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Abstract 

Fault diagnosis of sensors, devices, and equipment is an important topic in the nuclear 

industry for effective and continuous operation of nuclear power plants. All the fault diagnostic 

approaches depend critically on the sensors that measure important process variables. Whenever 

a process encounters a fault, the effect of the fault is propagated to some or all the process 

variables. The ability of the sensor network to detect and isolate failure modes and anomalous 

conditions is crucial for the effectiveness of a fault detection and isolation (FDI) system. 

However, the emphasis of most fault diagnostic approaches found in the literature is primarily on 

the procedures for performing FDI using a given set of sensors. Little attention has been given to 

actual sensor allocation for achieving the efficient FDI performance. This dissertation presents a 

graph-based approach that serves as a solution for the optimization of sensor placement to ensure 

the observability of faults, as well as the fault resolution to a maximum possible extent. This 

would potentially facilitate an automated sensor allocation procedure. Principal component 

analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the 

data, and to fit a hyper-plane to the data. The fault directions for different fault scenarios are 

obtained from the prediction errors, and fault isolation is then accomplished using new 

projections on these fault directions. The effectiveness of the use of an optimal sensor set versus 

a reduced set for fault detection and isolation is demonstrated using this technique. 

Among a variety of desalination technologies, the multi-stage flash (MSF) processes 

contribute substantially to the desalinating capacity in the world. In this dissertation, both 

steady-state and dynamic simulation models of a MSF desalination plant are developed. The 

dynamic MSF model is coupled with a previously developed International Reactor Innovative 

and Secure (IRIS) model in the SIMULINK environment. The developed sensor placement 

design and fault diagnostic methods are illustrated with application to the coupled nuclear 

desalination system. The results demonstrate the effectiveness of the newly developed integrated 

approach to performance monitoring and fault diagnosis with optimized sensor placement for 

large industrial systems. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Water is indispensable for the very existence of mankind and for human development. 

The total quantity of water available on earth is about 1,000 million km3 and covers nearly 70% 

of the globe, whereas the total world water consumption does not exceed 2,100 km3/year. At first 

thought this would seem rather reassuring. However, 97.5% of the available water is highly 

saline or brackish. Of the remaining 2.5%, nearly 70% is in the form of ice (Antarctica, 

Greenland, etc). Yet another large fraction is locked in the soil humidity and in deep 

underground aquifers. Consequently the effective amount of water, directly accessible to human 

beings is only 0.007% (or, about 70,000 km3) [IWMI, 2000]. Even this fraction is very unevenly 

distributed over the planet. Moreover, rapidly increasing populations, rising standards of living, 

continued development of tourism, progressive industrialization, and expansion of irrigation 

agriculture have already led to acute water shortages and stresses in many regions of the world as 

shown in red in Figure 1.1. 

 

Figure 1.1. Projected regions affected by water shortages [IWMI, 2000]. 
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In Figure 1.1, countries which will face “economic water shortages” (i.e. inadequacy of 

supply and demand) are shown. According to the market survey performed by the World 

Resources Institute on the future growth of seawater desalination, the worldwide demand for 

desalination is expected to double approximately every 10 years in the foreseeable future. Most 

of the demand would arise in the Arabian Gulf and North African regions, but this is likely to 

expand to other areas. 

During the second half of the past century, industrial water desalination became a 

sustainable source of potable water in several countries across the globe. Out of the more than 

12,000 desalination plants currently in operation, only about 10 use heat or electricity provided 

by nuclear power plants [IAEA, 2002]. Fossil energy sources are the dominant choice. However, 

due to their constantly depleting quantities and the emitted air pollutants as a result of 

combustion, fossil fuels should not be considered as a sustainable source of energy. These 

environmental concerns, coupled with concerns over energy supply security and an anticipated 

growth in energy demands, are driving a growing interest in the development and expansion of 

the nuclear energy options. Nuclear energy offers a clean and abundant energy supply. Also, the 

current generation of nuclear plants has proven that nuclear energy can be safe and economically 

competitive with alternative options. 

In the International Atomic Energy Agency (IAEA) terminology, nuclear desalination is 

defined as the production of potable water from seawater in a facility in which a nuclear reactor 

is used as the source of energy for the desalination process. Electrical and/or thermal energy 

may be used in the desalination process. The facility may be dedicated solely to the production of 

potable water, or may be used for the generation of electricity and production of potable water, 

in which case only a portion of the total energy output of the reactor is used for water production 

[IAEA, 2007]. The prospects of using nuclear energy for seawater desalination on a large scale 

can be very attractive since desalination is an energy intensive process that can utilize the heat 

from a nuclear reactor and/or the electricity produced by such plants. The choice of the 

desalination technology determines the form of energy required: electrical energy for reverse 

osmosis (RO) systems, and relatively low quality thermal energy for distillation systems, such as 

multi-stage flash (MSF) distillation. The MSF desalination process has dominated the field of 
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thermal desalination with a market share of over 90%. In addition, market share of MSF 

processes accounts for 70% of all seawater desalination processes [El-Dessouky et al., 1999]. It 

is thus logical that the capability of coupling a MSF process to a nuclear power plant as the heat 

source makes the process increasingly important for future drinking water and electricity 

generation. 

On the other hand, while all nuclear reactor types can provide the energy required by the 

various desalination processes, it has been shown that small and medium sized reactors (SMR), 

ranging from 50 MWe to 500 MWe in electricity production, offer the largest potential as the 

coupling option of nuclear desalination systems in developing countries. The development of 

innovative reactor concepts and fuel cycles with enhanced safety features as well as their 

attractive economics are expected to improve the public acceptance and further the prospects of 

nuclear desalination. 

To facilitate the anticipated growth in demand for nuclear energy world-wide, several 

countries including the United States, have initiated the development of the next generation of 

nuclear plants that offer even greater safety, reliability, and economics, while also reducing the 

threat of proliferation of special nuclear materials. The Generation IV nuclear power program 

was initiated by the U.S. Department of Energy to identify and develop promising 

next-generation nuclear plant designs, and was expanded to include several other countries. Six 

advanced reactor designs were selected by the international Generation IV program in 2003 for 

long-term development and several designs that are viewed as near-term deployable by 2015. 

One of the reactor types identified for international near-term deployment is integral primary 

system reactors (IPSR). An example of an IPSR system is the International Reactor Innovative 

and Secure (IRIS) reactor concept [Carelli et al., 2003]. IRIS is a modular design of a pressurized 

water reactor (PWR) that has an integral reactor coolant system with enhanced safety and 

economics. IRIS is especially well suited for deployment in countries with small or medium 

electricity grids for producing both electricity and fresh water. However, coupling a nuclear plant 

and a desalination plant involves a number of issues that have to be addressed. Among these 

issues, performance monitoring and fault diagnosis are of high importance for safe and optimal 

operation of a coupled nuclear desalination plant. 
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The main objective of fault diagnosis is to observe incipient faults and determine the root 

causes. Nowadays, most processes are extremely well instrumented with a multitude of sensors 

providing both control and safety-related measurements, especially in a nuclear desalination 

plant. The faults with control-related sensors can propagate the fault effects through control 

loops and subsequently disturb process variables throughout the entire process, which will result 

in a non-optimal performance of the related actuators and plant equipment. The safety-related 

sensor faults can force a nuclear power plant to de-rate its power and degrade the operational 

performance. Both types of sensor faults can also mislead operators to take erroneous actions and 

in turn result in safety problems. The ability of the sensor network to detect and discriminate 

failure modes and anomalous conditions is critical for the effectiveness of the fault detection and 

isolation (FDI) system. With hundreds of process variables available for measurement in both 

nuclear power plants and desalination processes, selection of an optimum number of sensors and 

their locations poses a unique challenge. 

FDI has been considered as an important design feature of the advanced instrumentation 

and control systems of the IRIS design. However, conventional sensor FDI techniques, such as 

hardware redundancy, face many challenges in engineering applications. As an integral reactor, 

IRIS has the entire reactor coolant system housed inside the reactor vessel. This arrangement 

creates engineering difficulties in placing physically redundant instruments for in-vessel 

equipment due to the need for extra space and instrument penetrations. In addition, the possible 

common-cause failures of physically redundant sensors may still constrain the reliability of the 

instrument system. 

Many modern FDI approaches are based on analytical redundancy. Functional 

relationships among process variables governed by fundamental conservation laws such as mass, 

momentum, and energy balance, can replace hardware redundancy for plant measurements 

[Chow et al., 1984; Erbay and Upadhyaya, 1997; Holbert and Upadhyaya, 1990; Upadhyaya et 

al., 1989; Upadhyaya and Eryurek, 1992]. Residuals, defined as the differences between 

measured values and estimated values, can be continuously monitored for fault detection. 

Because different faults cause the violation of different relationships, residual patterns can be 

used as fault signatures for fault isolation. 
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Because of the complexity of either a nuclear power plant or a seawater desalination plant, 

it is generally very difficult to build physics models with sufficient accuracy for FDI purpose. 

Thus, the so-called soft computing methods, such as artificial neural networks (ANN) 

[Kavaklioglu et al., 1994], principal component analysis (PCA) [Wang et al., 2002], fuzzy logic 

[Zhao et al., 2005], group method of data handling (GMDH) [Farlow, 1984], and other 

data-based empirical modeling techniques [Hines et al., 1997; Hines et al., 2008], have shown 

great capabilities of capturing the relationships among the various measurements. 

Multivariate statistical process control using empirical techniques, such as PCA for data 

characterization, has been employed successfully in the process industries. In chemical industry, 

PCA has been one of the most popular statistical methods for extracting information from 

process data. Dunia and Qin [1998] proposed a subspace approach for fault detection, 

reconstruction, isolation, and identification. Due to the difficulty of isolating faults from process 

parameter changes when the Hotteling’s 2T  test is violated, their method was only based on the 

Q  statistic, or the squared prediction error (SPE), and the 2T  statistic was not utilized. In fact, 

any data-based empirical modeling methods, for example, PCA and other multivariate statistical 

analysis methods, cannot solve the performance monitoring and fault diagnosis problem as a 

whole if no other information about process is efficiently utilized. Specifically, the emphasis of 

most PCA-based research has been placed more on monitoring algorithms using a given set of 

sensors, and less on actual sensor allocation for efficient detection and identification of process 

malfunctions. Fortunately, many researchers in other fields have resorted to the design of various 

sensor networks from a fault diagnosis perspective [Bhushan and Rengaswamy, 2002a; Bhushan 

and Rengaswamy, 2002b; Kramer et al., 1987; Maurya et al., 2006]. If sensors are suitably 

located based on the knowledge of fault propagation manner within the process, PCA with 

optimized sensor locations would certainly enable a great improvement on the process FDI 

performance. 

1.2 R&D Objectives and Original Contributions 

The goal of this dissertation was to develop an integrated approach to address sensor 

placement design in a fault diagnostic architecture with application to a nuclear desalination 
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system. The contributions of the dissertation are innovative and significant in that, to the best of 

knowledge, they represent the first comprehensive studies of modeling, simulation, sensor 

placement design, and fault diagnosis of nuclear desalination processes. The original 

contributions are presented below. 

1. Development of steady-state and dynamic models of a MSF desalination plant using 

MATLAB and SIMULINK: Steady-state models are applicable for design purposes as well as 

for parametric studies of existing plants. Dynamic models are suitable for simulating transient 

behavior, studying control strategies, investigating stability problems, and identifying process 

interactions. 

2. Development of a coupled IRIS-MSF nuclear desalination plant model in SIMULINK: 

This provides a useful platform to facilitate the study of system transients, control behavior, 

performance monitoring, and fault diagnosis of a nuclear desalination process. 

3. Development of an integrated architecture of performance monitoring and fault 

diagnostics with emphasis on the importance of optimum sensor placement: Causal graph-based 

algorithms are developed to perform sensor placement design from a fault diagnosis perspective 

using different design criteria. 

4. Development of an optimal and automated sensor allocation procedure for the IRIS 

system and the MSF desalination plant: An efficient integer linear programming (ILP) embedded 

greedy search optimization algorithm was developed to solve the formulated sensor allocation 

optimization problem. This problem of sensor placement design was also solved optimally in this 

dissertation using a commercial ILP optimization solver, LINGO 8.0, and the optimal solutions 

are compared with the greedy search algorithm. 

5. Application of the sensor placement design strategy to the IRIS-MSF nuclear desalination 

plant: A PCA-based fault diagnostic approach with optimized sensor selection is able to achieve 

the satisfactory FDI performance in both single-fault and multi-fault cases. Moreover, fault 

diagnostic results are examined using reduced sensor sets (non-optimal sensor selection), as 

opposed to optimal sensor sets. The comparison study indicates that the reduced sensor set is not 
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sufficient for the purpose of fault isolation, thus justifying the use of the developed optimal 

sensor allocation strategy. 

6. Development of the effective PCA models using the optimal sensor set obtained through 

sensor allocation design: This provides guidance for choosing measurements necessary for 

building PCA models, and eliminates the arbitrary decision making in selecting proper 

measurements that are needed for process performance monitoring and fault diagnosis. 

