Min. SNR (dB) 5 7 9 13 17 20 22 23 

Max. Path Length (m) 100 89 79 63 50 42 38 35 

 
We measure the performance of different algorithms in terms of aggregate network 

throughput, per-user bandwidth, and Jain’s fairness index [12]. 
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7.4.1. Performance of the Local-clique-based Modeling Method 

A backhaul clique modeling method finds the set of backhaul-link cliques, KB, which 

is required for formulating the backhaul transmission constraint (7.4) and (7.9) in the 

bandwidth allocation algorithm UBa. We compare the performance of the following 

backhaul clique modeling methods: 

 local-BC: our backhaul-link local-clique-based modeling method that constructs 

KB by finding the set of conflicting links, Lcfl(l), and the set of local maximal 

cliques of the conflicting links, Kcfl(l),  for each link Bl L . 

 o-BMC: optimal clique modeling method that finds all backhaul maximal cliques 

in the network by an exponential-time algorithm such as the Bron-Kerbosch 

algorithm. 

 a-BC: a maximal clique approximation method used in [42] that approximates a 

backhaul maximal clique by the set of conflicting links of a backhaul link, i.e. 

{{ ( ) }: }B cfl BK L l l l L  . 

An access clique modeling method finds a set of access-link cliques for each 

channel, which is required for formulating the access network transmission constraints in 

UBa. We compare the performance of the following access clique (transmission 

constraint) modeling methods: 

 local-AC: our MAP local-clique-based modeling method that constructs the 

access transmission constraints (7.5) and (7.10) by finding the set of interfering 

MAPs, Mitf(i), and the set of local maximal cliques of the interfering MAPs, Qitf(i),  

for each MAP i M . 
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 o-AMC: optimal clique modeling method that finds all the access maximal cliques 

in the network by an exponential-time algorithm such as the Bron-Kerbosch 

algorithm. Accordingly, constraints (7.5) and (7.10) are replaced by (7.16) and 

(7.17) respectively, where KA(c) is the set of all access cliques on channel c.  

 a-AC: an access clique approximation method that approximates an access clique 

by the links of the MAPs interfering with a MAP, i.e.  

 ' '{{{ } { : ' ( ) }}: }A ij i j IR i iK l l i M i c c i M     . 

Accordingly, constraints (7.5) and (7.10) are replaced by (7.18) and (7.19) 

respectively. 
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Fig. 7.7 depicts the bandwidth allocation results of the UBa algorithm with different 

transmission constraints that are obtained from the clique modeling methods. The results 

presented are averaged over 50 runs. In each run, the STA location is different and we 

sort the STAs in non-decreasing order of their allocated bandwidth. So the bandwidth of a 

STA indexed x in the figure indicates the average bandwidth of the x-th lowest bandwidth 

in each run. We compare the backhaul (access) clique modeling methods, while using o-

AMC (o-BMC) to model the access (backhaul) cliques. The α parameter in the UBa 

algorithm equals 5.  
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(a) Backhaul clique 

 
(b) Access clique 

Figure 7.7: Performance of the clique modeling methods 

In Fig. 7.7 (a), local-BC and o-BMC have identical result, which means local-BC is 

able to find all the backhaul maximal cliques in the simulated networks. In contrast, the 

results of a-BC clearly deviate from the optimal. That is because in a-BC, links that are in 

conflict with the same link but do not interfere with each other are prohibited from 

concurrent transmission, while they are able to do so actually.  
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In Fig. 7.7 (b), the curve of local-AC almost coincides with that of o-AMC. The 

reason for the small difference is that local-AC is based on the local maximal cliques of 

the interfering MAPs rather than the maximal clique of the access links. As a result, local-

AC may miss some links that should have been included in the clique, resulting in a 

loosened access network transmission constraint. The results of a-AC seriously deviate 

from the optimal one. a-AC prohibits MAPs that interfere with one common MAP but do 

not interfere with each other from concurrent transmission, even though that will not 

cause any collision.  

The optimal methods, o-BMC and o-AMC, search for maximal cliques over the 

entire network using exponential-time algorithm; therefore, they are very time consuming 

for large networks. Our local-clique-based approximation methods, local-BC and local-

AC, on the other hand, locally search for maximal cliques where the number of variables 

is much smaller; therefore, they are more efficient than the exponential-time methods. In 

addition, as seen in Fig. 7.7, our methods achieve almost optimal performance. Therefore, 

we can say that the local-clique-based modeling methods are efficient and effective. 

