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Introduction

Mobility, including navigation and wayfinding, is considered an universal and cross-cul-
tural requirement (Coutrot et al., 2022). For thousands of years, maps have played a sig-
nificant role in supporting humans’ mobility activities, and thus survival (Brotton, 2012).
Along with the recent digital transformation, however, increasing reliance on assistive,
location-aware, mobile geographic information displays (mGIDs) to support mobility in
various movement modalities have already shown to negatively influencing our daily
space-time behavior, i.e., ‘death-by-GPS’ (Aporta & Higgs, 2005; Lin et al., 2017), and cog-
nitive resources (Ruginski et al., 2019). Relying more and more on digital GNSS-enabled
navigation assistance and off-loading spatial abilities to its self-localization capacity is
impacting our attentional resources away from the traversed environment towards the
abused geographic information technology (Gardony et al., 2015) and is thus limiting
our innate cognitive spatial abilities and perceptional resources (Ishikawa et al., 2008;
Ruginski et al., 2019; Sugimoto et al., 2022). This is worrisome, because humans’ naviga-
tion abilities influenced by long-term acquired, and repeatedly trained spatial abilities is a
significant indicator for and have respective consequences on the success of human life
courses. Spatial abilities and skills are critical already early in life, such as being a strong
predictor for success in science, technology, engineering, and math (STEM) education
fields (Uttal & Cohen, 2012) and thus they are relevant for employability for well-paying
jobs (Ishikawa & Newcombe, 2021). Moreover, these skills are also important for
healthy aging and well-being late in life, as they have also shown to be predictive of
onset of Alzheimer’s (Coughlan et al., 2018). Some even warn about technological infan-
tilizing and de-skilling of society because of over-reliance of location-aware mGIDs for
navigation (Thrash et al., 2019). Smart assistive devices are attractive to use during cogni-
tively challenging navigation and wayfinding tasks, e.g., specifically when navigating in
unfamiliar environments, because they allow us to off-load strenuous perceptual and cog-
nitive resources, innate abilities, and skills to easy-to-use technology (Ishikawa et al., 2008;
Thrash et al.,, 2019). This happens often in parallel to for various other activities. This is akin
to the now ubiquitous use of pocket calculators or digital cashiers that have taken over
our mental arithmetic calculation skills. However, recent mGIDs, as typical cartographic
interfaces to location-aware assistive navigation systems (Ricker & Roth, 2018), are still
not yet well adapted to the mobile needs of the individual wayfinder or to different
groups of navigators and their specific navigation and wayfinding requirements, contexts
(Bartling et al., 2023; Nivala & Sarjakoski, 2007), and tasks. They are also not well suited to
respond to navigators’ changing neurocognitive and psychophysiological resources
during navigation, their spatial learning (Bertel et al, 2017), and/or (rapidly) changing
environmental-, mobile map- and task-contexts (Bartling et al., 2022; Ruginski et al., 2022).

While ongoing cartographic research and the cognate visualization communities have
focused predominantly on building smart geographic information tools and respective
highly interactive graphic human-computer interfaces - also now available on hand-
held and finger-driven small-screen-location-aware assistive devices (Ricker & Roth,
2018; Roth, 2017) and in augmented reality (Dickmann et al., 2021; Narzt et al., 2006) — fun-
damental investigations based on the empirical evidence of the who, what, how, when, and
why of mobile human- and context-dependent spatio-temporal inference and decision
making, spatial learning, and resulting human mobility behavior with mGIDs have received
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considerably less attention (Griffin & Fabrikant, 2012; Reichenbacher et al., 2022; Ruginski
et al., 2022; Thrash et al., 2019). This is limiting for the cartographic research community
because humans rarely make mGlID-assisted space-time decisions in isolation, and only
with map displays (Abowd et al., 1998; Bartling et al., 2022; Dalton et al., 2019; Delikostidis
et al., 2013, 2015, 2016; Ruginski et al., 2022), as they need to acquire spatial knowledge
from different sources during navigation (Ahmadpoor & Shahab, 2019) to be successful
(Ruginski et al., 2019). Location-based Services (LBS) research for increasingly mobile citi-
zens of the information society that solely focuses on technical improvements (Michael &
Michael, 2011) or only on graphic interface design (Ricker & Roth, 2018) issues are likely
doomed to failure because (1) they miss how different humans with varying training, back-
grounds, and expertise reason and learn about different kinds of environments (Coutrot
et al,, 2022), and how humans make different mGID-assisted decisions depending on
their task context, respectively (Ruginski et al., 2022), (2) they ignore the dynamically chan-
ging situatedness of the visuo-spatial decision-making context and navigation task
domains (Delikostidis et al., 2016), and (3) they ignore humans’ varying neurocognitive
(Cheng et al., 2022, 2023) and psychophysiological resources (Credé et al., 2019, 2020) in
specific mGID-assisted decision making contexts.

