Zayed University

ZU Scholars

All Works

11-1-2022

CrowdPower: A Novel Crowdsensing-as-a-Service Platform for
Real-Time Incident Reporting

Sujith Samuel Mathew
Zayed University

May El Barachi
University of Wollongong in Dubai

Mohammad Amin Kuhail
Zayed University

Follow this and additional works at: https://zuscholars.zu.ac.ae/works

6‘ Part of the Computer Sciences Commons

Recommended Citation

Mathew, Sujith Samuel; El Barachi, May; and Kuhail, Mohammad Amin, "CrowdPower: A Novel
Crowdsensing-as-a-Service Platform for Real-Time Incident Reporting" (2022). All Works. 5477.
https://zuscholars.zu.ac.ae/works/5477

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae.

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5477&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5477?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5477&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae

friried applied
e sciences

Article

CrowdPower: A Novel Crowdsensing-as-a-Service Platform for
Real-Time Incident Reporting

Sujith Samuel Mathew !, May El Barachi 2 and Mohammad Amin Kuhail 1-*

check for
updates

Citation: Mathew, S.S.; El Barachi, M.;
Kuhail, M.A. CrowdPower: A Novel
Crowdsensing-as-a-Service Platform
for Real-Time Incident Reporting.
Appl. Sci. 2022, 12,11156. https://
doi.org/10.3390/app122111156

Academic Editor: Christos Bouras

Received: 13 September 2022
Accepted: 30 October 2022
Published: 3 November 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 College of Interdisciplinary Studies, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
Faculty of Engineering and Information Sciences, The University of Wollongong in Dubai,

Dubai P.O. Box 20183, United Arab Emirates

Correspondence: mohammad.kuhail@zu.ac.ae

Abstract: Crowdsensing using mobile phones is a novel addition to the Internet of Things applications
suite. However, there are many challenges related to crowdsensing, including (1) the ability to
manage a large number of mobile users with varying devices’ capabilities; (2) recruiting reliable
users available in the location of interest at the right time; (3) handling various sensory data collected
with different requirements and at different frequencies and scales; (4) brokering the relationship
between data collectors and consumers in an efficient and scalable manner; and (5) automatically
generating intelligence reports after processing the collected sensory data. No comprehensive end-to-
end crowdsensing platform has been proposed despite a few attempts to address these challenges.
In this work, we aim at filling this gap by proposing and describing the practical implementation
of an end-to-end crowdsensing-as-a-service system dubbed CrowdPower. Our platform offers a
standard interface for the management and brokerage of sensory data, enabling the transformation of
raw sensory data into valuable smart city intelligence. Our solution includes a model for selecting
participants for sensing campaigns based on the reliability and quality of sensors on users’ devices,
then subsequently analysing the quality of the data provided using a clustering approach to predict
user reputation and identify outliers. The platform also has an elaborate administration web portal
developed to manage and visualize sensing activities. In addition to the architecture, design, and
implementation of the backend platform capabilities, we also explain the creation of CrowdPower’s
sensing mobile application that enables data collectors and consumers to participate in various

sensing activities.

Keywords: crowdsensing; sensing-as-a-service; incident reporting; smart city application; data
quality; data reliability

1. Introduction

With the ubiquity of smartphones equipped with various embedded sensors, smart-
phone users can collect a wealth of real-time contextual data. Mobile phones have become
personal sensing platforms that complement and replace traditional Wireless Sensor Net-
works (WSNs). WSNs have been the leading solution for contextual data acquisition
and sensing activities in various domains such as environment monitoring, healthcare
applications, home automation, and traffic control. Sensing-as-a-Service was conceived
leveraging cloud computing systems that interface with WSNs to allow end-users to
request sensing services while WSNs fulfill those requests [1]. However, dedicated sens-
ing infrastructures typically involve high deployment and maintenance costs [2,3]. To-
day, we have robust computing systems on mobile smartphones that are increasingly
powerful, permeating our everyday environment. These miniature computers commu-
nicate with each other over the Internet or Device-to-Device (D2D) communication and
form a powerful network that is now, essentially, the mobilizing agent of the Internet
of Things (IoT). Indeed, mobile devices act as mobile super sensors to provide Mobile

Appl. Sci. 2022, 12, 11156. https:/ /doi.org/10.3390/app122111156

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111156
https://doi.org/10.3390/app122111156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0000-0989
https://doi.org/10.3390/app122111156
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111156?type=check_update&version=1

Appl. Sci. 2022,12,11156

2 of 41

Sensing-as-a-Service (MSaaS). In MSaaS, mobile phones are perceived as data collectors,
and their users participate in the sensing process offering their phones’ sensory data
collection capabilities as services. In addition to the enhanced data processing and vali-
dation capabilities achieved on smartphones, motivations for using MSaa$S include: the
increased sensing coverage area due to devices/users mobility, higher uptime of sensors
as the users ensure to charge their phones, the easy on-demand deployment of a net-
work of sensors in an area of interest, the addition of a social dimension to sensing, and
the saving of time and cost in comparison to traditionally deployed specialized WSN
infrastructures [4].

A variety of application areas have been suggested and studied in the literature for
MSaaS, such as traffic monitoring [5,6], environment monitoring [7,8], location tagging [9],
and localization [10,11]. Such MSaa$S applications are categorized as either participatory
(with the active involvement of users that contribute data) or opportunistic (data collection
without direct user interaction) [12]. The source of this data is mobile users who share
data from their sensor-rich smartphones. There are many challenges in realizing an MSaaS
platform, including the time-space constrained nature of crowdsensing tasks, combined
with participants’ mobility, the diverse types and quality of sensors on the devices, effective
power utilization of the devices, user acceptance, and unpredictable behavior that affects
the sensory data [13]. Moreover, in participatory sensing, the user should be motivated
to participate in the process, while in opportunistic sensing, the phone’s context and the
availability of the required sensors are difficult to predict [14,15]. In this context, we
recently proposed a comprehensive MSaaS participant recruitment model that proactively
ensures the quality and reliability of the smartphone sensors before it contributes to a
sensing campaign hosted on the MSaa$S platform [16]. However, even if good quality and
reliable sensors are identified, there is always the possibility that malicious and erroneous
data are sent to the MSaaS platform either intentionally or carelessly, which drastically
reduces the effectiveness of crowdsensing services. Thus, monitoring and controlling
the quality of sensory data received becomes very important to ensure the efficiency of
the services.

Owing to this array of open challenges, the main goal of our work was to build a
comprehensive end-to-end crowdsensing platform offering standard interfaces for the
management and brokerage of sensory data, thereby enabling the rapid integration and
deployment of smart city applications. To address the challenge of malicious and erroneous
data, we employ an unsupervised machine learning approach combined with participants’
reputations to evaluate the quality of data collected. Specifically, we use clustering, an
unsupervised machine learning technique, to discover natural groupings in sensory data
automatically. To demonstrate our platform, we focus on using our MSaa$S platform for
incident reporting during emergencies in smart cities.

1.1. Research Scope

The main challenges to realizing both the client and server side of the MSaa$S plat-
form are as follows. The first challenge is to capture data using different frequencies
(e.g., once, time-based, event-based) and spanning different contribution scales (i.e., indi-
vidual, group, and community). The next challenge is managing mobile users with varying
devices’ capabilities and recruiting reliable users for a sensing campaign with different
sensing paradigms (i.e., both opportunistic and participatory). The next challenge is to
automatically process and determine the quality of the raw sensory data received, optimize
processing efforts, and transform the data into useful reports. The other challenge is the
requirement to broker the communication between data collectors and data consumers in a
structured manner using standard protocols.

To address these challenges, we designed and implemented CrowdPower, a novel
end-to-end MSaa$ platform. CrowdPower allows tapping into the sensing capabilities of
existing smartphones to collect the needed intelligence in an on-demand and resource-
efficient manner. CrowdPower acts as an intermediary between data consumers (i.e., smart

Appl. Sci. 2022,12,11156

3 of 41

|

\.

\

-

. - - &] -
e ST Tohh e
k' onsumers - .; ~ \F,r / l .
ﬁ @ I-'\ Pedestriants r.‘ EMVIROMMENT \
| - - | | 1)) C - i |
._.3. (t=1) N
,, ¥ (lJ -ﬂi‘ i & |

Pubhc on

"™~ Social Media

Data

." [m]

city applications) and data collectors (i.e., sensor-enabled mobile devices) by matching
sensing requests in real-time with the most suitable sources and offering information
management and data brokerage capabilities. The platform enables the management of
various mobile sensing data efficiently and supports different sensing paradigms (i.e., both
opportunistic and participatory sensing). To ensure the modularity and extensibility of
the system, the platform design leverages SOA (Service Oriented Architecture) concepts to
offer its functionalities as RESTful services. Furthermore, it includes Al-based capabilities
for evaluating data quality and the automatic generation of incidents’ intelligence reports
from raw sensory data. CrowdPower also includes a sensing mobile application that
enables data collectors and data consumers to participate in sensing activities. Finally, an
administration Web portal is also devised to enable the management of sensing activities
and obtain visualization of sensing sessions and incident reports.

As depicted in Figure 1, our use case encompasses a set of data consumers (interested
in crowd-sensed data), data collectors (participants collecting the requesting data using their
phone), and the CrowdPower MSaaS platform acting as the broker between data consumers
and data collectors. Data collectors and data consumers are registered on the platform
using the CrowdPower mobile app. The platform collects status information (i.e., updated
location and sensors’ availability) from data collectors” mobile applications to keep track of
all available data types and the associated quality levels offered to data consumers.

3. Mobile Sensing

_ 2. Particpant Sefection _ — — T — =~ _
1. Sensing Regquests - Data - ,,-"f-pneneofthe -
_./f__‘\"“\ e Collectors ~ ’a Incident ~
- - -, : . - \ : \

s

CrowdPower sabie Lsers i

f‘.

[fl' Public WiFi ¥ PEOPLE J
Fubhc WiFi C"—'sf Mﬂﬂﬂ’-"es - . MsaaS PLATFORM, *" i g MVOLVED
’ -
- 0 Tee — . Maobie Users ! N 1 i
~ On vehicles r ~ _ s
6. Inci report ~ - “ FACILTIES
. - - -
5.S%nsed Data — — ~ ‘_// - -
4. Raw Data

Figure 1. The activities of an MSaa$S platform: sensing requests, participant selection, mobile sensing,
reporting raw data, sending the sensed data, and reporting on the incident.

To illustrate CrowdPower, consider the example of a data consumer needing data to be
collected about a car accident in a certain location in the city. As a result, the data consumer
sends a sensing request to CrowdPower, matching the requirements and the available data
collectors’ status information to find the appropriate set of collectors who can respond to the
request. When a data consumer sends a request to the broker, the request specifies the type
and location of the event of interest, along with the minimum quality level required for the
task, the maximum budget allocated, as well as the maximum time window required for the
task (e.g., car accident at location, min. quality level of 8, max. budget of USD 10, and max.
time window of 5 min). Once the selection of collectors (participant selection) is complete,
the request is transmitted to the chosen data collector’s mobile app. The participants
who accept the received sensing task would complete the sensing activity either manually
(e.g., taking a picture or video of an incident) or automatically (sensory data automatically
collected by the app.) and transmit the resulting sensed data to the platform. CrowdPower
then validates the quality of the received data, removes outliers, and processes the data to
generate an incident report sent to the data consumer automatically.

This knowledge on-demand service could provide valuable insights and allow author-
ities to be better prepared to react to an incident or emergency. The CrowdPower mobile
app installed on the smartphones of data collectors and data consumers offers a rich set of

Appl. Sci. 2022,12,11156

4 of 41

functionalities and acts as a sensing gateway. This functionality includes registration to
the CrowdPower platform and discovering existing sensing services and sensing commu-
nities (representing a grouping of services based on a certain criterion—such as sensing
services in a certain city or services offered by a certain institution). Other functionalities
include the creation of a sensing request and viewing of a sensing report (by a data con-
sumer), performing/stopping a sensing task (by data collector), voluntary sensing (initiated
by the data collector, i.e., steps 3, 4, 5, and 6 in Figure 1), as well as preference settings
(notifications management, access to sensors, and frequency of status update). Crowd-
Power uses Representational State Transfer (RESTful) Web-services to enable access to its
services [17]. This ability to offer on-demand sensory data using platform-independent,
lightweight Web-services brings significant benefits for smart city applications to pull data
and constitutes an efficient and flexible solution to the problem of real-time contextual
data collection.

1.2. Research Contributions
Our major contributions in this paper are the following.

1. Literature survey: We provide an in-depth literature survey, comparing with other
existing crowdsensing platforms, and a discussion on the benefits of CrowdPower.

2. Software architecture, design, and implementation of a crowdsensing-as-a-service
platform: We provide a description of the end-to-end development of a cloud-
based comprehensive crowdsensing platform that offers sensing services, which
researchers can use to study various crowdsensing applications further. We discuss
the following:

a. The software requirements and the client/server architectural components:
The interface between the various components on the mobile application
(client) and the MSaaS server is described, providing modularity and scalability.
We also discuss the various operations of the system, explaining the flow
of messages using sequence charts. Moreover, we describe the design and
implementation of comprehensive RESTful Web services. By exposing its
capabilities as Web Services, the CrowdPower platform allows flexible access
to a wide range of crowdsensing-related functionalities consumed by mobile
and Web clients, thus facilitating the flexible implementation and deployment
of smart applications.

b. The design and implementation of a sensing mobile app: Existing solutions
require specialized applications to showcase crowdsensing capabilities and
need to develop different applications for each use case. Our platform, on
the other hand, is the first to offer a generic sensing gateway application
that enables both data collectors and data consumers to participate in sensing
activities. It allows the collection of a large variety of sensory and user collected
data on different frequencies and scales and supports both opportunistic and
participatory sensing (both triggered and voluntary). Such an application
would enable the collection of any crowdsensing data required (according to
the specified criteria), thus combining the capabilities of multiple crowdsensing
applications in one.

c. The design and implementation of an administrative Web portal: An admin-
istration portal was designed and fully implemented to enable easy admin-
istration and visibility over sensing activities and sessions. Furthermore, a
customer’s Web portal was provided to allow authorities (acting as data con-
sumers) to have a full view of the data related to their geographic location,
along with useful statistics and analytics.