7.4.2. Performance of JCBA 

In the JCBA algorithm, the channel assignment is done by the JCaBa algorithm and 

the association control is done by the oAC algorithm. We compare the bandwidth 

allocation results of the algorithms in JCBA against other state-of-the-art CA and AC 

schemes. 

We compare the following CA schemes: 

 VC: vertex coloring algorithm DSATUR [72] that is introduced in section 7.1. 
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 JCaBa: joint channel assignment and bandwidth allocation algorithm that is used 

in the first step of JCBA.  

We compare the following AC schemes: 

 SS: strongest signal, i.e. a STA associates with the MAP from which the 

received signal strength is the highest. 

 CL: cross layer association metric based AC [38]. The total association cost is a 

weighted sum of the access cost and the backhaul cost, which reflects the 

estimated amount of channel time consumed by a successful end-to-end packet 

transmission. 

 oAC: optimization-based association control algorithm that is used in the second 

step of JCBA.  

 

Table 7-3: AGGREGATE THROUGHPUT AND FAIRNESS INDEX OF THE CA-AC 
SCHEMES 

 VC-SS VC-CL VC-oAC JCaBa-oAC

Uniform 
Throughput 195.7083 203.4558 229.4323 238.4053 

Fairness 0.9693 0.9581 0.9835 0.984 

Hotspot 
Throughput 190.0122 196.0362 209.3868 224.3168 

Fairness 0.8157 0.8113 0.9864 0.9827 
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(a) Uniform topology   

 
(b) Hotspot topology 

Figure 7.8: Performance of the CA-AC schemes. 

 
Table 7-4: PERFORMANCE OF THE CA SCHEMES 

  3-CH 4-CH 5-CH 6-CH 

Throughput 
VC 214.2037 229.4323 239.766 249.7643 

JCaBa 221.8147 238.4053 249.12 258.5956 

Fairness 
VC 0.984 0.9835 0.9832 0.9795 

JCaBa 0.9824 0.984 0.9831 0.9791 
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Fig. 7.8 depicts the per-STA bandwidth performance of four combinations of CA-

AC schemes under uniform user topology and hotspot user topology; Table 7-3 gives the 

corresponding numerical results of the aggregate throughput and Jain’s fairness index. 

Under the same channel assignment done by the VC algorithm, we compare the 

performances of the AC schemes. The performance of CL is slightly better than that of SS, 

because CL considers not only the access network condition but also the backhaul 

condition. As a result, CL has more STAs associated with the good-backhaul MAPs and 

makes better use of the network resource. However, due to the nature of the heuristic 

algorithms, CL has no optimization attempt and it has no consideration in the utility 

objective when making association decision. Therefore, it is as expected in that CL 

performance is significantly poorer than that of oAC in terms of both throughput and 

fairness. Under the hotspot topology, the bandwidth allocation in SS and CL is very 

unfair because too many STAs associate with the hotspot MAPs and the STAs associated 

with the non-hotspot MAPs are allocated with excessive bandwidth. In contrast, oAC is 

able to achieve very fair user bandwidth allocation no matter what the user topology is.  

Using oAC as the AC algorithm, we compare the performances of the CA schemes. 

In Fig. 7.8 and Table 7-3, it is clear that JCaBa is able to improve the user bandwidth as 

well as the aggregate throughput without sacrificing the user fairness. As it is NP-hard to 

find the optimal channel assignment for comparison, we measure the performance 

improvement of JCaBa over VC by varying the number of non-overlapping channels 

available in the access networks, and the results are given in Table 7-4. It is interesting to 

notice that, when the number of channels is 4 or 5, with nearly unchanged fairness index, 

the throughput increment of JCaBa over VC almost equals the throughput increment that 

would be gained by adding one more channel to VC, i.e. JCaBa-4CH : VC-5CH = 238.4 : 

239.7 and JCaBa-5CH : VC-6CH = 249.1 : 249.7. In other words, the channel utilization 
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efficiency of JCaBa is about 20%-25% higher than that of VC. The objective of VC is to 

minimize the total interference experienced by the MAPs, which equally weights each 

MAP. In contrast, in JCaBa, the interference experienced by the good-backhaul MAPs 

contributes more to the total interference, and it is minimized with priority. As JCaBa 

increases the capacity of the good-backhaul MAPs, more STAs can associate with these 

MAPs, which further improves the network resource utilization efficiency.  