This paper further emphasizes a long-standing cartographic aim, that is, serving geo-
graphic information that can be easily understood, learnt and recalled, but this aim must
now be extended to the citizens of the digital information society with increasingly
mobile needs and uses. For such a mobile citizen, this could mean that geographic infor-
mation would have to be adapted on the fly to their specific changing visuo-spatial
decision-making needs and contexts, for example, their changing familiarity with tra-
versed environments during navigation (Dijkstra et al., 2014; Gokl et al., 2019; Lovelace
et al., 1999; Manrique-Sancho et al., 2018; Merriman et al., 2016; Quesnot & Roche,
2015; Zhu et al., 2022), and making appropriate mGID-assisted wayfinding decisions. In
this contribution, we emphasize the need for user-centered LBS and mGIDs that are neu-
roadaptive (Fabrikant, 2022; Fairclough & Zander, 2022), to not only support diverse indi-
viduals or groups of navigators for reaching their desired destinations rapidly, effortlessly,
and safely (Savino, von Sawitzky, et al., 2021), but more importantly, to also scaffold their
individual spatial learning, considering their variable spatial abilities and skills. In doing so,
we wish to reduce the danger of humans’ spatial abilities further deteriorating because of
increased passive navigation system use (Aporta & Higgs, 2005; Lin et al., 2017; Sugimoto
et al., 2022). The goal would be for digital citizens to not get lost and to remain as inde-
pendent as necessary from technology (Thrash et al., 2019) should the digital assistance
fail for whatever reason (Ruginski et al., 2022).

This contribution, thus, advocates for a novel empirical research frontier, and pre-
sents first steps taken towards a neuroadaptive (mobile) cartography, an already emer-
ging interdisciplinary research community at the intersection of thematically
complementary research fields related to human mobility, such as cartography, geogra-
phy, GIScience (e.g., geographic information visualization, spatial cognition, LBS, etc.),
computer science (e.g., human-computer interaction, information visualization, etc.),
and use-inspired cognitive neuroscience (e.g., experimental psychology, neuroergo-
nomics, etc.). This cartographic research frontier is guided by a fundamental and use-
inspired question: How do we need to design future human- and context-adaptive
mGIDs that guide visual attention, mitigate cognitive load, and support spatial learning
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Figure 1. Long-term, three-pronged neuroadaptive mobile geographic information display research
framework, considering human-, task- and context-adaptive research dimensions (Fabrikant, 2022: Fig. 1).

of diverse wayfinders when they navigate through various types of environments in varied
mobility task contexts?

We propose to advance in this new cartographic research frontier along three inter-
twined paths, as shown in Figure 1. In doing so, we can further contribute to long-stand-
ing key research challenges related to communicating geographic information effectively
and efficiently to a variety of target audiences, as formulated by the various research com-
missions of the International Cartographic Association (ICA) (Andrienko et al., 2010, 2014;
Fabrikant & Lobben, 2009), including the ICA Visual Analytics commission (Coltekin et al.,
2017; Robinson et al., 2023); the ICA Location-based Services commission (Huang et al.,
2018), and the ICA Designing the User Experience commission (Ricker & Roth, 2018; Roth,
2017). More specifically, it extends the research agenda of the ICA Cognitive Issues in
Geographic Information Visualization (Andrienko et al., 2014; Griffin et al., 2017; Griffin &
Fabrikant, 2012; Robinson et al., 2023),

Researchers have already begun to investigate neuroadaptive mGIDs (namGID) with a
human-centered, empirical methodology, capitalizing on recent advances in psychophy-
siology and neuroadaptation, by focusing on human- and context-adaptive mGID use
situations, as summarized in Figure 1.