1.3 Organization of the Dissertation 

This document is divided into eight chapters. Chapter 2 reviews the state-of-the-art 

optimum sensor placement techniques, which consist of three basic components: a model, an 

evaluation module, and an optimization algorithm. The details of a variety of desalination 

technologies are also presented in this chapter. This is followed by the discussion of an 

integrated architecture of a fault diagnostic system in Chapter 3. Both steady-state and dynamic 

models for a MSF desalination system are developed in Chapter 4. Simulation results are 

provided and analyzed in this chapter. Chapter 5 presents simulation results of a coupled 

IRIS-MSF nuclear desalination plant consisting of the MSF dynamic model developed in this 

dissertation and an existing IRIS plant model in the SIMULINK environment. Next, a complete 

procedure of implementing optimum sensor placement for fault diagnosis is given in Chapter 6. 

Different criteria are employed to formulate optimization problems, and a greedy search 

algorithm is adopted to solve the formulated optimization problems. In Chapter 7 and 8, the 

developed sensor placement design algorithms and PCA-based fault diagnostic approaches with 

optimized sensor placement are demonstrated through the applications to a MSF desalination 

process and an IRIS helical coil steam generator (HCSG) system, respectively. Finally, a 

summary of the dissertation, with concluding remarks and suggestions for future research, are 

presented in Chapter 9. 
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Chapter 2 

Literature Review 

2.1 Optimum Sensor Placement for Process Systems 

The performance of an industrial process is strongly dependent on available sensor 

measurements. Inaccurate measurements resulting from insufficient measurements or improper 

sensor placement can significantly deteriorate fault observability and process control. Therefore, 

sensor placement has received considerable attention and has been studied in different areas. 

Traditionally, sensors are placed mainly to meet control or monitoring objectives. The 

sensor placement for process control is to determine the controlled variables and the manipulated 

variables to achieve the designed control objectives. The selection of controlled variables is 

mainly concerned with the process requirements. The general guideline is that the controlled 

variables should include: (1) non self-regulating variables; (2) environment and equipment safety 

critical variables; (3) process performance critical variables; (4) variables that have strong 

interactions with other control variables; and (5) variables with favorable static and dynamic 

characteristics [Bagajewicz, 2001]. 

Faulds and King [2000] introduced the sensor placement problem for feedback control. 

Al-Shehabi and Newman [2001] employed root locus principles to choose optimum sensor 

positions for aero-elastic vehicle feedback control applications. Giraud and Jouvencel [1995] 

addressed the problem of sensor selection in an automatic task, such as the process of data fusion, 

a sensing task, or the design of a perceptual system for a mobile robot. Chen and Li [2002] 

presented an automatic sensor placement technique for robot vision in inspection tasks. One 

aspect of the NASA Aircraft Morphing program was to determine the optimum number of active 

control devices (for example, piezoelectric actuators) and their placement in the structure. In this 

program, Padula and Kincaid [1999] provided a good review of sensor and actuator placement 

problems. They grouped the sensor and actuator placement research based on different types of 

applications (non-aerospace placement problems and aerospace placement problems). 
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Some recent works have pertained to other nontraditional activities, such as target 

tracking, fault detection, and reliability analysis. Sensor placement for fault diagnosis has been 

studied at two different levels: component level and system level. Some of the sensor placement 

problems attempted to position sensors in a component’s range. Critical systems of interest are 

characterized as large scale systems consisting of multiple components. For such systems, a fault 

may propagate through several components when it occurs. Therefore, it is possible that sensors 

can be placed at any of the components to detect the fault. With hundreds or thousands of 

possible locations of sensors in a system, the selection of a crucial and optimum sensor location, 

sensor types, and number of sensors poses an important problem that needs to be solved at the 

system level before the detailed spatial distribution in a component can be determined. 

Although a large body of research work has emerged, the various approaches vary only in 

their choices of the three basic components: a model of the system of interest, a sensor selection 

module, and an optimization algorithm, as illustrated in Figure 2.1. The following discussion of 

sensor placement is based on these three components. 

2.1.1 Modeling of Systems 

To date there have been a plethora of different modeling techniques that have been 

proposed in the literature. These techniques range from the early attempts using fault trees and 

digraphs, analytical approaches, and knowledge-based systems and neural networks in more 

recent studies. From a modeling perspective, most of the techniques can be classified as 

physics-based modeling or empirical modeling. Physics-based models, also known as first 

principle models, use physics of the system to predict the nominal conditions of the process. 

Despite its clear benefit of representing the physical relationships among process variables for all 

the operational conditions, there are a number of drawbacks of using a physics-based model. It is 

not uncommon that the underlying physical processes are not completely understood, thus 

simplifying assumptions must be made to facilitate model development. Assumptions made in 

model development may not be fully applicable to real world systems, which limit the 

applicability of the models. In addition, these models are often computationally expensive for 

complex systems. 
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Figure 2.1. Basic components of sensor placement strategy. 

Empirical models, on the other hand, use data to fit a model to the relationships seen in 

real world applications. These types of models are built using process parameter measurements 

that have been collected over the operational range of the system or process of interest. The 

relationships among these measurements are used within the model architecture to produce 

accurate predictions. Empirical models are often preferable to physics-based models because 

they are simple to develop, they capture real world relationships, and they require limited 

knowledge of the underlying physical phenomena. In practice, there are two fundamentally 

different empirical modeling approaches. System identification approach identifies empirical 

models using data obtained from well-designed experiments. Historical empirical modeling 

approach develops models from routine operation data saved in a historical database. The 

empirical models developed from system identification techniques are usually causal models 

because of the careful control of experiments. On the contrary, historical empirical models are 

usually not causal models because they can only capture the correlations among the variables 

contained in the historical data. 

Due to the large number of empirical methods available in the literature, an exhaustive 

survey is not practical. The following discussion, however, provides an overview of the basic 

concepts of the past research in empirical modeling. 

Kalman filter 

Kalman filtering was first introduced by Kalman [1960] as a way of designing a state 

estimator with minimum estimation error. It is well known that the Kalman filter is a recursive 

algorithm for state estimation and it has found wide applications in aerospace, chemical, and 

other industrial processes. A good introduction to the general idea of the Kalman filter can be 
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found in [Maybeck, 1979], while a more complete introductory discussion can be found in 

[Sorenson, 1970], which also contains some interesting historical narrative. It has been shown 

that a bank of Kalman filters designed on the basis of all the available possible system models 

under all possible changes can be used for the isolation purpose. Fathi et al. [1993] included 

adaptive analytical redundancy models in the diagnostic reasoning loop of knowledge based 

systems. The modified extended Kalman filter is used in designing local detection filters in their 

work. 

The essential Kalman filter theory can be summarized briefly as follows. Describe a 

linear finite dimensional stochastic system by a discrete-time state-space model: 

( 1) ( ) ( ) ( )x t Ax t Bu t w t+ = + +  (2.1) 
( ) ( ) ( ),  0y t Cx t v t t= + ≥  (2.2) 

where ( )x t  is n-dimensional vector, A, B and C are matrices with suitable dimensions, 0x  has 

mean 0x  and covariance 0Σ ; ( )w t  and ( )v t  are Gaussian white noise sequences with zero 

means and the covariance matrix: 

( )
( ( ), ( ))

( )
T T

t

w t Q S
E w v

v t S R ττ τ δ −

⎧ ⎫⎛ ⎞ ⎛ ⎞
=⎨ ⎬⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠⎩ ⎭

 (2.3) 

where t τδ −  is Kronecker’s delta, ( )w t  and ( )v t  are independent of ( : )sx s tσ ≤ . 

In estimating the state ( 1)x t +  based on the observed data ( )y t  and ( )u t , the optimal 

Kalman filter minimizes the function: 

lim ( ( ) ( ))T

t
J E e t e t

→∞
=  (2.4) 

where ( )e t  is the estimation error between ( )x t  and its estimate. 

Assume the initial state and noise sequences are jointly Gaussian. Consider the estimator: 

{ }ˆ( 1) ( 1) ( ),..., (0), ( ),..., (0)x t E x t y t y u t u+ = +  (2.5) 

The filtered state ˆ( 1)x t +  satisfies: 

ˆ ˆ ˆ( 1) ( ) ( ) ( )[ ( ) ( )]x t Ax t Bu t K t y t Cx t+ = + + −  (2.6) 
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0 0x̂ x=  

The Kalman filter gain ( )K t  is given by: 

1( ) [ ( ) ][ ( ) ]T TK t A t C S C t C R −= Σ + Σ +  (2.7) 

where ( )tΣ  is a n n×  state error covariance matrix. 

Auto-Associative Kernel Regression 

Auto-associative kernel regression (AAKR) is a non-parametric model that uses past 

normal operational data to correct faulty observations which may be due to system degradation, 

sensor faults, data acquisition problems, etc [Hines et al., 2008]. The outputs of an AAKR model 

are the predicted or corrected values of the inputs. 

The AAKR model uses a Euclidean distance, which is known as the L2-norm, to compare 

the input query data to the exemplar vectors which make up the model’s memory matrix for n  

inputs. 

2
,

1

( )
n

i q i i
i

d x m
=

= −∑  (2.8) 

Next, these distances are transformed to similarity measures used to determine weights 

by evaluating the Gaussian kernel. This kernel is a function of the Euclidean distance, d , and 

the kernel bandwidth, h . 
2
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= =  (2.9) 

The final prediction is a weighted sum of the exemplar vectors, im . 
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=

=

⋅
=
∑

∑
 (2.10) 

The parameters to be optimized in an AAKR model are the memory matrix and the 

kernel bandwidth, h . A researcher must decide how many vectors to include in the memory 
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matrix and how large to make the bandwidth which indirectly controls how many memory 

vectors shall be weighted heavily during prediction. 

Artificial Neural Networks 

Considerable interest has been shown in the literature in the application of artificial 

neural networks. In general, artificial neural networks can be classified according to the learning 

strategy such as supervised and unsupervised learning. In supervised learning strategies, by 

choosing a specific topology for the neural network, the network is parameterized in the sense 

that the problem at hand is reduced to the estimation of the connection weights. The connection 

weights are learned by explicitly utilizing the mismatch between the desired and actual values to 

guide the search. This makes supervised neural networks a good choice for fault classification as 

the networks are capable of generating, hence classifying, arbitrary regions in space [Cybenko, 

1989]. On the other end of the spectrum are neural network architectures which utilize 

unsupervised estimation techniques. These networks are popularly known as self-organizing 

neural networks as the structure is adaptively determined based on the input to the network. One 

such architecture is the ART2 network [Carpenter and Grossberg, 1988]. 

The most popular supervised learning strategy in neural networks has been the 

back-propagation algorithm. Most of the work on improvement of performance of standard 

back-propagation neural network is based on the idea of explicit feature presentation to the ANN. 

A number of researchers worked on this issue. Fan et al. [1993] discuss the performance gains 

through the incorporation of functional inputs in addition to the normal inputs to the neural 

networks. Incorporation of knowledge into the ANN framework for better diagnosis is discussed 

by Farell and Roat [1994]. Data processing and filtering is shown to lead to significant 

performance improvement and reduced training time. Tsai and Chang [1995] propose the 

integration of feed forward ANN with recurrent ANN for better performance.  

There are also other architectures such as self-organizing maps [Kohonen, 1984]. The 

objective of these methods is to give credit for patterns that are similar to group together. The 

similarity measure is usually a distance measure. Whenever a pattern is seen that is not similar 

(in a distance metric sense) to any of the previously formed classes, a new class is formed and 
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the pattern is retained as the defining pattern for the new class and similarity is measured with 

respect to this pattern. The crucial elements in these kinds of architectures are the distance metric 

that one chooses and the threshold for similarity. Clustering is a technique to group samples so as 

to maximize the separability between these groups. Clustering algorithms specify the number of 

groups and maximize an objective function that is a measure of separability of these groups. In 

this manner, clustering becomes a well-defined optimization problem. In the clustering process 

credit is given to patterns exhibiting similar characteristics. Clustering procedures need two 

important components. First, they need a measure for estimating similarity between different 

data points. Without this no credit can be assigned for patterns that are similar. Second, one 

needs representative patterns against which the similarity of other patterns can be checked. 

The most popular clustering algorithm proposed in the literature is the K-means 

clustering algorithm [Duda and Hart, 1973]. K-means clustering pre-supposes the number of 

clusters needed and would cluster the data accordingly. It utilizes all the cluster centers so that 

each of the clusters is guaranteed at least one pattern. Kohonen’s self-organizing maps [1984] 

identify the cluster center closest to the training pattern and update this cluster center and all its 

topological neighbors. K-means clustering can be shown to be a special case of Kohonen’s 

clustering algorithm. In Kohonen’s algorithm, after the neighborhood is decided, the algorithm 

makes all the clusters in the neighborhood to be the winners of the pattern. This leads to the 

problem of gravity where all the cluster centers migrate towards dense regions leaving less dense 

regions unrepresented. Self-organizing neural network structures such as the ART2 network 

[Carpenter and Grossberg, 1988] have also been extensively used in fault diagnosis. Whiteley 

and Davis [1994] demonstrate the use of ART2 network for the interpretation of sensor data. 

Chen et al. [1999] and Wang et al. [1999] discuss the integration of wavelets with ART networks 

for the development of diagnostic systems. For a collection of papers on the application of neural 

networks in solving engineering problems, interested readers are referred to Venkatasubramanian 

and McAvoy [1992] and Bulsari [1995]. 
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Ordinary Least Squares Regression 

Ordinary least squares regression is a basic algorithm for illustrating inferential 

techniques. It is also useful for performance bench marketing. Its derivation can be found in 

[Hastie, 2001] and it is restated here. 

Given a linear model: 

y X β ε= +  (2.11) 

where y  is a measurement with N  observations; X  is p vector of inputs, each vector has 

N  observations; 2(0, )Nε σ∼  is the noise. 

