
The Environment as an Argument
Context-Aware Functional Programming

Pedro M. Martins?, Julie A. McCann, and Susan Eisenbach

Imperial College London,
{pm1108,jamm,susan}@doc.ic.ac.uk

Abstract. Context-awareness as defined in the setting of Ubiquitous
Computing [3] is all about expressing the dependency of a specific com-
putation upon some implicit piece of information. The manipulation and
expression of such dependencies may thus be neatly encapsulated in a
language where computations are first-class values. Perhaps surprisingly
however, context-aware programming has not been explored in a func-
tional setting, where first-class computations and higher-order functions
are commonplace. In this paper we present an embedded domain-specific
language (EDSL) for constructing context-aware applications in the func-
tional programming language Haskell.

1 Introduction

With widespread availability of mobile computing devices such as mobile phones
and tablets, practical implementations of context-aware applications have started
to appear. However, we observe a divide between the solutions proposed by re-
searchers and the practical solutions adopted by implementers. We believe that
this is because the former solutions are too heavyweight and rigid, and force
developers to sacrifice some freedom in designing their applications, for little
practical gain. As a result, practical implementations are typically based on be-
spoke implementations of context-aware behaviour. This prevents reusability of
behaviour, but makes it easier for subtle bugs and programming errors to be re-
peated throughout implementations of the same behaviour. It has been argued
that this is an inevitable consequence of context-awareness. Indeed, Lieberman
and Selker [8] present a simple model for context-awareness and postulates that
due to the dynamic nature of context-aware applications, it is hard to specify a
module’s behaviour in a way that will allow it to be reused at all.

In this paper we show that through a deeper embedding of context-awareness
semantics into a programming language, we are able to specify this behaviour and
provide natural programming language constructs for it. In addition to this, by
being aware of the semantics of context-awareness, the compiler for our language
is able to verify statically whether a certain number of properties that we believe
should be true for this type of behaviour actually hold. This allows us to reuse

? Funded by FCT (Portugal) under grant SFRH/BD/61917/2009.

context-aware behaviour in a controlled and automatically validated way, with
minimal loss of expressivity.

Our contributions are as follows:

– A composable representation of context-aware computations that automat-
ically derives the context dependencies needed at the type level (Section
3.1).

– An abstraction for knowledge bases which does not enforce any representa-
tion or reasoning procedure upon the knowledge base, over which we define
all of our abstractions (Section 3.3).

– A parameterized monad [1] that encapsulates the adding context to a knowl-
edge base, and statically verifies whether the required context information
will be available at the call site of one of the previous context-aware compu-
tations (Section 3.5).

– A Haskell library that captures all of these abstractions in an embedded
domain specific language (EDSL) (Section 3.6).

2 An Example Application

We present a simple implementation example of the declarative data-driven cod-
ing style for context-aware applications that we advocate in this paper. The syn-
tax for the example is that of a pure declarative context-aware language with
Haskell-like syntax, resembling the final syntax of our EDSL. Our simple scenario
is one where a user is walking home from work and wishes to pick up something
to eat on the way. The user does not want the food to get cold by the time they
reach their home, so they wish to know where the nearest shops to their current
location are, and how far each of these shops are from their home. Code listings
1.1 and 1.2 implement the main features needed for this functionality, namely a
sorted list of shops and a routine that shows the user how close the nearest shop
is from home. This example shows the definition of the domain of contextual
information the application is going to manipulate, the relevant data types and
the context-aware computation that is intrinsic in the given specification.

We begin by defining the domain of interesting contextual information for
the application. Individuals are the entities of the domain that we are concerned
with, in this case the user (1). Features are the properties of the individuals that
we wish to inspect and manipulate, in this case where the user and their home
are located at (3). The syntax i . f is a type-level representation for feature f of
individual i. We then define the normal data types that we will be manipulating
in the application, namely shops (5). The connection between normal data and
the contextual domain is provided in this case through a relevance relation. It
states that locations are more relevant to the user the closer they are to them
(10). We assume a data type Location is provided by some language library.
Using the relevance relation, we sort a list of shops by contextual information,
using the primitive sortC. In this case we are sorting the list of shops by their
location field, using the applicable relevance relation with context (16). This

