2,794 research outputs found

    On the assessment of landmark salience for human navigation

    Get PDF
    In this paper, we propose a conceptual framework for assessing the salience of landmarks for navigation. Landmark salience is derived as a result of the observer's point of view, both physical and cognitive, the surrounding environment, and the objects contained therein. This is in contrast to the currently held view that salience is an inherent property of some spatial feature. Salience, in our approach, is expressed as a three-valued Saliency Vector. The components that determine this vector are Perceptual Salience, which defines the exogenous (or passive) potential of an object or region for acquisition of visual attention, Cognitive Salience, which is an endogenous (or active) mode of orienting attention, triggered by informative cues providing advance information about the target location, and Contextual Salience, which is tightly coupled to modality and task to be performed. This separation between voluntary and involuntary direction of visual attention in dependence of the context allows defining a framework that accounts for the interaction between observer, environment, and landmark. We identify the low-level factors that contribute to each type of salience and suggest a probabilistic approach for their integration. Finally, we discuss the implications, consider restrictions, and explore the scope of the framewor

    Driver’s Distraction and Understandability of Using GPS Navigation

    Get PDF
    GPS navigation is available on smartphone application providing turn-by-turn navigation instruction on smartphones and the distraction from GPS usage while driving also became an issue. In this paper, we present the strategy to mitigate the level of distraction by manipulating the type of display visual (2D and 3D) and placement (right, steer and left). We conducted field experiments in left-hand real traffic with 12 subjects. Our result illustrated that 3D conditions implied much fewer frequency of eye glances (FOG) than 2D conditions. Furthermore, steer conditions has much higher FOG than right and left placement conditions, but we found no significant effects on the ease of understanding (EOU) for visual display difference and the number of error for all conditions

    Optimising landmark-based route guidance for older drivers

    Get PDF
    In-vehicle navigation systems (IVNS) have the potential to benefit older drivers, reducing stress associated with way-finding and providing on-trip support, especially in unfamiliar locations. However, existing IVNS present challenges to usability, resulting in lack of uptake and over-reliance on pre-trip planning. This paper presents research aimed at identifying features that make IVNS user-friendly and appropriate for older drivers. Studying navigational performance within a simulated driving environment, it focuses on the use of landmarks with route guidance information, and the most appropriate method of information provision (audio only, visual only or a combination of audio and visual). It also assesses potential gender differences that might arise with landmark-based navigational information. Solutions include use of appropriate roadside landmarks, and information delivered through a combination of audio and icon-based visual format. These features result in lower workload and fewer navigational errors. The audio/visual modality reduces the hazard of distraction by landmarks resulting in fewer visual glances and lower glance duration to the roadside compared to other modalities. Design and provision of IVNS tailored to older drivers’ needs can make a considerable contribution to maintaining individual mobility for longer

    Urban sound mapping for wayfinding – a theoretical approach and an empirical study

    Get PDF
    Conventional navigation systems use visually perceptible landmarks to navigate their users from a starting point to a destination. However, sometimes visual information is not enough for route guidance. Visually-impaired or elderly people may not be able to navigate using the visual sense. Furthermore, there may exist no outstanding (i.e., salient) visual landmarks that could be used to navigate. In such a case auditory information may be a helpful guide. We performed two online studies and a focus-group interview to identify possible sound classes in an urban environment. Based on our results, we gathered sounds in Augsburg and classified them according to their source. The findings support our notion that auditory information can be useful for spatial orientation and guidance in addition to or even replacing visual information

    The Effect of Augmented Reality Treatment on Learning, Cognitive Load, and Spatial Visualization Abilities

