707 research outputs found

    Mekanistisen termohydraulisen mallinnustavan soveltaminen uudentyyppisten teollisten prosessien dynaamiseen simulointiin

    Get PDF
    The PDF file of the dissertation includes the summary part and also all five publications as full texts.The process and energy industries have a remarkable position in developing sustainable future. They play an important role in mitigating climate change. Whilst aiming at energy efficient, material recycling, and emission-free processes, the industrial systems are becoming more complex. Process automation is fundamental in confirming that also complex systems can be managed and operated in an easy and safe way. Dynamic system-wide process simulation is practically the only way to verify the interoperability of the process and control solutions before building up the system. For the systems in operation, it enables virtual realistic studies without disturbances or risks for the actual process or people. The qualitative research approach in this work is case study. The modelling and dynamic simulation software Apros is used in five distinct cases, which extend the modelling from traditional nuclear and conventional power plant applications to a board machine, a carbon dioxide capturing power plant, ship energy systems, a seawater desalination plant, and a molten salt based energy storage system. The methodology relies on mechanistic thermal-hydraulic modelling and dynamic simulation. Method development was performed to model and simulate the application specific unit operations and working fluids. The functionality of the basic methodology and the extensions are demonstrated in the cases. The results of the work can be used in research and commercial simulation projects. New unit operation models and improvements for the fluid property calculation provide a variety of new potential applications. The model validation results help to estimate prediction capability in similar applications. The simulation applications guide modellers to use the methodology in both the presented and new areas. Regarding the case-specific results, the board machine simulator helped to understand complex interactions related to grade changes, to tune the related automation, and thus to shorten the grade change times. The simulation of the ship energy systems revealed design deficiencies and assisted in troubleshooting related problems during the commissioning. The study on the thermal energy storage facility uncovered systematic anomalous behaviour in the molten salt flow path. Based on the cross-case analysis, it can be stated that the methodology can be successfully applied beyond its traditional application domain and that it provides meaningful and valuable benefits. Furthermore, the methodology supports versatile use of the simulation model during the life cycle of an industrial plant: in R&D, design, testing, operator training and further development of the operating plant. The challenges that the process and energy industries meet today, require consideration of the interactions and dynamics of the process and automation systems together. The methodology used and further extended provides a valuable tool for tackling these challenges.Prosessi- ja energiateollisuudella on suuri merkitys kestävässä kehityksessä. Niillä on merkittävä rooli ilmastonmuutoksen hillinnässä. Pyrittäessä energiatehokkuuteen, materiaalien kierrätykseen ja päästöttömiin prosesseihin tulee teollisista järjestelmistä monimutkaisia. Prosessiautomaatiolla on keskeinen rooli siinä, että monimutkaisiakin järjestelmiä voidaan hallita ja käyttää helposti ja turvallisesti. Dynaaminen laitosmittakaavan prosessisimulointi on käytännössä ainoa tapa testata ja varmistaa prosessin ja automaation yhteistoiminta ennen kohdejärjestelmän rakentamista. Käytössä olevissa laitoksissa sen avulla voidaan tutkia järjestelmiä todenmukaisesti aiheuttamatta häiriötä tai riskiä prosessille tai ihmisille.  Tässä tapaustutkimuksena toteutetussa työssä käytetään Apros-ohjelmistoa mallinnus- ja simulointiympäristönä. Mallinnusta ja simulointia laajennetaan perinteisiltä ydin- ja konventionaalisten voimalaitosten sovellusalueilta kartongin valmistukseen, hiilidioksidia talteen ottavaan voimalaitokseen, laivan energiajärjestelmiin, meriveden suolanpoistoon sekä sulasuolaa käyttävään lämpövarastoon. Perusmenetelmänä hyödynnetään mekanistisia malleja ja termohydraulista dynaamista simulointia. Menetelmäkehitystä tehtiin sovelluskohtaisten laitteiden ja fluidien mallintamiseksi. Käytetyn menetelmän ja tehtyjen laajennusten toimivuus demonstroidaan simulointisovelluksissa. Työn tuloksia voidaan hyödyntää sekä tutkimuksessa että kaupallisissa simulointiprojekteissa. Uudet laitemallit ja fluidilaskennan ominaisuudet mahdollistavat uusia sovelluskohteita termisten järjestelmien parissa. Laskennan ja mallien validointitulokset auttavat arvioimaan saman tyyppisten mallien ennustuskykyä. Menetelmän hyödyntäminen sekä esitellyillä että uusilla sovellusalueilla tehostuu esimerkkimallien avulla. Tapauskohtaisista tuloksista voidaan mainita, että simulaattori auttoi ymmärtämään kartonkikoneen lajinvaihtoihin liittyviä monimutkaisia vuorovaikutuksia. Uudelleenvirittämällä lajinvaihtoautomaatio lyhennettiin lajinvaihtoihin kuluvaa aikaa. Laivan energiajärjestelmien simulointi paljasti suunnittelun puutteellisuuksia ja auttoi käyttöönoton ongelmien tutkimisessa. Sulasuolaa käyttävän, lämmönsiirron ja varastoinnin tutkimusta tukevan laitteiston toiminnasta analysoitiin systemaattinen poikkeama.  Tapausten analysoinnin perusteella voidaan todeta, että käytetty mallinnusmenetelmä soveltuu hyvin myös perinteisen sovellusalueensa ulkopuolella ja tuo merkittäviä hyötyjä. Menetelmä tukee simulointimallien monipuolista hyödyntämistä teollisuuslaitoksen elinkaaren aikana: tutkimuksessa, suunnittelussa, testauksessa, käyttäjien koulutuksessa sekä toimivan laitoksen kehittämisessä. Teollisuuden suunnittelun ja laitosten kasvavia haasteita on kyettävä ratkaisemaan eri elinkaaren vaiheissa prosessin ja automaation yhteistoiminta ja dynamiikka huomioiden. Työssä sovellettu ja laajennettu mallinnus- ja simulointimenetelmä tarjoaa tähän hyödyllisen työkalun