The various answers to this proposed fundamental and use-inspired neuroadaptive
cartographic research challenge will inform evidence-based design guidelines for future
namGIDs that not only respond to navigators’ mental workload and available visuo-
spatial attentional resources during navigation, but that are also able to scaffold spatial
learning while maintaining navigation efficiency. More specifically, we propose this carto-
graphic research frontier to let the cartographic design be the function of an interplay of
humans’ individual differences, group differences, varied backgrounds, trainings, behaviors,



INTERNATIONAL JOURNAL OF CARTOGRAPHY e 5

task needs and knowledge requirements, within changing contexts of mGID use (Griffin et al.,
2017; Griffin & Fabrikant, 2012). The author posits herein that human wayfinding and navi-
gation must include spatial learning as a performance measure, thus going beyond the
current paradigm of only relying on accuracy and time to evaluate mobility performance.
A future successful namGID design thus must mitigate deteriorating spatial abilities, even
with navigation assistance over-reliance. To achieve this goal, it is suggested to first
focus on a deeper understanding of how wayfinders’ and mGID users’ visuo-spatial atten-
tion, cognitive load, and spatial learning interact during mGIDs-assisted navigation in
varying (e.g., familiar and unfamiliar urban) environments (Fabrikant, 2022). In a second
step, one must address how this relationship can be shaped in a future neuroadaptive
setting. This is necessary, to then develop evidence-based design guidelines for future
namGIDs that are not only human- and context-adaptive for maintaining navigation
efficiency, but also scaffold spatial learning in changing environments.

Related work

While researchers in fragmented research fields have been tackling individual corners of pro-
posed triangle in Figure 1 (Coutrot et al., 2022; Delaux et al., 2021), and/or worked along one
of the three axes (Huang et al., 2018; Ruginski et al., 2022; Thrash et al., 2019), it is still very rare
to find this kind of empirical research in cartography and GlScience, probably because it is a
wicked problem’, and thus very challenging to be tackled by cartographers alone, without
any training in psychology, cognitive science, and neuroscience. Prior empirical cartography
research focused on the design of the mobile map interface (Bartling et al.,, 2022; Ricker &
Roth, 2018; Roth, 2017; Van Elzakker & Delikostidis, 2014), and studied the effects of
mGIDs-assisted navigation and wayfinding for human spatio-temporal decision making
and behavior, i.e., supporting efficient and effective navigation (Delikostidis et al., 2016;
Rohs et al,, 2007; Savino et al., 2019; Savino, Sturdee, et al, 2021; Savino, von Sawitzky,
etal., 2021). The impact of mGID use on spatial learning while humans navigate in naturalistic,
typically dynamically changing environments, has been less studied (Briigger et al.,, 2019;
Ruginski et al,, 2022; Thrash et al., 2019). We posit that mGID-assisted navigation is only
effective when navigators are not only accurately and timely reaching their desired desti-
nations, but more importantly, when they are not spatially de-skilling. We need to know
more about how mGID-assisted navigators, for instance, with changing environmental fam-
iliarity, are seeing and remembering locations and routes in their everyday lives or in novel
environments; how do they identify and attend to task-relevant geographic features (i.e.,
landmarks) in their vision field along the way; how they are choosing and remembering
the path they took at street intersections, and how these activities relate to human'’s visuo-
spatial attention, mental work load, and spatial learning during their mGID-assisted move-
ment through changing environmental contexts (e.g., weather, time of the trip, familiarity,
etc.)? So, why should cartographers focus, for instance, on environmental familiarity, as
one example of a variable environmental context, and why is this important (Zhu et al., 2022)?