3. Model for gathering good quality sensory data for efficient processing: We use a

double-edged approach to ensure efficient processing of the sensory data. For a given
sensing campaign, as an initial phase, we proactively make a participant selection by
comparing the sensors on the participants’ mobile phones to ensure the quality of the

Appl. Sci. 2022,12,11156

5of 41

phone. This approach was proposed earlier [16]. We briefly explain this approach
to provide the reader with an overall understanding of the whole system. The next
phase, which we describe here in detail, is where our system relies on unsupervised
machine learning combined with user reputations to evaluate the quality of sensory
data received at the server. We preprocess data received to detect and filter anomalies
in the data, and then we use clustering, which is a machine learning technique to
discover natural groupings in the data automatically. Moreover, we also describe
a model for benchmarking phone sensors to compare sensors of the same type on
different phones and allocate them a relative quality score.

4. Empirical evaluation: We discuss the evaluation of the participants’ selection model
(first phase) and the data quality model (second phase). Our data quality estima-
tion model was tested, and the results are analyzed and discussed to show how
the data quality is determined, including determining participant reputation and
filtering outliers.

The rest of the paper is organized as follows: The next section presents the related
work and literature review, highlighting the benefits of MSaaS over traditional WSNs
and comparing CrowdPower with similar research contributions in the area. Section 3
describes the architecture and detailed design of the platform, followed by Section 4, which
highlights the software implementation details on both the client (mobile app) and server
components. Section 5 discusses the empirical evaluations of our proposed models, and
finally, we conclude in Section 6.

2. Related Work and Literature Review

Smart cities are continuously innovating to use information and communication tech-
nologies to solve major challenges of urban life, such as traffic congestion, environmental
pollution, waste management, and regulation of health requirements. These require-
ments of smart cities are enabled using service-oriented architecture, which promotes cost-
effective, seamless, and efficient communication between a network of sensors (including
WSNs) and a cloud computing platform. With sensors being widely deployed in smart cities
and the possibility of accessing everything-as-a-service over the Internet, this has enabled
the scalability and availability of the various urban services [18,19]. Yet, the challenge re-
mains: deploying and maintaining these dedicated sensing platforms and sensory networks
are expensive. Recently, with the advent of powerful smartphones that have embedded
sensors, the possibility of using these mobile smartphones as sensing platforms caught the
interest of researchers, leading to the concept of mobile phone sensing [20]. Table 1, presents
a comparison between the traditional sensing paradigm (i.e., WSNs) and mobile sensing.
The main objective of the literature review is to show how CrowdPower compares with the
existing tools and also to highlight the research gaps in the literature. However, this article
is not considered a systematic literature review. In finding the related work, we minimized
the bias by searching for articles using widely used search libraries such as Scopus, and we
used keywords relevant to our work, such as “sensing”, “crowdsensing”, and “platform”,
among others.

Table 1. Comparison of WSN and mobile phone sensing.

Category Mobile Phone Sensing Traditional Sensing (WSNs)
Processing Capability High Limited
Storage Capability High Limited
Power Supply Rechargeable Battery-powered, needs maintenance
Computing Distributed, each node is intelligent Relies on a centralized external server
Data Support Supports raw or processed data Can only support raw data
Security Standard smartphone security protocols such as Limited options for ensuring security
HTTPS and TLS/SSL
Ownership All mobile users Typically, organizations that deploy WSNs

Appl. Sci. 2022,12,11156

6 of 41

Mobile phone sensing is ideal for sensing applications since it uses the widely avail-
able, self-maintained, comparatively secure, cost-effective, and resource-rich platform of
an already existing infrastructure of mobile phones [21,22]. Moreover, the development
of mobile crowdsensing applications is scalable and easily adaptable when designed with
SOA concepts [23,24], since it allows the decoupling of sensing applications from the sens-
ing hardware. Such crowdsensing platforms offer seamless participant recruitment, data
collection, data processing, and data dissemination services. As described earlier, Crowd-
Power offers SOA along with extensive RESTful Web services to expose its functionality
as services.

Table 2 presents a comparison of the crowdsensing platforms that use mobile sensing
and would help the reader to identify and compare our contributions in comparison to
existing solutions. A middleware that automates the process of users finding and joining
online social network services and collecting contextual data is [25]. It combines user
activities on such services by sensing the physical environment using mobile devices while
maintaining privacy. Hence, applications easily capture both user context and sensed
data. The key features are that users can build an application on SenSocial for social
media monitoring and define their triggers for sensing. The framework has a close cou-
pling of social networks and mobile sensing data streams which can be filtered. The
Publish-Subscribe interaction paradigm is used where the middleware is the publisher,
and the applications are the subscriber. Since the framework uses an online social net-
work, it is not device-dependent, but all activities are restricted through the specific social
media application.

Vita [26] is a mobile cyber—physical system built using SOA for crowdsensing. It
presents both the mobile and the cloud platforms to enable sensing services. It optimizes
task allocations to users by using genetic algorithms and K-means clusters. It also uses
RESTful Web-services to provide mobile users with HTTP-based URIs to interact with their
cloud platform. They also provide a REST-SOAP adapter to integrate SOAP Web service
requests. SOAP is inherently heavy both in terms of computation and implementation
architecture. Moreover, since SOAP-based web services are outdated and have drastically
been reduced [27], scalability and adaptability would be a considerable benefit if all ser-
vices provided were purely RESTful based on widely adopted and tested HTTP verbs
and identifiers.

Another interesting work is Medusa [28], a programming framework for crowdsens-
ing. It provides high-level abstractions for specifying the steps required to complete a
crowdsensing task and employs a distributed system that coordinates the execution of
sensing tasks between smartphones and a cluster on the cloud. The framework includes
a sandboxed environment on the client that receives a task. An interpreter parses the
program and creates an intermediate representation passed on to a module that tracks
the tasks, which contacts a backend service. The framework allows users to define their
sensing tasks with the help of a high-level language and includes an incentive system using
Amazon Mechanical Turk. In contrast to our research, Medusa does not allow voluntary
sensing and does not support the concept of location-based communities.

Hermes [29] is a framework for developing more powerful context-aware applications
for the modern mobile environment. It employs real-time dynamic configuration of sensors,
uses a distributed architecture, and allows application developers to create and extend their
custom widget types. The framework has the Shared Hermes Service Infrastructure (SHSI)
where the SHSI layer of a device communicates with the SHSI layer of another device for
widget discovery and management. The issues are that it is limited to a single user, creating
a network of SHSIs per user and has a limited number of pre-defined widgets.

Appl. Sci. 2022, 12, 11156

7 of 41

Table 2. Comparison of existing crowdsensing platforms with CrowdPower.

Features CrowdPower SenSocial [25] Vita [26] Medusa [28] Hermes [29] PRISM [30] AnonySense [31] CenceMe [32]
Support Participatory (Pa.)
and/or Opportunistic Pé' and Opp., consumer Only Opp. Only Pa. Only Pa. Only Opp. Pa. and Opp. Only Opp. Only Opp.
. triggered and voluntary
(Opp.) Sensing
- Yes, area of interest, No-Sensing is Yes-Scripts are § ~
On-demand soph.lsmated quality level, triggered by actions Yes used to No-Widget triggered Yes two level No-Pull tasks No-push mode
data collection predicates model
sensing mode on social media define tasks
Considers ph_one Yes, sensors No No No-Human No No No Partial
sensors quality benchmarked curate data
Takes into consideration Yes, user No No No No No No No
participants’ reliability reliability metric
Concepts of sensing . .
services and Yes, SENSING SCIVICes No No No No No No No
. o grouped in communities
sensing communities
Sense once and continuous Yes,. sense once and Sense Once Yes Yes Yes Yes Yes Yes
sensing modes time repeated
Modular, service- Simple Publish/ Yes, SOA and No-on device Simple Publish
oriented architecture Yes-SOA and REST APIs Subscribe API REST APIs Yes middleware Yes No API
Automated image analysis .
and accident Yes-Al-based acc.ldent No No No No No No No
. scene analysis
report generation
. - Yes—ggnerlc . Specialized Specialized Specialized Specialized Specialized Specialized Specialized
Client application crowdsensing mobile mobil mobil mobil Context-aware mobil mobil mobil
app and Web portals obrie app- obre app- obrie app- application obre app- obrie app- obre app-
. Yes, fully implemented Partial-basic Partial-basic
Crowdsensing platform and deployed on cloud functions Yes Yes functions Yes Yes Yes
Administrator dashboard Yes No No No No No No No
Egd-to-end prac tical Yes Partial Partial Partial Partial Partial Partial Partial
implementation
Tested on real devices Yes Yes Yes Yes Yes Yes Yes Yes
Check for data quality and
filter possible Yes No No No No No No No

malicious data

Appl. Sci. 2022, 12, 11156

8 of 41

The Platform for Remote Sensing using smartphones (PRISM) is another attempt to cre-
ate a crowdsensing framework for realizing a pervasive application based on collaborative
and opportunistic sensing with personal mobile devices [30]. The framework is designed
to harness the appropriate phones with the required sensing resources. The researchers
aimed to balance the goals of generality, security, and scalability by providing support
for two deployment modes, namely deploy-or-cancel and trigger modes. PRISM has a
two-level predicate API for the application servers and enables sandboxing to run remote
sensing applications in a secure and monitored environment. The framework uses a typical
client-server architecture, allowing the clients to update their server status periodically.
Both opportunistic and participatory sensing tasks are supported, and the clients run all
executable code in a sandboxed environment and provide security and resource manage-
ment. The framework is limited to Windows Phone only, and the developer must provide
application binaries for different frameworks. In addition, contrary to CrowdPower, PRISM
does not support the submission of voluntary sensing from mobile users and does not
support an XML-based format for specifying tasks.

AnonySense [31], a framework for accessing mobile sensors, allows consumers to
request sensing tasks that are then distributed across participating mobile devices. The
system then receives verified yet anonymized sensor data reports back from producers. It
has its special-purpose language called AnonyTL for expressing sensing requests and task
requirements. The framework supports a well-defined trust model and uses Mix network
to provide anonymization. The AnonySense server is divided into three components,
RA (Registration Authority), TS (Task Service), and RS (Report Service). The tasks are
executed as sensor requests on the phone and not executable code. The framework supports
privacy, security, and anonymity and allows data aggregation on the server. Using a
proprietary language reduces security leaks but prevents the reuse of existing third-party
libraries. AnonySense has scalability issues because of the pull model of obtaining tasks
and performance issues because of the use of the Mix network. Contrary to CrowdPower,
this framework does not support the submission of spontaneous or voluntary sensory
data from mobile users who are producers, which is an important feature required for
incident reporting.

CenceMe [32] exploits off-the-shelf sensor-enabled mobile phones to infer people’s
presence automatically. This framework classifies streams from different devices and uses
two types of classifiers, Power Aware Duty Cycle, and Software Portability. It is one
of the first applications to automatically retrieve and publish sensing presence to social
networks using the Nokia N95 mobile phones. Dynamix [33] is an open-source plug-n-play
contextual framework for Android that provides a community-based approach to context-
aware computing. It supports the automatic discovery and integration of framework
components at runtime. It has a modular and configurable architecture that provides
real-time discovery and integration of plug-ins and provides detailed custom settings for
privacy and security, but the processing and computation is limited to on the phone itself.

One of the earlier attempts at creating service-based sensing applications is the Web
Architectures for Service Platforms (WASP) project [34]. WASP allows applications to
dynamically subscribe to contextual information. WASP has its language and processing
performed on either the phone or the cloud. The framework defines two types of service
units: function and action. Function as a service unit performs a computation with no
side effects, and action as a service unit performs a computation with side effects for one
or more parties in the system. The complex computation and processing are handled on
the server side, and applications add, update, or delete their subscriptions at run-time.
WASP uses an expressive language for application subscriptions and requirements. The
frameworks’ support for knowledge representation is restricted to the UML class and does
not support ontologies.

Most architectures propose proprietary languages for OS abstractions or specify sand-
boxed environments for the secure execution of applications. While this would be conve-
nient, the fact that only pre-defined functions and software modules are provided hampers

Appl. Sci. 2022, 12, 11156

9 of 41

the flexibility of application developers. Moreover, most of these solutions support a limited
range of sensory data and are either opportunistic or participatory sensing. In addition,
existing approaches do not address the social aspect of crowdsensing and fail to consider
sensing communities and voluntary sensing. Those solutions proposed specialized ap-
plications to demonstrate their capabilities instead of a generic crowdsensing application
that could be used for many cases—this approach requires developing a new application
for each use case, which is not practical. Finally, existing solutions lack the end-to-end
practical implementation covering different aspects of MSaaS, which are necessary to make
the concept of crowdsensing a reality.

In comparison to existing solutions, the main features that set this research apart from
the rest are the following: CrowdPower is a comprehensive MSaaS platform offering a
generic sensing gateway application that can be used for various crowdsensing use/cases
scenarios. Unlike existing solutions that offer one specialized application per use case,
CrowdPower aims at offering a comprehensive and standardized approach to mobile
crowdsensing. This approach embraces the heterogeneity of phone sensing capabilities,
the diversity of data consumers’ requests, and the discrepancies in data quality and par-
ticipants’ reliability. By supporting a quality and reliability-based participants’ selection
approach [16], CrowdPower ensures that the most reliable participants offering the best
quality data are selected. Moreover, CrowdPower offers practical mobile and web applica-
tions enabling data collectors, data consumers, system administrators, and officials to easily
and flexibly access the system capabilities. The social dimension of crowdsensing is also
reflected in CrowdPower through the concept of sensing communities, sensing services,
and data collectors and data consumers. Finally, CrowdPower leverages Al capabilities
for data quality check, the automated analysis of raw sensory data, and the automated
generation of intelligence reports from this data. In the following section, we discuss the
different design and implementation aspects of CrowdPower.

3. System Architecture and Design

The main architectural components of CrowdPower are concentrated either in the
client-side mobile platform or the MSaaS cloud server, as depicted in Figure 2. In this
section, we first discuss the software requirements and the architectural components of the
application. Next, we present the system’s design with some of the collaboration diagrams
to explain the important message transmissions between the components. We also explain
the design of Web services using the standard RESTful verbs and APIs with a few examples
of the main services. Then, we explain the benchmarking of device sensors and the model
for selecting participants. Finally, this section explains our models for estimating the quality
of data received at the server, estimating participants’ reputations, and filtering outliers.

3.1. Software Requirements

CrowdPower users must install the client software on their smartphone (mobile
application) and register with the MSaaS server platform. The application is network-
dependent, and therefore, it expects the user’s device to be connected to the Internet.
The users are either collectors of sensory data or consumers of the same. An incident
refers to a sensing task that a consumer requests. An incident is restricted to a specified
geographic zone or area of interest (Aol) and must be completed within a given time
duration as data collected for an incident would be outdated as time passes. A geographic
zone is also represented as a community of users, where different data sensing services are
provided. Sensing services are mapped to a type of incident, such as fire monitoring or
accident monitoring.