1 individual User
2
3 feature IsLocatedAt :: Location
4
5 data Shop = Shop { name :: String, location :: Location }
6
7 allShops :: [Shop]
8 allShops = ...
9

10 relevant Location (User . IsLocatedAt) by distance
11
12 distance :: Location → Location → Double
13 distance = ...
14
15 nearestShops :: [Shop] ↓ { User . IsLocatedAt }
16 nearestShops = sortC location allShops
17
18 main = loop do
19 loc ← fetchLocation
20 User I IsLocatedAt := loc
21 print (take 10 nearestShops)

Listing 1.1. An application example.

creates a computation that is context dependent, nearestShops. Its type reflects
the contextual dependencies that have to be satisfied in order for its value to
be computed. The type a ↓ c represents a value of type a, with contextual
dependencies c, where c is a set of context types.

In order to execute this computation we need to provide it with context.
The do keyword, similarly to Haskell, allows us to enter a sequential execu-
tion context. In this case the keyword will also provide a global knowledge base
for storing and retrieving context. Usage of the knowledge base will be tracked
and validated to ensure that contextual dependencies have been satisfied ap-
propriately before context dependent values are used. In the main loop of the
application, we first fetch a location from the device’s GPS (19) and add it to
the knowledge base with the primitive expression i I f := v, which allows us
to assign the value of a feature f for the individual i as having value v. In this
case, we are assigning the IsLocatedAt feature for the individual User as the
location we have just retrieved (20). We then print the ten most relevant shops
to the screen. The usage of context in nearestShops is statically verified by the
compiler. Indeed, if we remove the line adding context to the knowledge base,
we will get a compiler error specifying that the context of the type we removed
is not available at the call site of nearestShops.

One of the main driving goals mentioned in the introduction was composabil-
ity and code reuse. In that vein, we should be able to use our context dependent
list in the same way that we would use a regular list. In the final line of the

1 individual Home
2
3 distanceFromHome ::
4 Location → Double ↓ { Home . IsLocatedAt }
5 distanceFromHome loc = distance loc (π (Home . IsLocatedAt))
6
7 nearestShopDistanceFromHome ::
8 Double ↓ { User . IsLocatedAt, Home . IsLocatedAt }
9 nearestShopDistanceFromHome = distanceFromHome (head nearestShops)

10
11 exampleHomeDistance = loop do
12 loc ← fetchLocation
13 hloc ← askUserForHomeLocation
14 User I IsLocatedAt := loc
15 Home I IsLocatedAt := hloc
16 print nearestShopDistanceFromHome

Listing 1.2. Merging contextual information.

example, we use the standard library function take on the list of shops. This
function is completely independent from the context library, and has the type:
take :: Int → [a] → [a]

We can use this function for both regular lists and context dependent lists.
The application of this function to the sorted shops list will however push the
contextual dependencies to the type of the return value:
take 2 nearestShops :: [Shop] ↓ { User . IsLocatedAt }

The example so far shows that context-aware values are first-class and can inter-
act naturally with standard library functions. Moreover, if we were to use two
contextual values in a single expression, such as a value depending on the home
location and another depending on the user location, those two context depen-
dencies would be merged appropriately. This will be seen in the next example.
The primitive π is provided by the library, and allows us to manually project
context from the knowledge base by type. We have used it in listing 1.2 to cal-
culate the distance to the user’s home of the closest shop to them. Note how the
type of nearestShopDistanceFromHome (7-8) reflects the contextual dependen-
cies that we are required to satisfy, namely, User . IsLocatedAt, coming from
nearestShops and Home . IsLocatedAt coming from distanceFromHome. The
application semantics of this language collect the contextual dependencies we
use, in the type of the resulting value. This allows us to validate the state of the
global knowledge base. In exampleHomeDistance, if we removed either line 14
or 15, we would no longer be adding necessary context to the knowledge base,
and we would get a compile time error. This shows the basic behaviour that our
EDSL provides. The next sections describe our implementation, along with the
compromises that we had to take to conform to the host language.