Navigation context: environmental familiarity

Familiarity with an environment has been an elusive concept in geography (Gale et al.,
1990) and because of this difficulty, it may have been rarely studied in spatial cognition
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research and navigation (Lovelace et al., 1999; Manrique-Sancho et al., 2018; Merriman
et al,, 2016; Quesnot & Roche, 2015; Zhao et al., 2023). Unfamiliar environments are
easier to control for various confounding variables, including environmental configur-
ations, path properties, and task-relevant features. Also, unwanted background knowl-
edge and prior training of participants can be effectively screened. However, the level of
environmental familiarity may even often change during (ecologically valid) everyday navi-
gation. Most empirical wayfinding and navigation research have been carried out in unfa-
miliar environments (Ishikawa, 2020), where knowledge of meaningful locations (i.e.,
destination/landmark knowledge), the shape and distance of routes (i.e., route knowl-
edge), and/or geometric knowledge of the layout of the traversed environment (i.e.,
survey knowledge) are not available at the outset to navigators (Figure 2) or vary in
studied participant groups. For a neuroadaptive cartographic research frontier, the chan-
ging navigation context, for example, navigators’ familiarity of a traversed environment
and how it relates to mGID-assisted navigation and spatial learning serves as an ecologi-
cally valid, naturalistic use-inspired study case. It is more common in everyday life that
wayfinders have at least basic familiarity with an entirely traversed environment in an
everyday mGlD-assisted navigation situation (Coutrot et al, 2022; Dalton et al, 2019;
Savino, Sturdee, et al., 2021). Moreover, the level of familiarity can change during an every-
day navigation experience. Totally unfamiliar environments are probably least often
encountered, except perhaps for extra-terrestrial explorers who should not be considered
first here. The role of spatial knowledge (i.e., landmark, route, survey knowledge) and its
availability for navigators across wayfinding tasks have been systematically classified by
Wiener et al. (2009)" wayfinding taxonomy, specified for unaided navigation tasks. We
propose to adapt it for today’s ubiquitous aided navigation, as shown in Figure 2.

NAVIGATION
WAYFINDING

planned movement towards distant locations in space:
»  requires attention, spatial reasoning, decision making,
internal and external spatial representations, etc

e % y
o wayfinding) AIDED WAYFINDING

navigation assistance using cr‘ba\ instructions, sx;"\a,c
geographic information displays, | \
L_

DIIR‘ECTED WAYFINDING

with a e destination/landmark inform:

LANDMARK SEARCH LANDMARK APPROXIMATION

locational landmark knowledge unavailable: searching o
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ROUTE FINDING ROUTE FOLLOWING
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inged gate . A T
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Figure 2. Navigation taxonomy by task type and available spatial knowledge types during wayfinding,
adapted from Wiener et al. (2009, Fig. 1) for the assisted navigation case [mobile map source: https://
www.google.com/maps].
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Wiener et al. (2009) acknowledge that aided and unaided wayfinding are not mutually
exclusive categories in everyday navigation tasks. Consider, for instance, using your
public transport route on your morning commute to work, without using any navigation
assistance, to later in the day rely on map-assisted wayfinding to find a newly opened
restaurant for your lunch break, in a little explored, and thus novel neighborhood.
Herein lies a great opportunity for the cartographic research community concerned
with communicating geographic information with cartographic displays dependent on
navigators available spatial knowledge. Location-aware navigation devices are popular,
precisely because they offload cognitively demanding tasks such as self-localization
and orientation from navigators to a digital assistive system (Brligger et al., 2019),
with already known detrimental consequences for human navigators (Ruginski et al.,
2019). We thus highlight (orange text) environmental knowledge requirements relevant
for aided wayfinding in Figure 2, including landmarks, route, and survey knowledge with
varying degrees of familiarity by navigators. What role the degree of familiarity plays in a
traversed environment, and how respective varying cognitive demands can be sup-
ported by an mGID, or rather, as we propose, a namGID, and how this can further
support spatial learning is what we suggest cartographers to jointly work on with
others in an interdisciplinary context from now onwards. As a step towards this,
passive neurocognitive and psychophysiological and cognitive mobile sensors recording
in a highly controlled virtual reality (VR) lab seems very useful (Mavros et al., 2022; Zhao
et al., 2023).

Neuroadaptation

Neuroadaptive Systems (NaS) is an emergent form of context-aware computing (Fair-
clough, 2023). It is a closed-loop approach to human-computer interaction (Fairclough,
2022), emerging from cognitive neuroscience and neuroergonomics (Fairclough &
Zander, 2022). Neuroadaptation has evolved as an interdisciplinary and use-inspired
research field on its own (Fairclough & Zander, 2022), with dedicated journals and confer-
ences proceedings in the emerging field of neuroergonomics, which also includes brain-
computer interfaces (BCl: Hettinger et al., 2003). Hettinger et al. (2003) define a neuroa-
daptive interface as an ‘ensemble of computer-based displays and controls whose functional
characteristics change in response to meaningful variations in the user’s cognitive and/or
emotional states’ (p. 220). Neuroadaptation can be used for supporting human decision
making and behavior in all sorts of human contexts and user tasks (Fairclough &
Zander, 2022), and it has also been successfully applied to changing human behavior,
if used in a neurofeedback context (Sitaram et al., 2017). Dehais et al. (2020), for
example, demonstrated that neuroadaptive systems (NaS) can improve users’ task per-
formance, attention, and engagement, but in studies that are not yet related to maps,
geographic information, and mGID-assisted navigation, which we suggest to the carto-
graphic community as a new research frontier.