Estimate the coefficients 0 1
ˆ ˆ ˆ ˆ( , ,..., )T

pβ β β β=  by minimizing the residual sum of squares: 

2 2
0

1 1 1

ˆ ˆ ˆˆ( ) ( ) ( )
pN N

i i i ij j
i i j

RSS y y y xβ β β
= = =

= − = − −∑ ∑ ∑  (2.12) 

ˆ ˆ ˆ( ) ( ) ( )TRSS y X y Xβ β β= − −  (2.13) 

The solution is derived by setting derivative of the cost function to zero. 

ˆ( ) ˆ2 ( )ˆ
TRSS X y Xβ β

β
∂

= − −
∂

 (2.14) 

2 ˆ( ) 2ˆ ˆ
T

T

RSS X Xβ
β β

∂
= −

∂ ∂
 (2.15) 

Assuming that X  is nonsingular and hence TX X  is positive definite, set the first 

derivative to zero to minimize the RSS. 

ˆ( ) 0TX y X β− =  (2.16) 

The unique solution can be obtained as: 

1ˆ ( )T TX X X yβ −=  (2.17) 

The predicted values at the training inputs are: 

1ˆˆ ( )T Ty X X X X X yβ −= =  (2.18) 

Parameter uncertainties can be estimated using an estimate of the noise ε. 
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1 2ˆ( ) ( )TVar X Xβ σ−=  (2.19) 

2 2

1

1ˆ ˆ( )
1

N

i i
i

y y
N p

σ
=

= −
− − ∑  (2.20) 

Assume the linear model is correct and the deviations of Y around its expectation are 

additive and Gaussian. 

0
1

p

j j
j

Y Xβ β ε
=

= + +∑  (2.21) 

2(0, )Nε σ∼  (2.22) 

Then, 

1 2ˆ ( , ( ) )TN X Xβ β σ−∼  (2.23) 
2 2 2

1ˆ( 1) N pN p σ σ χ − −− − ∼  (2.24) 

β̂  and σ̂  are statistically independent. The mean squared error of an estimator ŷ  in 

estimating y  is: 

2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ( ) )MSE y E y y Var y E y y= − = + −  (2.25) 

Least squares estimates have the smallest variance among all linear unbiased estimates. 

However, there may be a biased estimator with smaller mean squared error. Such an estimator 

would trade a little bias for a larger reduction in variance. Biased estimators, such as ridge 

regression, are commonly used. Any method that shrinks or sets to zero some of the least squares 

coefficients may result in a biased estimate. 

2.1.2 Sensor Selection Evaluation 

The goal of the sensor selection process is to provide a suite of sensors that fulfill 

specified performance requirements within a set of system constraints. These performance 

requirements are defined as the figures of merit (FOM) of the system, and considerable research 

has focused on how to represent these FOM in algorithmic form. The following list of general 

FOM categories was selected after reviewing the available literature and research. 
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Observability 

Of ultimate importance for any sensor suite is the concept of observability. Basically, 

observability is the capacity of the sensor network to provide information about the state 

parameters deemed important for performance monitoring, health assessment, and/or control of 

the system. This information may be provided as direct measurements of the system parameters 

or, as in data reconciliation [Zhao, 2005b], the reconstruction of unobservable system parameters 

based upon observable or sensed variables. Approaches vary in the determination of the 

observability of the sensor network. Some treat observability as a true or false property, while 

others devised more sophisticated schemes to display the degree of observability. 

Some approaches used graph-based analysis for which the structural information of a 

system is represented by a directed graph (DG), called a digraph. Observability is then based on 

analysis of cut-sets and cycles generated from the digraph. Kretsovalis [1987] proposed two 

graphically-based algorithms for classification of observable and redundant variables. Luong et 

al. [1994] also used graph-based analysis to establish an incidence matrix, relating the process 

relationships to the state variables qualitatively. Decomposition of this incidence matrix using a 

Gauss-Jordan elimination process identified whether an unmeasured variable was observable and 

whether a measured variable was redundant. Using graph theory and cut-sets, Bagajewicz and 

Sanchez [1999] defined the degree of observability and degree of redundancy for a sensor 

network. For an unmeasured variable, the degree of observability is the maximum number of 

sensors that can be eliminated with the variable still observable; for measured variables, the 

degree of redundancy is the maximum number of sensors that can be eliminated and the 

measurement remains redundant. These concepts were combined to define a degree to which 

system variables can be estimated by the sensor network. 

Other approaches attempted to define the degree of observability by analyzing the 

numerical relationships of the system process. By taking advantage of linear state space system 

theory, observability and controllability can be represented in matrix form. The system is 

observable or controllable if the observability or controllability matrices are of full rank. These 

represent binary conditions as to whether the system is observable/controllable or not. Dochain et 
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al. [1997] considered both the rank and condition number of the observability matrix for an 

optimal sensor placement in a bioreactor system. The Gramian of both the observability and 

controllability matrices have been used by researchers [Muller, 1972; Van den Berg et al., 2000] 

to develop scalar metrics that indicated the degree of each respective property. 

A large amount of research has been devoted to control design and actuator/sensor 

placement locations, particularly in structural-type problems. Papadopoulos and Garcia [1998] 

investigated a number of quantitative techniques used to optimize structural sensor placement to 

select sensor locations that would observe the maximum amount of system information, which is 

energy in this case. Each technique attempted to characterize the amount of energy the sensors 

would observe and eliminate potential sensor locations that had minimal observability. Hac and 

Liu [1993] proposed a methodology that incorporated eigenvalues from both the observability 

and controllability matrices to select sensor locations for the control of flexible structures. 

Several researchers used the predictive error of a given sensor suite relative to a specific 

reconciliation technique as the performance metric. After performing matrix decomposition on 

the linear system model coefficients, Madron [1992] proposed a simple local optimization of this 

baseline set of sensors by computing the prediction precision of unmeasured required state 

parameters. The baseline sensor suite performance was compared to suite variations where a 

single sensor was removed and the objective function recomputed. Chmielewski et al. [2002] 

developed the framework for the justification and incorporation of the error covariance matrices 

for sensor suite performance properties and demonstrated how that could be optimized with other 

suite performance constraints using mixed linear integer programming techniques. Musulin et al. 

[2005] proposed a sensor selection process that maximized a Kalman Filter performance, via the 

error covariance matrix diagonal terms. He pointed out that although the objective is to 

maximize the performance of the filter for all variables, maximizing the performance for one 

particular variable may not be compatible with maximizing it for others, resulting in a conflict. 

Therefore they proposed two possible approaches; one method would select the variable with the 

lowest performance value. The second approach would evaluate the performance of each 

variable relative to an “ideal” sensor suite performance, combining into an overall performance 

metric. Mushini and Simon [2005] used a similar approach of maximizing a Kalman Filter 
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performance for an aircraft gas turbine engine. The metric was defined as the summation of the 

error covariance matrix diagonal terms normalized to the reference or ideal system performance. 

Sensor Reliability 

Regardless of the purpose of the sensor network, consideration must be given to the 

availability of the sensor signal information when it is required. Sensor faults can be common 

and the potential for interruption of information flow and how that is to be handled is an 

important consideration in the sensor network design analysis. 

Luong et al. [1994] investigated sensor network reliability from a control perspective that 

the reliability of an instrumentation system is the probability that information required for 

control are available through measurements or deduction during some time period. Based on that 

idea, an overall sensor network reliability metric was defined as an expression of the individual 

sensor reliabilities. Sensor reliabilities were expressed as a function of time; therefore, the 

integration of the time profile for each sensor network was used as a quantitative comparison 

metric between competing networks. 

Ali and Narasimhan [1993] introduced the concept of reliability of the estimation of 

variables, which relates the sensor reliability with its availability to provide system state 

estimations. The focus of the research was for a given sensor network, how many different ways 

can a variable be estimated and if sensors fail, can a variable still be estimated. The network 

objective function was defined as the minimum product of the input sensor reliabilities for each 

estimated parameter. The initial processing routine involved graph theory concepts of chords, 

cut-sets, and spanning trees to establish sets of estimated variables and their associated sensors 

used to observe the variable. This objective function was extended to include hardware 

redundancy (measuring a variable using more than one sensor) and spatial redundancy (more 

than one way of estimating a variable) [Ali and Narasimhan, 1995]. Within the graph theory 

algorithm, the sensor network can be optimized with respect to only a single criterion; therefore, 

this objective function was adapted for processing with genetic algorithms [Sen et al., 1998] and 

mixed integer nonlinear programming (MINLP) [Bagajewicz and Sanchez, 2000] which enabled 

it to be evaluated with other performance metrics, such as sensor costs. 
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Another consideration of the sensor network is the performance in the presence of sensor 

faults. Sensor networks must be robust to sensor faults, both in being able to perform adequately 

with a faulty sensor in the network and being able to continue performance adequately if a sensor 

is removed. Bagajewicz [1997] proposed a set of performance metrics for a sensor suite that 

defined the ability of the sensor network to detect sensor faults (error detectability) and handle 

sensor faults relative to reconciliation precision performance (availability - precision after failed 

sensor removed, and resilience - precision in the presence of a sensor fault). Bagajewicz and 

Cabrera [2002] extended this research from the graphical tree-search-solution procedure to the 

explicit MINLP formulation and also extended the theory for explicit consideration of hardware 

redundancy. 

Fault Detectability/Fault Discriminability 

For fault diagnosis, the ability of the sensor network to detect and discriminate failure 

modes and anomalous conditions is of prime importance. This is an extension of the 

observability analysis where specific state variables or groups of state variables and their 

response are indicative of health conditions. The performance metric must define the sensor 

network’s ability to distinguish these fault conditions from nominal operation (fault detection) 

and distinguish these fault conditions from one another (fault discrimination). 

Significant research is focused on the qualitative or heuristic representation of the fault 

progression process. Research conducted by Raghuraj et al. [1999], Bhushan and Rengaswamy 

[2000a; 2000b], and Bagajewicz et al. [2004] utilized directed or sign directed graphs to generate 

fault signatures. A directed graph of a hypothetical process with faults iF , connecting to sensors 

iS , indicating that the fault will affect the reading of the corresponding sensor, is displayed in 

Figure 2.2. These signatures provided only an indication that the sensor should respond to the 

particular fault condition, but the actual signature, magnitude or rate, was not utilized. Spanache 

et al. [2004] used the physical constraints of the system to develop a set of analytical redundancy 

relationships between the measured and unmeasured variables and qualitatively established an 

influence matrix between system components and possible sensor parameters. Fault signatures 
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Figure 2.2. Directed graph of a hypothetical system. 

were assigned to a failed component without regard to specific component failure modes, and 

hence a fault signature matrix was generated between the component faults and the influenced 

analytical redundancy relationships. Narasimhan et al. [1998] used temporal causal graphs, and 

Yan [2004] used a CAD system model to develop qualitative fault signatures. Representing the 

fault signature response qualitatively avoids the cost of simulating the fault in hardware and/or 

software and often this is the only level of fault information available during the early 

development of a system. 

In an effort to incorporate more fault information, Zhang [2005] proposed a quantified 

directed graph (QDG) to model the fault propagation. For the QDG, each node represented a 

potential sensor with an associated signal-to-noise ratio (SNR), and each arc contained the fault 

propagation gain and direction between the sensors, along with fault propagation time. A sensor 

detectability value was computed for each sensor in the suite for a predefined set of faults. Fault 

detectability was averaged over the available sensor suite and evaluated against an assigned 

lower bound. Fault resolution was still treated somewhat qualitatively by comparing sets of 

sensors influenced by each fault. 
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Azam et al. [2004] proposed a method that used a system model and reliability data to 

establish cause/effect dependencies between the faults of interest and the effects of faults on 

observable system parameters. The detection and false alarm probabilities associated with the 

failure source and observable discrepancy were utilized. A general multiple fault diagnosis 

algorithm was used to search for the most likely candidate fault that explained the set of 

observed discrepancies. Three diagnostic performance metrics were established for each 

potential sensor based on the decision probability error from a number of simulation runs. 

Selection evaluation was performed for candidate sensor networks by summing these 

performance metrics over the sensor suite and incorporating cost constraints.  

Santi et al. [2005] utilized a high-fidelity dynamic model of a rocket propulsion system to 

generate a simplified linear model. Health parameters were identified in the linear model that 

represented specific fault conditions. This research focused on mean-shift faults in the system. 

An inverse diagnostic model was developed which predicted the change in health parameters 

based on sensor inputs. Fault trajectories were generated and metrics were established for 

detection timeliness and fault discrimination. Fault detection required sufficient measurement 

deviation to discriminate a fault from normal operation variance. Detection thresholds were 

established based on the historical information of measurement variance, anticipated process 

variance, and defined false alarm constraints of the system. The diagnostic performance metrics 

were based on the distance measured between fault trajectories for fault discrimination and 

inferred time to detection threshold areas for detection timeliness. In addition, fault risk 

reduction measures were incorporated into the evaluation process to allow weighting of 

individual failure modes based on criticality and occurrence rates. 