The JCaBa results presented are the best of 10 runs of the JCaBa algorithm with 

different random initial channel assignments. In each run, 3.97 while-loops are conducted 

in average, with a standard deviation of 1.22. In each while-loop, |M|, which is 20 in our 

simulation, the FracP convex problems are solved. So the JCaBa algorithm terminates 

within a few rounds of convex problem solving.  

Comparing the CA and AC schemes in Fig. 7.8, it is noticed that the performance 

improvement of oAC over SS/CL is much more obvious than that of JCaBa over VC. In 

other words, the performance improvement of JCBA algorithm is mostly contributed by 

the oAC algorithm in the AC step.  

JCBA is a centralized optimization based resource management framework. It should 

be triggered when the network condition has significantly changed, e.g. mass 

joining/leaving of MAPs/STAs, and blocked/broken backhaul paths. The triggering 

mechanism could be periodic-time-based or based on real time network condition 

measurement. Excessive triggering would cause unnecessary interruption to the normal 

communication and should be avoided. On the other hand, inadequate triggering may 

miss network dynamics and result in inferior performance. In JCBA framework, oAC 

should be triggered more frequently than JCaBa for three reasons. Firstly, a channel 

switch at a MAP incurs channel switching at all of its associated STAs, while an 
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association change requires action at one STA only, i.e. invoking JCaBa interrupts more 

users. Secondly, oAC is more effective in improving user bandwidth as seen in Fig. 7.8. 

Thirdly, oAC is more time efficient as only one convex problem needs to be solved.  

Besides the simulation results for networks of 20 MAPs and 100 STAs presented 

above, we also conduct simulation for networks of higher node density, where 40 MAPs 

and 200 STAs are randomly located in a square field of the same size as above. The 

numerical results are given in Table 7-5. Compared to the results in the low density 

networks, in the high density networks, the performance of all the CA-AC schemes is 

better, and the advantage of JCBA over the other schemes is more obvious. That can be 

explained from two aspects. Firstly, although the higher node density introduces more 

inter-cell interference, the average link rate of the access links and the backhaul links are 

higher due to the shorter inter-node distance. What is more important is that with more 

MAPs available in the vicinity, a STA has more opportunities to associate with a good-

backhaul MAP, which can be better utilized by oAC to find a better association. 

Therefore, the advantage of oAC over SS/CL is more obvious in the high density 

networks. However, the performance improvement of JCaBa over VC is not as significant 

as before, which can also be explained from two aspects. Firstly, due to the high node 

density, the interference at the good-backhaul MAPs cannot be eliminated or significantly 

reduced no matter how effective a CA scheme is. Secondly, by oAC, a lot of STAs are 

already associated with the good-backhaul MAPs, so even though JCaBa can reduce the 

interference at the good-backhaul MAPs, there would not be many more STAs switching 

to associate with these MAPs.  
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Table 7-5: PERFORMANCE FOR THE NETWORKS OF HIGHER NODE DENSITY 

 VC-SS VC-CL VC-oAC JCaBa-oAC 

Uniform 
Throughput 225.0974 244.648 288.4014 295.6415 

Fairness 0.9837 0.9818 0.9882 0.9851 

Hotspot 
Throughput 232.8061 239.213 270.2059 282.0215 

Fairness 0.9238 0.8379 0.9928 0.9913 

 

Finally, we take a look at the performance of UBa, which is the utility fair bandwidth 

allocation algorithm in the JCBA algorithm. Fig. 7.9 (a) depicts the aggregate throughput 

and Jain’s fairness index result when the fairness control parameter α varies from 0.5 to 4. 

It is clear that as α increases, the aggregate throughput deceases and the fairness index 

increases. Fig. 7.9 (b) depicts the per-STA bandwidth results. It is obvious that with a 

larger α, the line is flatter, which indicates a fairer bandwidth allocation. With a smaller α, 

the line is steeper and the area below the line is larger, which indicates a less fair 

bandwidth allocation and higher aggregate throughput. 

