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ON CHARACTERIZING GAME-PERFECT GRAPHS BY

FORBIDDEN INDUCED SUBGRAPHS

STEPHAN DOMINIQUE ANDRES

Abstract. A graph G is called g-perfect if, for any induced subgraph
H of G, the game chromatic number of H equals the clique number of H.
A graph G is called g-col-perfect if, for any induced subgraph H of G,
the game coloring number of H equals the clique number of H. In this
paper we characterize the classes of g-perfect resp. g-col-perfect graphs
by a set of forbidden induced subgraphs. Moreover, we study similar
notions for variants of the game chromatic number, namely B-perfect
and [A,B]-perfect graphs, and for several variants of the game coloring
number, and characterize the classes of these graphs.

1. Introduction

A well-known maker-breaker game is one of Bodlaender’s graph coloring
games [9]. We are given an initially uncolored graph G and a color set C.
Two players, Alice and Bob, move alternately with Alice beginning. A move
consists in coloring an uncolored vertex with a color from C in such a way
that adjacent vertices receive distinct colors. The game ends if no move is
possible any more. The maker Alice wins if the vertices of the graph are
completely colored, otherwise, i.e. if there is an uncolored vertex surrounded
by colored vertices of each color, the breaker Bob wins. For a graph G, the
game chromatic number χg(G) of G is the smallest cardinality of a color set
C such that Alice has a winning strategy in the game described above.

During the last 18 years, initiated by the paper of Faigle et al. [14], there
have been a lot of attempts to obtain good upper bounds for the game chro-
matic number of the members of interesting classes of graphs, such as trees,
forests, and interval graphs [14], outerplanar graphs [16], planar graphs [19,
12, 25, 18, 28], (a, b)-pseudo partial k-trees and graphs embeddable into
some surface [26], special graphs embedabble into some surface [17, 22, 4],
cactuses [21], Halin graphs [24], Cartesian product graphs [27], line graphs
of k-degenerate graphs [10], line graphs of graphs of arboricity k [7], line
graphs of forests of maximum degree ∆ 6= 4 [10, 13, 1, 2], line graphs of
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wheels [5], certain Cartesian product graphs [6], etc. Obviously, for any
graph G, we have

(1) ω(G) ≤ χ(G) ≤ χg(G),

where ω(G) denotes the clique number and χ(G) denotes the chromatic
number of G. In most cases the above-mentioned upper bounds for χg(G)
are much larger than ω(G), even larger than χ(G). For any n ∈ N, there
are bipartite graphs with χg(G) = n (see [18]), so that the gap between
ω(G) (resp. χ(G)) and χg(G) may be arbitrarily large. In this paper we are
interested in the other extremal case: those graphs for which ω(G) = χg(G).
It turns out that the class of these graphs does not have a nice structure, so
we modify our task as follows. A graph G is called g-perfect if ω(H) = χg(H)
holds for any induced subgraph H of G. This notion of game-perfectness
was introduced in [3], following a suggestion of Maria Chudnovsky. It is a
game-theoretic analog of perfectness of graphs, moreover by (1) g-perfect
graphs are in particular perfect.

The characterization of perfect graphs by forbidden induced subgraphs
was given by the Strong Perfect Graph Theorem of Chudnovsky et al. [11],
which proves a conjecture of Berge [8].

Theorem 1 (Chudnovsky, Robertson, Seymour, Thomas (2006)). A graph
is perfect if, and only if, it does neither contain an odd hole nor an odd
antihole as induced subgraph.

We will give a similar characterization of the class of g-perfect graphs,
which is, of course, more easy since we will see that the class of g-perfect
graphs is a very small subclass of the class of perfect graphs. However,
in order to prove the characterization, we need an explicit characterization
which makes use of another notion of game-perfectness, namely of B-perfect
graphs. So we will also consider other variants of Bodlaender’s game that
will lead to other variants of game-perfectness.