2.1.3 Sensor Optimization Techniques 

After a FOM is selected, an algorithm needs to be selected to optimize this FOM. Various 

optimization algorithms, from random search to heuristic algorithms such as genetic algorithms 

(GA), have been used for optimizing sensor allocation. Random search is suitable for a small and 

simple sensor placement problem since it is straightforward and easily implemented. But it is 

time consuming and inefficient when dealing with a large system. A simulated annealing (SA) 
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method [Johnson et al., 1989] based on random search is used to select a single random subset 

while seeking to improve the cost function by moving to one of the nearest neighbors of the 

selected subset. The Tabu search method [Glover and Laguna, 1997] uses probabilistic events for 

the search of better solutions. Genetic algorithms, based on the Darwinian principle of natural 

selection, are widely applied in different domains, among the heuristic methods. Sen et al. [1998] 

designed a sensor network for the linear mass flow process using the GA method. Other 

examples using the GA method to solve sensor placement problems can be found in [Furuya and 

Haftka, 1996] and [Ponslet et al., 1993]. 

Other optimization approaches include graph-based methods. A greedy search algorithm 

based on a bipartite graph was proposed by Raghuraj et al. [1999] to generate a minimal set of 

sensors to meet observability and maximum resolution requirements. A bipartite graph is one 

whose vertex set can be partitioned into two sets in such a way that each edge joins a vertex of 

the first set to a vertex of the second set. Whenever there is a directed path from a root node to a 

key component, an arc from that root node to the key component is drawn in the bipartite graph. 

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique developed by Eberhart and Kennedy [1995], inspired by social behavior of bird 

flocking or fish schooling. PSO shares many similarities with evolutionary computation 

techniques such as genetic algorithms. The system is initialized with a population of random 

solutions and searches for optima by updating the generations. However, unlike the GA method, 

PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, 

called particles, fly through the problem space by following the current optimum particles. Each 

particle keeps track of its coordinates in the problem space which are associated with the best 

solution (fitness) it has achieved so far. The fitness value is also stored. This value is called 

“pbest”. Another best value that is tracked by the particle swarm optimizer is the best value, 

obtained so far by any particle in the neighborhood of the particle. This location is called “lbest”. 

When a particle takes all the population members as its topological neighbors, the best value is a 

global best and is called “gbest” [Zhang, 2004], as shown in Figure 2.3. 
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Figure 2.3. Particle swarm optimization. 

The particle swarm optimization concept consists of, at each time step, changing the 

velocity of (accelerating) each particle toward its “pbest” and “lbest” locations (local version of 

PSO). Acceleration is weighted by a random term, with separate random numbers being 

generated for acceleration toward “pbest” and “lbest” locations. In the past several years, PSO 

has been successfully applied in many research and application areas. It is demonstrated that 

PSO gets better results in a faster, cheaper manner compared with other methods. 

Another reason that PSO is attractive is that there are few parameters to adjust. One 

version, with slight variations, works well in a wide variety of applications. Particle swarm 

optimization has been used for approaches that are employed across a wide range of applications. 

2.2 Seawater Desalination Methods 

This section introduces the classifications of desalination methods. Also, the principles 

and operational variables of several widely used desalination technologies are described in this 

section. 
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2.2.1 Classification of Desalination Processes 

Desalination is a process of separating dissolved salts from saline water. Many 

desalination technologies have been developed based on different principles of separation. Some 

of them have been successfully developed and were discussed in detail in [IAEA, 2002], but only 

a few of them reached commercial operation. Figure 2.4 illustrates the major desalination 

processes. 

Desalination processes can be broadly categorized into two main types: processes using 

heat and process using electricity. The first type of processes is of mainly the distillation 

processes, multi-stage flash (MSF) or multi-effect distillation (MED). Vapor compression (VC) 

is a distillation process but it uses electricity, just as the membrane based processes like the 

reverse osmosis (RO) and the electro-dialysis (ED). Of these, the most commonly used processes 

are MSF, MED and RO. VC is often combined with MED. 

The applicability of any process depends on the salt concentration in the feed water and 

on its water unit cost. Distillation is the oldest and most commonly-used desalination techniques. 

In this process, evaporation of the saline water and condensation of the generated vapor occur to 

obtain fresh water. This process produces fresh water with a better quality as compared with 

crystallization and membrane processes. 

 

Figure 2.4. Classification of desalination processes [IAEA, 2007]. 
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2.2.2 Distillation Desalination Systems 

In distillation processes (MSF or MED), seawater is heated to evaporate into pure vapor 

that is subsequently condensed. The heat energy required for distillation is usually supplied as 

low pressure saturated steam, which may be extracted from the exhaust of a low pressure turbine, 

from a crossover steam duct or from a dedicated, heat only, plant. 

Vapor Compression 

Vapor compression distillation uses mechanical energy rather than thermal energy. It is 

based on a simple principle. Saline water is sprayed over an evaporator tube bundle. The vapor 

formed at some temperature and pressure is then compressed either thermally in a steam ejector, 

or mechanically (high and low pressure) in a compressor, causing the condensation temperature 

and pressure to increase and the volume to decrease. Compressed vapor is passed through the 

evaporator bundle, where it condenses and forms distilled water. The heat of condensation could 

be recycled to evaporate more brine. Most vapor-compression plants have single effects, but a 

multi-effect configuration could be used for a larger product capacity. Figure 2.5 illustrates the 

principle of vapor compression. The vapor-compression process consumes a small amount of 

energy and has a low operating cost. However, its capacity is limited, and the quality of water 

produced and maintenance costs do not match those of other distillation processes. 

Multi-Effect Distillation 

Figure 2.6 shows the schematic flow diagram of a MED process, using horizontal tube 

evaporators (HTE). In each effect, heat is transferred from the condensing water vapor on one 

side of the tube bundles to the evaporating brine on the other side of the tubes. 

This process is repeated successively in each of the effects at progressively lower 

pressure and temperature, driven by the water vapor from the preceding effect. In the last effect, 

at the lowest pressure and temperature, the water vapor condenses in the heat reject heat 

exchanger, which is cooled by incoming seawater. The condensate distillate is collected from 

each effect. 
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Figure 2.5. Principle of vapor compression [Khan, 1986]. 
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Figure 2.6. Schematic diagram of a MED system [IAEA, 2007]. 

According to the direction of vapor and brine flow, there are “forward feed” and 

“backward feed” arrangements. In forward feed MED plants, vapor and brine move through the 

evaporators as parallel flows from the first high pressure evaporator to the last low pressure one. 

The pre-heating of feed water occurs in separate heat exchangers. In backward feed MED plants, 

vapor and brine move through the evaporators in opposite directions, whereby feed water 

pre-heating is eliminated. 

Currently, MED processes with the highest technical and economic potential are the low 

temperature horizontal tube multi-effect process (LT-HTME) and the high temperature vertical 

tube evaporation process (HT-VTE). The main differences between LT-HTME plants and 

HT-VTE plants are in the arrangement of the evaporation tubes, the side of the tube where the 

evaporation takes place and the evaporation tube materials used. In LT-HTME plants, 

evaporating tubes are arranged horizontally and evaporation occurs by spraying the brine over 

the outside of the horizontal tubes creating a thin film from which steam evaporates. In HT-VTE 

plants, evaporation takes place inside vertical tubes. Furthermore, in LT-HTME plants, the 

maximum brine temperature is limited to 70 °C, in order to avoid corrosion and scaling problems. 

Most LT-HTME plants now use low cost materials such as aluminum for heat exchanger and 

carbon steel as shell material. 
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Multi-Stage Flash Distillation 

Figure 2.7 shows the operating principle of a MSF plant. Consider a vessel under vacuum, 

isolated from its environment and containing only seawater in equilibrium with its vapor at 

temperature t  and pressure p . When a heating fluid (generally hot water) at a temperature 

t t+ Δ  is introduced in the vessel, and if the pressure p  is less than the saturation pressure, an 

instantaneous vaporization will be produced by a flash. The latent heat of vapor can then be 

transferred to cold seawater tubes passing through the vessel and the vapor condensed and 

recovered in the receptacle. 

Figure 2.8 illustrates the schematic flow diagram of a MSF system. Seawater feed passes 

through tubes in each evaporation stage where it is progressively heated. Final seawater heating 

occurs in the brine heater by the heat source. Subsequently, the heated brine flows through 

nozzles into the first stage, which is maintained at a pressure slightly lower than the saturation 

pressure of the incoming water. As a result, a small fraction of the brine flashes forming pure 

steam. 

The heat needed to flash the vapor comes from cooling of the remaining brine flow, 

which lowers the brine temperature. Subsequently, the produced vapor passes through a mesh 

demister in the upper chamber of the evaporation stage where it condenses on the outside of the 

condensing brine tubes and is collected in a distillate tray. The heat transferred by the 

condensation warms the incoming seawater feed as it passes through that stage. The remaining 

brine passes successively through all the stages at progressively lower pressures, where the 

process is repeated. The hot distillate flows as well from stage to stage and cools itself by 

flashing a portion into steam which is re-condensed on the outside of the tube bundles. 
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Figure 2.7. Operating principle of a single stage MSF [IAEA, 2007]. 

 
 

 

Figure 2.8. Schematic diagram of an industrial MSF design [IAEA, 2007]. 



31 

MSF plants need pre-treatment of the seawater to avoid scaling by adding acid or 

advanced scale inhibiting chemicals. If low cost materials are used for construction of the 

evaporators, a separate deaerator is to be installed. The vent gases from the deaeration together 

with any non-condensable gases released during the flashing process are discharged to the 

atmosphere. There are two principal arrangements in MSF systems: the brine recycle mode 

(MSF-BR), and the once-through mode (MSF-OT). The majority of the MSF plants that are built 

use the brine recycle mode. The brine re-cycle mode was invented in the early years of 

desalination when seawater corrosion materials and advanced additives were not available or too 

expensive. Today, corrosion resistant materials are available at reasonable costs as well as high 

temperature, cost effective anti-scalants. Therefore, MSF-OT plants have already been 

successfully applied. 

2.2.3 Membrane Desalination Systems 

Reverse osmosis and electro dialysis are the two most important membrane processes. To 

affect salt separation, RO uses hydraulic pressure, whereas ED uses electric current. 

Reverse Osmosis 

Osmosis is a natural process in which water molecules migrate across a semi-permeable 

membrane from a solution of low concentration (e.g. pure water) into a solution of higher 

concentration (e.g. seawater). Reverse osmosis is a separation process in which pure water is 

“forced” out of a concentrated saline solution by flowing through a membrane at a high static 

trans-membrane pressure difference (Figure 2.9). This pressure difference must be higher than 

the osmotic pressure between the solution and the pure water. 

The saline feed is pumped into a closed vessel where it is pressurized against the 

membrane. As a portion of water passes through the membrane, the salt content in the remaining 

brine increases. At the same time, a portion of this brine is discharged without passing through 

the membrane. 
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Figure 2.9. Osmosis and reverse osmosis processes [IAEA, 2007]. 
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Electro-Dialysis 

Figure 2.10 illustrates an ED process, where two types of membranes are used. The 

cation membrane allows only cations (positive ions) to permeate, and the anion membrane 

allows only anions (negative ions) to permeate. These exchange membranes are alternately 

immersed in salty water in parallel, and an electric current is passed through the liquid. The 

cations will migrate to the cathode, and the anions will migrate to the anode. Therefore, water 

passing between membranes is split into two streams. One is pure water, and the other is 

concentrated brine. Because ED uses energy at a rate directly proportional to the quantity of salts 

to be removed, this process is more useful in desalting brackish water. 
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Figure 2.10. Principle of electro dialysis [Khan, 1986]. 
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Chapter 3 

Integrated Architecture of a Fault Diagnostic System 

Large industrial systems, such as power plants, chemical plants, pulp and paper plants, 

metals and other manufacturing systems, usually employ a multitude of sensors to monitor and 

control the operating state, which also makes it possible to improve the operational safety and to 

perform condition-based maintenance (CBM). This results in significant reduction in plant 

downtime and considerable amount of maintenance cost savings. 

Sensors are crucial for automation and process control, both for achieving performance 

and for guaranteeing plant safety. The technological drive towards automated plants and high 

energy-intensive processes demands greater intelligence, availability, and reliability of 

instrumentation. Even when a process is intrinsically safe, loss of a sensor would lead to loss of 

process control and hence a sustained period of poor quality production. A sensor may be used in 

control systems, safety systems, or for condition monitoring. For condition monitoring, sensor 

output is normally displayed on a panel or on a computer screen, and not used as an input 

parameter of any system control. If the faulty sensor is the one used as a monitoring device, then 

the effect of its fault is one-dimensional, that is, the fault will be observed in its own signature 

and nowhere else. A multi-dimensional fault shows its effects in multiple measurements. The 

faults with control-related sensors are multi-dimensional because the fault effects can be 

propagated through control loops and subsequently disturb many other variables throughout the 

entire process. For instance, as soon as the sensor drifts, the controller notices the sensor signal 

variations and actuates in the opposite direction, in an attempt to correctly match the set point. 

The detection and isolation of faults in a large industrial system, such as a nuclear power 

plant or a fossil power plant, is generally complicated due to measurement limitations and 

uncertainties, various types of processes and equipment, and interactions among the sub-systems. 

A fault diagnostic system is expected to be able to track incipient equipment and sensor 

degradation, and to assist in enhanced operation and maintenance planning. One approach to 

characterizing the measurements is to build empirical models, and to use them in conjunction 
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with a set of rules that defines the cause-and-effect relationships among the process variables. 

The fault diagnostic module developed in this work is a two-step approach: (1) Development of 

empirical models for fault residual generation; (2) Detection and isolation of incipient faults 

based on these residuals. The residuals are computed as the difference between the measured 

process variables and the empirical model’s estimations for those process variables. It is assumed 

that the residuals are small during normal plant operations. When a fault occurs in a device, 

equipment, or the process itself, the model residuals deviate from normal allowable values, and 

indicate a possible abnormal situation. 