    Development of an Excel Based Spreadsheet of Analytical Hierarchy Process And Decision Making Grid For Maintenance Policy Decision

    Get PDF
    Maintenance policies are created to fulfill the company needs to ensure smooth and continuous operation. In Lean Manufacturing, the importance of an effective maintenance program cannot be overlooked. Since most of the industries used machinery in their plant, of course there must be proper maintenance to ensure continuous production and smooth operation. Maintenance policies such as Preventive Maintenance (PM), Corrective Maintenance (CM) and Condition Based Maintenance (CBM) are widely used as a way to solve maintenance problems. Maintenance selection can be very hard and complex when there are a lot of criteria that need to be considered since their importance are nearly significant to each other. Selecting the proper maintenance strategy can ensure high system’s reliability and availability. Decision Making Grid (DMG) and Analytical Hierarchy Process (AHP) are often used to identify strategies for maintenance decision. Automation using these methods through specialized software is very costly. Therefore, a cheaper alternative is needed. Two Excel spread sheets are developed by applying the formula for calculating AHP and DMG. One of the main objective of this project is to produce an integrated decision making tool depending on available data and depth of analysis. Validation is done by inserting data from selected research papers then compared to their actual value which is obtained from the datum. For DMG model, after inserting the inputs, the results are displayed on the DMG grid view. Based from the validation of data using case studies, it can be found that some of the actual data from the paper has inaccurate and incorrect results due to mistakes in calculations. Others are validated and both the tools and case studies produced the same result. Therefore, the tools are ready to use. If all of the steps for the development of the spread sheet are followed, the best maintenance policy can be selected by using both of these models. The user can select either to choose AHP or DMG as their decision making tool

    Dynamic Modeling, Sensor Placement Design, and Fault Diagnosis of Nuclear Desalination Systems