Let “A” denote “Alice,” and “B” denote “Bob,” and “−” denote “none
of the players.” Let X ∈ {A,B} and Y ∈ {A,B,−}. The game [X,Y ] is
defined as follows. As in Bodlaender’s game we are given an uncolored graph
G and a color set C. The players, A and B, move alternately. Player X
has the first move. Y may miss one or several turns, this possibly includes
the right to pass in the first move. However the other player(s) (which are
not Y ) must always move. A move consists in coloring an uncolored vertex
with a color from C which is different from the colors of its neighbors, as
in Bodlaender’s game, until this is not possible any more. Alice wins if the
graph is completely colored in the end, otherwise Bob wins. For a graph G,
the [X,Y ]-game chromatic number χ[X,Y ](G) of G is the smallest cardinality
of a color set, so that Alice has a winning strategy for this game. A graph
G is [X,Y ]-perfect if, for any induced subgraph H of G, ω(H) = χ[X,Y ](H).

So Bodlaender’s game is the game [A,−] and g-perfectness is the same as
[A,−]-perfectness. With a slight abuse of notation we define the following
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abbreviations

A := [A,A], B := [B,B], g := gA := [A,−], gB := [B,−].

Then our notation matches with the notations of all previous references.
The following observation was shown in [2].

Observation 2. For any graph H,

ω(H) ≤ χ(H) ≤ χA(H) ≤

{
χg(H) ≤ χ[A,B](H)

χ[B,A](H) ≤ χgB (H)

}
≤ χB(H).

In particular, B-perfect graphs are [A,B]-perfect, [A,B]-perfect graphs
are g-perfect, g-perfect graphs are A-perfect, and A-perfect graphs are per-
fect.

In this paper we will characterize B-perfect graphs (in Section 2), and
[A,B]-perfect and g-perfect graphs (in Section 3) by forbidden induced sub-
graphs and explicitly. The characterization of A-perfect, gB-perfect and
[B,A]-perfect graphs is still open, some partial results are given in Sec-
tion 5. In the Section 4 we examine a similar notion to game-perfectness,
namely game-col-perfectness, which is based on the game coloring number
instead of the game chromatic number. For all variants of the underlying
marking game we characterize the class of game-col-perfect graphs.

2. Characterizing B-perfect graphs

We start with the smallest class of game-perfect graphs: the class of B-
perfect graphs. Its characterization is given in the next theorem. For its
formulation we need the following notation. Let G1 and G2 be two graphs.
By G1 ∪G2 we denote the disjoint union of G1 and G2, i.e. the graph that
consists of an isomorphic copy of G1 and an isomorphic copy of G2 which is
disjoint from the copy of G1, and there are no edges between the copies of
G1 and G2.. By G1 ∨ G2 we denote the join of G1 and G2, i.e. the graph
constructed from G1∪G2 by connecting every vertex of the copy of G1 with
every vertex of the copy of G2 by an edge.

Theorem 3. Let G be a (nonempty) graph. Then the following conditions
are equivalent:

(i) G is B-perfect.
(ii) G does neither contain a C4, nor a P4, nor a split 3-star, nor a

double fan as an induced subgraph (see Figure 1).
(iii) For every connected component H of G, there is k ≥ 0, so that

H = K1 ∨ (H0 ∪H1 ∪ · · · ∪Hk),

where the Hi’s are complete graphs for i ≥ 1, and H0 is either empty
or there are p, q, r ∈ N, so that H0 = Kr ∨ (Kp ∪Kq) (see Figure 2).
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C4 P4 Split 3-star Double fan

Figure 1. Four forbidden induced subgraphs for B-perfect graphs
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Figure 2. Structure of a connected component according to (iii)

Proof. (i) =⇒ (ii): Winning strategies for Bob in game B with 2 colors on C4

resp. P4 are obvious. (He has to make use of his right to miss the first turn.)
On the split 3-star, Bob wins with 3 colors, since after his second move
he can achieve a situation in which two vertices of degree 2 are differently
colored. We now prove that Bob wins on the double fan with 3 colors. Note
that, in any proper coloring of the double fan, the two upper resp. the two
lower vertices of degree 2 must be colored with the same color. Bob has
the following winning strategy: He colors an upper vertex of degree 2 with
color 1. Then Alice is forced to color the other upper vertex of degree 2
with the same color. Now Bob colors a lower vertex of degree 2 with color 2.
Again, Alice is forced to color the other lower vertex of degree 2 with color 2.
Now Bob colors a vertex with degree 3 with color 3, hence he wins.