3 A DSL for Context-Aware Programming

The application example in section 2 shows that there are two main facets to
context-awareness. Firstly, defining computations that depend on implicit val-
ues, without breaking composability and type safety. Secondly, managing a global
knowledge base of context, that can be accessed to provide context to the previ-
ous computations. We approach the former in sections 3.1 through 3.3 and the
latter in section 3.4. All of the following definitions are written in Haskell, with
liberal use of extensions provided by its flagship compiler GHC.

3.1 Context-aware Computations

We start by representing context-aware computations as pure functions from a
contextual value to the desired output. Hinting at the fact that this input is
implicit, we define a new type for these functions, which is isomorphic to the
basic Haskell arrow type:
newtype ContextF a c = ContextF {runContextF :: c → a}

deriving (Functor, Applicative, Monad)
type a :↓ c = ContextF c a

Semantically, :↓ declares that a function’s argument is contextual and should be
considered implicit. runContextF then allows us to take this context-aware value
and apply it to a context to return a pure value. However, context-aware values
differ from regular functions in that we want to think about them as having
the type of the return value. Indeed, when applying regular functions to these
values, the argument of the context-aware value should be treated as implicit
and become the implicit argument of the final value returned by the application.
This effect can be achieved thus:
apply :: (a → b) → a :↓ c → b :↓ c
apply f ca = ContextF (λc → f (runContextF ca c))

This definition is that of fmap for the Reader functor. Extending this behaviour
to accepting multiple arguments in a curried manner leads to the definition of
� from the Applicative instance of Reader [9]:
(�) :: (a → b) :↓ c → a :↓ c → b :↓ c
ff � fa = ContextF (λc → (ff ‘runContextF‘ c)

(fa ‘runContextF‘ c))

However, this abstraction is exceedingly restrictive in the type of context it is
able to deal with, as it forces c to be constant. In our case, this would require the
definition of a “universe” product type for context types, which is impractical. We
would like the product type to be automatically derived as we use more and more
contexts. Effectively, what we want is to parameterise the applicative functor so
that it is able to manage context dependencies appropriately. In this vein, let us
define a new operator �× which combines the contextual dependencies of both
the function and the argument in a product type:
(�×) :: (a → b) :↓ c1 → a :↓ c2 → b :↓ (c1 × c2)

This is the operator we need to implement the application semantics we outlined
in section 2. In the next paragraphs, we will describe its implementation.

3.2 Application over Context-Aware Values

For a constant type c, the existing Applicative instance for Reader would be
enough to achieve the behaviour we want. To see how we might generalise this
approach to define �×, let us specialize the type of �:
(�) :: (a → b) :↓ (c1 × c2) → a :↓ (c1 × c2) → b :↓ (c1 × c2)

It seems that the only thing that we need to do to unify this type with that
proposed for �× is to provide functions that generate this “universe” type. All
we need to do is to precompose both functions with an appropriate projection
function; of type c1 × c2 → c1 for the first one and c1 × c2 → c2 for the second
one. In this way, the type of a composite computation can emerge from its com-
ponents in a canonical way. In order for this scheme to apply to n-ary functions,
however, we need to be able to represent and handle cartesian products effort-
lessly in Haskell. We will use the HList library as presented by Kiselyov et al
[6], which represents type-level lists as iterated products with a fixed structure,
and provides utility functions and error handling. We use an extended version
to obtain set semantics and operations. Other than the typical set operations we
will use the hProject function, which allows us to retrieve subsets of context:
hProject :: (c1 ⊆ c2) ⇒ c2 → c1

In all other cases we will use regular set notation in the code listings and re-
fer the reader to our online implementation for details 1. We can thus rely on
precomposition with hProject to derive the universe type that we referred to
previously. Then, we can just use the classic applicative instance for ((→) c), for
all c, and we get the desired functionality. We can therefore generalize to get the
�× operator:
(�×) :: (a → b) :↓ c1 → a :↓ c2 → b :↓ (c1 ∪ c2)
af �× ax = ContextF ((runContextF af) . hProject) �

ContextF ((runContextF ax) . hProject)

