338 research outputs found

    Social Welfare Maximization Auction in Edge Computing Resource Allocation for Mobile Blockchain

    Full text link
    Blockchain, an emerging decentralized security system, has been applied in many applications, such as bitcoin, smart grid, and Internet-of-Things. However, running the mining process may cost too much energy consumption and computing resource usage on handheld devices, which restricts the use of blockchain in mobile environments. In this paper, we consider deploying edge computing service to support the mobile blockchain. We propose an auction-based edge computing resource market of the edge computing service provider. Since there is competition among miners, the allocative externalities (positive and negative) are taken into account in the model. In our auction mechanism, we maximize the social welfare while guaranteeing the truthfulness, individual rationality and computational efficiency. Based on blockchain mining experiment results, we define a hash power function that characterizes the probability of successfully mining a block. Through extensive simulations, we evaluate the performance of our auction mechanism which shows that our edge computing resources market model can efficiently solve the social welfare maximization problem for the edge computing service provider

    Cloud/fog computing resource management and pricing for blockchain networks

    Full text link
    The mining process in blockchain requires solving a proof-of-work puzzle, which is resource expensive to implement in mobile devices due to the high computing power and energy needed. In this paper, we, for the first time, consider edge computing as an enabler for mobile blockchain. In particular, we study edge computing resource management and pricing to support mobile blockchain applications in which the mining process of miners can be offloaded to an edge computing service provider. We formulate a two-stage Stackelberg game to jointly maximize the profit of the edge computing service provider and the individual utilities of the miners. In the first stage, the service provider sets the price of edge computing nodes. In the second stage, the miners decide on the service demand to purchase based on the observed prices. We apply the backward induction to analyze the sub-game perfect equilibrium in each stage for both uniform and discriminatory pricing schemes. For the uniform pricing where the same price is applied to all miners, the existence and uniqueness of Stackelberg equilibrium are validated by identifying the best response strategies of the miners. For the discriminatory pricing where the different prices are applied to different miners, the Stackelberg equilibrium is proved to exist and be unique by capitalizing on the Variational Inequality theory. Further, the real experimental results are employed to justify our proposed model.Comment: 16 pages, double-column version, accepted by IEEE Internet of Things Journa

    Crowdsourcing technologies to promote citizens’ participation in smart cities, a scoping review

    Get PDF
    The scoping review reported by this article aimed to identify (i) the purposes of the studies using crowdsourcing technologies in the context of the smart cities’ implementations, (ii) the characteristics of the crowdsourcing technologies being used, and (iii) the maturity level of the solutions being proposed. An electronic search was conducted, and 29 studies were included in the review after the selection process. The results show a current interest in crowdsourcing campaigns using participatory reporting and participatory sensing to (i) support urban infrastructures’ maintenance, (ii) facilitate urban mobility, (iii) monitor the environment, (iv) manage crowds, (v) aggregate geographical information, and (vi) collect citizens’ perspectives about the cities. However, the results also show low maturity level of the proposed solutions and lack of consolidated evidence about their effectiveness, which difficulties their dissemination.publishe

    CrowdPower: A Novel Crowdsensing-as-a-Service Platform for Real-Time Incident Reporting

    Get PDF
    Crowdsensing using mobile phones is a novel addition to the Internet of Things applications suite. However, there are many challenges related to crowdsensing, including (1) the ability to manage a large number of mobile users with varying devices’ capabilities; (2) recruiting reliable users available in the location of interest at the right time; (3) handling various sensory data collected with different requirements and at different frequencies and scales; (4) brokering the relationship between data collectors and consumers in an efficient and scalable manner; and (5) automatically generating intelligence reports after processing the collected sensory data. No comprehensive end-to-end crowdsensing platform has been proposed despite a few attempts to address these challenges. In this work, we aim at filling this gap by proposing and describing the practical implementation of an end-to-end crowdsensing-as-a-service system dubbed CrowdPower. Our platform offers a standard interface for the management and brokerage of sensory data, enabling the transformation of raw sensory data into valuable smart city intelligence. Our solution includes a model for selecting participants for sensing campaigns based on the reliability and quality of sensors on users’ devices, then subsequently analysing the quality of the data provided using a clustering approach to predict user reputation and identify outliers. The platform also has an elaborate administration web portal developed to manage and visualize sensing activities. In addition to the architecture, design, and implementation of the backend platform capabilities, we also explain the creation of CrowdPower’s sensing mobile application that enables data collectors and consumers to participate in various sensing activities

    Understanding collaboration in volunteer computing systems

    Get PDF
    Volunteer computing is a paradigm in which devices participating in a distributed environment share part of their resources to help others perform their activities. The effectiveness of this computing paradigm depends on the collaboration attitude adopted by the participating devices. Unfortunately for software designers it is not clear how to contribute with local resources to the shared environment without compromising resources that could then be required by the contributors. Therefore, many designers adopt a conservative position when defining the collaboration strategy to be embedded in volunteer computing applications. This position produces an underutilization of the devices’ local resources and reduces the effectiveness of these solutions. This article presents a study that helps designers understand the impact of adopting a particular collaboration attitude to contribute with local resources to the distributed shared environment. The study considers five collaboration strategies, which are analyzed in computing environments with both, abundance and scarcity of resources. The obtained results indicate that collaboration strategies based on effort-based incentives work better than those using contribution-based incentives. These results also show that the use of effort-based incentives does not jeopardize the availability of local resources for the local needs.Peer ReviewedPostprint (published version

    Understanding human-machine networks: A cross-disciplinary survey

    Get PDF
    © 2017 ACM. In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form sophisticated networks where not only do people interact with other people, but also machines take an increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the daily lives of people, both for personal and professional use. They can have a significant impact by producing synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed and implemented in the same manner as networks of machines nodes alone, or following a wholly human-centric view of the network. The problem requires an interdisciplinary approach. Here, we review current research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of sociotechnical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate on the interactions among humans and between humans and machines. We identify eight types of HMNs: public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media, multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss risks associated with HMNs and identify emerging design and development trends
    • …
    corecore