    Get PDF
    This study investigated the effects of Augmented Reality (AR) on learning, cognitive load and spatial abilities. More specifically, it measured learning gains, perceived cognitive load, and the role spatial abilities play with students engaged in an astronomy lesson about lunar phases. Research participants were 182 students from a public university in southeastern United States, and were recruited from psychology research pool. Participants were randomly assigned to two groups: (a) Augmented Reality and Text Astronomy Treatment (ARTAT); and (b) Images and Text Astronomy Treatment (ITAT). Upon entering the experimental classroom, participants were given (a) Paper Folding Test to measure their spatial abilities; (b) the Lunar Phases Concept Inventory (LPCI) pre-test; (c) lesson on Lunar Phases; (d) NASA-TLX to measure participants’ cognitive load; and (e) LPCI post-test. Statistical analysis found (a) no statistical difference for learning gains between the ARTAT and ITAT groups; (b) statistically significant difference for cognitive load; and (c) no significant difference for spatial abilities scores

    Timing of Pedestrian Navigation Instructions

    Get PDF
    During pedestrian navigation in outdoor urban environments we often utilize assistance systems to support decision-making. These systems help wayfinders by providing relevant information withing the context of their surroundings, e.g., landmark-based instructions of the type "turn left at the church". Next to the instruction type and content, also the timing of the instruction must be considered in order to facilitate the wayfinding process. In this work we present our findings concerning the user and environmental factors that have an impact on the timing of instructions. We applied a survival analysis on data collected through an experiment in a realistic virtual environment in order to analyze the expected distance to the decision point until instructions are needed. The presented results can be used by navigation systems for instruction timing based on the characteristics of the current wayfinder and environment

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    On the assessment of landmark salience for human navigation

    Full text link
    In this paper, we propose a conceptual framework for assessing the salience of landmarks for navigation. Landmark salience is derived as a result of the observer’s point of view, both physical and cognitive, the surrounding environment, and the objects contained therein. This is in contrast to the currently held view that salience is an inherent property of some spatial feature. Salience, in our approach, is expressed as a three-valued Saliency Vector. The components that determine this vector are Perceptual Salience, which defines the exogenous (or passive) potential of an object or region for acquisition of visual attention, Cognitive Salience, which is an endogenous (or active) mode of orienting attention, triggered by informative cues providing advance information about the target location, and Contextual Salience, which is tightly coupled to modality and task to be performed. This separation between voluntary and involuntary direction of visual attention in dependence of the context allows defining a framework that accounts for the interaction between observer, environment, and landmark. We identify the low-level factors that contribute to each type of salience and suggest a probabilistic approach for their integration. Finally, we discuss the implications, consider restrictions, and explore the scope of the framework

    Neuroadaptive mobile geographic information displays: an emerging cartographic research frontier

    Get PDF
    Mobility, including navigation and wayfinding, is a basic human requirement for survival. For thousands of years maps have played a significant role for human mobility and survival. Increasing reliance on digital GNSS-enabled navigation assistance, however, is impacting human attentional resources and is limiting our innate cognitive spatial abilities. To mitigate human de-skilling, a neuroadaptive (mobile) cartographic research frontier is proposed and first steps towards creating well-designed mobile geographic information displays (mGIDs) that not only respond to navigators’ cognitive load and visuo-spatial attentional resources during navigation in real-time but are also able to scaffold spatial learning while still maintaining navigation efficiency. This in turn, will help humans to remain as independent from geoinformation technology, as desired. La mobilité, dont la navigation et l'orientation, est un besoin humain fondamental pour la survie. Pendant des milliers d'années, les cartes analogiques ont joué un rôle significatif pour la mobilité humaine et sa survie. Pourtant, la dépendance grandissante vis-à-vis de l'assistance à la navigation à l'aide de données numériques GNSS, impacte les ressources de l'attention humaine et limite nos capacités innées de cognition spatiale. Pour atténuer la perte de compétence humaine, un front de recherche sur la cartographie (mobile) neuroadaptative est proposé ainsi que des premières étapes pour la création d'écrans d'informations géographiques mobile (mGID) bien conçus, qui non seulement répondent à la charge cognitive et aux ressources de l'attention visio-spatiale des utilisateurs navigateurs pendant la navigation temps-réel mais aussi qui soient capables d'élaborer un apprentissage spatial tout en assurant l'efficacité de la navigation. Cela aidera les humains à rester aussi indépendant de la technologie de l'information géographique qu'ils le souhaitent
    • …
    corecore