This definition of �× has a more general principal type than the one we originally
discussed, and generalizes to n-ary functions. We can also present a mapping
between the “application” of an n-ary function to context-aware values and our
combinators. Note that <$> is just infix fmap:
J f x1 x2 .. xn K = f <$> x1 �× x2 �× ... �× xn

evalC :: (c1 ⊆ c2) ⇒ a :↓ c1 → c2 → a
evalC ca k = ca ‘runContextF‘ hProject k

mkC1 :: (c → a) → a :↓ { c }
mkC1 f = ContextF (f . hHead)

mkC :: (c → a :↓ cs) → a :↓ (cs ∪ { c })
mkC = comb . mkC1

1 Available at http://www.doc.ic.ac.uk/~pm1108/hcontext

where comb :: (a :↓ c1 :↓ c2) → (a :↓ (c1 ∪ c2))
comb cca = ContextF $ λk → (cca ‘evalC‘ k) ‘evalC‘ k

evalC allows us to evaluate a context dependent computation by providing it
with the necessary context (or a superset). mkC and mkC1 allow us to build
context-aware computations. mkC1 will have to be used when the return value of
the function is not context dependent.

3.3 Abstract knowledge bases

We now turn to the issue of context representation. The abstractions that we
have created clearly define semantics for context-aware values and ways to mean-
ingfully combine them. However, we have not yet modelled access to context
providers. In the sections that follow we assume that there is a language which
is able to describe the full spectrum of context information that we might need.
For the purposes of this paper we assume that all context information that we
retrieve is encoded in the same language. Moreover, we will assume that all con-
text providers will use the same ontology when describing concepts. This is a
very strong assumption, however solving this issue is not the focus of this paper,
and constitutes its own field of research [10]. To detach the current presentation
from the previous semantics, we use a different syntax for HProject, k :. c,
which is to be interpreted as a constraint that holds when we have a knowledge
base of type k from which we can extract context information of type c, a set of
context types. We also take this opportunity to add additional structure to our
context information. We provide support for individuals and features through
the following type:
type family FeatureType a :: ∗
data Feat a = a := (FeatureType a)

We then represent individuals as data types, and assign features to them with a
new data type. The type family FeatureType allows us to embed the type system
of features into that of Haskell. This is coupled with an arbitrary projection
function, whose arguments serve solely as witnesses for the types corresponding
to the individual/feature pair desired:
data individual . feature = individual . (Feat feature)
π :: a → f → FeatureType f :↓ { a . f }
π _ _ = mkC1 $ λ(_ . (_ := v)) → v

With these definitions, we have now implemented everything needed to produce
the context-aware value nearestShopDistanceFromHome, we discussed in section
2:
data User = User
data Home = Home
data IsLocatedAt = IsLocatedAt
type instance FeatureType IsLocatedAt = Location

distanceFromHome loc = distance loc <$> (π Home IsLocatedAt)
nearestShopDistanceFromHome =

distanceFromHome <$> (location . head <$> nearestShops)

In order to implement the example in section 2, the only feature missing in
our context representation is a notion of relevance of a piece of data for a user,
given a set of contextual information. Relevance is realised as a predicate, stating
whether a contextual value is relevant to the sorting of another non-contextual
value. We define a restriction of this notion in order to aid the type checker, where
we constrain the relation R(c, k), to instead be a function. This is represented
as the associated type R, which behaves as a type function, assigning a relevant
context type to a regular type:
class Relevant a where

typeR a :: ∗
relevance :: a →R a → Double

The Location example in section 2 would become:
instance Relevant Location where

typeR Location = User . IsLocatedAt
relevance l1 (User . (IsLocatedAt := l2)) = distance l1 l2

An example of this in action is the sortC function we introduced in section 2:
sortC :: (Relevant c) ⇒ (a → c) → [a] → [a] :↓ {R c }
sortC contextfn xs =

let sortfn c x y = compare (relevance (contextfn x) c)
(relevance (contextfn y) c)

in ContextF (λc → sortBy (sortfn . hOccurs $ c) xs)