Neuroadaptive cartography: the new research frontier

While adaptive cartography has been discussed in the cartographic literature already
since the early 2000s (e.g., Reichenbacher, 2001) the GlScience community has not yet
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explored the possibilities of neuroadaptation for human-centered geoinformation tech-
nology (GIT) and geographic information systems (GIS), and thus has not yet made neu-
roadaptations to the user interface of mGIDs, especially used for navigation, and based on
in-situ human sensing, and respective real-time analyses of human sensor data collected
during navigation (Bartling et al., 2022; Ruginski et al., 2022; Thrash et al., 2019). First steps
into a namGID future must rely on expertise in neurocognitive and psychophysiological
human sensing and data analytics.

There are significant research challenges ahead before a neuroadaptive mobile geo-
graphic information display (namGIDs) can be deployed that would be assisting naviga-
tors in wayfinding in naturalistic settings, and specifically to scaffold spatial learning
(Fabrikant, 2022). For example, passive human sensor data including, mobile eye tracking
(mET), mobile galvanic skin response recordings (mGSR), and mobile electroencephalo-
graphy (mEEG) should be collected in real time to study humans’ situated neurocognitive,
and psychophysiological responses and their effect on mGID-assisted navigation perform-
ance and spatial learning during navigation in unfamiliar (virtual and real) urban environ-
ments (Dey et al.,, 2019; Wascher et al., 2023).

As a unique novel and first-time contribution to this cartographic (including LBS and
GIScience) research frontier, and cognate neuroergonomics fields, we have employed
MEEG coupled with mET to study navigators’ spatial learning by assessing cognitive
load when using mGIDs in the VR lab (Cheng et al,, 2022, 2023) and in-situ outdoors
(Hilton et al., 2023; Kapaj et al., 2022, 2023).> We were able to leverage the EEG processing
pipelines that specifically relate to evaluating EEG signals collected in a mobile context
(Wunderlich & Gramann, 2021) (Figure 3)3

Virtual environments (VR) provide rich opportunities to study phenomena with high
fidelity that may be otherwise difficult or impossible to do out in the real world

Figure 3. Real-time ambulatory assessment of a navigator’s visual attention using mobile eye tracking
(mET) and mobile encephalography (mEEG) measurements to assess cognitive load in during a mGID
assisted wayfinding task outdoors (Fabrikant, 2022: Fig. 5).
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(Delikostidis et al., 2013; Jerald, 2015). Because of its controlled laboratory nature, VR
allows to measure human responses and behaviors using psychophysiological and neu-
ropsychological sensors of various kinds precisely and implicitly (Dey et al., 2019; Zhao
et al., 2023), while offering high experimental control over the surrounding context of
the observed behavior (Baker & Fairclough, 2022).