Consumers can create, view, and delete an incident using the mobile application on
their smartphone. A report of all the incidents requested by a consumer is made available
for tracking purposes. An incident request includes a name for the incident, a description of
the incident, the frequency of the data capture, the sensors required for the data collection,
the geographical location, and the associated community of users. These data points are

Appl. Sci. 2022, 12, 11156 10 of 41

published to the CrowdPower server as a request raised to be processed by potential
collectors to supply sensory data.

4]]

Web Manager Data Analysis

= /% \% st
=l g] |
Database

3)
J
Security Manager i
Y g Service Tracker © O—

}

1 T
g J—o— g Fo— H]—o g]

Service Manager @ Communication Manager O Communication Manager __{0— Information Processor

| Six
Ej_@__ 2] B J—o—r B

Schedule Manager ' Location Tracker Security Manager t———C— Resistration Manager
u

I

g |

User Interface (Ul) Manager

s
e

Figure 2. CrowdPower architectural components.

The collectors (or producers) are those users that collect or produce the sensory data for
a published incident on CrowdPower. Based on Aol and community constraints, collectors
are selected for an incident. Collectors can view raised incidents, and they can choose to
contribute to an incident or not to. Once the collector accepts a request for supplying the
sensory data for an incident, they are given the option to upload the same. The sensory
information capture is either automated (data collection does not require user intervention)
or manual (users must manually collect data such as taking photographs or videos). The
collectors also can use both automated and manual modes for a single incident.

The application also allows collectors to upload sensory data voluntarily (i.e., not for a
specific consumer request), which is also available for consumers to access. Access to such
voluntary data is subject to approval. These are typically dynamic real-time incidents for
which sensory data is captured. Voluntary incident reports also include a name, description,
the sensors used, sensor data type, location, and intended target community.

We used the publisher—subscriber design pattern [35] to facilitate the communication
between consumers and collectors (Figure 3). For instance, when consumers publish
incidents (requests for sensory data), they are stored in an incident channel on CrowdPower.
A selected group of collectors is notified of incidents they have subscribed to. Moreover,
collectors can also act as publishers to contribute data in response to the incident requests.
Consumers are notified of such data as they become available, but data are processed first,
and only data with the required quality are sent. In addition to facilitating communication
between consumers and collectors, the publisher—subscriber design pattern de-couples the
consumers and collectors.

User management is an important aspect of the application, where the user regis-
ters with credentials such as a valid phone number, a valid email-id, and a strong access
password. Once authenticated, the user can switch between the collector or consumer
modes. Certain functionalities in the application are exclusive to a mode. For example,
only consumers create a new incident, and only producers upload data for an incident. The
data synchronization option is provided when the user logs in with a device different from
the previously used one. The device’s incident metadata and voluntary metadata are syn-

Appl. Sci. 2022, 12, 11156

11 of 41

chronized with the backend server. Users can create a profile to select which communities
they want to subscribe to and which services are under those communities they would be
interested in. Multiple communities and/or services can be selected. Application settings
for including or excluding certain sensors, frequency or the time duration for data upload,
an indication of user availability, and the option to deactivate the account is also provided.

Consumer as a publisher Collector as a publisher

:Consumer :Collector
<<Publisher>> <<Publisher>>

Publish data in

Publish Incidents —
response to incidents

y A\ 4

Incident Channel Incident Data Channel
! Subscribe | Notify ! Subscribe | Notify
1
: L 4 1 v
:Collector :Consumer
<<Subscriber>> <<Subscriber>>

Figure 3. Integration of the publisher—subscriber pattern.

3.2. Client/Server Architectural Components

The software components of the CrowdPower application are distributed either on the
client side (smartphone) or the server side (MSaa$S server platform), as shown in Figure 2.
We used component-based architecture [36] based on the methodology described in [37] as
the system consists of a set of components interacting with one another. The client side of the
application consists of seven components, User Interface (UI) Manager, Data Store, Service
Manager, Schedule Manager, Security Manager, Communication Manager, and Location
Tracker. The application’s server side also consists of eight components: Web Manager, Data
Analysis, Data Store, Service Tracker, Communication Manager, Information Processor,
Registration Manager, and Security Manager. The interactions between the components
exchange data, control signals, or requests for resources. Next, the functionality of each
module is described.

o Communication Manager: This component manages all client and server interactions.
The sub-components are the Message Interpreter, Message Handler, and the Web-
service Manager on the client side. Message Interpreter classifies the messages based
on type, requests, control, or data, through syntax analysis. If the message type is
valid, the content is passed to a Message Handler and the Web-service Manager if the
messages are RESTful APIs. Otherwise, the message is discarded. These components
exchange data in JavaScript Object Notation (JSON), the standard data-interchange
format used. The main interactions of this module are with the Service Manager and
Security Manager. On the server side of this component, the main function is to queue
the messages and check their validity. Consequently, the messages are sent to the
Information Processor or the Service Tracker.

e Service Manager: This component is responsible for the core functionalities related to
mobile sensing. The sub-components are the Role Tracker, Sensor Manager, Mode
Manager, and the Event Monitor. It keeps track of the status of all incidents that the
user is a part of, either as a data consumer or producer. It also keeps track of all the
voluntary contributions that the users have created. It collects the data from the phone
sensors by interacting with Android’s built-in Sensor API. As the core component, it
interacts with almost every other component. It sends information to the Ul Manager
to keep the user engaged and informed. It also uses the Data Store to store information
related to incident participation.

Appl. Sci. 2022, 12, 11156

12 of 41

Security Manager: This component is responsible for preserving the data security
in both the client and server sides of the application. The sub-components are the
Encryption Manager and the Access Control. The application receives information
such as sensor data and the user’s current location. It receives inbound or outbound
messages from the Communication Manager and decrypts or encrypts the messages.
The component also ensures access control and authentication based on the registered
details available on the server. This component also manages the identification and
authentication of participants.

User Interface (UI) Manager: This component is responsible for all interactions with the
user. The sub-components are Event Handler, Notification Manager, and Interface
Manager. It uses Android’s built-in View API with graphical widgets to display the
information to the user. It receives all user input and passes it on to other components.
It also displays push notifications to the user. The main interaction is with the Service
Manager component, from which it receives information to display to the user and to
which it sends user input for further processing.

Data Store: This component is responsible for storing all relevant sensing data for
incidents, voluntary contributions, and the data collected from the device sensors.
The information is synchronized with the server side based on the selected frequency
of updates.

Database: The main functionalities are similar to that of the client data store, but on
the server side, the data model maintains data of multiple clients, communities, data
relationships, and respective services.

Location Tracker: This component keeps track of the user’s location. It uses Android’s
built-in Location API to approximate the user’s current location. Its main interaction is
with the Service Manager, which periodically updates the user location to the server.
Schedule Manager: CrowdPower has many asynchronous background operations per-
formed at different times, such as collecting data at a scheduled time and sending peri-
odic user status updates to the server. Hence, this component keeps track of these time-
delayed events and initiates other components to perform tasks at scheduled times.
Information Processor: The packing and unpacking of messages happen in this com-
ponent. The main sub-components are Syntax Analyzer, Syntax Validator, and Data
Formatter. The syntax of messages received is analyzed, validated, and formatted
when messages are sent to a client. Messages that are Web-service requests or re-
sponses are moved to the database.

Service Tracker: This component manages the lifecycle of all service requests. The
main sub-components are Device Matcher, Mode Manager, and Service Manager. This
component keeps track of the producers that are assigned to each service. Moreover,
this component identifies producers and related devices most suitable for handling the
service. In addition, if the service request requires interaction with an Online Social
Media (OSM), it handles the communication with the relevant OSM plug-in.

Web Manager: This component manages the RESTful APIs and OSM requests; therefore,
the main sub-components are the Web Service Manager and the OSM Extractor. OSM
Extractor gathers data from social media by interacting using the OSM plug-ins. The
Web Service Manager manages RESTful resources, which allow direct machine-to-
machine communication between the MSaa$S platform and the client-side application
without direct user interaction.

Data Analysis: This component analyzes the sensor data submitted by producers for
a service request. The analyzed data are then passed onto the database. A detailed
description of the quality analysis performed by the component is presented later.
Registration Manager: The responsibilities of this component are to handle the regis-
tration of users and respective service requests. This is also responsible for updating
and removing users and expired services from the server. This component provides a
unique identifier to the user concerning the SIM details and maps the registered user
to communities and groups.

Appl. Sci. 2022, 12, 11156

13 of 41

:Consumer

:Data Store Ul: Notification Manager

3.3. System’s Operation: Collaboration Diagrams

The sequence of messages that flow between the components determines how the
application’s functionalities are accomplished. We use message collaboration diagrams
to depict some of the major message sequences in the application and explain them. The
message sequences shown here are initiated by a user (consumer or producer) and passed
between one of the components or sub-components explained above. We first describe four
important sequences from the client perspective.

Figure 4A shows the createNewIncident message received by the Service Manager
from the consumer, where the details of the requested sensing incident are validated. The
message is passed on to the server and then added to the Data Store on successful validation.
Once the results are available, the Notification Manager sends the respective notification to
the user.

2: validateDetails(details)

1: createNewIncident(details) | 3: incID=createNewIncident(details)
»

>

— :Service Manager :Communication Manager

I

4: addToDB(incID,details) l 5: notifyUserWhenReportAvailable(userID,incID)
v

1: viewIncidentRequests()

>

[1

3: updateStatus(incID)

2: accept (incID) &

:Producer

—»

:Service Manager ————— :Data Store

‘ l 4: scheduleNotifications(incID,userID,time,frequency)

Ul: Notification Manager

B) Viewing and accepting an incident

Figure 4. Collaboration diagrams: (A) consumer create a request for sensing an incident; (B) producer
accepts a request for sensing an incident.

Once an incident is registered, a producer (data collector) chooses to accept an inci-
dent, and the respective message is sent to the Service Manager, as shown in Figure 4B.
An updateStatus message is sent to the database, which includes a mapping from the
producer to the incident. The updatelncidentStatus is also sent to the backend server, and a
scheduleNotifications message with the respective user ID, incident ID, time durations, and
frequency is sent to the Notification Manager. The producer also receives an appropriate
notification to reflect the choice made.

After the user accepts to participate in an incident, the producer responds to the notifi-
cation and sends the startDataCollection message to the Service Manager for a particular
incident, as shown in Figure 5. The Sensor Manager is triggered with collectSensorData mes-
sage with the appropriate sensor ID. The sensory data collected is updated to the database
using the insertSensorData message with appropriate incident ID, sensor ID, and collected
data. The data are uploaded to the backend server using the uploadSensorData message.

Appl. Sci. 2022, 12, 11156

14 of 41

1: notifyUser(inclD,msg) 2: startDataCollection(incID)
» >

3: sensorData=collectSensorData(incID)

Ul: Notification Manager :Producer :Service Manager :Sensor Manager

‘ l 4: insertSensorData(sensorData, incID)
5: uploadSensorData(inclD,userlD,data) l

:MSaas Server :Data Store

Figure 5. Collaboration diagram: producer uploads sensor data for an incident.

Figure 6 depicts the creation of voluntary sensing requests by the producer, where the
createVoluntaryRequest message is sent to the Service Manager, and the details are updated
to the backend server with the createVoluntaryDetails message. The Service Manager
also sends the addVoluntaryToDB message to the Data Store with relevant details. The
Notification Manager is also informed to respond with the approval or rejection decision
once it is ready.

1: createVoluntaryRequest(volDetails) 2: vollD=createVoluntaryDetails(volDetails)
B — —
:Producer :Service Manager :MSaas Server
4: notifyUserRequestStatus(user|D,vollD) l ’ ‘ l 3: addVoluntaryToDB(vollD,volDetails)
Ul: Notification Manager :Data Store

Figure 6. Collaboration diagram: Creation of voluntary sensing request.

Next, we describe two important message sequences from the perspective of the
MSaaS server. Data are collected from the mobile sensors based on user-initiated events, pe-
riodically (time-based) or autonomously (opportunistic sensing). Concerning opportunistic
sensing, the mobile device validates the conditions set by the user (privacy settings) to
ensure the data from the sensor can be collected. Once the conditions are checked, and data
are collected from the respective sensors, the application uses uploadSensorData message
to upload the sensor data to the backend. The MSaaS server provides a RESTful API that
the application uses to upload sensor data over the available network connection. The
service request is then verified, and based on the type of data, the Data Analysis module
tags the sensed data, using NumPy and OpenCV modules for reasoning out the data
content. Finally, the server converts the sensor data into JSON format, and the details
of the analysis details are then stored in the database with respective tags that enable
data search.

The other important activity that the MSaaS platform performs is the selection of
participants for sensing incidents as shown in Figure 7. The Service Tracker module in
the MSaaS server initiates the process for obtaining the required participants based on
the sensing requirement for an incident. The findMatchingUser message is sent to the
Information Processor module that uses the participant selection algorithm to select the
potential participants. The request is sent to the user (producer), and once the user accepts,
the Registration Manager module registers the user as a provider of sensor data for the
incident. The producer’s device is alerted to start the sensing service.

3.4. CrowdPower’s Web Service Interfaces

CrowdPower uses RESTful APIs to reveal its functionality as services. The advantage
of using RESTful APIs is that they are lightweight and provide a standardized communi-
cation format that is understood by various HTTP-based client applications regardless of

Appl. Sci. 2022, 12, 11156

15 of 41

1: startService()

the system framework. Moreover, RESTful APIs ensure scalability, which is essential when
new services must be introduced [38]. Table 3, provides some examples of RESTful APISs,
from the user management, community management, and incident management categories
with respective actions.