3.4 Managing a global knowledge base

Our abstractions allow us to model context-aware computations and sources in
a programming language. In order to make context truly implicit we would like
to represent context as a shared knowledge base, that is populated by retrieving
information from context sources and queried by context-aware computations.
We should also be able to exploit all the typing information that we have been
managing to make sure that this interaction is well-formed. It turns out that all
of this is possible, using the formalism of parameterised monads. [1] First, we
combine a context-aware computation and a contextual information producer
into one single abstraction, that of stateful computations, which is a straightfor-
ward parameterisation of the State functor available in the Haskell libraries. By
using the parameterised monad corresponding to this functor [1], we keep track
of which knowledge is in the knowledge base at the type level. The approach of
using parameterized monads to provide static guarantees over a DSL has been
used before. Sackman and Eisenbach[11] show how to provide security guaran-
tees for an imperative language embedded in Haskell. In Haskell, parameterised
monads can be defined as a minor generalisation of the Monad type class:
class PMonad m where

return :: a → m c c a
(>>=) :: m c1 c2 a → (a → m c2 c3 b) → m c1 c3 b

GHC’s support for rebindable syntax allows us to recover do notation for param-
eterized monads. Qualified importing of libraries may be used where traditional

monadic behaviour is desired. The types for the parameterised context monad
(and monad transformer) then become:
newtype ContextRuntime c1 c2 a =

CR { runContextRuntime :: c1 → (a, c2) }
newtype ContextRuntimeT m c1 c2 a =

CRT { runContextRuntimeT :: c1 → m (a, c2) }

liftCRT :: Monad m ⇒ m a → ContextRuntimeT m c c a

We omit the PMonad instances and transformer combinators as they are essen-
tially the same as the ones provided by the regular state monad. Note that our
parameterised “monad transformer” is not a fully general parameterised monad
transformer as it only works for non-parameterised monads. However, this is
enough for the purpose of interacting with most monads present in the Haskell
libraries. We then need to define an injection from the parameterised applicative
functor to the monad:
inContext :: (k :. cs) ⇒ ContextF cs a → ContextRuntime k k a
inContext cf = CR $ λk → (evalC cf k, k)

We must also provide combinators to add to and update the knowledge base,
all whilst performing the required type-level updates. We define a function that
operates on type-indexed products, which updates a value by type if it is in the
product, and appends it otherwise, called hUpdateAtTypeOrAppend (the defini-
tion is ommitted for space reasons). Using this, updating a context value in the
knowledge base simply becomes:
(I) :: HUpdateAtTypeOrAppend (i . f) c1 c2

⇒ i → Feat f → ContextRuntime c1 c2 ()
individual I feat = CR $
λc’ → ((), hUpdateAtTypeOrAppend (individual . feat) c’)

We may now add context values to the knowledge base represented by an HList.
Note that because of the constraints in the type of inContext, we can only
use an injected function if the required contextual information is present in the
knowledge base. The final step we must take before executing context-aware
computations in this monad is enforcing an empty starting context. Thus, we
now define a set of execution functions for the parameterised monad that enforce
this restriction. These were inspired by the ones provided for the State monad
in the Haskell standard library.
runCR :: ContextRuntime HNil k a → (a, k)
runCR ca = runContextRuntime ca hNil

evalCR and execCR are defined as the appropriate projections from the result of
runCR. We also define evalCRT, execCRT and runCRT as the transformer versions
of these combinators. Thus, the only way to run a context-aware computation
is to start with the empty context. The compiler may track all context de-
pendencies, and abort with a compile-time error if they are not satisfied. This
characteristic is arguably one of the most interesting features of our EDSL, as
we are able to reify into the type level the context dependencies of a particular
computation, and thus statically guarantee that they will be fulfilled. This elim-

inates a whole class of potential bugs in context-aware applications, whereby the
application attempts to use context when it is not stored in the knowledge base.

3.5 Automatically satisfying contextual dependencies

Given that our EDSL is targeting situations where the domain of contextual
information can have a type system imposed on it, that uniquely identifies the
type of contextual information, it is not too far-fetched to think of satisfying
these implicit dependencies automatically. That is, we can use the mechanisms
outlined in the previous sections to collect contextual dependencies on the main
program, and we can also create a library that adds specific portions of contex-
tual information to a global knowledge base by querying device-specific sensors.
We can then tie both of these together automatically, through the type system.

