5,546 research outputs found

    Least costly energy management for series hybrid electric vehicles

    Full text link
    Energy management of plug-in Hybrid Electric Vehicles (HEVs) has different challenges from non-plug-in HEVs, due to bigger batteries and grid recharging. Instead of tackling it to pursue energetic efficiency, an approach minimizing the driving cost incurred by the user - the combined costs of fuel, grid energy and battery degradation - is here proposed. A real-time approximation of the resulting optimal policy is then provided, as well as some analytic insight into its dependence on the system parameters. The advantages of the proposed formulation and the effectiveness of the real-time strategy are shown by means of a thorough simulation campaign

    Procedure for Assessing the Suitability of Battery Second Life Applications after EV First Life

    Get PDF
    Using batteries after their first life in an Electric Vehicle (EV) represents an opportunity to reduce the environmental impact and increase the economic benefits before recycling the battery. Many different second life applications have been proposed, each with multiple criteria that have to be taken into consideration when deciding the most suitable course of action. In this article, a battery assessment procedure is proposed that consolidates and expands upon the approaches in the literature, and facilitates the decision-making process for a battery after it has reached the end of its first life. The procedure is composed of three stages, including an evaluation of the state of the battery, an evaluation of the technical viability and an economic evaluation. Options for battery configurations are explored (pack direct use, stack of battery packs, module direct use, pack refurbish with modules, pack refurbish with cells). By comparing these configurations with the technical requirements for second life applications, a reader can rapidly understand the tradeoffs and practical strategies for how best to implement second life batteries for their specific application. Lastly, an economic evaluation process is developed to determine the cost of implementing various second life battery configurations and the revenue for different end use applications. An example of the battery assessment procedure is included to demonstrate how it could be carried out.This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 963540 and No. 963580. This funding includes funds to support research work and open-access publications.Peer ReviewedPostprint (published version

    Ready To Roll: Southeastern Pennsylvania's Regional Electric Vehicle Action Plan

    Get PDF
    On-road internal combustion engine (ICE) vehicles are responsible for nearly one-third of energy use and one-quarter of greenhouse gas (GHG) emissions in southeastern Pennsylvania.1 Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles (AEVs), present an opportunity to serve a significant portion of the region's mobility needs while simultaneously reducing energy use, petroleum dependence, fueling costs, and GHG emissions. As a national leader in EV readiness, the region can serve as an example for other efforts around the country."Ready to Roll! Southeastern Pennsylvania's Regional EV Action Plan (Ready to Roll!)" is a comprehensive, regionally coordinated approach to introducing EVs and electric vehicle supply equipment (EVSE) into the five counties of southeastern Pennsylvania (Bucks, Chester, Delaware, Montgomery, and Philadelphia). This plan is the product of a partnership between the Delaware Valley Regional Planning Commission (DVRPC), the City of Philadelphia, PECO Energy Company (PECO; the region's electricity provider), and Greater Philadelphia Clean Cities (GPCC). Additionally, ICF International provided assistance to DVRPC with the preparation of this plan. The plan incorporates feedback from key regional stakeholders, national best practices, and research to assess the southeastern Pennsylvania EV market, identify current market barriers, and develop strategies to facilitate vehicle and infrastructure deployment

    Electric vehicle: infrastructure regulatory requirements

    Get PDF
    In 2009 the European Union (EU) Directive on Renewable Energy placed an obligation on each Member State to ensure that 10% of transport energy (excluding aviation and marine transport) come from renewable sources by 2020. The Irish Government intends to achieve part of this target by making sure that 10% of all vehicles in its transport fleet are powered by electricity by 2020. Stakeholder groups include but are not limited to policy makers, the public, regulatory bodies, participants in the electricity retail market, the transmission and distribution system grid operators, the automotive industry, private enterprise, civil engineers, electrical engineers, electricians, architects, builders, building owners, building developers, building managers, fleet managers and EV owners. Currently it appears both internationally and Nationally the automotive industry is focused on EV manufacture, governments and policy makers have highlighted the potential environmental and job creation opportunities while the electricity sector is preparing for an additional electrical load on the grid system. The focus of this paper is to produce an international EV roadmap. A review of current international best practice and guidelines under consideration or recommended is presented. An update on any EV infrastructure charging equipment standards is also provided. Finally the regulatory modifications to existing National legislation as well as additional infrastructure items which may need control via new regulations are identified