Sensor placement design is a critical component of a fault diagnostic system, and 

therefore it is emphasized in the developed integrated approach as illustrated in Figure 3.1. 

Whenever a process encounters a fault, the effect of the fault is propagated to some or all the 

process variables. The main objective of fault diagnosis is to observe these fault symptoms and 

determine the root causes of observed behavior. The ability of the sensor network to detect and 

discriminate failure modes and anomalous conditions is crucial for the efficiency of the fault 

diagnostic system. With hundreds of process variables available for measurement in the nuclear 

plant and the desalination process, selection of optimum number of sensors and their locations 

poses a unique challenge, and it is indeed an issue that must be addressed in the design phase. 
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Figure 3.1. An integrated architecture of a fault diagnostic system. 
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Chapter 4 

Modeling and Simulation of a Multi-Stage Flash Desalination System 

4.1 Introduction 

Among a variety of desalination technologies, multi-stage flash (MSF) contributes 

substantially to the desalinating capacity in the world. Market share of the MSF processes 

accounts for 70% of all seawater desalination processes [El-Dessouky et al., 1999]. Thus, issues 

such as optimization of the operation and minimization of the corresponding environmental 

impact are of the greatest importance. With the objective of addressing all these aspects, 

mathematical models prove to be a very useful tool. Steady-state models help in plant design and 

in fixing operating conditions, whereas dynamic models are required for studying control system 

design, performance optimization, and fault diagnosis and prognosis. The physics model of a 

MSF desalination plant gives rise to a nonlinear boundary value problem. The stage-by-stage 

approach to solve the model is characterized by slow convergence and stability problems. Gluek 

and Bradshaw [1970] were among the earliest to develop a model of MSF plants with a high 

degree of rigor and few qualifying assumptions. The model takes into account the variation of 

heat transfer coefficient, vaporization from the product tray, etc. Helal et al. [1986] reported a 

tri-diagonal matrix (TDM) model for steady-state simulation of MSF plants. The set of equations 

was solved in a global manner by arranging the stage energy relations in the form of a 

tri-diagonal matrix. This method is stable and shows fast convergence. Theoretical models which 

simulate transient behavior of MSF plants under various conditions have also been reported in 

the literature [Rimawi et al., 1989; Aly and Marwan, 1995]. Generally, the models were based on 

coupling the dynamic equations of mass and energy for brine and product tray within the flash 

stages. 

4.2 MSF Desalination System Description 

A brief description of a MSF desalination process is provided in this section. The MSF 

process includes a number of flashing stages connected to a brine heater. The flashing stages are 
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composed of two sections - the heat rejection section and the heat recovery section, as shown in 

Figure 4.1. The feed to the plant, TW , is allowed to pass through the heat rejection section, 

whose function is to reject the surplus thermal energy from the plant and to cool the product and 

brine to the lowest possible temperature as they emerge from the last (coolest) rejection stage. 

On leaving the first (warmest) rejection stage the feed stream is split into two parts, reject 

seawater WC , which passes back to the sea and a make-up stream F  which is then combined 

with the recycle stream R . The combined stream FW  now passes through a series of heat 

exchangers in the heat recovery section. The temperature of the combined stream rises as it 

proceeds towards the heat input section of the plant. Passing through the brine heater, the brine 

temperature is raised from 
1FT  at the inlet of the brine heater to the top brine temperature (TBT) 

0BT  approximately equal to the saturation temperature at the system pressure. 

The brine then enters the first heat recovery stage through an orifice thus reducing the 

pressure. As the brine was already at its saturation temperature for a higher pressure, it will 

become superheated and flashes to give off water vapor. This vapor passes through a wire mesh 

(demister) to remove any entrained brine droplets and on to a heat exchanger where the vapor is 

condensed and drips into a distillate tray. The process is then repeated all the way down the plant 

as both brine and distillate enter the next stage which is at a lower pressure. The concentrated 

brine is divided into two parts as it leaves the plant, the blowdown BD  which is pumped back 

to the sea and a recycle stream R  which returns to mix with the make-up stream, F . 

From the mathematical point of view, the once-through design and the recirculation 

design can be represented by the same model if the flow rates of the recycle R  and the reject 

seawater WC  streams are given zero values. Moreover, there will be no distinction between heat 

recovery and heat rejection sections in the case of the once-through plant. 
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Figure 4.1. Schematic diagram of a MSF process with brine recirculation. 
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4.3 MSF Mathematical Models 

In order to develop the mathematical models of a multi-stage flash desalination process, 

the following simplifying assumptions are made [Thomas et al., 1998]: 

 The distillate product leaving any stage is salt free 

 The heats of mixing for brine solutions are negligible 

 No mist or salt is entrained with the vapor 

 There is no heat loss from the plant 

 The condensate produced in the brine heater is not sub-cooled and flows through the 

brine heater at a constant temperature 

 The accumulation of cooling brine in the tube of the heat exchangers is neglected since 

its density changes are negligible 

 The MSF plant is divided into a brine heater and a number of adiabatic stages while the 

interaction among them is only through the flow streams connecting them. 

 The pumps are not explicitly considered in the model. It is assumed that the change in 

flow rate in the line due to valve action is transmitted to all parts of the flow line instantaneously. 

 The model was developed using lumped parameter analysis, the mass considered to be 

perfectly mixed and spatial variations were not explicitly considered. 

4.3.1 Flashing Stage Dynamic Model 

A typical MSF flashing stage can be divided into four control volumes (CV): the flashing 

brine tray, the distillate (product) tray, the vapor space, and the condenser tubes [Thomas et al., 

1998]. Figure 4.2 shows the block diagram of a single stage. It should be noted that the masses 
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are lumped at the exit of the CV and hence the exit temperatures , ,  
i i iB P FT T and T  are well 

representative of the temperatures of their corresponding CVs. 

The mass balance equation of the flashing brine tray: 

1

i

i i i

B
B B Bf

dM
W W W

dt −
= − −  (4.1) 

The balance of salt mass: 

1 1

( )
i i

i i i i

B B
B B B B

d M X
W X W X

dt − −
= −  (4.2) 

The energy balance of the flashing brine tray: 

1 1

( )
i i

i i i i i i

B B
B B B B Bf Bf

d M h
W h W h W h

dt − −
= − −  (4.3) 

The mass balance of the product tray: 

1

i

i i i i

P
P P Pf C

dM
W W W W

dt −
= − − +  (4.4) 

 

 

Figure 4.2. Block diagram of a generic MSF stage. 
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The energy balance of the product tray: 

1 1

( )
i i

i i i i i i i i

P P
P P P P Pf Pf C C

d M h
W h W h W h W h

dt − −
= − − +  (4.5) 

The mass balance of the vapor space: 

i

i i i

V
Bf Pf C

dM
W W W

dt
= + −  (4.6) 

The energy balance of the vapor space: 

( )
i i

i i i i i i

V V
Bf Bf Pf Pf C C i i i

d M h
W h W h W h U A T

dt
= + − − Δ  (4.7) 

where iU  is the heat transfer coefficient, iA  is the heat transfer area, and iTΔ  is the log mean 

temperature difference (LMTD), given by: 

1
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F F
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P F

P F
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T T
T T

+

+

−
Δ =
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The energy balance of the condenser tubes: 

1
( )i

i i i

F
F F F F i i i

dh
M W h h U A T

dt +
= − + Δ  (4.8) 

The distillate temperature will be less than the brine temperature by the boiling point 

elevation (BPE), non-equilibrium allowance (NEA) and loss in saturation temperature due to 

other pressure losses (Δ ): 

i iB P i i iT T BPE NEA= + + + Δ  (4.9) 

The saturation temperature of the vapor and distillate temperature correlation: 

i iV P iT T= + Δ  (4.10) 

The relationship for the evaluation of the stage pressure 1f  and empirical relationships 

for the evaluation of the flashing brine and distillate flow rates 2f  and 3f  (details in Appendix 

A): 
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1( )
ii VP f T=  (4.11) 

12 1( , , , )
i i iB i i B BW f P P M M

++=  (4.12) 

13 1( , , , )
i i iP i i P PW f P P M M

++=  (4.13) 

It is assumed the vapor from the brine and distillate tray are not superheated, the 

condensate is not sub-cooled, and the vapor space has fully equilibrated with the stage conditions, 

that is, 

i i i iC Bf Pf VT T T T= = =  

4.3.2 Brine Heater Dynamic Model 

The brine heater (BH) has a steam flow, STEAMW , coming in, which is considered to be 

saturated. BH is considered as the 0th stage; hence the subscript 0 is used [Thomas et al., 1998]. 

Enthalpy balance of the cooling brine: 

0

0 0 1
( )B

B BH BH BH F B F

dh
M U A T W h h

dt
= Δ − −  (4.14) 

where BHU  is the heat transfer coefficient, BHA  is the heat transfer area, and BHTΔ  is given 

by: 

0 1

1

0

ln

B F
BH

STEAM F

STEAM B

T T
T

T T
T T

−
Δ =

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

 

Enthalpy balance of the condensing steam: 

STEAM STEAM BH BH BHW U A Tλ = Δ  (4.15) 

4.3.3 MSF Steady-State Model 

The mathematical model described in the previous section consists of a system of 

ordinary differential equations combined with algebraic equations. The differential equations are 

linear with respect to the time derivatives of the unknown variables of the model. In the 

steady-state case, the time derivatives are set to zero. The mass hold-up is no longer a variable in 

any equation. The enthalpy in the equations is written in terms of the relevant temperature. 
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Enthalpy balance of the flashing brine tray: 

1 1 1
( )

i i i i i i iB B B B B B BfW h W h W W h
− − −

= + −  (4.16) 

Total material balance: 

1 1i i i iB P B PW W W W
− −
+ = +  (4.17) 

Salt balance of the flashing brine tray: 

1 1i i i iB B B BW X W X
− −

=  (4.18) 

Overall enthalpy balance of a stage: 

1 1 1 1 1 1 1
( ) ( *) ( *)

                                ( *) ( *)
i i i i i i i i i

i i i i i i

F AV F F P P P B B B

P P P B B B

W Cp T T W Cp T T W Cp T T

W Cp T T W Cp T T
+ − − − − − −

− = − + −

− − − −
 (4.19) 

Heat transfer equation: 

1

1

1

( )
ln

i i

i i i

i i

i i

F F
F AV F F i i

P F

P F

T T
W Cp T T U A

T T
T T

+

+

+

−
− =

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

 
(4.20) 

Temperature correction equation: 

i iB P i i iT T BPE NEA= + + + Δ  (4.21) 

Brine heater overall enthalpy balance equation: 

0 1
( )

BHF F B F STEAM STEAMW Cp T T W λ− =  (4.22) 

Heat transfer equation of brine heater: 

0 1

0 1

1

0

( )
ln

BH

B F
F F B F BH BH

STEAM F

STEAM B

T T
W Cp T T U A

T T
T T

−
− =

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠  

(4.23) 

For steady-state solution of the MSF plant model, all the input variables (operating 

conditions), the plant dimensions, and the physical properties of the streams of the plant should 

be known. The mathematical expressions describing the thermo-physical properties of water, 

steam, and brine solutions are given in Appendix A. It is noteworthy that the functions 
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representing those properties are highly nonlinear, thus contributing a lot to the overall 

complexity of the model. A stage-by-stage approach is usually highly iterative and is 

characterized by slow convergence. Therefore, a global approach presented by Helal et al. [1986] 

is employed in this study. This approach arranges the stage energy equations of all the stages in a 

TDM form, and is capable of generating stable results with fast convergence. 

4.4 Control Loops in a MSF System 

The main control loops of a MSF process are shown in Figure 4.3. Each of the control 

loops involves a single-input single-output system. The controlled and manipulated variables 

include the following: 

(1) Temperature of the intake seawater entering the last flashing stage (controlled) and the 

circulation flow rate of the warm cooling seawater (manipulated). This loop operates only during 

the winter season when the intake seawater temperature drops to values close to 15 oC . As a 

result, the control valve and pumping system of the control loop operates to adjust the 

temperature of the intake seawater. Set-points for the intake seawater temperature vary between 

25 oC  for winter operation and 32 oC  for summer conditions. This loop is not found in the once 

through MSF layout [El-Dessouky et al., 1999]. 

 

Figure 4.3. Single-input single-output MSF control loops [Alatiqi et al., 1999]. 



47 

(2) TBT (controlled) and heating steam flow rate (manipulated). An increase or decrease of 

the heating steam flow rate is necessary to control the TBT. This might be necessary to take into 

account an increase in the brine circulation rate, fouling and scaling effects, or decrease in the 

temperature of the brine circulation. The set point for the TBT depends on the type of antiscalant 

used in the plant where 90 oC  is suitable for a polyphosphate type and 100-110 oC  is used for 

polymer type additives. 

(3) Pressure of the heating steam (controlled) and the opening of the throttling valve 

(manipulated). Commonly, the low pressure steam has a pressure of 4-7 bars, and it is necessary 

to reduce its pressure to a value of about 2 bar where it becomes superheated with a temperature 

close to 170 oC . 

(4) Temperature of the heating steam (controlled) and the flow rate of the condensate spray 

(manipulated). This loop changes the steam quality from superheated to saturated, where its 

temperature drops from 170 oC  to 100 or 110 oC . The steam temperature is controlled to be 

higher than the TBT by 5-10 oC . This is necessary to prevent the formation of hot spots and scale 

formation. 