For example, Cheng et al. (2022, p. 2023) examined cognitive load with mEEG during
map-assisted navigation (i.e., route following tasks) through an urban VR. The mGID either
depicted 3, 5, or 7 landmarks, selected from the followed route. Participants’ spatial learn-
ing performance did not further improve as hypothesized (Miinzer et al., 2012) when
seeing seven landmarks on mGID compared to the 3- and 5-landmark conditions
(Cheng et al., 2022, 2023). Still, the mEEG signal suggests that more cognitive resources
were expended in the 7-landmark condition. These findings suggest participants’ atten-
tional resources might not be effectively directed to the relevant landmarks in the
virtual environment for the 7-landmark condition, because studying 7 landmarks on
the mGID during navigation might lead to cognitive overload, compared to showing
only 3 or 5 landmarks on the mGID. Possibly a cognitive load spillover effect during
map-assisted wayfinding during map viewing might affect cognitive load during goal-
directed locomotion in the environment. By means of mEEG (Cheng et al., 2022, 2023),
mMGSR (Credé et al., 2019, 2020), and mET (Zhao et al., 2023) - that have already been suc-
cessfully deployed to track humans’ cognitive states, affective states, and visuo-spatial
attention in VR passively — it is now possible to actively adapt the VR display in a
closed-loop neuroadaptive fashion (Dey et al., 2019; Fairclough, 2022). Based on the adap-
tive regulation of navigators' visual attention (mET), their cognitive state (mEEG), and their
affective state (mGSR), we can, for instance, adapt the experienced VR display immersion
(monoscopic vs. stereoscopic views), mGID abstraction levels, such as 2D vs. 3D landmarks
(Kapaj et al.,, 2022; Starrett et al., 2021), various levels of mGID system automations, e.g.,
GPS localization on vs. off, (Briigger et al., 2019, (Zhao et al., 2023)), etc. The namGID also
seen in the VR can be made to blink to alert the user, or to make decision-irrelevant infor-
mation visually less salient (Caduff & Timpf, 2008), and thus, further regulate human visuo-
spatial attention (Fairclough, 2022). In doing so, the namGID can influence the navigator
as to which of the seen environmental features (controlled stimuli) should be prioritized
for effective spatial learning, how visuo-spatial attention should be divided between con-
current stimuli for efficient spatial learning, etc. A neuroadaptive technology that accu-
rately monitors the process of attentional regulation can thus shape the direction and
intensity of human information processing via targeted adaptations at the human-
system interface, e.g., enhanced stimulus salience, suppression of distracting stimuli,
introduction of additional information formats (Fairclough, 2022). Another exciting
opportunity for such a closed-loop namGID is the dynamic adjustment of task demand,
e.g., the direction (increase/decrease), magnitude, or timing, of information presentation
based on navigator’s ongoing psychophysiological and neuropsychological states (Fair-
clough, 2022). Figure 4 suggests schematically a closed neuroadaptive loop that
adjusts the saliency of landmarks displayed on the namGID. This is based on individual
navigators’ changing familiarity of the traversed environment, and ongoing task
demands, during navigation which is captured by changing cognitive and attentional
resources used during wayfinding in an urban setting and measured continuously via
cognitive load through an mEEG. If navigators’ cognitive and psychophysiological
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. .
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drives design on mGID

highlighted landmark
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Figure 4. Closed loop namGID-assisted navigation based on (1) human factors (i.e., navigator’s back-
ground, abilities, neuro-cognitive and psychophysiological resources, etc.), (2) context factors (e.g.,
time pressure, navigation modality, etc.), and (3) environmental factors (e.g., indoor, or outdoor, land-
scape type, weather, etc.) [*map source: https://www.google.com/maps].

resources are reaching an individually assessed threshold during navigation, suggesting
over-taxation of neurocognitive resources, the graphic information density on the
namGID is reduced, to not further overload their visuo-spatial resources, for continued
spatial learning to happen.

Neuroadaptive mGID (namGID) testbed

Fabrikant (2022) and team members have begun to build a neuroadaptive testbed to
update human- and context-dependent namGIDs in a closed-loop approach, to pilot
first steps along the research avenues suggested in Figure 1 for the proposed new

Figure 5. Neuroadaptive mGIDs in own gamified navigation setting: (b) The world a test participant is
experiencing wearing the HMD VR over an EEG cap (a) is projected onto a large, screen-based CAVE VR
system  (https://www.geo.uzh.ch/en/units/giva/services/cave-automatic-virtual-environment.html;
https://www.geo.uzh.ch/en/units/giva/services/virtual-reality-HMD.html) (Fabrikant, 2022: Fig. 6)
seen in the background of (a).



INTERNATIONAL JOURNAL OF CARTOGRAPHY 1

Figure 6. Hand-held GID-assisted navigation in urban VR: The mGID (a) shows a navigator’s current
location and viewing direction in the urban VR (c), and the route to the nearest café is highlighted. The
namGiID (b) automatically filters task-irrelevant landmarks and highlights the route to the nearest café
[image source: Dr. Mona Bartling].