2: getServiceRequirements() 3: findMatchingUsers()

4; users=selectMatchingUsers()

N N 4
=)
§ :Service Tracker :Information Processor — :Database
=)
?E;_.-_; 6: serviD=addUserToService(userID) 5: sendServiceRequest() l 7: registerUser{userlD,serviD)
5 v v
& :Producer :Registration Manager
Figure 7. Collaboration diagram: participant selection and service request.
Table 3. CrowdPower’s RESTful Web Service Interfaces.
Resources RESTful URIs Action: Description
/users/login POST: Login to the application
/users/{userID}/logout POST: Logout of the application
/users POST: Register new account
User /users/{userID}/sync POST: Sync device data with backend
Management /users/{userID} GET: Get User Details
/users/{userID}/status PUT: Update User’s Status
/users/{userID} PATCH: Update the User’s Details
/users/{userID} DELETE: Deactivate the user’s account
" GET: Get all communities, regardless if the User has selected
/users/communities h
Community them or not
Management /users/{userID}/communities GET: Get all communities selected by User
& /users/communities/ {commlID}/services GET: Get all Services that belong to a particular Community
/users/services/{servicelD}/sensors GET: Get all Sensors that are assigned for a service
POST-/users/{userID}/incidents POST: Create a new incident request (consumer)
users/ {userID}/incidents/consumer/{incID}?decision=(cancel) PUT: Update the consumer’s status
Incident users/{userID}/incidents/{incID}/consumer /report GET: Get Incident report
Management users/{userID}/incidents/producer/{incID}?decision=(accept/cancel) PUT: Update the producer’s status
users/{userID}/incidents/{incID}/producer/data/file POST: Upload Incident Data
users/ {userID}/incidents/{incID} /producer/data/sensor POST: Upload Incident Sensor Data
Voluntar /users/{userID} /voluntary POST: Create a new voluntary request
O];a t: y /users/{userID}/voluntary/{volID}/data/file POST: Upload voluntary data (Images/Videos)
Publication /users/{userID}/voluntary/{volID}/data/sensor POST: Upload Voluntary Sensor Data

/POST-/users/{userID}/voluntary/{volID}

DELETE: Cancel the Voluntary request

To interact with the APlIs, the application authenticates the user. The authentication is
handled through JWTs (JSON Web Tokens). Any authenticated request presents the JWT in
the authorization header of the HTTP request. All the API end points are not necessarily
authenticated. The application must provide valid credentials (email and password) during
login to obtain an API token. The application handles invalid/error states, such as losing
Internet connection in the middle of sensor upload or invalid user credentials. Standard
HTTP errors, such as 404-Not Found and 500-Internal Server Error are used. Standard
HTTP verbs such as POST, GET, PUT, PATCH, and DELETE are used for initiating actions.
Since PATCH is not idempotent, failed requests are not automatically re-attempted on the
network. In addition, if a PATCH request is made to a non-existent URL, it simply fails
without creating a new resource, unlike PUT, which would create a new resource using
the payload.

3.5. Benchmarking Sensors

CrowdPower’s mobile application allows the interaction with a variety of sensors
using different data collection frequencies (i.e., sense once, time-based repeated collection,

Appl. Sci. 2022, 12, 11156 16 of 41

and event-based collection). Furthermore, the quality of different phones’ sensors is
benchmarked to the same types of sensors in other phones to ensure accurate scoring of
sensors’ quality level and a more reliable participants recruitment. This section will detail
how the sensory data are collected using the CrowdPower mobile app and discuss our
sensor-quality-benchmarking approach. A list of all the sensors supported by CrowdPower
and their type and description are given in Table 4. Sensors that are currently supported by
the CrowdPower mobile app can be roughly divided into the following categories:

e Environmental Sensors: These allow the user to monitor the state of the surrounding
environment and its properties.

e Motion Sensors: These sensors allow the user to monitor the motion of the mobile
device itself, such as tilt, shake, rotation, or swing.

e Positional Sensors: These sensors allow the user to determine the position of the mobile
device. Android OS provides a Sensor API that provides access to the underlying
hardware sensors of the mobile device. The application must register to a sensor to
collect data to get events. Each sensor event contains the following information:
Accuracy: How accurate the values are;

Sensor Name: The sensor that generated the event;
Data: The actual Sensor data. This is a string array of variable length. The number of
values and the context of each value depends on the sensor type that is being collected.

Table 4. CrowdPower supported sensors.

Name Sensor Type Description
Light Environmental Ambient light level in SI lux units
Accelerometer Motion Measures the acceleration applied to the device
Temperature Environmental Ambient (room) temperature in degrees Celsius.
Proximity Positional Proximity sensor distance measured in centimeters
GPS Positional Detects the location of the mobile device in lat/long
Video Environmental Records a video feed from the camera
Barometer Environmental Atmospheric pressure in hPa (millibar)
Gyroscope Motion Measures angular speed around each axis
Magnetic Field Positional Measures the ambient magnetic field in micro-Tesla (uT)
Linear Acceleration Motion Records a three-dimensional vector indicating acceleration along each device axis
Step Detector Motion Detects when the user takes a step
Step Counter Motion Counts the total number of steps that the user has taken since the sensor was activated
Image Environmental Captures an image from the camera
Gravity Motion A three-dimensional vector indicating the direction and magnitude of gravity

The CrowdPower mobile app registers to the required sensor for one second and stores
all the events sent by the OS during that time. The exact number of events accumulated in
a one-second duration depends on the sensor type. While CrowdPower makes extensive
use of the Sensor AP], by itself, it does not provide access to all the sensors given in Table 4.
This is because the Android OS has organized and divided its API. The ‘Image/Video” and
‘GPS’ have their APIs, respectively. The application must collect data from these different
APIs and combine them in a common format that is understood by the backend server.
The backend provides a REST API that the application uses to upload sensor data over
a network connection. Depending on the sensor type, there are two different end points
to upload data. One is used for ‘voluntary request,” and the other is for ‘incidents.” The
application converts the sensor data into JSON format.

Sensors” quality benchmarking aims at comparing the quality of different brands
of sensors of the same type (e.g., accelerometer sensors in different phones) to score
their quality relative to each other. This enables the consideration of sensors’ quality in
participants’ selection and recruitment for sensing tasks based on the quality level required.
To benchmark a sensor, an initialization process is required. This process must be performed
at least once per device before testing sensors. During initialization, the sensor is activated,
and the device is moved for ten seconds, ideally in different directions and at different

Appl. Sci. 2022, 12, 11156

17 of 41

movements speeds. At the end of initialization, the mean and standard deviation are
calculated for each sensor axis (x, y and z) and the timestamps of the measured values
per sensor.

Following initialization, the sensor benchmark is performed based on six categories/
metrics, according to the SensMark approach [39]. Each metric gives a partial score, and the
final sensor score is the summation of all these partial scores. Certain metrics are applied
to all sensors, whereas others are specific to certain sensors. If a metric is not valid for a
sensor, it will simply have a score of 0. These metrics are the number of events, standard
deviation, step increment, time continuity, count of unique values, and gravity accuracy.

The number of events is the number of returned events during the benchmarking
process. This will vary depending on the device and how long the sensor events are
collected. Standard deviation is calculated for measured values across each sensor axis.
To determine the score, a constant ¢ with the fixed value 33 is divided by the standard
deviation for each sensor axis. These partial results are added and finally divided by the
number of axes, according to Equation (1), where ‘o’ is the standard deviation, ‘¢’ is the
fixed constant value, and ‘a’ is the number of axis for the sensor.

(Y 5 (1)

result = —
1<i<a i

1
a

Step increment is the difference between two consecutively measured values per sensor
axis, as shown in Equation (2). The constant c is divided with each sensor’s respective

minimum step increment. These partial results are added, provided the sensor has more
than one axis. The respective results are added and finally divided by the number of axes.

c

Q=

result =

(L

152 | min(x g — xi k1)

@)

where 2 <k <mn,a=#axes, c=33.

Time continuity refers to the time difference between two successive sensor events.
The average time difference f is calculated and is divided by the average time difference
during the initialization phase, as shown in Equation (3). This results in a relative ratio v
with a value between 0 and 1, depicted in Equation (4).

-1
t=—(Y te—tieq) 3)
2<k<n
Fo
0= inztzallzatzon (4)
t Benchmark

Then, the constant value is divided by the standard deviation ¢ of measured times-
tamps during the benchmark, as per Equation (5). Finally, the score depends on the partial
result of the initialization process and the ratio of the average time differences to the
initialization and benchmark, calculated as per Equation (6).

c

T€Sy, Benchmark — (5)
OBenchmark

res itialization T+ €S
7, Imtmlizatlonz o, Benchmark)v, when V< 1

result = (76517, Initialization + resy, Benchmark) (6)
2

, otherwise

Count of unique values is only used for light and proximity sensors. This is the
number of unique x-axis values among the measured values during the benchmark. Gravity
accuracy is used only for the gravity and accelerometer sensors. First, the arithmetic mean is
calculated for the Z axis values (Equation (7)). A division is used to calculate the percentage
deviation from the standard acceleration g = 9.80665 m/s?. Finally, this percentage is

Appl. Sci. 2022, 12, 11156

18 of 41

multiplied with the maximum achievable score (4000) for this category to obtain the partial
score for the overall rating (Equation (8)).

f:% Z Xk)

1 <k<n

4000(& +3), when ¢ < x
result = { (x) 8 (8)

4000 (% + 3) , otherwise

Table 5 summarizes the different metrics used in the sensor benchmark, which sensors
they apply to, and their impact on the final quality score. The ‘Others’ column refers to all
other sensors not mentioned in the previous two columns.

Table 5. Sensors” benchmarking metrics.

Metric ng.ht./ Gravity/ Other Impact on Final Score
Proximity Accelerometer
Number of events Yes Yes Yes The more events recorded', the more accurate and
higher the final score
Standard deviation Yes Yes Yes Less deviation results in higher final score
Step increment Yes Yes Yes Less deviation results in higher final score
Time continuity Yes Yes Yes Lower the s.tep increment, the hlgher the final score.
Shows consistency across multiple measured values
Count of unique values Yes No No The less variance in timestamps of measured values,

Gravity accuracy

the higher the final score
The more unique the x-axis value, the higher the final
No Yes No score. The more accurate the measured gravity, the
higher the final score

3.6. Participants’ Selection Model for a Sensing Campaign

Here, we discuss our participant selection model [16] and highlight the main contri-
bution for continuity in the discussion and to allow the reader to understand the whole
system. This phase is a proactive process where we use the capability of phones to deter-
mine participants for a sensing campaign to obtain good quality sensory data. We adopt
an approach where a group of participants (gathered into sites) collaborates to achieve the
sensing task using the combined capabilities of their smartphones.

To realize our model, an iterative participants’ selection algorithm is illustrated in
Figure 8.

The procedure begins as follows. The consumer initiates a request to obtain sensing
information. The request lists several attributes, including the location of Aol, the kind of
incident, the least accepted degree of quality, the highest allocated budget, and the time
needed to fulfil the task. Upon the specification of the data, the selection algorithm splits
the Aol into locations. The number of the locations will be computed, and a grid is built.
Thereafter, the data producers (participants) are allotted an arbitrary location in the grid
and possess different types of smartphones. The brands of the smartphones are in relation
to the most prevalent smartphones in twenty-one countries globally. We chose the countries
as they constitute various percentages of market penetration [40,41].

Following the assignment of data producers, the algorithm calculates the scores
determining the quality of the smartphones, considering the quality scores of the sensors.
We used Dxomark [42] and SensMark [39], tools for testing sensors to calculate the quality of
the smartphone sensors. Relying on the scores fetched from the testing tools, the algorithm
calculates the scores of the quality of the smartphones. First, the quality scores of sensors
associated with incidents are calculated. Second, for each location, the algorithm computes
the quality score by averaging the phones quality score. Third, the algorithm computes the
locations’ entire quality scores and the locations’ costs. Next, the locations’ likelihood of

Appl. Sci. 2022, 12, 11156

19 of 41

(start)

Getinput data
from the user

h 4

Generate users’
parameters

Y

Calculate sites’
dimensions/spacing, and
form the grid

h 4

Assign sites’ properties
based on participants’
locations

task fulfillment, the location’s score of reliability, and the rates of the locations” data quality
are calculated. Finally, the algorithm computes the locations’ final score of selection.

No

Reduce task's required
data types to the non-
provided data types by

¢ selected site(s)

Rank sites in
descending order
Select site with
Maximum K

is DSR 100% ?

-

h
Compute phones' quality
score relative to event, and
calculate sites’ sensors
quality scores

v

“Calculate total sites’ scores
(Kappa) and Sites’ prices
ey

v

Yes

Add site to eliminate
list

Display the
selected site(s)
and eliminated
sites

Is K==<07?

Calculate sites’ probability
of task satisfaction (V)

Compute sites’ final
selection scores
K= (B*R-p)*DSR

!

i

Calculate Sites’ reliability
scores (R)

Compute sites’ data

”| satisfaction rations (DSR)

Figure 8. Flowchart of participant selection algorithm.

3.7. Estimation of Data Quality, Participant’s Reputation, and Filtering Outliers

In the previous sections, we described our models for benchmarking the sensors and
to select participants based on the quality of the sensors on the smartphones that run our
CrowdPower client application. However, we cannot neglect the possibility of malicious
or faulty data being sent either intentionally or carelessly. Thus, to reduce the unneces-
sary processing requirements of the MSaaS platform and ensure proper management of
resources, it is essential for the data to be filtered and its quality estimated once received at
the server. We propose the following approach to estimate the actual data quality.

We use an unsupervised learning technique integrated with user reputation to realize
data quality. We ensure that we detect and remove data anomalies. We also provide a model
simulation to evaluate our method and reveal its benefits. Based on a sensing campaign
request from data consumers, the MSaaS server selects participants (data providers) to
provide sensory data of an incident. The data received are expected to vary between
participants and a single user if the data are provided more than once. Each campaign
is for a duration of time, and for the sake of illustration, here, we consider that the data

Appl. Sci. 2022, 12, 11156

20 of 41

producers (participants with smartphones) send in data as numerical values multiple times
for a given campaign duration.

We assume that a task such as monitoring temperature at an accident scene has K time slots
for the duration T of the campaign. The selected participants within the area of interest (Aol)
is denoted by N. In each time slot k, 1 < k < K, each participant i € N provides sensing data
d_(i,k) to CrowdPower. The Data Analysis component uses an unsupervised learning technique
to estimate the data quality of the participants, which is a set Q_k = {g_(1k), ... ,q_(nk)} for the
data received from participants in a slot k. To enhance the quality estimation, we also
integrate participant’s reputation R_(i k), for k slots. The reputation score is relative to the
quality of the data sent by the user in previous time slots of the campaign duration.

In addition to quality evaluation and reputation analysis, we also assimilate the
data based on user classification where participants are either malicious users N_k"M or
trustworthy N_k"T. This is determined by checking if the distance of the sensor data from
the consensus (determined by the centroid of the cluster) crosses a predefined threshold.
Finally, based on these evaluations, we determine d_k, which is the estimated data for the
time slot k. The pseudocode and evaluation of these models are provided in the Evaluation
section of this paper.