Note that the fairness index here reflects the fairness in user bandwidth. There are 

also other definitions of fairness, such as the fairness in user transmission time. A proper 

α value should be determined by the network designer/operator, so that the desired 

fairness can be enforced. As α becomes larger and larger, we get better and better fairness 

in user bandwidth at the expense of lower and lower network resource utilization 

efficiency. It is interesting to notice that in Fig. 7.9 (b), as α increases, the bandwidth of 

the low-bandwidth STAs on the left, which is about 60% of the entire STAs, slightly 

decreases, while the bandwidth of the high-bandwidth STAs on the right, which is the rest 

40% of STAs, dramatically increases. So it might be a good idea to select a smaller α. 

Anyway, UBa is a powerful tool for bandwidth allocation that is flexible in adjusting the 

trade-off between resource efficiency and user fairness. 
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(a) Aggregate throughput and fairness index  

 
(b) Per-STA bandwidth 

Figure 7.9: Performance of UBa with different α value. 

 

7.5. Conclusion 

In this chapter, we have proposed a network resource management framework, 

named JCBA, for WMNs, which jointly considers channel assignment, association 

control, and bandwidth allocation. JCBA framework is composed of three components: a 

utility-based bandwidth allocation algorithm, named UBa, which is flexible in adjusting 
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the trade-off between resource utilization efficiency and user fairness in bandwidth; a 

channel assignment algorithm, named JCaBa, which effectively increases the network 

capacity by reducing the interference at the good-backhaul MAPs; an optimization-based 

association control algorithm, named oAC, which finds approximately optimal 

association solutions such that the network capacity can be further improved by letting 

more STAs associate with the good-backhaul MAPs. In addition, we have proposed a 

local-clique-based network modeling method, to model the concurrent transmission 

constraints in WMNs, whose performance is almost identical to that of the exponential-

time optimal algorithms. We have demonstrated the superior performance of the proposed 

algorithms over the other state-of-the-art schemes through simulations with various 

network topologies and conditions. 
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Chapter 8: Conclusion and Future Works 

8.1. Conclusion 

In this thesis, we have investigated association control mechanisms for wireless mesh 

networks from various aspects. We have proposed several new association control 

schemes for WMNs, which take into consideration the capacity-limited wireless multi-

hop backhaul of WMNs and improve the network performance in terms of aggregate 

throughput, end-to-end packet delay, resource utilization efficiency, user fairness, etc. We 

have proposed practical heuristic association and re-association control schemes for static 

and dynamic WMNs. We have formulated the optimal association problems, for which 

we have proposed approximation algorithms and conducted theoretical analysis. As 

association control, MAP channel assignment, and STA bandwidth allocation are closely 

related to each other, we have proposed a resource management framework that jointly 

considers the three subjects and further improves the network performance. We have 

demonstrated the superior performance of the proposed schemes against the state-of-the-

art schemes via simulations on ns-3 simulator as well as our customized simulator.  

In Chapter 3, we proposed a cross-layer heuristic association scheme that is able to 

effectively allocate more STAs to the good-backhaul MAPs and at the same time avoid 

over-congestion at these MAPs.   

In Chapter 4, we proposed a mobility-aware re-association control scheme that is 

able to prolong mobile STAs’ association time with the good-backhaul MAPs and 
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discover network dynamics in a smart and timely way without interrupting normal 

communication too much. 

In Chapter 5, we formulated the problem of optimal joint association and bandwidth 

allocation in WMNs, considering max-min fairness and proportional fairness objectives. 

We proposed two approximation algorithms for the optimization problems and analysed 

the theoretical approximation ratios as well as the corresponding ratio improvement 

algorithms.  

In Chapter 6, we formulated an optimal joint association and bandwidth allocation 

problem that achieves a utility fairness objective in WMNs. We demonstrated how to 

control the trade-off between resource efficiency and user fairness to achieve the desired 

performance by tuning the proposed control parameters. 

In Chapter 7, we proposed a network resource management framework that is 

composed of three components: a utility-fairness-based bandwidth allocation algorithm, a 

channel assignment algorithm, and an optimization based association control algorithm. 

In addition, we proposed an efficient local-clique based network modeling method whose 

performance is almost identical to that of the exponential-time optimal algorithms.  