(iii) =⇒ (i): We describe a winning strategy for Alice with ω(G) colors
on a graph G as in (iii). This is sufficient since every induced subgraph of G
is of the same type as described in (iii). For H0 = Kr ∨ (Kp∪Kq) let the Kp

and the Kq be the ears. We call the the vertices of the Kr and the universal
vertex of a connected component dangerous vertices, since these are the only
vertices that might have more than ω(G) − 1 neighbors, all other vertices
can always be colored with ω(G) colors.

Alice always responds to Bob’s moves in the same connected componentH
(if Bob passes, in an arbitrary component). As long as Bob does not play
in an ear, Alice does not play in an ear; she first colors the universal vertex
of H. If Bob plays in an ear Kp, Alice colors a vertex in the corresponding
ear Kq with the same color (in case there is no uncolored vertex she uses
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the strategy described before). If Alice is forced to start coloring an ear,
then all dangerous vertices of its connected component are colored, so she
will win in any case.

(ii) =⇒ (iii): We examine the structure of a graph G without induced P4,
C4, split 3-star, double fan. Let H be a connected component of G. We use
the following lemma of Wolk [23].

Lemma 4 (Wolk (1965)). A connected graph without induced C4 and P4 (a
so-called trivially perfect graph [15]) has a universal vertex.

So, H has a universal vertex v. Let H0, . . . ,Hn be the connected compo-
nents of H \ v.

Claim 5. At most one of the Hi’s is not complete.

Proof. Assume H1, H2 are not complete. Then both contain a P3. So H
contains a double fan, which contradicts (ii). �

Let H0 be the (only) connected component of H \v which is not complete.
Let K be the largest clique of H0. We are done if we show the following:

Claim 6.

(a) H0 \K induces a clique.
(b) H0 \K induces a module of H0 (i.e. if x ∈ K, either x is adjacent

to all y ∈ H0 \K or to none.)

Proof of Claim 6.
(a) Assume there are non-adjacent vertices x, y ∈ H0 \ K. Since K is

a maximal clique, there are z, z′ ∈ K such that neither x, z nor y, z′ are
adjacent. We note that, again by Lemma 4, H0 has a universal vertex w ∈ K.
If y, z are not adjacent, x, y, z, w, v induce a split 3-star, contradicting (ii). So
we may assume that y, z are adjacent and, by symmetry, x, z′ are adjacent.
This implies that z 6= z′ and x, y, z, z′ induce a P4, contradicting (ii).

(b) Assume that there are x ∈ K, s, t ∈ H0 \ K, so that s, x are not
adjacent, but t, x are adjacent. By Claim 6 (a), s, t are adjacent. Since K is
a maximal clique, there is y ∈ K, so that t, y are not adjacent. This implies
that s, t, x, y induces either a P4 or a C4, which contradicts (ii). �

By Claim 6, H0 \K corresponds to the Kp, its neighbors correspond to
the Kr, and the rest of H0 corresponds to the Kq. Thus G has the structure
as described in (iii). This completes the proof of Theorem 3. �

3. [A,B]- and g-perfect graphs

Now we are ready to prove our main result, the characterization of g-
perfect graphs. It turns out that this class of graphs is the same as the class
of [A,B]-perfect graphs.
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Theorem 7. Let G be a (nonempty) graph. Then the following conditions
are equivalent:

(i) G is [A,B]-perfect
(ii) G is g-perfect.
(iii) G does neither contain a C4, nor a P4, nor a triangle star, nor a

Ξ-graph nor a graph with two connected components which are a split
3-star or/and a double fan as an induced subgraph (see Figure 3).

(iv) Let G1, G2, . . . , Gm be the connected components of G. G2, . . . , Gm

are B-perfect and G1 contains a universal vertex v, so that every
connected component of G1 \ v is B-perfect.

C4 P4 Triangle star Ξ-graph

Two double fans Two split 3-stars Mixed graph

Figure 3. Seven forbidden configurations for g-perfectness

Proof. (i) =⇒ (ii): This follows directly from Observation 2.

(ii) =⇒ (iii): Consider the game g, Bodlaender’s original game. Obviously,
Bob wins on the C4 and P4 with 2 colors. Bob wins on two double fans,
two split 3-stars resp. the mixed graph with 3 colors since, after Alice has
played in a certain connected component, Bob can follow his strategy as
in the proof of Theorem 3 in the other component. Bob also wins on the
triangle star with 4 colors: Bob’s goal is to have two vertices of degree 3
colored in two different colors and at least one universal vertex uncolored.
Obviously, he can achieve this goal within his first two moves.