(5) Condensate level in the brine heater (controlled) and the opening of the distillate 

discharge valve (manipulated). It is necessary to maintain a sufficient static head above the 

condensate pump to prevent condensate flashing within the discharge line or the pumping unit 

which would result in violent vibrations, loosening of various connections, and severe erosion. 

This loop, like all other level loops in the plant, is consistent with the material balance in 

direction of flow principle. 

(6) The flow rate of the feed seawater entering the brine pool of the last stage (controlled) 

and the valve opening on this line (manipulated). The set point for this control is the flow rate 

ratio of distillate and brine blow down. This control loop maintains a constant conversion ratio, 

which is necessary to keep the salinity of the brine blow-down from the last stage at a design 

value of 70,000 ppm. In the Gulf, the intake seawater salinity varies between 42,000-48,000 ppm 
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and accordingly, the conversion ratio varies between 0.4-0.314. This sets the controller ratio at 

1.5-2.18, with the units of kg brine blow-down per 1 kg distillate product. 

(7) Temperature of the reject flow rate of the cooling seawater (controlled) and the opening 

of the discharge valve (manipulated). The set-point of the controller is made in reference to the 

temperature of the last flashing stage. For a constant plant capacity, increase in the stage 

temperature causes reduction in the flashing range and the system performance ratio with 

simultaneous increase in the brine recycle flow rate. The last stage temperature is set at 40 oC  

for summer operation and 32 oC  for winter operation. 

(8) Distillate level in the last stage (controlled) and the distillate product flow rate 

(manipulated). This control loop has a similar function to the level controller of the heating 

steam condensate where decrease of the distillate product static head would cause operational 

problems to the associated pumping unit. 

(9) Brine level in the last flashing stage (controlled) and the brine blow-down flow rate 

(manipulated). This is one of the most important control loops in a MSF plant since the head in 

the last stage adjusts the head in previous stages. Simultaneously, the flashing efficiency is 

affected in various stages as well as the amount of distillate product. Increase of the head reduces 

the flashing rates and the amount of distillate product; consequently, the amount of heat released 

upon condensation of the distillate vapor becomes lower. Eventually, the temperature of the 

brine recycle stream entering the brine heater becomes lower, which results in the increase in the 

amount of heating steam and reduction in the system thermal performance ratio. On the other 

hand, reduction of the brine head may result in blow-through of the flashed-off vapors across the 

stages. As a result, the effective number of stages becomes smaller and the plant performance 

ratio decreases. 

(10) Brine level in the last flashing stage (controlled) and the brine recycle flow rate 

(manipulated). This control loop has a similar function and effects on the system performance as 

the previous control loop. 
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(11) Dosing flow rate of the chemical additives (controlled) and the opening of the discharge 

valve of the chemical additive (manipulated). Variations in the brine circulation flow rate 

necessitate adjustment of the dosing rate of the chemical additives. Such variations are caused by 

adjustments in the flow rate of the brine circulation stream which might be necessary to adjust 

the brine level in the last flashing stage. 

(12) Pressure of the ejector motive steam (controlled) and the opening of the throttling valve 

(manipulated). Commonly, the medium pressure steam has a pressure of 16 bars and it is 

necessary to reduce its value to 7 bars. 

(13) Temperature of the ejector motive steam (controlled) and the flow rate of the condensate 

spray (manipulated). This loop reduces the ejector motive steam temperature from 201.4 oC  to 

165 oC . Spray of steam condensate results in this temperature reduction. 

Selection of the MSF controllers is made subject to the following classification: the 

controller proportional action works on the set point changes and the controller derivative action 

does not work on set point changes. This is necessary to obtain a fast response and to limit 

system disturbances. 

4.5 Measurements and Instrumentation in a MSF System 

Instrumentation and measurements form an essential part in various control loops in 

desalination plants where measured signals are transmitted to the control system and compared 

against the desired set points. Subsequently, corrective action in various manipulated parameters 

takes place to adjust the controlled variable to the desired value. Accordingly, maintaining 

measuring instrumentation in good working condition requires frequent cleaning, servicing, and 

calibration. Alatiqi et al. [1999] outlined in detail the main measuring instruments in MSF plants. 

A summary of these instruments is given in Table 4.1. All of the temperature, pressure, flow rate, 

level, and pH measurements are made on-line, while the measured data are taken at equal 

intervals and logged on a data acquisition system. Other data, such as, detailed water analysis, 

are made off-line in central analytical laboratories following standard methods. As is shown, 

some measuring instruments are simple and inexpensive to use; for example, differential 
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Table 4.1. Measuring instruments used in the desalination industry 

Measured parameter Typical problems 

Temperature 1. Small temperature differences. Measuring error can be in the same 
range as the temperature difference between two stages. 
2. Two phase temperature measurements yield a high error due to 
vapor condensation and presence of non-condensable gases. 
3. Temperature non-uniformity, measurement may alter due to 
presence of gradients or heat losses. 
4. High corrosion rates of sensors, wires, and cables in presence of 
high temperature seawater and brine. 

Pressure 1. Vapor condensation in the tubing leading to the sensing sides of 
the transducers. 
2. Non-condensable gases may generate large errors. 
3. Pressure variations along the circumference of pipes. 
4. Tap fouling and blockage gives partial readings of pressure and 
large errors. 

Flow 1. Errors caused by bends, expansion, and contraction. 
2. Flashing effects gives erroneous errors for flow meters with 
moving parts. 
3. Fouling and scaling may hinders motion of moving parts and 
block small openings. 

Level 1. Filling of the vapor/gas leg with condensate may result in large 
errors. 
2. Accumulation of dirt in the liquid leg may generate erroneous 
errors. 
3. Oscillation effects due to violent flashing effects or turbulence. 

pH 1. Fouling problems around sensors. 
2. Poor reading due the delicate nature of the sensor or bad mixing. 

Gas concentration 1. Fouling problems. 
2. Calibration problems. 

Water composition 1. Protect sensor from fouling. 
2. Poor mixing and dead zones. 
3. Delicate nature of sensors. 
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manometers. However, a major part of the instrumentation is delicate and requires frequent 

calibration and replacement of defective parts, such as, pH and conductivity probes. Also, all of 

the measuring instrumentation may face problems related to fouling, poor mixing, vapor 

condensation, and the corrosive nature of the seawater. In various locations around the plant, 

multiple sensors might be used to obtain an average value or ensure proper measurements of 

sensitive parameters, i.e., TBT, brine level in the last stage, or pressure and temperature of 

heating steam. 

All measuring instruments are connected with indicators and alarms commonly located in 

the central operation and control room. Some instrumentation is tied with a control loop; for 

example, TBT, brine level in the last stage, and pressure of the heating steam. A small number of 

the instruments are coupled with an alarm system; this may vary from one plant to another. 

However, in all plants the TBT is tied with an alarm system. Other alarm units are used for the 

distillate flow rate, distillate level in the last stage, brine level in the last stage, brine level in the 

first stage, and temperature and flow rates of intake and feed seawater. 

4.6 MSF Desalination System Simulation Results 

Steady-state and dynamic behavior of a MSF plant can be predicted from the 

mathematical model presented in the previous section. However, the model has been derived 

under certain simplifying assumptions. Thus, it is necessary to validate the given model, obtained 

from the design data, against the actual plant operation data. Steady-state behavior of the MSF 

model is presented first. 

4.6.1 Steady-State Simulation Results 

Assuming that stage and brine heater geometries are assigned, together with the values of 

the fouling factors in all the heat exchangers of the plant, the feed temperature SEAT  and 

concentration SEAX , and comparing the number of equations and the number of unknowns of the 

model allows to determine that the developed model has four degrees of freedom. Below are 
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three different combinations of variables that can be chosen to simulate a MSF plant. Each set 

comprises four specifications as has been explained before. 

(1) The first case is termed as a “performance” calculation. In this case, the following 

operating variables are specified: R , WC , F , STEAMT . 

(2) In the second case the operating parameters F , WC , 
0BT  and the plant capacity ND  

are specified. This study may be used to investigate the possibility of maintaining a specified 

plant capacity in the condition of changing feed temperature. 

(3) The third case deals with the specified parameters F , /WC R , STEAMW  and 
0BT . This 

alternative simulates a situation where a specified amount of steam is supplied to the desalination 

plant by a coupled power plant. 

Here we consider performance calculation, where we specify the make-up flow, F , the 

rejected seawater flow rate WC , the recycle stream flow rate R , and the steam temperature 

STEAMT . On the basis of the information the model allows to calculate the profiles of temperatures 

and flow rates in all the stages of the unit. 

The configuration investigated in this work refers to the design data of a real desalination 

plant located in the Middle East which includes 13 stages in the heat recovery section and 3 heat 

rejection stages. The plant design data are given in Tables 4.2 - 4.4. 

In the performance calculation, the feed seawater temperature and salt concentration are 

95 oF  and 5.6% wt, respectively, while the steam temperature, STEAMT , is 206 oF . The other 

operating parameters required for the calculation are defined as follows: 

80.125 10  /F lb hr= × , 8=0.124 10  /WC lb hr× , 80.140 10  /R lb hr= × . 

The results of the performance calculation are reported in Table 4.5. In particular, the 

values of the flow rates, temperatures and salt concentrations are given. For the sake of 

comparison, the actual plant values for the principal parameters at operating conditions are given 

in Table 4.6. It can be observed that the stage temperatures, inter-stage flow rates, and salt 

concentrations are predicted very well by the steady-state model. 
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Table 4.2. The main characteristics of the plant 

Type of plant Brine recycle-cross tube 

No. of recovery stages 13 (Stages 1~13) 

No. of rejection stages 3 (Stages 14~16) 

No. of stages 16 

Nominal capacity 5 MGD 

 

Table 4.3. The operating conditions 

Steam temperature to brine heater 206 oF  

Feed Seawater temperature 95 oF  

Feed Seawater concentration 56,000 ppm 

Make-up flow rate 80.125 10  /lb hr×  

Recycle flow rate 80.140 10  /lb hr×  

Reject cooling seawater 80.124 10  /lb hr×  

Height of brine level in each stage 18 in. 

 

Table 4.4. The condenser tube bundle data 

Parameter Recovery 
section 

Rejection 
section 

Brine heater 

No. of tubes per stage 4300 4300 4300 
Tube length (ft) 40 35 40 

Inside diameter (in.) 0.866 0.9394 0.866 
Thickness (in.) 0.048 0.0303 0.048 
Stage width (ft) 40 35 40 

Thermal conductivity 
( / )oBTU hr ft F⋅ ⋅  

28.9 9.4 16.8 

Fouling factor 
2 -1( / )oBTU hr F ft⋅ ⋅  

-30.681 10×  -30.1136 10×  -30.909 10×  

Heat transfer area (ft2) 43,000 38,000 38,000 
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Table 4.5. Steady-state model results corresponding to the performance study case 

Stage # 
8

      

( 10 / )
iBW

lb hr×

 
6

      

( 10 / )
iPW

lb hr×

 

X

(%)
iB  T

( )
iF

oF

 T

( )
iP

oF

 T

( )
iB

oF

 i
2

             U

( / )oBTU hr ft F⋅ ⋅

0 
brine heater 0.2650 0 6.2412 0 0 200.50 696.7 

1 0.2636 0.1420 6.2749 190.23 192.86 194.97 676.7 
2 0.2621 0.2862 6.3094 184.46 187.16 189.28 674.9 
3 0.2607 0.4324 6.3448 178.55 181.31 183.45 673.2 
4 0.2592 0.5802 6.3810 172.51 175.34 177.50 671.6 
5 0.2577 0.7293 6.4179 166.36 169.24 171.43 670.2 
6 0.2562 0.8792 6.4554 160.10 163.03 165.25 668.9 
7 0.2547 1.0296 6.4935 153.76 156.72 158.99 667.7 
8 0.2532 1.1800 6.5321 147.34 150.33 152.66 666.6 
9 0.2517 1.3301 6.5711 140.85 143.87 146.28 665.5 
10 0.2502 1.4792 6.6102 134.33 137.36 139.86 664.4 
11 0.2487 1.6270 6.6495 127.79 130.83 133.44 663.1 
12 0.2473 1.7728 6.6887 121.25 124.28 127.02 661.5 
13 0.2458 1.9161 6.7277 114.73 117.75 120.66 659.6 
14 0.2448 2.0183 6.7558 110.01 112.90 116.08 614.4 
15 0.2438 2.1216 6.7844 105.09 108.05 111.40 611.4 
16 0.2427 2.2256 6.8135 100.08 103.10 106.67 607.9 
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Table 4.6. Actual plant operation data [Helal et al., 1986] 

Stage # 
8

      

( 10 / )
iBW

lb hr×

 
6

      

( 10 / )
iPW

lb hr×

 

X

(%)
iB  T

( )
iF

oF

 T

( )
iP

oF

 T

( )
iB

oF

 i
2

             U

( / )oBTU hr ft F⋅ ⋅

0 
brine heater 0.2650 0 6.2412 0 0 199.35 696.7 

1 0.2633 0.1711 6.39 187.46 190.53 192.66 675.2 
2 0.2614 0.3440 6.44 180.74 183.66 185.80 673.3 
3 0.2600 0.5018 6.47 174.38 177.29 179.47 671.6 
4 0.2584 0.6581 6.51 168.01 170.92 173.11 670.1 
5 0.2569 0.8116 6.55 161.70 164.57 166.81 668.8 
6 0.2554 0.9615 6.59 155.45 158.30 160.58 667.7 
7 0.2539 1.1079 6.63 149.27 152.09 154.43 666.6 
8 0.2525 1.2509 6.67 143.16 145.95 148.36 665.7 
9 0.2511 1.3906 6.70 137.12 139.88 142.36 664.7 
10 0.2497 1.5270 6.74 131.13 133.87 136.45 663.6 
11 0.2484 1.6602 6.78 125.22 127.93 130.62 662.4 
12 0.2471 1.7902 6.81 119.36 122.06 124.87 660.9 
13 0.2458 1.9169 6.85 113.57 116.24 119.21 659.1 
14 0.2450 1.9980 6.87 109.73 112.36 115.57 641.8 
15 0.2440 2.1007 6.90 104.90 107.61 110.92 639.2 
16 0.2429 2.2055 6.93 99.96 102.63 106.14 631.9 
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4.6.2 Dynamic Simulation Results 

SIMULINK is a software package for modeling, simulating, and analyzing dynamic 

systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or 

a hybrid of the two. Systems can also be multi-rate, i.e., have different parts that are sampled or 

updated at different rates. For modeling, SIMULINK provides a graphical user interface (GUI) 

for building models as block diagrams, using click-and-drag mouse operations. It includes a 

comprehensive block library of sinks, sources, linear and nonlinear components, and connectors. 