To achieve this, we introduce a new type class, the instances of which specify
which types of contextual information we can retrieve under the IO monad, for
the device we are currently using.
pushC :: (Monad m) ⇒ c → ContextRuntimeT m HNil c ()
pushC c = CRT . const . M.return $ ((), c)

class Realizable c where
realize :: a :↓ c → ContextRuntimeT IO HNil c a
fetch :: IO c
realize x = liftCRT fetch >>= pushC >> inContextT x

This allows us to completely hide context from the programmer who is using the
EDSL. For example, if the programmer had a main loop and a function called
in every iteration that could benefit from contextual information, this depen-
dency could be added to the code for the function, and lifted to the top-level
using the mechanisms the EDSL provides. We can then provide the necessary
instances of Realizable for the device in question, and selectively import the ones
corresponding to the retrieval technique we wish to use.

4 Evaluation

In order to test the expressive power of our EDSL we implemented two context-
aware applications, showcasing both the abstraction capabilities provided by the
library as well as the ease of interaction with existing code.

4.1 Presence Board

Implementing a presence board application that keeps track of all people that
have checked into a certain context (e.g. a building), has become the canonical
application for evaluating context-aware libraries. This application is interesting
because the presence information can then be used for more exciting context-
aware applications, as will be seen. We assume an existing instance of Realizable
for Location and an online service that can be used to match a location with

the building that contains it, returning a circular area delimiting the range to
be considered for that building/context:
locationToRange :: Location → IO (Location, Double)

The EDSL allows us to provide a reusable library for this device, fetching the
contextual information under the IO monad. Through the realizable type class
we ready this for easy use by the programmer of the final application. In our
case, we simply supply an instance for Realizable, for presence information, in
our own data type:
data User = ...
users :: [User]
fetchLocationForUser :: User → IO Location
fetchUsers :: IO [User]
newtype Presence x = Presence [(x, Bool)] deriving (Show, Eq)

instance Realizable Location where ...
instance Realizable (Presence User) where

fetch :: IO (Presence User)
fetch = do

location ← fetch
us ← fetchUsers
ls ← mapM fetchLocationForUser us
(l,d) ← locationToRange location
return . Presence $ zip us (map ((<d) . distance l) ls)

With this we can define the application code easily:
displayPresence :: IO () :↓ { Presence User }
displayPresence = mkC1 $ λpresence → do -- ...
main = forever (realize displayPresence)

Which implements a simple presence board application. Note how the program-
mer writing the previous code did not need to worry about how to retrieve the
presence information, as it was abstracted away into a library. Then, retrieving
this contextual information from the point of view of the final presence board ap-
plication is simply a matter of using it at the right type, and making it implicit,
using the liftings.

4.2 Mailing List

In order to ascertain how easy it would be to add context-awareness to an exist-
ing application, we took one of the examples used by the context toolkit [4], a
context-aware mailing list application. This application should forward emails to
only those subscribers that are located in the specific context that the mailing list
applies to, in our case, physically located in a building. We located a mailing list
manager application implemented in Haskell, Mhailist, publicly available on the
Hackage package database [12]. We then proceeded to implement this behaviour
without using any EDSL for implicit information. At a high level this change
corresponds to retrieving presence information for the mailing list subscribers
and selectively forwarding emails depending on it.

...
(addressees, msg) ← return $

case action of
SendToList → (addresses, addHeader listIDHeader message)

...
main = do result ← runErrorT processMessage
...

The modification is fairly simple, we just have to pass in the presence infor-
mation to the forwarding function, and calculate it in the main loop. However,
this simple change implies adding an explicit argument at every call site of the
forwarding function, all the way up to the main loop. This can result in fairly
significant changes to the main program. Using the existent implicit arguments
feature present in GHC, we are able to propagate this dependency in a more
implicit way. However, we then need to satisfy these dependencies by name,
and it would be rather hard to provide a EDSL that extracts from the implicit
dependencies of a computation the exact fetching routine the program should
undertake, as these are identified by name. Using types to identify implicit ar-
guments however, we are able to do just that. We can, as before, propagate the
implicit argument to the main loop in an easy way. Then, in order to satisfy the
main loop’s context requirements, we just need to call realize, and the Realizable
type class will handle fetching the appropriate contextual information for the de-
vice and supplying it to the computation. We need to introduce the contextual
dependency at the top level instead of using the lifting mechanisms presented, as
otherwise we would have to fully desugar the do-notation and lift the binds. We
also had to import the parameterized monad bind operator qualified as PM.»=
to allow us to use both monadic semantics.
mkC1 $ λpresence → do
...