cartographic research frontier. Figure 5 depicts a working namGID prototype, deployed in
a serious (navigation) gaming context, firstly introduced to the public at a science fair at
the University of Zurich in 2021 (see note 4). The left image (a) shows a player with a head-
mounted VR display (HMD) coupled with mEEG, immersed in the virtual navigation game.
What they are seeing is projected onto a cave automatic virtual environment (CAVE)
system in the author’'s VR lab. This virtual urban navigation game is inspired by
Pokémon GO where pedestrian navigators need to collect given objects (i.e., stars in
Fig. 5.1) or other items during a wayfinding task in an urban VR. Landmarks and other
symbols are shown along the route (Fig. 5.5) in the urban scene (Fig. 5.2) and on the
virtual mGID (Fig. 5.3). Depending on players current cognitive load, captured in real-
time with an mEEG, the empty black brain outline in the middle of the player’s vision
field fills up in magenta (Fig. 5.4). In another game versions a pumping heart symbol
changes dynamically, based on navigators’ affective state, captured in real-time with a
smart watch that records a navigator's mGSR and heart rate.*

Another namGID test case could be deployed in a hybrid setting, as shown in Figure 6,
in closed-loop neuroadaptation, triggered by neurocognitive (e.g., Dey et al, 2019),
affective,” and behavioral (i.e., task completion time, navigation accuracy, etc.) measure-
ments in real-time. The namGID (Figure 6(b)) is synched with the urban VR will automati-
cally filter out task-irrelevant landmarks from traditional mGIDs that look like GoogleMap,
AppleMap, BingMap, etc. (e.g., Figure 6(a)), dependent on participants’ mental workload.
With concurrent mET we can monitor how often and how long participants visually
attend to task-relevant landmarks in the traversed environment or on the mGID/
namGilD (i.e.,, at turning points at intersections, landmarks, etc.) to support spatial learn-
ing, and how this correlates with changing environmental contexts, task demands, etc.
measured by CL.

As with very recent artificial intelligence developments (i.e., LLMs), we need to carefully
consider emerging ethical concerns related to privacy and informed consent issues that
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arise for novel neuroadaptive applications in this emerging mobile cartographic research
frontier which we touch on briefly below.

Ethics and privacy issues in neuroadaptation

Of course, we must be aware of new ethical concerns related to privacy and informed
consent that arise in new ways for neuroadaptive applications, including how NaS can
influence self-awareness, self-knowledge, and a sense of agency (Fairclough, 2023). Neu-
roadaptive systems continuously collect data and learn from users’ behavior, and possibly
might respond automatically or adapt in ways that namGID users are not being aware of
happening, and/or might not wish or nor prefer to happen, if they were fully made aware
of it, or if they were presented first with alternatives choice sets (Fairclough, 2022). For
location-based neuroadaptive services, personalized location data can be especially sen-
sitive, which might generate additional privacy concerns to neuroergonomics research in
general. It is therefore critical for empirical cartographers to pro-actively addressing these
concerns right from the beginning of their research trajectories, for example, by (1) adher-
ing to well-established current human research standards assessed in national and local
ethics board reviews and by adhering to their respective codes of conduct,’ (2) apply the
good practice of fully informed consent for all study participants, and (3) by following the
best available standards in privacy and data protection laws, including (4) by applying the
parsimony principle of human data collection, and (5) by relying on pre-registration of
empirical studies,” etc.

Conclusions and outlook

The future is bright for this proposed neuroadaptive cartographic research frontier.
Moving it forward, the cartography, GlScience and LBS communities can achieve a
deeper understanding of how our mobile map designs interact in real-time with users’
visuo-spatial attention, cognitive load, and spatial learning during mGID-assisted naviga-
tion. In doing so, we can develop evidence-based design guidelines for neuroadaptive
mGIDs that are not only human- and context-adaptive for maintaining navigation
efficiency, but also support spatial learning in varying environmental contexts. This in
turn will support humans to remain as independent as desired from evolving geoinforma-
tion technology.

Notes

1. A wicked problem is a social or cultural problem that is difficult or impossible to solve (https://
www.wickedproblems.com).

2. This paper received the best short paper award at the 15th Conference on Spatial Information
Theory (COSIT 2022).

3. See: https://github.com/BeMoBIL

4. See technology used on the web at: https://www.geo.uzh.ch/en/units/giva/services/mobile-
EDA-facial-emotions.html, and https://www.geo.uzh.ch/en/units/giva/news0/Scientifica.html

5. https://www.geo.uzh.ch/en/units/giva/services/mobile-EDA-facial-emotions.html

6. See: https://www.apa.org/ethics/code/index

7. See: https://aspredicted.org
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