3.7.1. Quality Estimation Model

This process is completed in the Data Analysis component in CrowdPower, which
receives the sensory data from the selected participants, evaluates the data quality and
reputations, then filters out the suspected malicious data providers. This would result in
arriving at a better estimation of the actual sensory data. As a preprocessing step, if there
are missing values in the time slots, then these values are filled as the average value of
data received from a phone. For a time-slot k,1 < k < K, within a sensing campaign, the
set of data received from the participants is Dy = {dl,k/ e, dn,k}. The quality of the data
received is a set Qp = {g14, -, Guk}-

The set of sensory data Dy forms a cluster, and the distance between any two data

points is represented as dist (di,k, d j,k) . The MSaaS platform calculates the distance between

the two data points to determine the similarity where the lesser the distance between two
data items, the higher the similarity. While calculating the distance between the data values,
the cluster centroid cj is also determined by recalculating the centroid while iterating
through the data. The deviation J; ; shown in Equation (9) is the weighted square distance
between ¢, and the participant’s data. The higher quality data are closer to the centroid
and therefore have less deviation. The centroid is the minimum of the sum of the weighted
squared distance between c; and the participant’s data as shown in Equation (10).

8i = dist* (ct, dif) ©
n

Cx = argmin Z Oik X ik (10)
i=1

n
Now, let A be the sum of all the deviations, i.e., A =) ;. The data quality is
i=1
continuously updated as shown in Equation (11). The quality estimation g; is a real

number between 0 and 1, and the sum of all quality estimations is 1. The evaluation
converges by comparing participants’” quality variation between two consecutive iterations.

1
3.
IT’k-&-e

Qik = —— 7~
" 1
= o;
AT

The algorithm for quality estimation is provided in Algorithm 1. The input to the
algorithm is the sensory data that are received by the Data Analysis component. The

(11)

Appl. Sci. 2022, 12, 11156

21 of 41

threshold is a small value used to differentiate two consecutive quality readings, where
qpi is the previous reading. The first loop in the algorithm is for initializing the quality
outcome to 1/n, where n is the number of participants. The iterative loop in Line 3 of the
algorithm converges with quality values for the data in a time slot. The loop recalculates
the centroid as the sum product of the squared distance and quality output to determine
the minimum distance to the centroid. The sum of all deviations A is determined in Line 7.
The new quality output is calculated in Line 9. The result is a set of quality values for the
data submitted by the sensors on the participant’s devices.

Algorithm 1: Quality Estimation

Input: Data set: d;, threshold
Output: Quality of participant data: Q
.forallie N
ik =y
.foralli € N && Y (qpix — qix) < threshold
.k = argmin _I dist? (cx, dig) X qix
.foralli e N
O = dist? (cy, d;x)
A= Z?:1 5i,k
.forallie N
1

ik
N __re

Y !)

5
Z—\’k+e

IO U W

|

Nel

10. return g;

3.7.2. Participant Reputation Estimation Model

After determining the data quality of a participant’s data, the participant’s reputation
is estimated. Reputation is defined as the ‘trustworthiness’ of a user, and it is estimated
using historical quality records. While a participant’s reputation progressively increases
because of consistent behavior over time, it decreases if there are anomalies detected [43].
Intuitively, the participant’s reputation should have a small increase after receiving a
high-quality contribution and a larger decrease if the data quality was low. To determine
a participant’s reputation after k time slots, we first determine qf,k which is the relative
quality index. We aggregate previous information to estimate the participant’s reputation
by summing all the past quality records, where (1 — qi,k)z(kft) is the aging weight where
0 < (1—gix) < 1. Therefore, q;; — % determines if a participant’s data quality in slot ¢
is above average, i.e., q;; — % > 0 or otherwise. The participant with lower quality data
gi¢ < 1 should have a higher aging weight and have a larger reputation decrement, i.e.,
the participant’s reputation decrements relatively when data quality decreases, as shown
in Equation (12). Similarly, when the average quality is above average q;; > %, the aging
weight is q; ;. When the number of participants increase, the rate at which the reputation
is affected should also increase as the quality of peer-data must affect the reputation.
Therefore, we adapt a generalized logistic regression function [44], given in Equation (13),
to calculate a participant’s reputation.

k

Y (1— gy (qi,t - %) if gip < %
1o)=
ik = 2(k—t) 1) : 1 (12)
L iy (‘11}1‘ - ﬁ) if gip > 5

(13)

Appl. Sci. 2022, 12, 11156

22 of 41

In Equation (13), W and X are the lower and upper asymptotes, B is the growth
rate, C is the maximum growth rate, and f is the inflection point. After each time slot
k, the participant’s reputation is updated. This approach of calculating the reputation is
proportional to the degree of trustworthiness which is assimilated over time. The algorithm
for calculating participant reputations is provided in Algorithm 2.

Algorithm 2: Estimation of Participant Reputation

Input: Quality set: g;
Output: Reputation of participants: Rp;
:forallie N
:forallk € K
vif g <1/n
2(k—t
e = DK (1—g5)™ ><qi,t - %)
: else
. _ vk 2(k—t 1
: qg,k = Li=1 ‘7,‘,5)(”h’,t - g)
:forallie N
Y S— —
(1+De’“”fpf”’>) '

X N O O s WD

9: return Rp;

3.7.3. Classification and Filtering of Outliers

As introduced earlier, we classify the data sent by participants as either malicious and
faulty (NM) or trustworthy (N[). We use a distance-based outlier [45] to verify participant
intention. For all data d;; € Dj that are received from the participants, we define r as the
distance threshold to determine the proximity of other data points. If most of the data items
are far away from d; , i.e., not in the r-neighborhood, then d; is regarded as malicious.

‘dist (dl-,k, d],k) < r‘
| Dg|

<u (14)

d; x is malicious if Equation (14) is less than u (0 < u < 1), which is the fraction threshold.
The malicious data set is filtered out as an outlier.

4. Implementation of the MSaaS System

In this section, we discuss the implementation details of our work. First, we explain
the mobile application using some of the user interface screens and then the administration
Web portal. Screenshots from the applications are included to depict and explain the
user experience.

4.1. The Client-Side Mobile Application

Here, we discuss the client-side experience using the CrowdPower mobile application
interface and present their significance. In designing the user interface, we followed the
usability heuristics by Nelson [46] to ensure an application that scores high on usability.
For instance, the screens are designed to be consistent with modern phone applications
in terms of navigation, search, the usage of maps, the configuration of settings, etc. The
registration and login screens followed by a screen displaying the two main options that the
user chooses from are shown in Figure 9. The Provide Data option allows producers to see
assigned incidents and upload voluntary sensory data. The Request Data options allows
consumers to request sensory data. To match user expectations, the screen is designed to
be consistent with typical phone applications where there is a login screen, signup screen,
etc. The application allows users to be part of communities and select services relevant
to those communities. Figure 10 provides the view of the screen where the user searches
for a community and accesses sensory data provided as services within each community.

Appl. Sci. 2022, 12, 11156

23 of 41

Users can filter by partially entering the name of the desired community. The plus (+) icon
changes to a tick icon to indicate the selected community. The search screen is basic, and it
follows usability recommendations [47]. For instance, the search box is at the top, and the
result is updated automatically.

< i .

PROFILE

user name

........ ® CROWDPOWER CROWDPOWER

test@test com|

........ o

What would you like to do today?

engineer Sign in

PROVIDE DATA REQUEST DATA
(50)-9564636
test@test.com

Figure 9. CrowdPower—registration, login, and home screens.

¢ Discover Communities <« Select Services

Q Fire

<]

<]

Weather

Karama

Temperature

Jumeirah Lakes Towers

General

Jumeirah

0| 0|0

Barsha

Mirdif

Updated Community Name
Business Bay

Emirates Hills

burdubai

+ + + + + + + + + +

Deira

Jumeirah Beach Residence 4=

Figure 10. Screen to select community and services that provide sensory data.

Figure 11 shows how the consumer creates an incident request and collects the data.
The map selects the area of interest for data collection while creating incident requests. The
gray knob at the edge of the red circular area is used to expand/contract the area of interest
for data collection.

Appl. Sci. 2022, 12, 11156

24 of 41

R

4
U St
<

85

UMM HURAIR 1

al S

K
gy
it Sy

Karama Park

Karama Temperature

ALK’{AMA K

5 :\/:: @ Ambient Temperature
i§

Karama Temperature = NEw Karama Temperature ACTIVE
want temperature values in the karama area = want temperature values in the karama area
1:2:46 1:1:30
TYPE TYPE
One-time task One-time task
COMMUNITIES STATUS
Karama WAITING_USER
5 SENSORS COMMUNITIES
; Karama

Ambient T
mbient Temperature SENSORS

OUD METHA
2lisa 350

&

NEW

Wf\[l:[temperature values in the karama area PERFORM PERFORM

Figure 11. Consumer creates incident to request sensory data.

Figure 12 shows the producer’s view. The red pin indicates the general area for the
data collection. The user swipes up to see the rest of the incident details. The producer
can accept by pressing on the “tick” icon. Pressing the cross icon rejects the incident. The
user can perform a task by pressing the Perform button at the bottom of the screen. The
producer can cancel the currently active incident request by pressing the ‘trash can” icon.

The producer’s main view is shown in Figure 13, where the screen shows a list of all
the incident requests for which the user has been selected. The user can view the incident
details and accept or reject the incident or simply ignore the same. The title in red indicates
that this is an unopened pending incident. The ‘1" in the black circle is the number of
new pending incidents. The “Active’ tab shows a list of all the incident requests that the
producer has accepted. In the Active tab, for the first incident, the sensory data are being
uploaded to the server, and for the second incident, the user still has to collect the data. The
‘Finished’ tab shows all the incidents that the producer has completed, canceled, and/or
rejected, and the screen shows all the different types of incidents.

The application provides an interface to change both the profile and application
settings (Figure 14). The user has granular control over which notifications to receive,
which sensory data to be uploaded, and how often the location update is sent to the server.

Figure 15 shows the screen used by the data collector to create a voluntary request.
This allows the user to provide data. The user can select multiple images and videos to
upload. The user also has the option to provide optional sensory data. The red pin indicates
the general area with which the data are associated. The pin is adjustable by the user. The
‘Request Sent’ status indicates that the system has created the voluntary request but has not
been approved. The producer can cancel the voluntary request any time before or after it
has been approved by the system.

Appl. Sci. 2022, 12, 11156

250f 41

. RN
it
d
& Create Task CREATE < Create Task CREATE KETETTE
Karama et

. o &
(2 s 3
Service Consulate General &)

Karama Temperature of the United States %,
4 ialall & Lozl Cy
18/30 Fire - ‘;@ S St 3
z Type
want temperature values in the karama we @ Sensors © UMM HURAIR 1
area Once + 1 sensors selected - Burjuman @)
BurJuman € ¥
42/150 Duration(min) @ /" / Paldeg of His Highness
Sheikh Ahmed the...
Community . AlllbrahimiiPalace
Karama 3¢ Y S ' ,§ Koyla Loungt
Shisha / Hc
Servite Quality level @ A
4. <&
Aoy $
Fire v Ky
start Dat Start Time Emirates Post- Dubai ¢ &
Sat, Sep 21 2019 v 06:36 PM ™ Central Post Office P
Type @ Sensors @ 0ud Metha @0
Jline Dat fline T Karama Park
« 1sensors selected i e seadine 74,
goce Sat, Sep 21 2019 v 0736PM ¥ : @
y OnTime Government
Duration(min) @) 5 Services Branch
i A5 Ismaili Centre Dubai
Location® 0 0% » OUDMETHA
75 y = ACRESS
"l Karama Medical = L
SELECT LOCATION Lat: 25.25/Long: 55.31 Harama - Al Koufa
Radius (meters) Jé@/é,»,ﬁ 15th St
Quality level @ '?s/,.%P American Hospital Dubai
g
—. Google Lamcy Plaza o e

Figure 12. Producer’s detailed view of an incident.

Provide Data ; Provide Data - Provide Data -
PENDING ACTIVE FINISHED VOLUNTARY PENDING ACTIVE FINISHED VOLUNTARY PENDING ACTIVE FINISHED VOLUNTARY
Accident near Mirdif Need Video of Barsha Accident near Mirdif
Festival T

Karama Temperature Ut 210 seve Need Video of Barsha

4 ccident near Mirdif Festival
Need Video of Barsha pending d ! LY
Festival Karama Temperature

ICOMPLETED

Figure 13. Main screen for producers.

4.2. The Web Server Application

This section explains some of the main application interfaces from the CrowdPower
Web server application and discusses their significance. The server-side application pro-
vides an interface for the administrator to view the dashboard of various system functions,
manage and set community parameters, manage and set service parameters, generate
incident reports, and manage user profiles. The interface offers three separate portals for

Appl. Sci. 2022, 12, 11156

26 of 41

Admin, SuperAdmin, and User (consumer/producer). The Admin dashboard allows ad-
ministrators of the platform to manage consumer profiles, approve/reject incident reports,
and view the communities and services registered in the system. These admin accounts
are managed through the SuperAdmin dashboard, which allows a super user to manage
admin accounts and create new communities and services. The User dashboard, on the
other hand, allows users of the CrowdPower platform to view generated incident reports
that pertain to them.

Notifications
Ini n fi n:
p gde AN Failé s Incident Report Notifications
Voluntary R Notifi n
b la‘y - equesl‘ .Ol'.'ca“? y Task Completed Notifications
k v uf t 5
Active Incident Reminder Notifications
Eagt Ancet L Sensors

User Status Update Frequency
Incident Deadline Notifications -

Allowed Sensors
Incident Report Notifications

Network

Reset Tutorials
Task Completed Notifications y S5 the e

Status

Sensors
Allow Upload/Download Over
User Status Update Frequency wif y

Figure 14. Application settings screen.

€ Create Task CREATE Bur Dubai - Dubai - United Arab Emirates Provide Data Sl

b IJ PENDING ACTIVE FINISHED VOLUNTARY

Accident in bur dubai
@ . @ Accident in bur dubai

There is an accident involving two motor »
vehicles in bur dubai N 0

59 0UD METHA

Accidents

0sensors selected ~

e/ é

Figure 15. Creating a voluntary task and sending a request for approval.