Now we prove that Bob wins on the Ξ-graph with 4 colors. If Alice colors
a vertex of degree 3, Bob colors the uncolored vertex of degree 3 in the same
row with a different color and wins.

If Alice, in her first move, colors a vertex of degree 4 with color 1, Bob
colors the second vertex of degree 4 with color 2. If Alice now plays a
universal vertex (necessarily with color 3), Bob colors a vertex of degree 3
with color 4 and wins. If, on the other hand, Alice colors a vertex of degree
3, Bob colors another vertex of degree 3 with color 3 and wins, since for the
two universal vertices two new colors would be needed.

Finally consider the last case, i.e., in her first move Alice colors a universal
vertex. Then the remaining game reduces to a game [B,−] with 3 colors on
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a double fan, which Bob will win using the strategy described in the proof
of Theorem 3. Therefore Bob always wins on the Ξ-graph.

(iii) =⇒ (iv): First we prove that every connected component H of G has
a universal vertex v with the property that, if v is deleted, the connected
components of H \ v are B-perfect. This is seen as follows: Since G does
not contain a P4 or a C4, by Lemma 4 every connected component H has a
universal vertex vH . Assume H \ vH is not B-perfect. Then, by Theorem 3,
it has either an induced C4 or P4 (which is not possible since G does neither
contain a C4 nor a P4) or an induced double fan or split 3-star. Assume
H \ vH contains an induced double fan D. Then the graph induced by the
vertices of D and vH is a Ξ-graph in G, a contradiction. Assume H \ vH
contains an induced split 3-star S. Then the graph induced by the vertices
of S and vH is a triangle star in G, a contradiction.

Now assume two connected components H1, H2 of G are not B-perfect.
This means that H1 and H2 each contain either a split 3-star or a double
fan. But then G contains either two split 3-stars, two double fans or a mixed
graph, a contradiction.

(iv) =⇒ (i): We describe a winning strategy for Alice in the game [A,B] on
a graph as defined in (iv). This is sufficient since every induced subgraph of
such a graph is of the same type. Alice’s strategy is very simple: in her first
move she colors the universal vertex v of the special connected component
G1. Now the game is reduced to the game [B,B] onG\v, which is aB-perfect
graph. So Alice has a winning strategy with ω(G \ v) ∈ {ω(G), ω(G) − 1}
colors. This proves the theorem. �

Remark. Note that, in spite of the fact that the classes of [A,B]-perfect
and g-perfect graphs are the same this does not mean that, for any graph
G, χg(G) = χ[A,B](G). Consider the graph G = C6 ∪K1. Here χg(G) = 2
(Alice first colors the isolated vertex, then a vertex at distance 3 from the
vertex Bob has colored), but χ[A,B](G) = 3.

4. Game-col-perfect graphs

In the theory of graph coloring games, a main idea for gaining upper
bounds is the so-called game coloring number of a graph which was intro-
duced by Zhu [25]. The game underlying this concept is a marking game. In
our context we may define some marking games as follows. Let “A” denote
“Alice,” and “B” denote “Bob,” and “−” denote “none of the players.”
Let X ∈ {A,B} and Y ∈ {A,B,−}. The game [X,Y ]-col is defined as
follows. We are given a graph G = (V,E) whose vertices are unmarked at
the beginning. Alice and Bob alternately mark unmarked vertices. Player
X begins. Player Y may miss one or several turns (possibly also the first),
but the other player(s) always have to move. Whenever a vertex is marked
it is assigned a score. The score s(v) of a vertex v is 1 plus the number of
neighbors of v which have been marked before v. The score of the game
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is S = maxv∈V s(v). Alice’s goal is to minimize the score, Bob’s goal to
maximize the score. The [X,Y ]-game coloring number col[X,Y ](G) is the
smallest integer S such that Alice has a strategy to achieve the score S in
game [X,Y ]-col. Obviously, for a graph G,

(2) ω(G) ≤ χ(G) ≤ χ[X,Y ](G) ≤ col[X,Y ](G),

and we have, in line with Observation 2,

Observation 8. For any graph H,

col[A,A](H) ≤

{
col[A,−](H) ≤ col[A,B](H)

col[B,A](H) ≤ col[B,−](H)

}
≤ col[B,B](H).