Models are hierarchical, so models can be built using both top-down and bottom-up approaches. 

After the model is defined the simulations can be performed using a choice of integration 

methods, either from the SIMULINK menus or by entering commands in the MATLAB 

command window. Model analysis tools include linearization and trimming tools, which can be 

accessed from the MATLAB command line, plus the many tools in MATLAB and its application 

toolboxes. 

A SIMULINK model of a MSF plant with three flash stages and the brine heater is 

developed in this dissertation, as shown in Figure 4.4. Only blocks from the standard 

SIMULINK library are used, so that the minimal configuration of SIMULINK is necessary to 

model a MSF process. Proportional-integral controllers are integrated into the MSF model to 

regulate the top brine temperature and the brine level in the last flashing stage by controlling the 

heating steam flow rate through the brine heater and the brine blow-down flow rate, respectively. 

The set points for the controllers are listed in Table 4.7. Regulation of the brine level in the last 

flashing stage is one of the most important control loops in a MSF plant, since the head in the 

last stage adjusts the head in previous stages. Simultaneously, the flashing efficiency is affected 

in various stages as well as the amount of distillate product. An increase in the head reduces the 

flashing rates and the amount of distillate product; consequently, the amount of heat released 

upon condensation of the distillate vapor becomes lower. Eventually, the temperature of the 

brine recycle stream entering the brine heater becomes lower, which results in the increase in the 

amount of heating steam and reduction in the system thermal performance ratio. On the other 

hand, reduction of the brine head may result in blow-through of the flashed-off vapors across the 
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Figure 4.4. Screenshot of MSF SIMULINK models. 

 

Table 4.7. Control loops in dynamic simulation 

Control loop Nature Set point Controlled variable Manipulated variable 
1 PI 200.5 oF  Top brine temperature Steam valve position 

2 PI 0.57 m Last stage brine level Blow-down valve position 
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stages. As a result, the effective number of stages becomes smaller and the plant performance 

decreases. 

In dynamic simulation, usually, any one or more of the operator controlled variables are 

perturbed and its effect on the whole plant is studied. Such perturbations, in real conditions, may 

also be caused by minor failure of some components, i.e., failures which will not lead to 

immediate shut down of the plant and which gives a possibility of corrective measures. The main 

operator controlled variables are steam flow rate through the brine heater, brine recirculation 

flow rate, sea-water reject flow rate, make-up flow rate, sea-water reject flow temperature at 

entrance to reject section, last stage brine level and last stage distillate level. The other two main 

input variables, which are location-specific, are sea-water salinity and steam supply pressure. 

Table 4.8 summarizes the step changes that are introduced in the key variables, such as the 

heating steam temperature, recirculation brine flow rate, and recirculation brine temperature. It is 

important to note that the initial conditions of the dynamic model are set to the steady-state 

values that have been calculated using the steady-state model presented in the previous section. 

Figures 4.5 to 4.8 present the dynamic responses of the top brine temperature, brine 

heater inlet steam flow rate, and brine levels in all three stages under different dynamic 

conditions mentioned in Table 4.8. In all the cases, the steady-state simulation is carried out for 

100 seconds before introducing step perturbations. 

 

Table 4.8. Dynamic simulation tests 

Step change: 

2 oF  increase in the set point of top brine temperature 

10 % increase in the incoming cooling brine flow rate 

2 oF  increase in the incoming cooling brine temperature 

5 oF  increase in the heating steam temperature 
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Figure 4.5. Dynamic responses of process variables to step increase of TBT set point. 
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Figure 4.6. Dynamic responses of process variables to step increase of incoming cooling brine 

flow rate. 
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Figure 4.7. Dynamic responses of process variables to step increase of incoming cooling brine 

temperature. 
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Figure 4.8. Dynamic responses of process variables to step increase of heating steam 

temperature. 
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Figures 4.9-4.10 show the open loop responses of the top brine temperature and the brine 

levels in all three stages when the TBT control loop is open with a step decrease in the heating 

steam temperature. 

It can be seen from the above figures that the steady state is maintained for the first 100 

seconds. When the steam temperature is reduced, the heat transferred to the brine gets reduced 

and hence TBT also decreases as shown in Figure 4.9. This decrease of TBT reduces the amount 

of vapor flashed from the brine in all stages; hence, the total distillate production also decreases. 

The decrease of TBT reduces the temperature of the flashing brine and consequently the pressure 

in the corresponding stages. These changes are transmitted from one stage to the next 

sequentially. The reduction of pressure in an upstream stage reduces the flow rate through the 

corresponding orifice. However, as the reduction of pressure has not been transmitted to the 

stage downstream of the orifice, the outflow of brine from the downstream stage is maintained at 

the initial value. This will lead to more outflow of brine and hence the decrease in the liquid 

level in that stage. It can be clearly seen from Figure 4.10 that the decrease in brine level is 

progressively transmitted from first stage to the third stage. The reduction in brine level is 

temporary, as the decrease in flashing rates leads to more brine being left behind in the brine tray. 

Thus a steady increase in the brine levels can be observed. This effect becomes more apparent in 

Figure 4.11 when the last stage (Stage #3) brine level is not controlled. 

4.7 Summary 

This chapter presents an overview of modeling and simulation aspects of multi-stage 

flash desalination plants. Both steady-state and dynamic simulations are discussed. Steady-state 

models are useful for analyzing the operating conditions of the plant. A mathematical model was 

obtained by considering the energy and mass conservation equations for the various streams in 

each section of a MSF plant. The steady-state equations were obtained by setting all the time 

derivative terms to zero. The steady-state model was simulated for a real plant operating 

conditions and a close agreement has been observed between the predicted results and the actual 

plant operating parameters. 
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Figure 4.9. Open loop response of TBT to step decrease of heating steam temperature. 
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Figure 4.10. Open loop response of brine levels to step decrease of heating steam temperature.
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Figure 4.11. Open loop response of last-stage brine level to step decrease of heating steam 

temperature. 

Dynamic models are suitable for solving problems involving transient behavior, such as 

studying control strategies, stability problems, process interactions, start-up and shut-down 

conditions. Two types of dynamic models are possible. The first is an analytical one. The 

analytical model describes the process through physical relations. Essentially, the lumped 

parameter dynamic model consists of ordinary differential equations and supporting algebraic 

equations. The initial conditions are either known by experience or developed by steady-state 

simulation. The other type of dynamic model is based on a black-box approach. A model with 

unknown parameters is selected according to previous experience or through experiments. Since 

the formulation of the analytical model is difficult and complicated, it is common to develop 

black-box models for complex systems. In this dissertation, the former method was employed for 

MSF dynamic model development. The developed dynamic model was used to simulate the 

effect of step changes in several key state variables. The simulation results obtained were 

physically plausible and similar to those found in the literature. 
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Chapter 5 

Modeling and Simulation of a Nuclear Desalination Plant 

5.1 Introduction 

Nuclear desalination is a viable option as a sustainable source of water and electricity. 

Nuclear power plants are suitable for large scale desalination application such as MSF, which 

has been introduced and modeled in Chapter 4. The thermal energy produced in a nuclear plant 

can provide both electricity and desalted water without the production of greenhouse gases. A 

particularly attractive option for nuclear desalination is to couple a desalination plant with an 

advanced, modular, passively safe reactor design, such as the International Reactor Innovative 

and Secure (IRIS) plant. The design features of the IRIS reactor ensure a safe and reliable source 

of energy and water even for countries with limited nuclear power experience and infrastructure. 

In this chapter, the IRIS-MSF nuclear desalination option is explored and analyzed through 

studying the coupled dynamic SIMULINK models of two plants. 

5.2 IRIS System Description 

IRIS is one of the next generation nuclear reactor designs developed by an international 

team of industry, national laboratory, and university partners led by Westinghouse Electric 

Company [Carelli et al., 2006]. The IRIS design is based on proven light water reactor (LWR) 

technology, but includes several innovative engineering features that enhance its safety and 

economics relative to other advanced systems. IRIS is a member of the integral primary system 

reactor class of designs which houses all functions of the primary coolant system inside the 

reactor pressure vessel. Figure 5.1 shows the layout of the IRIS primary system. 

A unique feature of IRIS is the safety-by-design philosophy which means that design 

choices are made to eliminate the potential for accidents to occur rather than adding systems to 

respond to the consequences of accidents. By using an integral system, several potentially severe 

accident scenarios are avoided, such as medium-to-large pipe break loss-of-coolant accidents 



67 

(LOCA). For those accident scenarios that cannot be precluded, the design is such that the 

consequences of the accident are greatly reduced by the design features. An example is the 

spherical, high-design-pressure containment vessel that encloses the reactor vessel and safety 

systems, which is illustrated in Figure 5.2. In the event of a small pipe break in the secondary 

system, the pressure inside and outside the reactor vessel equalizes very rapidly and prevents the 

core from being uncovered by coolant.  

The novel design features of IRIS are summarized below: 

 Scalable in power between 100 MWe and 350 MWe. Baseline design is 335 MWe or 

1000 MWt in a modular configuration allowing deployment as single units, multiple single units, 

or multiple twin units. 

 All main primary circuit components (core, control rods and drive mechanisms, steam 

generators, primary coolant pumps, and pressurizer) are integrated into a single reactor vessel. 

 The core is comprised of 89 traditional 17 17× -pin PWR fuel bundles containing 4.95% 

enriched UO2 fuel and is designed for a 3.5-year cycle with an average burn-up of 50,000 

MWd/Te. 

 Reactivity control is accomplished through solid burnable absorbers and control rods, and 

a limited use of soluble boron in the primary coolant. 

 The primary coolant system uses eight helical-coil once-through steam generators and 

eight spool-type coolant pumps. The steam-regulated pressurizer is located in the upper portion 

of the 6.2-m-diameter, 22.2-m-high reactor vessel. Normal operating pressure of the primary 

coolant is 15.5 MPa. 

 The reactor vessel is placed within a 25-m diameter compact steel containment vessel 

capable of withstanding 1.4 MPa design pressure. 

 All large coolant pipes are eliminated. Only small feed water and steam outlet pipes 

penetrate the vessel wall (5-cm diameter pipes versus 90-cm-diameter pipes for external loop 
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PWRs). 

 The total inventory of primary coolant is much larger than for an external loop PWR, 

which increases the heat capacity and thermal inertia of the system and hence yields a much 

slower response to core heat-up transients. 

 The extended riser area provides the possibility for internal placement of the control rod 

drive mechanisms (CRDM), thus avoiding another potentially serious accident scenario: control 

rod ejection accident. 

Thus, IRIS is designed to fulfill the advantages of the integral primary system reactor. It 

improves safety, reduces the site civil works, and improves the plant availability for developed 

and developing countries with large or small electrical grids that can greatly benefit from such 

design. Thanks to these advantageous design features as well as the specific reasons below, IRIS 

is well suited for desalination applications. 

 The modular sizing of IRIS will allow countries with small-to-medium power 

requirements to install capacity to their electrical grid in smaller increments and increase 

additional capacity as their power and water demands warrant and their infrastructure will 

support. 

 The enhanced safety margins will provide additional flexibility in the siting of the reactor 

to better match the electrical and water use demographics. This will also encourage countries 

with modest nuclear infrastructure to build and operate nuclear power plants. 

 The international nature of the IRIS project team will help to ensure that the design will 

be licensable for deployment in the global market. 
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Figure 5.1. IRIS primary system layout [Carelli et al., 2003]. 
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Figure 5.2. IRIS reactor pressure vessel and compact containment vessel [Carelli et al., 2003]. 
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5.3 IRIS Dynamic Models 

An IRIS dynamic model developed previously at the University of Tennessee is used in 

this dissertation, which includes reactor core, helical coil steam generators (HCSG), and 

balance-of-plant (BOP) systems [Xu, 2009]. The IRIS dynamic models were developed in 

SIMULINK, and were based on a conventional PWR dynamic model [Naghedolfeizi, 1990] and 

a HCSG simulation model [Zhao, 2005a]. Major components of the IRIS plant model are 

described below, and the mathematical equations of the IRIS system are listed in Appendix B. 