8.2. Future Works 

We may find applications of the algorithms, methodologies, and network models of 

our association control schemes proposed for infrastructure WMNs in other network 

scenarios, such as cluster formation in wireless sensor networks or vehicular networks, 

gateway association in ad hoc or mesh networks, congestion relief at hot-spot cells in 

WLANs or cellular networks, user association/re-association in relay networks, user 

association in hybrid mesh networks where inter-STA communication is possible, etc. 



133 
 

In our heuristic association control schemes proposed in Chapter 3 and Chapter 4, we 

adopted the 802.11 DCF as the MAC protocol of the wireless backhaul. It has been 

shown in [6] that such random access protocol, when applied in the wireless multi-hop 

backhaul network, results in serious unfairness problem, i.e. the MAPs that are hops away 

from the portal achieve extremely low throughput. Therefore, it may be better for the 

wireless backhaul in WMNs to adopt deterministic access control protocols such as 

TDMA. We can propose a joint association control and backhaul transmission scheduling 

scheme. In such a scheme, more backhaul transmission time slots can be allocated to the 

MAPs with more associated STAs and STAs can make better association decision as the 

MAPs’ backhaul capacity are deterministic. 

Jointly consider association control and backhaul routing. Congestion may occur at 

the access networks or the wireless backhaul. Association control can relief the access 

network congestion by controlling load distribution among neighbouring MAPs, but 

cannot help much with the backhaul congestion. In case of congestion at certain backhaul 

path, re-routing may be necessary to improve the backhaul capacity. However, changes in 

backhaul routing may trigger re-association. Therefore, association and routing should be 

jointly considered to maximize the end-to-end performance. 

To further improve the reassociation performance, we can propose a novel access 

network beaconing scheme such that at the beginning of a Beacon Transmission Window 

(BTW), all STAs and MAP access interfaces switch to a common beaconing channel and 

the MAPs send beacons in their allocated Beacon Transmission Slot (BTS). At the end of 

a BTW, all nodes switch back to their originally associated channels. A STA can switch 

to the neighbouring channels to measure the interference when its associated channel is 

busy. With such a synchronized beaconing scheme, seamless handoff and real time 

network condition discovery are possible as STAs do not need to scan all the channels 
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and wait for beacons for at least 5ms at each channel. In addition, beacon collision can be 

eliminated.  

Besides channel assignment and association control, another powerful resource 

management tool is power control. There could be two types of power control for MAPs. 

One is the data packet power control that can reduce the inter-cell interference and 

increase the aggregate throughput, but it requires cooperation at the MAC protocol to 

avoid serious hidden node problem. The other is the beacon frame power control that 

enlarges or shrinks a MAP’s cell by accordingly adjusting the beacon transmission power. 

The second one is preferred as it requires no additional modifications at the STAs or the 

protocols. Since we prefer more STAs to associate with the good-backhaul MAPs, it can 

be foreseen that the MAPs near to the portal would have larger cell range and higher 

beacon power. An algorithm needs to be derived for the optimal beacon transmission 

power control. 

Compare the performance of distributed schemes and centralized schemes. For 

WMNs, the access network association control and the backhaul transmission control 

must be jointly considered. Based on different degree of centralization across layers, we 

can have 3 types of WMNs: 1) fully distributed network where STAs make their own 

association decisions based on local measurement and backhaul transmission is 

coordinated by distributed contention-based schemes; 2) half distributed network where 

the association decision is made locally by STAs while the backhaul transmission is 

coordinated by a central controller; 3) fully centralized network where association and 

transmission are optimized and fully centrally controlled. The first type of network is 

good at scalability and easy implementation, but suffers from poor performance, low 

capacity, and unfairness, due to the backhaul contention. The third type of network is 

optimal but may not be scalable since the entire network condition must be known. The 
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second type of network is promising. With certain degree of backhaul capacity stability, 

STAs may locally make association decisions that are closer to the optimal. Besides pure 

heuristic metric-based association schemes, other distributed schemes need to be studied. 

For example we can apply the annealed Gibbs sampler technique to achieve optimal 

performance through distributed association control. However, this technique requires 

STAs keep changing their associations with certain probability until reaching 

convergence; we need to study the convergence speed and the impact on performance 

caused by the disrupted communication in the process of convergence. 
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