The game [A,−]-col is Zhu’s marking game. A graph G is [X,Y ]-col-
perfect if, for any induced subgraph H of G, col[X,Y ](G) = ω(G). By (2) a
[X,Y ]-col-perfect graph is in particular [X,Y ]-perfect.

In this section we characterize [X,Y ]-col-perfect graphs for any X ∈
{A,B} and Y ∈ {A,B,−}. As we shall see, the only significant differ-
ence lies in the player who is allowed to have the first move. Our proof uses
an idea of Zhu ([27], Lemma 3) who already proved the first equation of (a).

Theorem 9. For any graph G,

(a) col[B,B](G) = col[B,−](G) = col[B,A](G), and
(b) col[A,B](G) = col[A,−](G) = col[A,A](G).

Proof. We first prove that missing a turn is not an advantage for Bob, then
that missing a turn is not an advantage for Alice.

Let X ∈ {A,B}. First, assume that Alice has a strategy in game [X,−]-
col to achieve a score S[X,−] ≤ α. We prove that she has a strategy in
game [X,B]-col to achieve a score S[X,B] ≤ α. Alice uses basically her
strategy in game [X,−]-col and further sometimes keeps in mind a special
unmarked vertex, the memory vertex. In case Bob misses his turn and there
is a memory vertex, Alice marks the memory vertex, which thereby looses
his role as memory vertex. In case Bob misses his turn and there is no
memory vertex or if Bob marks the memory vertex, Alice imagines that
Bob has marked the unmarked vertex of smallest degree, which now is the
new memory vertex, and chooses a vertex for marking by her strategy for
game [X,−]-col. If Bob marks any other vertex, Alice replies by using her
strategy for the game [X,−]-col. In case the memory vertex is the only
unmarked vertex, Alice marks the memory vertex, of course.

Using this strategy the only vertices which might obtain a higher score in
game [X,B]-col than in game [X,−]-col are the memory vertices. However,
at the time they are chosen, they have smallest degree d among all unmarked
vertices, therefore α ≥ d + 1. Since a memory vertex can obtain at most a
score of d+ 1, the score of the game will be ≤ α.

Secondly, assume that Bob has a strategy in game [X,−]-col to obtain
a score S[X,−] ≥ α. We prove that he has a strategy in game [X,A]-col
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to achieve a score S[X,A] ≥ α. Basically, Bob here uses his strategy in
game [X,−] and keeps in mind a memory vertex and proceeds as in Alice’s
strategy above with the only difference that, if Alice passes and there is
no memory vertex or if Alice marks the memory vertex, Bob imagines that
Alice has marked the unmarked vertex of largest degree, which is now the
new memory vertex.

In this strategy, at any time there has been constructed already a vertex
with score α, or there is a memory vertex with degree d ≥ α− 1, or there is
no memory vertex. If the last unmarked vertex is the memory vertex with
degree d ≥ α − 1, then the score is ≥ d + 1 ≥ α. Otherwise the score of
all vertices marked after a memory vertex has been marked (before there
is a new memory vertex) is equal to their scores for the game [X,−]-col.
Therefore, in any case Bob can achieve a score ≥ α in game [X,A]-col. This
proves the theorem. �

The previous theorem justifies to use the short notations A-col resp. B-
col instead of the games [A,−]-col resp. [B,−]-col. Moreover, in view of
Observation 8, beginning is always an advantage in the marking game:

Corollary 10. For any graph G, colA(G) ≤ colB(G).

Before formulating the theorems on the characterization of game-col-
perfect graphs we give a definition. A diamond D is the graph K4 minus
one edge. By a 2D we mean D ∪D, the disjoint union of two diamonds.

Theorem 11. Let G be a (nonempty) graph. Then the following conditions
are equivalent:

(i) G is B-col-perfect.
(ii) G does neither contain a P4 nor a C4 nor a D as an induced sub-

graph.
(iii) Every connected component of G is of the form

K1 ∨ (H1 ∪H2 ∪ · · · ∪Hm)

for some m ≥ 0, where Hi are complete graphs.

Proof. (i) =⇒ (ii): Obviously there is a strategy for Bob to obtain a score
of 3 resp. 4 in the game B-col played on the P4 and C4 resp. the diamond.