    Ensemble Nonlinear Model Predictive Control for Residential Solar Battery Energy Management

    Get PDF
    In a dynamic distribution market environment, residential prosumers with solar power generation and battery energy storage devices can flexibly interact with the power grid via power exchange. Providing a schedule of this bidirectional power dispatch can facilitate the operational planning for the grid operator and bring additional benefits to the prosumers with some economic incentives. However, the major obstacle to achieving this win-win situation is the difficulty in 1) predicting the nonlinear behaviors of battery degradation under unknown operating conditions and 2) addressing the highly uncertain generation/load patterns, in a computationally viable way. This paper thus establishes a robust short-term dispatch framework for residential prosumers equipped with rooftop solar photovoltaic panels and household batteries. The objective is to achieve the minimum-cost operation under the dynamic distribution energy market environment with stipulated dispatch rules. A general nonlinear optimization problem is formulated, taking into consideration the operating costs due to electricity trading, battery degradation, and various operating constraints. The optimization problem is solved in real-time using a proposed ensemble nonlinear model predictive control-based economic dispatch strategy, where the uncertainty in the forecast has been addressed adequately albeit with limited local data. The effectiveness of the proposed algorithm has been validated using real-world prosumer datasets

    Electrification of Smart Cities

    Get PDF
    Electrification plays a key role in decarbonizing energy consumption for various sectors, including transportation, heating, and cooling. There are several essential infrastructures for a smart city, including smart grids and transportation networks. These infrastructures are the complementary solutions to successfully developing novel services, with enhanced energy efficiency and energy security. Five papers are published in this Special Issue that cover various key areas expanding the state-of-the-art in smart cities’ electrification, including transportation, healthcare, and advanced closed-circuit televisions for smart city surveillance

    Efficient operation of recharging infrastructure for the accommodation of electric vehicles: a demand driven approach

    Get PDF
    Large deployment and adoption of electric vehicles in the forthcoming years can have significant environmental impact, like mitigation of climate change and reduction of traffic-induced air pollutants. At the same time, it can strain power network operations, demanding effective load management strategies to deal with induced charging demand. One of the biggest challenges is the complexity that electric vehicle (EV) recharging adds to the power system and the inability of the existing grid to cope with the extra burden. Charging coordination should provide individual EV drivers with their requested energy amount and at the same time, it should optimise the allocation of charging events in order to avoid disruptions at the electricity distribution level. This problem could be solved with the introduction of an intermediate agent, known as the aggregator or the charging service provider (CSP). Considering out-of-home charging infrastructure, an additional role for the CSP would be to maximise revenue for parking operators. This thesis contributes to the wider literature of electro-mobility and its effects on power networks with the introduction of a choice-based revenue management method. This approach explicitly treats charging demand since it allows the integration of a decentralised control method with a discrete choice model that captures the preferences of EV drivers. The sensitivities to the joint charging/parking attributes that characterise the demand side have been estimated with EV-PLACE, an online administered stated preference survey. The choice-modelling framework assesses simultaneously out-of-home charging behaviour with scheduling and parking decisions. Also, survey participants are presented with objective probabilities for fluctuations in future prices so that their response to dynamic pricing is investigated. Empirical estimates provide insights into the value that individuals place to the various attributes of the services that are offered by the CSP. The optimisation of operations for recharging infrastructure is evaluated with SOCSim, a micro-simulation framework that is based on activity patterns of London residents. Sensitivity analyses are performed to examine the structural properties of the model and its benefits compared to an uncontrolled scenario are highlighted. The application proposed in this research is practice-ready and recommendations are given to CSPs for its full-scale implementation.Open Acces

    Optimal electric vehicle scheduling : A co-optimized system and customer perspective

    Get PDF
    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivizing the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle --Abstract, page iv
    • …
    corecore