Figure 16 shows the dashboard screens, which present useful statistics generated by
the platform. Among them are the view of the number of active participants registered in
the system and the percentage of those that joined within the last month. The frequency
of sensing sessions on a daily, monthly, and yearly basis are also shown. Users can see
a breakdown of incidents by geographical area and the incidents that occurred over the

Appl. Sci. 2022, 12, 11156

27 of 41

past week. Figure 16 also includes a map of all the active incidents. As depicted in the
diagram, the various incidents are represented by pins on the map. The bar chart depicts
the incidents by frequency of occurrence. These statistics are useful for administrators
to identify patterns and potentially develop solutions to reduce the number of incidents
occurring in that particular geographical area.

CrowdPower xnn = @ ramintiame «
August 14,2020 06:4538 FRI CrowdPower / Dashbosrd
Search Q Dashboard
NAVIGATION
fA) Dashboard
users SENSING SESSIONS MOST POPULAR SERVICES
Registered Users | Active Users | Users registered n the last moth Sessions/Day | Sessions/Week | Sesslons/Month Fire Monitoring Very Random Weather Monitoring
155 154 3.2% ° 02 o8 (()) Monitoring (())
- - (@)
User Profiles “Average Statistics or 20
INCIDENTS INCIDENTS
Incidents per geographical area. Incidents over the past week
— e
CrowdPower s = @ naminame ~
August 14,2020 06:45:50 FRI CrowdPows b
Search. Q
NAVIGATION
f2) Dashboard
Communities
Services
Incident Reports
User Profiles
INCIDENTS INCIDENTS
Where the incidents took place. Most occurring incidents
- s o
Map Satellite Sharjah o o
a9, Ll
@ s
17A. @ @ 7
@ 3 .
bai = ' 1‘: .
Legend (E EE Al Aweer a
omporat @ gy s ‘
Lo]
oz o] + s
aolou @D -)
@ - '
T o . I N .
Google Map duta €020 Tems o se - E— p—— p— p—

Copyright © CrowdPower 2018. All Rights Reserved.

Figure 16. Examples of dashboard for system statistics and location of sensing incidents.

Administrators of the CrowdPower platform view the registered communities in the
system, as shown in Figure 17a. On the SuperAdmin portal, the user clicks on any commu-
nity cards, updates information about them, and can also enable/disable the communities.
By clicking on the map section of the community cards, it automatically directs to the
Google map application. Additionally, new communities can be created by picking from
the pre-populated selection of sensors registered on the platform and the geographical
area to which the community belongs, as shown in Figure 17b. On the Admin Portal,
statistical data about that particular community is available, as shown in Figure 17c, such
as a breakdown of incidents by service and the number of incidents that occurred in that
community per month and in the past year.

Appl. Sci. 2022, 12, 11156

28 of 41

CrowdPower ss-. =
st 14,2020 064912 CrowdPomer | Commenitios
Search. Q Communities
avicaTion
Dashboard
LIST OF COMMUNITIES

4% Communities The following are all the communities available.
Services

Incident Reports

User Profiles. -

AcTvE

CrowdPower s

August 14,2020 06:51:00 FRI CrowdPower / Communites / Stats

Search. Q@ Karama
NAVIGATION
Dashboard
4% Communities INCIDENTS.

) Breakdown of incidents by service.
& services

© Incident Reports

User Profiles

INCIDENTS.

Number of ncidents per month

Community Name: *
Geographical Area:

Status:

@ remiorame -

Deira Emirates Hills
AcTvE AcTvE

Enter Community Name
Jumeirah Lakes Towers

O Actie

Disabled

Temperature
General
Water Leakage
1] Flooding
Service One
Very Random
Accidents
Weather
Fire
Fire

=36

(b)
@ oo~

INCIDENTS.

Number of incidents per month

m e
W Temperature o

:
)
.
. |

dn Feb Mach Apd May e Jy Awust Sept Ot Nov Dec

*Average Statistics for all years

(0)

Figure 17. (a) Registered communities; (b) creating communities from available sensors; (c) statistics

by communities.

Appl. Sci. 2022, 12, 11156

29 of 41

CrowdPower i

August 14,2020 06:52.07 FRI

fe)

Search

NAVIGATION
Dashboard
Communities

& services
Incident Reports

User Profiles

CrowdPower sue: admin
August 15,2020 06:0223 SAT
Search. Q

NAVIGATION
Admin Management
Communities

@ services

As shown in Figure 18a, CrowdPower Admins and SuperAdmins view the list of
services that are registered in the system as well as their status. On the SuperAdmin portal,
the user can update information about the service, such as the name of the service, the
community it belongs to, the status, and the sensors to which they are associated, as shown
in Figure 18b. On the Admin portal, the user also sees the information about that particular
service, such as the information collected and the communities in which the service belongs.
Additionally, administrators see statistics of individual services.

= m Admin Name ~
CrowdPower / Services
Services
LIST OF SERVICES
The following are all the services provided.
Temperature General Water Leakage Flooding
AcTvE AcTvE ACTIVE ACTIVE
Service One Very Random Accidents Weather
ACTIVE AcTIVE AcTIvE ACTIVE
= m Michael Scott +
CrowdPower / Services / Settings
Temperature
Update Service G s
Service ID:
203
Service Name:
Temperature
Gty Green Community @
Status: * o

Sensors:

Copyright © CrowdPower

Disabled

Rowtonvecor. Y Feleive iy

CTE G
Linear Acceleration

Created by: vueghost.

2018, All Rights Reserved

(b)
Figure 18. (a) Listing of services; (b) updating sensor profile.

On the Admin Portal, administrators of the system can view and manage incident
reports generated from the Crowdsensing platform. As shown in Figure 19, the user can
view information related to the reports generated and can approve or reject a report. The
option to generate a PDF version of the reports is also provided. The reports that consumers
view are restricted to only those they generate.

Appl. Sci. 2022, 12, 11156 30 of 41

CrowdPower aimin — @ Admin Name ~

August 14,2020 06:54:58 FRI CrowdPower

Q Incident Reports

REPORTS TABLE
From here you can view Incident Reports

10+ items/page Search
& Incident Reports

$ TIME OF
INCIDENT ID INCIDENT NAME COMMUNITY NAME SERVICE NAME REPORT ID REPORT NAME DATE OF CREATION CREATION STATUS

76 accident in karama Karama Fire 5 tests 16/11/2018 400AM APPROVED

Karama Temperature Karama Fire 6 tests 171172018 400AM APPROVED
Karama Fire 7 test7 18/11/2018 400AM REJECTED
Karama Temperature 8 tests 19/11/2018 400AM APPROVED

Barsha General 9 test9 20/11/2018 400AM REJECTED

10 test10 21/11/2018 400AM APPROVED

1 test1l 22/11/2018 400AM APPROVED -

Karama Fire 12 test12 23/11/2018 400AM APPROVED

84 fire in al reef Al Reef Fire 0 1/0/1970 400AM REJECTED

...
Figure 19. Incident report panel for administrators.

Apart from those shown here, the Admin Portal administrators can also view informa-
tion about system users, such as their contact information and account status. Additionally,
they can update user profiles and enable/disable them when necessary. They also view
individual consumer incidents, producer incidents, and voluntary publications. Lifetime
stats related to the user profile, such as location coordinates, reported incidents, and clients
that reported, can be viewed on the User Profiles Table. Finally, administrators accessing the
SuperAdmin portal can manage admin profiles. They can view their personal information
and account status, add new admin accounts, update their information, and enable/disable
accounts if necessary.

5. Empirical Evaluation

We conducted several types of evaluations. For instance, we evaluated the functions of
the CrowdPower mobile application by asking participants to carry out tasks corresponding
to the functions of the applications. We designed the test to evaluate the functionalities
of the application in regular settings (i.e., when all the correct input is provided), but also
with erroneous settings (i.e., when the user provides incorrect input). The two participants
who participated in the function test carried out all the system’s functions successfully.

In this section, we first discuss the impact of various parameters on site selection to
determine the potential participants, evaluating the model presented in Section 3.6. As
mentioned earlier, this is a proactive phase to ensure that the right participants are selected
from a given site for the requested sensing campaign. Next, we discuss the evaluation of
the sensory data received at the CrowdPower server, which evaluates our model presented
in Section 3.7, which determines the quality of data received, the participant reputation,
and the filtering of the outliers. While the first model considers the capability of the phones
to select potential participants that would provide the required sensory data, the second
model determines the quality of data after they are received, since we cannot neglect the
possibility of malicious or faulty data being sent either intentionally or carelessly by the
selected participants. Considering the increasing use of mobile phones, our double-edged
approach greatly reduces the server’s data processing effort since a large amount of data
would ideally be received for a sensing campaign.

5.1. Evaluation of the Participant Selection Model

To evaluate the performance of our participants selection model presented in Sec-
tion 3.6, we conducted extensive Matlab simulations, varying different parameters to study
their impact on site quality score, site reliability score, site price, site probability of task

Appl. Sci. 2022, 12, 11156

310f41

satisfaction, and site final selection score. The detailed evaluation results can be found
in [16]. In this section, we provide a summary of some of the simulation results, namely, the
impact of the event type, the percentage of malicious participants, and requested quality
levels on the sites” final selection scores.

Table 6 provides an overview of the simulation parameters used in the tests conducted.
As shown in the table, the simulation considers realistic settings for crowdsensing, with
an area size of 400 square meters, a total population varying from 100 to 200 individuals,
with registered participants varying from 50 to 140 data collectors in the area of interest.
Six types of events were considered in the simulation: (1) events related to traffic conditions
are associated with GPS data; (2) traffic accident events require light, temperature, proxim-
ity, GPS, camera, and pulse data; (3) fire events require temperature, ambient temperature,
camera, and pulse data; (4) storm events can be described by temperature, light, ambient
temperature, relative humidity, camera, and pulse data; (5) a heart attack incident requires
camera and pulse data; And (6) a volcanic eruption can be described by light, temperature,
ambient temperature, proximity, relative humidity, GPS, and camera data. In this first test,
the event type was varied from 1 to 6, while maintaining the other parameters (e.g., total
population, participants, budget, required information quality level, country, and percent-
age of malicious participants) as constant. In the second test, the percentage of malicious
participants was varied from 2 to 25% of the total number of participants. In the third test,
the required information quality level was varied from 3 to 8.

Table 6. Tests’ configuration parameters.

Test Type/Simulation
Parameters

Impact of Event Type
on Site Selection Score

Impact of % of Malicious
Participants on Site Selection Score

Impact of Requested Quality
Level on Site Selection Score

Type of event(s)

1,2,3,4,5, 6 (variable) 2 (traffic accident) 3 (fire incident)

Total population 200 100 100
Participants 140 50 50
Budget 1000 100 100
Area size 20 x 20 = 400 m? 20 x 20 20 x 20
Time window for task 1 min 1 5
Req“qifgllii;fl‘:,‘;‘l“ﬁ"“ 5 45 3,4, 5,8 (variable)
% of malicious participants 2 2,5, 10, 25 (variable) 2
Country 16 Malaysia 8 Poland 8 Poland

In the simulation, we considered 21 countries and used the statistical industry data
in [16,41] to simulate phone manufactures for the considered countries. We also gathered
data pertaining to quality of the smartphone sensors. The data were gathered from the
testing tools mentioned earlier (Dxomark, SensMark). The scores were normalized as a
number out of 10.

Next, we ran various tests to check if our algorithm behaves as designed. We also
wanted to evaluate the effect of several data variables on sites” selection scores. The tests
we ran concentrated on assessing the effect of the kind of event on the selection scores of
locations. The kinds of events were simulated for the purpose of our test. Figure 20 shows
the results for the selection of locations with respect to several kinds of requested events.
In this simulated situation, the Aol was split into sixteen locations. There are potentially
two malicious locations that have negative scores. The 10th location (Site10) was chosen
for several incidents including volcanic eruption and storm, whereas the 13th location
(Site13) was chosen for a traffic incident. Evidently, the kind of incident bore an effect on
the locations’ scores of selections.

Appl. Sci. 2022, 12, 11156

32 0f 41

1050

1000 —

Osite 1 Dsite2 DSite3

Sites' selection scores across events

Osite 4 Site 5 site 6 DASite 7 DOsite 8 DSites DSite 10 Site 11 Site 12 Site 13 DOSte 14 DOsite 15 HSite 16

o TR s H

Traffic Condition

Traffic Accident Fire Incident Storm incident Heart attack Volcanic eruption

Figure 20. Sites’ selection scores across varying event types.

We report interesting findings. For example, incidents related to traffic led to scores in
the scope of 900, whereas events related to fire led to scores in the scope of 400. Furthermore,
incidents related to storms led to scores in the range of 300 (the lowest) as it needed 6 sensors
(some of which are specialized). As such, the results show that incidents needing specialized
or a higher number of sensors lead to lower odds of being fulfilled. Furthermore, locations
with more advanced smartphones have better opportunities of being chosen for incidents.

We ran other tests that concentrated on assessing the effect of participants” malpractice
on the scores of the locations’ selection. In these tests, we created various percentages of
participants misusing the system. Figure 21 depicts the selection of the choices regarding
several rates of participants misusing the system in the area of interest (Aol). In this
situation, Aol was split into four locations. The first location (Site 1) was chosen for the
situations where one-tenth and one-fourth of the participants misused the system, while
the third location (Site 3) was chosen for the situations with two and five percent of the
participants misusing the system. As depicted in the figure, as the rate of misusing the
system rose, more locations had participants misusing the system and were removed. For
example, with two percent misusing the system, one out of four locations had misusing
participants. Furthermore, with five percent, two out of four locations had participants
misusing the system, whereas for ten percent and twenty five percent, three of four locations
had users who misused the system. This shows that the level of misusing the system effects
the chance of fulfilling the requests.

In the following tests, we concentrated on assessing the effect of the needed level of
quality on the locations’ selection scores. As such, we created various levels of needed
quality. Figure 22 depicts the results for the location selection concerning the needed levels
of quality. The Aol was split into nine locations. The sixth location (Site 6) was chosen
when Levels 3 and 4 of quality were needed. On the other hand, the seventh location (Site
7) was chosen when Level 5 quality was needed. However, none of the locations were
chosen when Level 8 quality was needed. This test shows that requesting higher quality
results in a lower opportunity of finding a selection since the overall score of quality should
be the same or more than the needed level of quality.

Appl. Sci. 2022, 12, 11156

33 of 41

Sites' selection score withdifferent maliciousness
scenarios

Osite 1 OSite2 OSite 3 OsSite 4

g5
7t] 1
£5
55
45
a5
25
15
5
c — I —— —— I N S —— NN T —
- 2% 5% 10% 25%
Osiel 79.7652 79.7652 79.7652 79.7652
Ocie? 59,8253 -0 -0.173 -0.173
Osie 3 79.7769 79 -0.22 0.2223
Osies -0.1923 0 -0.1923 -0.1923

Figure 21. Sites’ selection scores for varying percentages of participants misusing the system.