    Get PDF
    Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear industry for effective and continuous operation of nuclear power plants. All the fault diagnostic approaches depend critically on the sensors that measure important process variables. Whenever a process encounters a fault, the effect of the fault is propagated to some or all the process variables. The ability of the sensor network to detect and isolate failure modes and anomalous conditions is crucial for the effectiveness of a fault detection and isolation (FDI) system. However, the emphasis of most fault diagnostic approaches found in the literature is primarily on the procedures for performing FDI using a given set of sensors. Little attention has been given to actual sensor allocation for achieving the efficient FDI performance. This dissertation presents a graph-based approach that serves as a solution for the optimization of sensor placement to ensure the observability of faults, as well as the fault resolution to a maximum possible extent. This would potentially facilitate an automated sensor allocation procedure. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data, and to fit a hyper-plane to the data. The fault directions for different fault scenarios are obtained from the prediction errors, and fault isolation is then accomplished using new projections on these fault directions. The effectiveness of the use of an optimal sensor set versus a reduced set for fault detection and isolation is demonstrated using this technique. Among a variety of desalination technologies, the multi-stage flash (MSF) processes contribute substantially to the desalinating capacity in the world. In this dissertation, both steady-state and dynamic simulation models of a MSF desalination plant are developed. The dynamic MSF model is coupled with a previously developed International Reactor Innovative and Secure (IRIS) model in the SIMULINK environment. The developed sensor placement design and fault diagnostic methods are illustrated with application to the coupled nuclear desalination system. The results demonstrate the effectiveness of the newly developed integrated approach to performance monitoring and fault diagnosis with optimized sensor placement for large industrial systems

    Control systems of offshore hydrogen production by renewable energies

    Get PDF
    Esta tesis trata sobre un proyecto de diseño de un Sistema de Gestión de Energía (SGE) que utiliza Modelo de Control Predictivo (MPC) para equilibrar el consumo de energía renovable con electrolizadores productores de hidrógeno. La energía generada se equilibra regulando el punto de operación y las conexiones de los electrolizadores usando un MPC basado en un algoritmo de Programación Mixta-Entera Cuadrática. Este algoritmo MPC permite tener en cuenta previsiones de energía, mejorando así el equilibrio y reduciendo el número de encendidos de los equipos. Se han realizado diferentes casos de estudio en instalaciones compuestas por unidades de generación de energía eléctrica a partir de energía renovable. Se considera la técnica de ósmosis inversa como paso intermedio para la producción de agua que alimenta a los electrolizadores. La validación se realiza utilizando datos meteorológicos medidos en un lugar propuesto para el sistema, mostrando el funcionamiento adecuado del SGE desarrollado.Departamento de Ingeniería de Sistemas y AutomáticaDoctorado en Ingeniería Industria

    Modelling, simulation and advanced control of small-scale reverse osmosis desalination plants

    Get PDF
    Esta tesis trata sobre el modelado, simulación y control avanzado de plantas de desalinización, basadas en ósmosis inversa. En primer lugar, se ha desarrollado una nueva librería dinámica de simulación de desalinizadoras, utilizando primeros principios, ecuaciones físico-químicas y correlaciones bibliográficas. Dicha librería se enfoca en los aspectos dinámicos del proceso, y es complementaria a las librerías presentes en el mercado. En segundo lugar, se han aplicado técnicas de modelado multiescala, para el modelado del proceso de la desalinización. A continuación, se ha estudiado el control avanzado de una desalinizadora, alimentada con energías renovables (placas solares y turbinas eólicas), desde un nuevo punto de vista. Englobando al mismo tiempo, la operación de la planta, las limpiezas periódicas, y la producción de energía eléctrica para su funcionamiento. Finalmente, se ha estudiado el diseño integrado de la planta, y la planificación de la operación para largos periodos de tiempo (varios años).Departamento de Ingeniería de Sistemas y Automátic
    corecore