(ii) =⇒ (iii): Let (ii) be true. Since G does neither contain an induced C4

nor an P4, G is trivially perfect, hence by Lemma 4 every connected com-
ponent H of G has a universal vertex vH . Let H be a connected component
of G. Let H ′ be a connected component of H \ vH . Assume that H ′ is not
complete. Then, since it is connected it contains an induced P3. This P3

together with vH is an induced diamond in G, a contradiction to (ii). Thus
(iii) holds.

(iii) =⇒ (i): We show that on G as in (iii) Alice has a strategy to ob-
tain a score of ω(G). The only dangerous vertices, i.e. vertices with more
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than ω(G)− 1 neighbors, are the universal vertices of the connected compo-
nents of G in case they are the only universal vertex of such a component
(otherwise the component is a clique). Alice’s strategy is simple. In case
Bob marks a vertex in connected component H, Alice marks a vertex in the
same component, preferably the universal vertex of the component. If this
is not possible or Bob misses his turn, Alice marks some vertex, preferably
a universal vertex of some connected component. In this way the universal
vertices v of the connected components have score s(v) ≤ 2, and the score
2 is only achieved if the connected component is not trivial. Thus the score
of the game is ω(G). �

Theorem 12. Let G be a (nonempty) graph. Then the following conditions
are equivalent:

(i) G is A-col-perfect.
(ii) G does neither contain a P4 nor a C4 nor a 2D nor a K1 ∨D as an

induced subgraph.
(iii) Let G1, G2, . . . , Gn be the connected components of G. Then the

components G2, . . . , Gn are B-col-perfect and G1 contains a univer-
sal vertex v, so that every connected component of G1 \ v is B-col-
perfect.

Proof. (i) =⇒ (ii): Obviously, there is a strategy for Bob to obtain a score
of 3 in the game A-col played on the P4 and C4. In the 2D, Bob can force
a score of 4 if in his first move he marks a vertex of degree 2 in a connected
component in which Alice has not marked any vertex before. Now consider
the K1 ∨D. This graph has 3 vertices of degree 4 and 2 of degree 3. The
score will be 4 if a vertex of degree 4 leaves as the last marked vertex. Bob
can achieve this goal if in his first two moves he marks vertices of degree 3
preferably.

(ii) =⇒ (iii): Let G be as in (ii). Assume there are two connected com-
ponents of G that are not B-col-perfect. Since G does neither contain an
induced P4 nor an induced C4 each of these components contains an induced
diamond. So G contains a 2D, a contradiction.

Now let H be the single connected component (if any) of G that is not
B-col-perfect. Since H is trivially perfect and connected, by Lemma 4 H has
a universal vertex vH . Let H ′ be a connected component of H \vH . Assume
H ′ is not B-col-perfect. Then H ′ contains a diamond D. So, together with
vH , G contains a K1 ∨D, a contradiction. Thus (iii) holds.

(iii) =⇒ (i): We show that on G as in (iii) in game [A,B]-col Alice has a
strategy to obtain a score of ω(G). In her first move she marks the universal
vertex v of G1. Then the game is reduced to a game [B,B]-col on G2, . . . , Gn

and the connected components of G1 \v, which is a [B,B]-col-perfect graph.
We have seen in the previous theorem that Alice now has a winning strategy
to obtain score ω(G). �
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The game coloring number is a game-theoretic analog of the well-known
coloring number col(G) of a graph G. We might also define col-perfectness
and ask: what are the col-perfect graphs? The answer is very easy. Since
every cycle of length ≥ 4 is forbidden for col-perfectness, and chordal graphs
have a perfect elimination scheme, the class of col-perfect graphs is the
class of chordal graphs. This fact was already remarked by Kierstead and
Yang [20].

5. Open problems

There is not much known about A-perfect graphs. The graphs depicted
in Figure 4 are known to be minimal forbidden induced subgraphs, but
there are probably many more. In [3], the author proved the following two
theorems.

Theorem 13. A triangle-free graph G is A-perfect if, and only if, every
connected component of G is either K1 or Km,n or Km,n − e, where e is an
edge.

Theorem 14. Complements of bipartite graphs are A-perfect.

In view of Observation 2 and the preceding results, the following open
problem seems to be more difficult than Theorem 3.