Sites' Selection Score for different requested quality levels
Osite1 OSite2 QSite3 HSite 4 DSite 5 DSite 6 site7 DIsite 8 DSite 9

90

a0 — —
70
60
50
40
30
20
10

0 = = = =
10 3 4 5 8

Figure 22. Sites’ selection scores for varying needed levels of quality.

It is important to mention that the proposed selection approach revolves around the
selection of the smallest and most reliable group of participants that can provide the best
quality possible for the required sensory data. This helps ensure scalability and mini-
mal latency resulting from the participants’ selection and data collection processes. To
illustrate the performance and scalability of the algorithm in different scenarios, four in-
cidents are depicted in Figure 23. Figure 23a pertains to a traffic condition monitoring
scenario in Sweden. In this scenario, the configuration parameters were as follows: Coun-
try = Sweden; Event = Traffic condition monitoring (Event 1); Task time = 10 min; # of
participants = 35 participants out of 60 users’ population. The area of interest was divided
into 9 sites in that case, and Site 8 was selected for the task, with the lowest price score
among the 9 sites (i.e., a score of 3.97), as well as 6 participants, and a site kappa score of
1.0267. The selected site in highlighted with a green square in Figure 23a.

Figure 23b depicts a fire incident scenario in Germany. In this scenario, the area of
interest was divided into 25 sites, 19 of which contained participants. The site selected
in this scenario was Site 11 containing 2 participants (highlighted in green), which had
an average sensor quality score of 7.76 (the highest sensor quality score out of all sites),
a proximity of 0 from the event of interest (i.e., centered at the event of interest), and an
average site’s residual battery level of 75%. The total site’s quality score obtained was
0.655238—representing the lowest value and thus the highest site quality levels.

Appl. Sci. 2022, 12, 11156

34 of 41

Y-axis

Y-axis

50

40

30

20

Location of participants in Anea of interest
e

Location of participants in Area of interest

|II | 50 T
o
! T o
= o fxul
o = [u] o
40 i]
o o
f [=}
T T ——— = o o o
o o o o
oo i b 301 o === o 7
5 o | i o
a - o o 5, $! * I o
>' 1 o 1 [u]
o
a 20 - | E o=-=-- 4
| o
& 1 u]
|
a
-] no ° 0
o o 10 044
a
a o]
o
o o
0 . ‘ s s
n Y 0 10 20 30 40 50
Xeauis X-axis
(a) (b)
Location of participants in Area of interest 5 Location of participants in Area of interest
T T T T T T D T T D D
o o o
o a o d 0O pgp
o o
ol o o o o o g 40 o 1
o
o o
1 o o o o
L o o T —— 30 DD i
= o g o
* o ® o o * B g
o o > o
L o Y R S —— o]
5 o o 20 4 o i F
o ! .
o o o ! B o
o "o I
L [n] o 10 | I —— 4
o
o u]
o o
Il 1 1 1 0 D 1 Il I:I 1 Il
10 20 30 40 50 10 20 30 40 50
X-axis X-axis
(0) (d)

Figure 23. Sites’ selection results: (a) traffic condition monitoring in Sweden scenario; (b) fire incident
in Germany scenario; (c) traffic accident in India scenario; and (d) storm incident in Malaysia scenario.

Figure 23c illustrates a traffic accident scenario in India. The area in this scenario
encompassed 19 sites with participants and 6 empty sites. Site 18 containing 2 participants
was selected in that case, with a site quality score of 1.0568, a residual battery level of
47%, a proximity level of 22.36 m from the event of interest, and a sensor quality score
of 4.749. In comparison to the first scenario occurring in Germany, in which the most
popular phone brands are the Samsung Galaxy 57, Samsung Galaxy A5, iPhones 6, 6S, and
7—i.e., brands with high variety and high-quality sensors, the second scenario took place
in India, with phones containing fewer sensors with lower sensor quality scores (e.g., Lyf
Jio FO0M, Samsung Galaxy]2, Xiaomi Redmi Note 4, Lyf LF-2403N, Samsung Galaxy]7
Prime). This resulted in 18 out of 19 sites being eliminated from the selection due to the
inability to meet the minimum required information quality level—i.e., 4.5 in that case. The
only site that was able to meet that requirement was Site 18, with a sensor quality score

Appl. Sci. 2022, 12, 11156

350f 41

of 4.749, and thus it was selected despite its low residual battery level and poor overall
quality score.

Figure 23d depicts a storm incident in Malaysia. In that scenario, Site 8 containing
four participants was selected with a close proximity from the event of interest (10 m), a
high residual battery level (of 73.5%), and a sensor quality score exceeding the required
level (4.865). Due to the mixed nature of popular phones in Malaysia, 11 out of 18 sites
were not selected due to lack of ability to meet information quality requirements.

5.2. Evaluation of the Models for Estimating Data Quality, Participant Reputation, and Filt-
ering Outliers

As mentioned, since we cannot neglect the possibility of malicious or faulty data
being sent either intentionally or carelessly by the selected participants, we must determine
the quality of data received at the server. For the evaluation of our model presented in
Section 3.7, we simulate a crowdsensing scenario to measure the temperature in an Aol. We
used Python libraries such as pandas and numpy, typically used for scientific computing,
data analysis, and the seaborn library based on matplotlib for data visualization.

To analyze the quality of sensory data, we consider eight participants sending the
temperature measured by their phone sensors to the CrowdPower platform in ten time
slots ki. We used synthetic data to evaluate our model and analyze its validity. The data
are randomly generated and are shown in Table 7. The average expected sensory data to
be received was assumed to be about 46°, but our data were adjusted so that the data of
four random participants were randomly generated between 46° £ 15°. The empty cells
indicate that the phones did not send in data, or the data did not reach the server in that
time slot.

Table 7. Sample temperature from 8 phones in time slots k1 to k10.

1 2 3 4 5 6 7 8

k1 47.5 40 425 22 44
k2 48 39.3 44 67 57.6 46.2 44
k3 45 23 43 44 58.6 45 23 45
k4 46 415 67 56.5 47 45
k5 47.4 45 67 65.5 47.5 48
k6 44 56.6 45 48.6
k7 48.2 49 47 67.1 56.3 45 33 48
k8 39.2 49 44 54.2 46 46 48
k9 45.1 40.1 49 67 45 23

k10 48 51 50 67.1 45 48

To preprocess the data sent by each participant, we normalized it by either forward
filling or backward filling the data, considering the mean of the distribution in each time
slot, and the result is shown in Table 8. From a visible evaluation of the normalized data in
the tables, we see that values of participants four and five are comparatively high, while the
values of participants two and seven fluctuate widely. We aim to determine if our model
described earlier would calculate the data quality as previously assumed, which would
then contribute to calculating the reputation of participants and estimating any possible
malicious intents. The Python code snippets, shown previously, describe how our model
was implemented for calculating quality and determining the reputations, respectively
(Box 1 and Box 2).

Appl. Sci. 2022, 12, 11156 36 of 41
Table 8. Sample temperature from 8 phones in time slots k1 to k10.
1 2 3 4 5 6 7 8
k1 47.5 40 46.7 59.3 42.5 45.7 22 44
k2 48 39.3 44 67 57.6 46.2 37.3 44
k3 45 23 43 44 58.6 45 23 45
k4 46 415 46.7 67 56.5 45.7 47 45
k5 474 39.3 45 67 65.5 47.5 48 46
k6 46.9 39.3 46.7 44 56.6 45 48.6 46
k7 482 40 47 67.1 56.3 45 33 48
k8 46.9 39.2 49 44 54.2 46 46 48
k9 45.1 40.1 49 67 56 45 23 46
k10 48 51 50 67.1 55.9 45.6 45 48
Box 1. Pseudocode for calculating data quality.
qik = pd.Series([1/n for j in data[Participant’]]) # Initiating the quality outcome to the average 1/n
Convergence of the loop is when two consecutive quality estimation is below a threshold value
while sum(gikold - gik <= threshold) !=n:
ck = data[i][np.argmin(((ck - data[i])**2)*qik)] # Recalculating the centroid
dik = ((ck - datali]) ** 2) # Calculate weighted squared distance between ck and data
lamda = sum(dik) # Sum of total errors
qik = (1/((dik/lamda)+e))/sum((1/((dik/lamda)+e))) # Quality output
qikold = gik
outputl[i] = qik
Figure 24 depicts the average quality of the temperatures provided by the participants
in the sensing campaign. It is evident that our quality measurements can capture the
inconsistencies in the data as we predicted. From the graphs, it is clear that the data
provided by participants 2, 4, 5, and 7 are definitely of lower quality.
Average quality of data
0.20 -
0.15 -
0.10 -
0.05 - I
o 00 - ' ' [[' '] '
- ~N ™ < ") ve) ~ ©

Figure 24. Average quality of temperature sensed from eight participants.

Participant

Appl. Sci. 2022, 12, 11156

37 of 41

Now, to determine the average reputation of the participants, the constants for the
regression function in Equation (13) are, W =0.5,X=3,B=0.5,C =1, and f =2, where W
and X are the lower and upper asymptotes, B is the growth rate, C is the maximum growth
rate, and f is the inflection point. The value of the parameters impacts the presentation
of reputation values in Figure 25; however, the results will still show the variations in
participant reputation which depend on the quality of data sent by the participants. The
Python code below (Box 2) includes comments to describe how our model for Algorithm 2
was implemented.

Average reputation of participants

10 -

08 -

0.6 -

04 -

0.2 -

0.0 - g | - | ' | | |
— ~ m < w0 re r~ ©

Participant

Figure 25. Average reputation of the eight participants.

Box 2. Pseudocode for calculating participant reputation.

Initialize relative quality indices with quality
relqindex = output.copy()
for i in relqindex.columns:
k = relqindex.shape[1]
t = relqindex.columns.get_loc(i)
for j in range(0, relqindex.shape[0]):
ifrelgindex.loclj, i] <=1/ n: # Data quality is below average, Avg defined as 1/number of observationd
relgindex.loc]j, i] = ((1 - relgindex.loc[j, i]) ** 2 * (k - t)) * (relgindex.locf[j, i] - (1 / n))
else:
relgindex.loc]j, i] = ((relgindex.loc[j, i]) ** 2 * (k - t)) * (relgindex.loc][j, i] - (1 / n))
relgindex = relqindex.sum(axis=1) # Summing up all the measurement for participants
rpi = 0.5+ 3 / (1 + np.exp(-0.5 * (relgindex - 1))) ** 1 / 2 # Applying logistic regression to arrive
at reputations

Figure 25 depicts the reputation of participants, and we see the average reputation
drops as the quality of submitted data reduces. Finally, for the classification and filtering of
outliers that are potentially malicious participants, we define the fraction threshold u to be
0.5 and assign the distance threshold r to be twice the standard deviation of the distribution.
For instance, if u = 0.5 and r = 8, then 0.5 x 8 =4, i.e., the data are considered outliers if
they do not have four other data points close to them.

Figure 26 shows the results of filtering out participants with possible malicious data,
and again we see that the model can estimate, classify, and filter the outliers. If we

Appl. Sci. 2022, 12, 11156

38 of 41

~J

(o))

()

o

W

N

—

o

compare the data in Table 6, and the result of the algorithm to determine outliers shown in
Figure 26, we argue that the data submitted by participants four and five have essentially
more possibility of being malicious than the data provided by participants two and seven.
Nonetheless, all four participants are classified as outliers.

Estimation of malicious participants

I I s Outlier
~N ™ < wn re) r~ ©

Participant
Figure 26. Classification of data to filter outliers.

6. Conclusions

This paper presented CrowdPower, a novel and comprehensive software platform that
leverages service computing, smartphone sensors, and mobile application for crowdsensing
and reporting real-time incidents in smart cities. A comprehensive description of the end-
to-end system with architecture and design highlighted important message sequences and
web service interfaces. The implementation was described using the user interface on
both the server and client sides. We described our models to benchmark sensor quality,
select participants for sensing campaigns, measure the quality of data submitted by sensors,
and determine the reputation of participants in sensing campaigns. An approach to filter
outliers was also proposed. The empirical evaluations were presented to test the feasibility
of our proposed models. The models with equations, algorithms, and Python code of the
simulation are provided. The results verified that the model was ideal for determining
data quality and measuring participant reputation and intent. The complete CrowdPower
system was also successfully tested for functionality.

Currently, CrowdPower allows for data collection from Android-based devices. In the
future, we are planning to extend the design to accommodate other operating systems such
as iOS. The architecture of CrowdPower, designed based on a component-based pattern,
allows for integrating devices belonging to other operating systems. Furthermore, the
platform was tested on text and image-based data collected by producers. However, the
current system does not support video-based data. In the future, we will investigate ways
to assess video data quality. We will possibly integrate machine learning algorithms that
can analyze video content. As future work, we also plan to assess security vulnerabilities
of CrowdPower as producers share data using their personal mobile devices. Furthermore,
we plan to conduct field testing of our solution in large-scale events (e.g., national sports

Appl. Sci. 2022, 12, 11156 39 of 41

events, adverse weather condition events, and road accidents) to assess the performance of
our system in realistic settings.

Author Contributions: Conceptualization, S.5S.M. and M.E.B.; methodology, S.S.M. and M.E.B;
software: 5.5.M. and M.E.B.; validation: 5.5.M.; formal analysis, S.5.M. and M.E.B.; investigation:
S.SM., M.E.B. and M.A K; data curation, S.5.M., M.E.B. and M.A K.; writing, S.5.M., M.E.B. and
M.A K,; original draft, S.5.M.; writing—review and editing, S.5.M., M.E.B. and M.A K; supervision,
S5.5.M. and M.E.B,; project administration, S.5.M.; visualization, M.A.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Zayed University, UAE, under grant number R17069.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zaslavsky, A.; Perera, C.; Georgakopoulos, D. Sensing as a Service and Big Data. 2013. Available online: http:/ /arxiv.org/abs/13
01.0159 (accessed on 1 March 2022).