(addressees, msg) ← return $
case action of

SendToList →
(filter ((isJust . flip lookup $ presence) addresses)
, addHeader listIDHeader message)

...
main = evalCRT $ realize processMessage PM.>>= λpm →

liftCRT $ do result ← runErrorT pm
...

5 Related Work

Existing work in context-awareness has focused on creating flexible context rep-
resentations as well as design patterns for developing context-aware applications
within traditional programming languages. Context Toolkit [4] is a Java based
toolkit that defines an architecture for developing context-aware applications,
and provides the programming support for it. The central component of the
context toolkit is the widget. It is defined by attributes and callbacks. There

are several flaws with the widget abstraction, that are addressed with special
components in the toolkit. Firstly, widgets appear to segment context informa-
tion independently from the chosen context representation. This is accounted
for with context servers that both aggregate contextual information and can
choose an underlying widget depending on the request. In our representation,
widgets would be an artificial abstraction. The typing information allows an
application to precisely specify, at compile-time, what sort of information it is
going to require. This allows us to define a universal context runtime that will
produce widgets “on demand”. The context runtime serves as a flexible universal
context server. As pointed by Bardram [2], the context toolkit enforces a highly
distributed structure for a context-aware application. This aids flexibility and
allows for distribution of architectural components. However, it is also more de-
manding of the system where it is deployed. Through using a more lightweight
solution, we are able to support a less distributed solution if required. Because of
the data-driven approach that we take, we can exploit existing communication
libraries if we need to distribute components. This is not as allows the user to
pick the communication protocol and representation freely.

There has also been prior research done in modelling implicit arguments in a
functional programming language, most notably that of Lewis et al [7], which is
implemented in the Haskell compiler GHC as an extension. Our approach shares
certain characteristics with this calculus, such as the implicit “floating out” of
implicit arguments in composite computations. Our approach was designed from
the ground up to be customised to the typical use cases in context-awareness,
and that is reflected in our choice of identifying variables with their types, as
there should only be one value of each type in the knowledge base. This allows
us to make queries to the knowledge base more automatic, as only the typing
information is required. In Lewis et al’s solution [7] all implicit arguments have a
name that identifies them, and it is up to the programmer to manage assignment
of values to names and scoping of those names. In our approach, types identify
implicit arguments, so no manual management of names is needed. The flexibil-
ity lost lies in the fact that we cannot have two values of the same type, which
their calculus allows, but in our case is not necessary, as we have specified a
type system that distinguishes all individual contextual data by type. This con-
straint however, allows us to extract more typing information statically and be
able to manage the interaction between context sources and context consumers
automatically. Also, it is possible to have multiple values of isomorphic types,
and use the more sophisticated plumbing mechanisms of relevance and feature
projection to manage these. An example of this was given with the user and their
home’s location, having types that are isomorphic in the haskell EDSL, but can
conceptually be thought of as equal.

Another common way to introduce implicit global semantics is to use aspect-
oriented programming. We can think of contextual dependencies as cross-cutting
concerns, whereby the behaviours that would be injected would be both projec-
tions from the global knowledge base and retrieval and storage of contextual
information. Using aspects for this purpose would make it much harder for us

to provide safety guarantees in the knowledge base access. The manipulations
performed by aspect-oriented programming are purely syntactical, and it is hard
to work out which source code transformations are going to be applied to a piece
of code without examining the whole application. For this same reason aspect-
oriented programming is much more flexible. However, given that one of our main
goals was to provide clearer semantics for context-awareness, the disadvantages
of aspect-oriented programming would outweigh the advantages.

