11,493 research outputs found

    Effect Capabilities For Haskell

    Get PDF
    International audienceComputational effects complicate the tasks of reasoning about and maintaining software, due to the many kinds of interferences that can occur. While different proposals have been formulated to alleviate the fragility and burden of dealing with specific effects, such as state or exceptions, there is no prevalent robust mechanism that addresses the general interference issue. Build- ing upon the idea of capability-based security, we propose effect capabilities as an effective and flexible manner to control monadic effects and their interfer- ences. Capabilities can be selectively shared between modules to establish secure effect-centric coordination. We further refine capabilities with type-based per- mission lattices to allow fine-grained decomposition of authority. We provide an implementation of effect capabilities in Haskell, using type classes to establish a way to statically share capabilities between modules, as well as to check proper access permissions to effects at compile time. We exemplify how to tame effect interferences using effect capabilities, by treating state and exceptions

    Effect Capabilities For Haskell

    Get PDF
    International audienceComputational effects complicate the tasks of reasoning about and maintaining software, due to the many kinds of interferences that can occur. While different proposals have been formulated to alleviate the fragility and burden of dealing with specific effects, such as state or exceptions, there is no prevalent robust mechanism that addresses the general interference issue. Build- ing upon the idea of capability-based security, we propose effect capabilities as an effective and flexible manner to control monadic effects and their interfer- ences. Capabilities can be selectively shared between modules to establish secure effect-centric coordination. We further refine capabilities with type-based per- mission lattices to allow fine-grained decomposition of authority. We provide an implementation of effect capabilities in Haskell, using type classes to establish a way to statically share capabilities between modules, as well as to check proper access permissions to effects at compile time. We exemplify how to tame effect interferences using effect capabilities, by treating state and exceptions

    Efficient and Reasonable Object-Oriented Concurrency

    Full text link
    Making threaded programs safe and easy to reason about is one of the chief difficulties in modern programming. This work provides an efficient execution model for SCOOP, a concurrency approach that provides not only data race freedom but also pre/postcondition reasoning guarantees between threads. The extensions we propose influence both the underlying semantics to increase the amount of concurrent execution that is possible, exclude certain classes of deadlocks, and enable greater performance. These extensions are used as the basis an efficient runtime and optimization pass that improve performance 15x over a baseline implementation. This new implementation of SCOOP is also 2x faster than other well-known safe concurrent languages. The measurements are based on both coordination-intensive and data-manipulation-intensive benchmarks designed to offer a mixture of workloads.Comment: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE '15). ACM, 201

    Modelling Reactive Multimedia: Design and Authoring

    Get PDF
    Multimedia document authoring is a multifaceted activity, and authoring tools tend to concentrate on a restricted set of the activities involved in the creation of a multimedia artifact. In particular, a distinction may be drawn between the design and the implementation of a multimedia artifact. This paper presents a comparison of three different authoring paradigms, based on the common case study of a simple interactive animation. We present details of its implementation using the three different authoring tools, MCF, Fran and SMIL 2.0, and we discuss the conclusions that may be drawn from our comparison of the three approaches

    The Environment as an Argument

    Get PDF
    Context-awareness as defined in the setting of Ubiquitous Computing [3] is all about expressing the dependency of a specific computation upon some implicit piece of information. The manipulation and expression of such dependencies may thus be neatly encapsulated in a language where computations are first-class values. Perhaps surprisingly however, context-aware programming has not been explored in a functional setting, where first-class computations and higher-order functions are commonplace. In this paper we present an embedded domain-specific language (EDSL) for constructing context-aware applications in the functional programming language Haskell. © 2012 Springer-Verlag
    corecore