2. Tian, B; Yao, Q.; Gu, Y.; Wang, K,; Li, Y. Video processing techniques for traffic flow monitoring: A survey. In Proceedings of
the IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, Washington, DC, USA, 5-7 October 2011; pp.
1103-1108. [CrossRef]

3. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292-2330. [CrossRef]

4. Guo, B; Yu, Z; Zhou, X.; Zhang, D. From Participatory Sensing to Mobile Crowd Sensing. Available online: http://www.
merriam-webster.com/dictionary/crowdsourcing (accessed on 1 March 2022).

5. Thiagarajan, A.; Ravindranath, L.; LaCurts, K.; Madden, S.; Balakrishnan, H.; Toledo, S.; Eriksson, J. VTrack: Accurate, energy-
aware road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, SenSys 2009, Berkeley, CA, USA, 4-6 November 2009; pp. 85-98. [CrossRef]

6. Zhou, P; Zheng, Y.; Li, M. How long to wait? Predicting bus arrival time with mobile phone based participatory sensing. In
Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12), Low Wood Bay
Lake District, UK, 25-29 June 2012; pp. 379-392. [CrossRef]

7. Mun, M,; Reddy, S.; Shilton, K.; Yau, N.; Burke, J.; Estrin, D.; Hansen, M.; Howard, E.; West, R.; Boda, P. PEIR, the Personal envi-
ronmental impact report, as a platform for participatory sensing systems research. In Proceedings of the 7th ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys’09), Krakow, Poland, 20-25 June 2009; pp. 55-68. [CrossRef]

8. Gao, Y;; Dong, W.; Guo, K;; Liu, X.; Chen, Y; Liu, X.; Bu, J.; Chen, C. Mosaic: A low-cost mobile sensing system for urban air
quality monitoring. In Proceedings of the IEEE INFOCOM, San Francisko, CA, USA, 10-14 July 2016. [CrossRef]

9. Tung, Y.C.; Shin, K.G. EchoTag: Accurate infrastructure-free indoor location tagging with smartphones. In Proceedings of the
Annual International Conference on Mobile Computing and Networking, MOBICOM, Paris, France, 7-11 September 2011;
pp. 525-536. [CrossRef]

10. Rai, A,; Chintalapudi, K K.; Padmanabhan, V.N.; Sen, R. Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of
the Annual International Conference on Mobile Computing and Networking, MOBICOM, Istanbul, Turkey, 22-26 August 2012;
pp. 293-304. [CrossRef]

11. Yang, S.; Dessai, P.; Verma, M.; Gerla, M. FreeLoc: Calibration-free crowdsourced indoor localization. In Proceedings of the IEEE
INFOCOM, Turin, Italy, 14-19 April 2013; pp. 2481-2489. [CrossRef]

12. Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun.
Mag. 2010, 48, 140-150. [CrossRef]

13. Azzam, R;; Mizouni, R.; Otrok, H.; Singh, S.; Ouali, A. A stability-based group recruitment system for continuous mobile crowd
sensing. Comput. Commun. 2018, 119, 1-14. [CrossRef]

14. Phuttharak, J.; Loke, S.W. A Review of Mobile Crowdsourcing Architectures and Challenges: Toward Crowd-Empowered
Internet-of-Things. IEEE Access 2019, 7, 304-324. [CrossRef]

15. Ganti, RK,; Ye, F; Lei, H. Mobile Crowdsensing Applications. IEEE Commun. Mag. 2011, 32-39. Available online: https:
/ /ieeexplore.ieee.org/abstract/document/6069707/ (accessed on 1 March 2022). [CrossRef]

16. El Barachi, M.; Lo, A.; Mathew, S.S.; Afsari, K. A Novel Quality and Reliability-Based Approach for Participants’ Selection in

Mobile Crowdsensing. IEEE Access 2019, 7, 30768-30791. [CrossRef]

http://arxiv.org/abs/1301.0159
http://arxiv.org/abs/1301.0159
http://doi.org/10.1109/ITSC.2011.6083125
http://doi.org/10.1016/j.comnet.2008.04.002
http://www.merriam-webster.com/dictionary/crowdsourcing
http://www.merriam-webster.com/dictionary/crowdsourcing
http://doi.org/10.1145/1644038.1644048
http://doi.org/10.1145/2307636.2307671
http://doi.org/10.1145/1555816.1555823
http://doi.org/10.1109/INFOCOM.2016.7524478
http://doi.org/10.1145/2789168.2790102
http://doi.org/10.1145/2348543.2348580
http://doi.org/10.1109/INFCOM.2013.6567054
http://doi.org/10.1109/MCOM.2010.5560598
http://doi.org/10.1016/j.comcom.2018.01.012
http://doi.org/10.1109/ACCESS.2018.2885353
https://ieeexplore.ieee.org/abstract/document/6069707/
https://ieeexplore.ieee.org/abstract/document/6069707/
http://doi.org/10.1109/MCOM.2011.6069707
http://doi.org/10.1109/ACCESS.2019.2902727

Appl. Sci. 2022, 12, 11156 40 of 41

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.
38.

39.
40.
41.

42.

Christensen,].H. Using RESTful web-services and cloud computing to create next generation mobile applications. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA, Orlando, FL, USA, 25-29
October 2009; pp. 627-633. [CrossRef]

Chang, Z.; Zhou, Z.; Zhou, S.; Chen, T.; Ristaniemi, T. Towards service-oriented 5G: Virtualizing the networks for everything-as-a-
service. [EEE Access 2017, 6, 1480-1489. [CrossRef]

Banerjee, P,; Friedrich, R.; Bash, C.; Goldsack, P.; Huberman, B.; Manley, J.; Patel, C.; Ranganathan, P.; Veitch, A. Everything as a
service: Powering the new information economy. Computer 2011, 44, 36—43. [CrossRef]

Mizouni, R.; El Barachi, M. Mobile phone sensing as a service: Business model and use cases. In Proceedings of the International
Conference on Next Generation Mobile Applications, Services, and Technologies, Prague, Czech Republic, 25-27 September 2013;
pp. 116-121. [CrossRef]

Wei, X.; Wolf, M. A Survey on HTTPS Implementation by Android Apps: Issues and Countermeasures. Appl. Comput. Inform.
2017, 13, 101-117. [CrossRef]

Papliatseyeu, A.; Mayora, O. Mobile habits: Inferring and predicting user activities with a location-aware smartphone. Adv. Soft
Comput. 2009, 51, 343-352. [CrossRef]

Merlino, G.; Arkoulis, S.; Distefano, S.; Papagianni, C.; Puliafito, A.; Papavassiliou, S. Mobile crowdsensing as a service: A
platform for applications on top of sensing Clouds. Future Gener. Comput. Syst. 2016, 56, 623—639. [CrossRef]

Conti, M.; Passarella, A.; Das, S.K. The Internet of People (IoP): A new wave in pervasive mobile computing. Pervasive Mob.
Comput. 2017, 41, 1-27. [CrossRef]

Mehrotra, A.; Pejovic, V.; Musolesi, M. SenSocial: A middleware for integrating online social networks and mobile sensing data
streams. In Proceedings of the 15th International Middleware Conference, Middleware 2014, Bordeaux, France, 8-12 December
2014; pp. 205-216. [CrossRef]

Hu, X.; Chu, TH.S.; Chan, H.C.B.; Leung, V.C.M. Vita: A crowdsensing-oriented mobile cyber-physical system. IEEE Trans. Emerg.
Top. Comput. 2013, 1, 148-165. [CrossRef]

Pedrinaci, C.; Domingue, J. Web Services are Dead. Long Live Internet Services. SOA4All White Pap. 2010. Available
online: https:/ /cordis.europa.eu/docs/projects/cnect/9/215219/080/publishing /readmore /White-Paper-v-2-3.pdf (accessed
on 1 March 2022).

Ra, M.R;; Liu, B.; La Porta, T.E; Govindan, R. Medusa: A programming framework for crowd-sensing applications. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12), Low Wood Bay Lake District,
UK, 25-29 June 2012; pp. 337-350. [CrossRef]

El Barachi, M.; Kara, N.; Dssouli, R. Towards a service-oriented network virtualization architecture. In Proceedings of the 2010
ITU-T Kaleidoscope: Beyond the Internet? Innovations for Future Networks and Services, Pune, India, 13-15 December 2010;
pp- 1-7.

Das, T.; Mohan, P,; Padmanabhan, V.N.; Ramjee, R.; Sharma, A. PRISM: Platform for remote sensing using smartphones. In
Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services (MobiSys'10), San Francisco, CA,
USA, 15-18 June 2010; pp. 63-76. [CrossRef]

Cornelius, C.; Kapadia, A.; Kotz, D.; Peebles, D.; Shin, M.; Triandopoulos, N. AnonySense: Privacy-aware people-centric sensing.
In Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services (MobiSys’08), Breckenridge,
CO, USA, 17-20 June 2008; pp. 211-224. [CrossRef]

Miluzzo, E.; Lane, N.D.; Eisenman, S.B.; Campbell, A.T. CenceMe—Injecting sensing presence into social networking applications.
In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4793, pp. 1-28. [CrossRef]

Carlson, D.; Schrader, A. Dynamix: An Open Plug-and-Play Context Framework for Android. Available online: www.ambient.
uni-luebeck.de (accessed on 1 March 2022).

Pires, L.E; Gongalves, J.; Filho, P,; Costa, P.D.; Pires, L.F.; van Sinderen, M. Towards a Service Platform for Mobile Context-Aware
Applications. Health care Informatics View project WASP-Web Architectures for Service Platforms View Project towards a Services
Platform for Mobile Context-Aware Applications. 2004. Available online: https:/ /www.researchgate.net/publication /221353865
(accessed on 1 March 2022).

Singh, L.-PT.K,; Ianculescu, A. Design Patterns and Best Practices in Java; Packt Publishing: Birmingham, UK, 2018.

Crnkovic, I; Sentilles, S.; Vulgarakis, A.; Chaudron, M.R. A Classification Framework for Software Component Models. IEEE
Trans. Softw. Eng. 2011, 37, 593-615. [CrossRef]

Bass, R.; Clements, L.; Kazman, P. Software Architecture in Practice, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2012.

Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis, University of California,
Irvine, CA, USA, 1993. Available online: https://www.ics.uci.edu/ ~{}fielding /pubs/dissertation/rest_arch_style.htm (accessed
on 1 March 2022).

Sensor Benchmarks—SensMark. Available online: https:/ /sensmark.info/sensor-benchmarks/ (accessed on 1 March 2022).
Fujita, M.; Thisse,].E. Economics of agglomeration. J. Jpn. Int. Econ. 1996, 10, 339-378. [CrossRef]

The Most Popular Smartphones of 2017. Available online: https://deviceatlas.com/blog/most-popular-smartphones-of-2017
(accessed on 1 March 2022).

DXOMARK—Smartphone and Digital Camera Reviews. Available online: https://www.dxomark.com/category/mobile-
reviews/ (accessed on 1 March 2022).

http://doi.org/10.1145/1639950.1639958
http://doi.org/10.1109/ACCESS.2017.2779170
http://doi.org/10.1109/MC.2011.67
http://doi.org/10.1109/NGMAST.2013.29
http://doi.org/10.1016/j.aci.2016.10.001
http://doi.org/10.1007/978-3-540-85867-6_40
http://doi.org/10.1016/j.future.2015.09.017
http://doi.org/10.1016/j.pmcj.2017.07.009
http://doi.org/10.1145/2663165.2663331
http://doi.org/10.1109/TETC.2013.2273359
https://cordis.europa.eu/docs/projects/cnect/9/215219/080/publishing/readmore/White-Paper-v-2-3.pdf
http://doi.org/10.1145/2307636.2307668
http://doi.org/10.1145/1814433.1814442
http://doi.org/10.1145/1378600.1378624
http://doi.org/10.1007/978-3-540-75696-5_1
www.ambient.uni-luebeck.de
www.ambient.uni-luebeck.de
https://www.researchgate.net/publication/221353865
http://doi.org/10.1109/TSE.2010.83
https://www.ics.uci.edu/~{}fielding/pubs/dissertation/rest_arch_style.htm
https://sensmark.info/sensor-benchmarks/
http://doi.org/10.1006/jjie.1996.0021
https://deviceatlas.com/blog/most-popular-smartphones-of-2017
https://www.dxomark.com/category/mobile-reviews/
https://www.dxomark.com/category/mobile-reviews/

Appl. Sci. 2022, 12, 11156 41 of 41

43.

44.
45.

46.

47.

Karmouch, A.; Galis, A.; Giaffreda, R.; Kanter, T.; Jonsson, A.; Karlsson, A.M.; Glitho, R.; Smirnov, M.; Kleis, M.; Reichert, C.;
et al. Contextware research challenges in ambient networks. In International Workshop on Mobile Agents for Telecommunication
Applications; Springer: Berlin/Heidelberg, Germany, 2004; pp. 62-77.

Richards, EJ. A flexible growth function for empirical use.]. Exp. Bot. 1959, 10, 290-301. [CrossRef]

Knorr, EM.; Ng, R.T. Algorithms for Mining Datasets Outliers in Large Datasets. In Proceedings of the 24th International
Conference on Very Large Data Bases, New York City, NY, USA, 24 August 1998; pp. 392—403. Available online: http:/ /citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.103.5746&rep=repl&type=pdf (accessed on 1 March 2022).

Nielsen, J. 10 Usability Heuristics for User Interface Design. 1994. Available online: https://www.nngroup.com/articles/ten-
usability-heuristics/ (accessed on 1 March 2022).

Nielsen, J. Search: Visible and Simple. 2001. Available online: https://www.nngroup.com/articles/search-visible-and-simple/
(accessed on 1 March 2022).

http://doi.org/10.1093/jxb/10.2.290
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5746&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.5746&rep=rep1&type=pdf
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/search-visible-and-simple/

	CrowdPower: A Novel Crowdsensing-as-a-Service Platform for Real-Time Incident Reporting
	Recommended Citation

	Introduction
	Research Scope
	Research Contributions

	Related Work and Literature Review
	System Architecture and Design
	Software Requirements
	Client/Server Architectural Components
	System’s Operation: Collaboration Diagrams
	CrowdPower’s Web Service Interfaces
	Benchmarking Sensors
	Participants’ Selection Model for a Sensing Campaign
	Estimation of Data Quality, Participant’s Reputation, and Filtering Outliers
	Quality Estimation Model
	Participant Reputation Estimation Model
	Classification and Filtering of Outliers

	Implementation of the MSaaS System
	The Client-Side Mobile Application
	The Web Server Application

	Empirical Evaluation
	Evaluation of the Participant Selection Model
	Evaluation of the Models for Estimating Data Quality, Participant Reputation, and Filt-ering Outliers

	Conclusions
	References