6 Future Work

We believe that the abstractions we presented are an interesting approach to
modelling context-awareness and can indeed be used to develop practical ap-
plications that use context in more complex ways than we have seen to date.
Our implementation in Haskell will hopefully encourage further experimentation
with these abstractions in real-world scenarios, and serves as further proof that
Haskell has become an extremely appropriate host language for DSLs even when
the semantics are quite different from its. However, there are some quirks in the
DSL that stem from the fact that our EDSL is being hosted in Haskell. For
instance, the fact that creating a contextual value is not encapsulated in only
one combinator, but is implemented as two separate functions mkC1 and mkC.
This is because we have to deal with non context-aware types and interact natu-
rally with them. If non context-aware types were considered equal to types that
are dependent on a null context, mkC1 would be a special case of mkC. On the
other hand, the fact that application of functions to context-aware values needs
to be performed with special operators, makes this library slightly unnatural
to use. Further, we have not provided abstractions for continuous retrieval of
contextual information and modelling the retrieval-usage loop. We believe that
we can use functional reactive programming [5] to manage context streams in
a natural way. Thus, we believe it would be interesting to design a language
from the ground up that is based around these concepts, as a purer exposition
of these ideas, and maybe as a theory that can bring further insights into the
nature of context-awareness and the interaction between context providers and
consumers.

7 Conclusion

When integrating context into a system, programmers are presented with two
options. To either conform to rigid frameworks or to build bespoke functions that
represent contextual behaviour. The latter, though providing more freedom, is
problematic in that it has been shown that these dynamical approaches limit
the amount of reusability, and errors can be easily propagated where attempts
to reuse are made.

This is the first work that aims to overcome these problems by presenting
an abstraction whereby context is deeply embedded into the programming lan-
guage. In doing so, we are able to show that static verification can be achieved;

limiting the propagation of undesirable behaviours. Representing context-aware
computations as functions with implicit arguments and inference rules, we are
able to provide a composable type-safe system that provides static guarantees
of well-formedness for context-aware applications. We also formalise the concept
of a knowledge base and by using the type information we collected we are able
to automatically satisfy contextual dependencies.

As proof of concept we implement our constructs in Haskell. It proved to be
a good choice for a host language as both its type system and syntax are fairly
programmable and allowed us to embed to provide an EDSL that presented
significantly different semantics from those of vanilla Haskell.

In summary, our formal grounding for context-awareness, combined with its
example implementation in Haskell, provides the abstractions to encourage the
exploration of more complex context driven applications than have been seen to
date.

References

1. R. Atkey. Parameterised notions of computation. Journal of Functional Program-
ming, 19(3-4):335, June 2009.

2. J. Bardram. The Java Context Awareness Framework (JCAF)–a service infras-
tructure and programming framework for context-aware applications. Pervasive
Computing, pages 98–115, 2005.

3. A. Dey and G. Abowd. Towards a better understanding of context and context-
awareness. In CHI 2000 workshop on the what, who, where, when, and how of
context-awareness, volume 4, pages 1–6. Citeseer, 2000.

4. A. Dey, G. Abowd, and D. Salber. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16(2):97–166, 2001.

5. C. Elliott. Push-pull functional reactive programming. In Haskell Symposium,
2009.

6. O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous collections.
In Haskell 2004: Proceedings of the ACM SIGPLAN workshop on Haskell, pages
96–107. ACM Press, 2004.

7. J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit parameters:
dynamic scoping with static types. In Proceedings of the 27th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’00, pages
108–118, New York, NY, USA, 2000. ACM.

8. H. Lieberman and T. Selker. Out of context: Computer systems that adapt to,
and learn from, context. IBM Systems Journal, 39(3.4):617–632, 2000.

9. C. McBride and R. Paterson. Applicative programming with effects. Journal of
functional programming, 18(01):1–13, 2007.

10. H. Pinto, A. Gómez-Pérez, and J. Martins. Some issues on ontology integration. In
IJCAI-99 workshop on ontologies and problem-solving methods (KRR5). Citeseer,
1999.

11. M. Sackman and S. Eisenbach. Safely Speaking in Tongues: Statically Checking
Domain Specific Languages in Haskell. In LDTA’09, March 2009.

12. C. Sampson and L. Kotthoff. Mhailist: Haskell mailing list manager. http://
hackage.haskell.org/package/Mhailist-0.0, April 2010.