Problem 15. Characterize A-perfect graphs explicitly and/or by forbidden
induced subgraphs.

Even the following is an open question.

Problem 16. Is the number of minimal forbidden induced subgraphs for
A-perfectness that are different from odd antiholes finite?

For the other variants of the game, the question of Problem 15 might be
interesting, too.

C5 P5 Chair

Triangle star Ξ-graph All odd antiholes C2k+7, k ≥ 0

Two double fans Two split 3-stars Mixed graph

Figure 4. Some forbidden induced subgraphs for A-perfect graphs
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Problem 17. Characterize gB-perfect graphs explicitly and/or by forbidden
induced subgraphs.

Problem 18. Characterize [B,A]-perfect graphs explicitly and/or by for-
bidden induced subgraphs.

In Figure 5 resp. Figure 6 sets of minimal forbidden induced subgraphs
for [B,A]- resp. gB-perfectness are displayed. It is not known whether these
sets (together with the graphs of Figure 4 resp. the graphs of Figure 4 and
Figure 5) are complete to characterize game-perfectness for the respective
games. Of course the occurrence of the split 3-star and the double fan yields
that the triangle star, the Ξ-graph, the two double fans, the two split stars,
and the mixed graph are not minimal (for [B,A]- and gB-perfectness). And
the occurrence of the wheel C4 ∨ K1 yields that the odd antiholes C2k+9,
k ≥ 0, are not minimal (for gB-perfectness).

The following theorem is obvious.

Theorem 19. Either every connected component of a gB-perfect graph G
is B-perfect or G has only one connected component.

Proof. Assume G is gB-perfect, but not B-perfect. Then a connected com-
ponent of G must contain a P4 or a C4. If there is a second component,
then G contains a P4 ∪K1 or a C4 ∪K1, which are forbidden in gB-perfect
graphs. Thus G is connected. �

Connected gB-perfect graphs may have a richer structure which resisted
a characterization until now.

We remark that the classes of A-, g-, [B,A]-, gB- and B-perfect graphs
are 5 distinct classes of graphs. This is easily seen as follows. The path
P4 is [B,A]-perfect, gB-perfect, and A-perfect, but neither g-perfect nor B-
perfect. The double fan is A-perfect and g-perfect, but neither [B,A]-perfect
nor gB-perfect. The P4 ∨K1 is [B,A]-perfect, but not gB-perfect.

Split 3-star Double fan

Figure 5. Some additional forbidden induced subgraphs for
[B,A]-perfect graphs

C4 ∪K1 P4 ∪K1 Wheel C4 ∨K1 Fan P4 ∨K1

Figure 6. Some additional forbidden induced subgraphs for
gB-perfect graphs
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There are some more interesting questions which are related to the clas-
sifications of this paper. For example, one might consider the notion of
[X,Y ]-chi-col-perfectness. A graph G is [X,Y ]-chi-col-perfect if, for any in-
duced subgraph H of G, χ[X,Y ](H) = col[X,Y ](H). Obviously, the class of
[X,Y ]-col-perfect graphs is the intersection of the classes of [X,Y ]-perfect
graphs and [X,Y ]-chi-col-perfect graphs.

Problem 20. For any X ∈ {A,B} and Y ∈ {A,B,−}, characterize the
class of [X,Y ]-chi-col-perfect graphs explicitly and/or by forbidden induced
subgraphs.

The difference between the chromatic number and the game chromatic
number is an important parameter in the theory of graph coloring games.
So we may define a graph G as [X,Y ]-exact if, for any induced subgraph
H of G, χ(H) = χ[X,Y ](H). Then the class of [X,Y ]-perfect graphs is the
intersection of the classes of perfect graphs and [X,Y ]-exact graphs.

Problem 21. For any X ∈ {A,B} and Y ∈ {A,B,−}, characterize the
class of [X,Y ]-exact graphs explicitly and/or by forbidden induced subgraphs.

Acknowledgements

Thanks to Winfried Hochstättler for useful comments, in particular for
some hints which helped me to formulate Claim 6 in a compact way, and for
a hint concerning reference [20]. I also acknowledge a discussion with Stefan
Felsner concerning the minimality of the odd antiholes for A-perfectness.

References

1. S. D. Andres, Spieltheoretische Kantenfärbungsprobleme auf Wäldern und verwandte
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