237 research outputs found

    Digraph Coloring Games and Game-Perfectness

    Get PDF
    In this thesis the game chromatic number of a digraph is introduced as a game-theoretic variant of the dichromatic number. This notion generalizes the well-known game chromatic number of a graph. An extended model also takes into account relaxed colorings and asymmetric move sequences. Game-perfectness is defined as a game-theoretic variant of perfectness of a graph, and is generalized to digraphs. We examine upper and lower bounds for the game chromatic number of several classes of digraphs. In the last part of the thesis, we characterize game-perfect digraphs with small clique number, and prove general results concerning game-perfectness. Some results are verified with the help of a computer program that is discussed in the appendix

    On characterizing game-perfect graphs by forbidden induced subgraphs

    Get PDF
    A graph GG is called gg-perfect if, for any induced subgraph HH of GG, the game chromatic number of HH equals the clique number of HH. A graph GG is called gg-col-perfect if, for any induced subgraph HH of GG, the game coloring number of HH equals the clique number of HH. In this paper we characterize the classes of gg-perfect resp. gg-col-perfect graphs by a set of forbidden induced subgraphs and explicitly. Moreover, we study similar notions for variants of the game chromatic number, namely BB-perfect and [A,B][A,B]-perfect graphs, and for several variants of the game coloring number, and characterize the classes of these graphs

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    The Incidence Hopf Algebra of Graphs

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1137/110820075.The graph algebra is a commutative, cocommutative, graded, connected incidence Hopf algebra, whose basis elements correspond to finite graphs, and whose Hopf product and coproduct admit simple combinatorial descriptions. We give a new formula for the antipode in the graph algebra in terms of acyclic orientations; our formula contains many fewer terms than Takeuchi's and Schmitt's more general formulas for the antipode in an incidence Hopf algebra. Applications include several formulas (some old and some new) for evaluations of the Tutte polynomial

    Popular progression differences in vector spaces II

    Full text link
    Green used an arithmetic analogue of Szemer\'edi's celebrated regularity lemma to prove the following strengthening of Roth's theorem in vector spaces. For every α>0\alpha>0, β<α3\beta<\alpha^3, and prime number pp, there is a least positive integer np(α,β)n_p(\alpha,\beta) such that if nnp(α,β)n \geq n_p(\alpha,\beta), then for every subset of Fpn\mathbb{F}_p^n of density at least α\alpha there is a nonzero dd for which the density of three-term arithmetic progressions with common difference dd is at least β\beta. We determine for p19p \geq 19 the tower height of np(α,β)n_p(\alpha,\beta) up to an absolute constant factor and an additive term depending only on pp. In particular, if we want half the random bound (so β=α3/2\beta=\alpha^3/2), then the dimension nn required is a tower of twos of height Θ((logp)loglog(1/α))\Theta \left((\log p) \log \log (1/\alpha)\right). It turns out that the tower height in general takes on a different form in several different regions of α\alpha and β\beta, and different arguments are used both in the upper and lower bounds to handle these cases.Comment: 34 pages including appendi

    Combinatorics in Schubert varieties and Specht modules

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, June 2011."June 2011." Cataloged from PDF version of thesis.Includes bibliographical references (p. 57-59).This thesis consists of two parts. Both parts are devoted to finding links between geometric/algebraic objects and combinatorial objects. In the first part of the thesis, we link Schubert varieties in the full flag variety with hyperplane arrangements. Schubert varieties are parameterized by elements of the Weyl group. For each element of the Weyl group, we construct certain hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial if and only if the Schubert variety is rationally smooth. For classical types the arrangements are (signed) graphical arrangements coning from (signed) graphs. Using this description, we also find an explicit combinatorial formula for the Poincaré polynomial in type A. The second part is about Specht modules of general diagram. For each diagram, we define a new class of polytopes and conjecture that the normalized volume of the polytope coincides with the dimension of the corresponding Specht module in many cases. We give evidences to this conjecture including the proofs for skew partition shapes and forests, as well as the normalized volume of the polytope for the toric staircase diagrams. We also define new class of toric tableaux of certain shapes, and conjecture the generating function of the tableaux is the Frobenius character of the corresponding Specht module. For a toric ribbon diagram, this is consistent with the previous conjecture. We also show that our conjecture is intimately related to Postnikov's conjecture on toric Specht modules and McNamara's conjecture of cylindric Schur positivity.by Hwanchul Yoo.Ph.D
    corecore