5.3.1 Reactor Core 

The reactor core uses the point reactor kinetics model. The Mann’s model is employed to 

describe the fuel-to-coolant heat transfer in the reactor core. The core model includes the 

six-group delayed neutron precursor concentration equations, one fuel node temperature, and two 

coolant node temperature differential equations, along with the fuel and moderator temperature 

reactivity feedback coefficients. In the reactor core model, the aveT  controller is implemented 

with the fixed set point of 590 oF . aveT  is defined as the average moderator temperature 

between the hot leg temperature ( hotT ) and cold leg temperature ( coldT ). 

5.3.2 Helical Coil Steam Generator 

Helical coil steam generator is one of the critical components as well as being the major 

difference between traditional PWRs and the IRIS reactor. In the HCSG system, the primary 

fluid enters at the top of the equipment and flows downward to the bottom on the shell side. The 

primary side heat transfer is sub-cooled forced convection along the entire steam generator 

height, while the secondary fluid flows upward inside the coiled tubes from bottom to top. The 

feed water flows into the sub-cooled region of the steam generator, and in this region the heat 

transfer is mainly due to single-phase turbulent and molecular momentum transfer and the 

pressure loss is mainly due to wall friction. The saturated region begins when the bulk 

temperature becomes saturated. The heat transfer in the saturated boiling region is dominated by 

nucleate boiling, which is much more efficient than single-phase liquid or steam heat transfer. In 
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the saturated boiling region, the generated bubbles do not disappear in the liquid core and the 

pressure loss is not only due to the wall friction but also due to the interfacial drag between the 

bubbles and the liquid. The saturated boiling region ends when the critical heat flux is reached 

and the liquid film disappears. Due to the relatively large mass flow rate, the critical heat flux 

occurs at relatively high steam quality. When the steam quality becomes one, the liquid 

evaporation ceases and the steam becomes superheated. 

The size of the steam generator can be reduced through the helical coil design. The heat 

transfer of the coiled configuration is much more efficient than straight tubes because of the 

larger heat transfer area per unit volume and the secondary flow induced by the coil geometry. 

The produced superheated steam also avoids the need of a steam-water separator inside the steam 

generator. The possibility of tube rupture can be reduced because the secondary fluid flows 

inside the SG tubes and thus the tubes experience compression force from the outside. The 

HCSG system control objective is to supply adequate amount of steam to meet the turbine 

demand, while maintaining the steam pressure at 841 PSI. Therefore, the HCSG model has a 

proportional-integral steam pressure controller with the fixed set point of 841 PSI, which 

regulates the steam flow rate through the turbine throttle valve. 

The once-through HCSG dynamic model and the steam pressure controller equations can 

be found in [Zhao, 2005a]. 

5.3.3 Steam Turbine 

A steam turbine, found in a fossil power plant, is one in which the thermal energy of the 

supplied steam is converted to mechanical energy on the turbine shaft. High pressure and 

temperature steam, produced in the steam generator, is supplied to the steam turbine as a 

working fluid. The steam passing through the steam turbine is expanded and thus generates 

mechanical energy on the turbine shaft. The turbine drives an electric generator to produce 

electricity. It is noted that a portion of the steam is bypassed to a feedwater heater to improve the 

thermal efficiency of the turbine cycle. 
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A dynamic model of a turbine cycle has been developed previously by Shankar [1977]. 

Modifications have been made to reduce the model complexity. In this dissertation, a simple 

one-stage turbine model is used for coupling with the condenser and feedwater heater models, 

which are described next. 

5.3.4 Main Condenser 

A condenser is a large surface-type heat exchanger, which condenses steam from the 

exhaust of turbine by transferring steam latent heat to circulating water inside the condenser. The 

main condenser is equipped with many auxiliary systems such as vacuum and hotwell pumps. 

The vacuum system maintains a constant pressure in the condenser for transient and steady-state 

conditions. The hotwell pumps and their control systems discharge the water to a low-pressure 

heater and control the water level in the hotwells. The condenser is desired to work under 

vacuum condition to obtain a maximum mechanical power from the turbine system. 

The main condenser is simulated as an equilibrium two-phase tank, as shown in Figure 

5.3. The space inside the tank is divided into two independent control volumes, steam and water. 

They are assumed to be in thermal equilibrium during steady-state condition. Turbine exhaust 

flow enters the system at the condenser pressure. The water part of the flow falls into the hotwell 

region and mixes perfectly with the water already present there. The vapor part condenses on the 

outer surface of metal tubes through which the circulating water flows. The condensation process 

is associated with a time delay which is due to the dynamics of heat transfer between the vapor 

and the circulating water. The following assumptions are made to simplify the condenser model. 

 Constant pressure exists in the condenser model. 

 Mass transfer at steam-liquid interface is assumed to be negligible. 

 Wall condensation is considered to be zero. 
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Figure 5.3. Schematic diagram of the turbine condenser model. 

5.3.5 Feedwater Heater 

A closed feedwater heater is basically a shell and tube heat exchanger where the 

feedwater flows through the tubes and interacts with extracted steam residing along the shell side. 

As the heat energy from the extraction steam is transferred to the feedwater, the steam condenses 

and collects at the bottom of the heater. Under normal conditions, the condensate from the heater 

is passed to the downstream lower pressure heater where it is used to increase the temperature of 

the feedwater. In emergency conditions, the condensate is directed through the emergency drain 

valve to the main condenser. 

Most feedwater heaters used in power plants are of the shell and U-tube type, horizontal, 

three-zone configuration. A typical configuration is given in Figure 5.4. Feedwater entering the 

heater first passes through the drain-cooling region where single-phase convection is the leading 

heat transfer mechanism from the drains on the shell side to the feedwater on the tube side. The 

purpose of this section is to cool the drains to a temperature that is close to the shell side 
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Figure 5.4. Schematic of a horizontal closed feedwater heater [Thanomsat et al., 1998]. 

saturation temperature of the next heater where it will be mixed with the extraction steam. The 

feedwater is then passed to the condensing region where the majority of the heat transfer takes 

place. The feedwater temperature can be brought up to within 5 oC  of shell side saturation 

temperature in this section. Finally, a de-superheating region is used to raise the feedwater 

temperature even above saturation and cool the steam down to saturation. 

5.4 IRIS-MSF Nuclear Desalination Plant Simulation Results 

Coupling an IRIS system with a MSF desalination plant requires co-location of the two 

units with a steam supply loop provided from the IRIS secondary system to the MSF plant. 

Electrical connection is also required to power the MSF pumps and auxiliary equipment. 

Coupled nuclear desalination plants, in fact, have been in operation for over two decades in 

countries such as Japan and Kazakhstan. Various concepts of the coupling of nuclear and 

desalination systems have been presented in the scientific community, some of which are already 

on their way to being demonstrated. An example of a possible nuclear MSF desalination plant 

complex is illustrated in Figure 5.5 [Ingersoll et al., 2004]. An intermediate steam loop is 

proposed for coupling two processes. The pressure of the intermediate loop is maintained above 
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Figure 5.5. Schematic diagram of a MSF plant coupled to the IRIS power conversion system. 
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the pressure of the secondary IRIS loop and the pressure of the seawater loop in the brine heater 

stage of the MSF plant so that a failure of the heat exchanger at either end of the intermediate 

loop would result in an easily detectable pressure drop in the loop and ensure isolation of the 

fluids in the two processes. 

In this dissertation, the MSF brine heater steam supply is obtained directly from the 

exhaust of the low-pressure steam turbine. The heating steam has an initial saturation 

temperature of 206 oF . The brine flows through the tubing in the heat exchanger. The 

condensate gathered in the sump tank of the brine heater mixes with the flow from the main 

condenser, and goes to the feedwater heaters. 

The overall simulation model of the coupled IRIS-MSF plant is developed by combining 

the individual SIMULINK models of reactor core, helical coil steam generators, balance-of-plant, 

as well as the MSF system. The order of the coupled IRIS-MSF SIMULINK model is estimated 

around more than 100 state variables. 

The simulation results of the typical variables in the coupled system due to a 10% step 

decrease in the power demand (from 100% to 90%) are shown in Figures 5.6 - 5.18. 

Figure 5.6 shows the reactor core power change due to the power demand decrease. The 

core power, which is initially around 100%, goes to approximately 93.5% in 400 seconds. 

Figures 5.7 - 5.9 illustrate the responses of hotT , coldT , and aveT . As the core power decreases, 

hotT  goes down as well. The aveT  controller adjusts the external reactivity to maintain a 

constant average coolant temperature around the set point (590 oF ). The steam outlet pressure 

response shown in Figure 5.10 also varies due to the power change, but the steam pressure 

controller is able to keep the pressure as close as possible to the set point (841 PSI) by reducing 

the steam flow rate to the turbine system, shown in Figure 5.11. This, in turn, results in a 

reduction in the turbine power, as shown in Figure 5.12. It also causes a reduction in the heat 

flow to the feedwater heater that consequently decreases the feedwater temperature (Figure 5.13). 

As the power varies, so does the steam generator water level. Hence more heat transfer area is 

left for the steam to be superheated, thus increasing the steam temperature (Figure 5.14). 
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Figure 5.6. Reactor power response to a 10% power demand step decrease. 
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Figure 5.7. hotT  response to a 10% power demand step decrease. 



79 

0 100 200 300 400 500 600 700 800 900
556

556.5

557

557.5

558

558.5

559

559.5

560

560.5

561

Time (sec)

o F

Cold Leg Temperature

 

Figure 5.8. coldT  response to a 10% power demand step decrease. 
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Figure 5.9. aveT  response to a 10% power demand step decrease. 
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Figure 5.10. Steam pressure response to a 10% power demand step decrease. 
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Figure 5.11. Steam flow rate response to a 10% power demand step decrease. 
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Figure 5.12. Turbine output response to a 10% power demand step decrease. 
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Figure 5.13. Feedwater temperature response to a 10% power demand step decrease. 
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Figure 5.14. Steam temperature response to a 10% power demand step decrease. 
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Figure 5.15. Top brine temperature response to a 10% power demand step decrease. 
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Figure 5.16. Brine heater inlet steam flow rate response to a 10% power demand step decrease. 
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Figure 5.17. Brine heater inlet steam enthalpy response to a 10% power demand step decrease. 
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Figure 5.18. Brine level response to a 10% power demand step decrease. 
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5.5 Summary 

In this chapter, the development of the coupled IRIS-MSF nuclear desalination system 

model has been described. An existing IRIS plant SIMULINK model was used for coupling with 

the dynamic MSF model developed and described in Chapter 4. A simple BOP model was also 

described in this chapter. The BOP model incorporated the subsystem models of the turbine, 

condenser, and feedwater heater systems. The dynamic model of the coupled plant has been 

simulated for a 10% step decrease in the turbine power demand, and the simulation results have 

been analyzed in this chapter. The results showed that the developed dynamic model was able to 

characterize the system dynamic behavior with reasonably good accuracy to study the control 

and fault diagnosis of the IRIS-MSF coupled system. 
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Chapter 6 

Development of Sensor Placement Design Algorithms 

6.1 Introduction 

Sensor allocation has been treated as an optimization problem in most of the earlier work. 

The first attempt to present a technique to locate sensors was made by Lambert [1977], where he 

used probabilistic importance of events in fault trees to decide optimal sensor locations. 

Vaclavek and Loucka [1976] described the problem of sensor network design and employed 

graph theory to ensure the observability of a specified set of important variables in a 

multi-component flow network. Ali and Narasimhan [1993] addressed the concept of reliability 

of state variable estimation and developed graph-theoretic algorithms for maximizing the 

reliability. The reliability of the process was defined as the smallest reliability among all of the 

variables. Unlike the approaches based on graph theory and linear algebra, Bagajewicz [1997] 

proposed a mixed integer nonlinear programming (MINLP) problem to obtain cost-optimal 

structures subject to the desired level of precision, residual precision, and error detectability. An 

alternative mixed integer linear programming (MILP) formulation which was useful for both 

small- and medium-size problems was presented by Bagajewicz and Cabrera [2002]. Sen et al. 

[1998] presented a genetic algorithm based approach that can be applied for the design of 

non-redundant sensor networks using different objective functions. 

In this dissertation, the graph-based techniques are used to optimize sensor locations. 

Issues such as fault detectability and discriminability are discussed to ensure the designed sensor 

network could observe every defined fault in the process, meanwhile obtain a maximum possible 

fault resolution. Directed graph (DG) that represents cause-effect behavior of the process is used 

as a basis for the sensor placement design. DG is employed to describe the propagation of fault 

effects, and a cause-effect analysis is performed based on the graph theory to design the sensor 

placement strategy. 
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The contribution of this dissertation to the field of optimum sensor placement design is 

innovative in that it develops an optimal and automated sensor allocation procedure for an 

IRIS-MSF nuclear desalination plant, with considerations of both single-fault and dual-fault 

assumptions in the application. In addition, this dissertation proposes an efficient integer linear 

programming (ILP) embedded greedy search algorithm to solve the formulated sensor allocation 

optimization problem. And the optimal results are compared with those from LINGO 8.0, a 

commercial ILP optimization solver. 

6.2 Methodology of Directed Graph Modeling 

The solution to the problem of sensor placement may be broadly broken down into two 

tasks: (1) fault modeling or prediction of cause-effect behavior of the system, generating a set of 

variables that are affected whenever a fault occurs, and (2) use of the generated sets to identify 

sensor locations based on various design criteria, such as fault observability, fault resolution, etc. 

The fault propagation or cause-effect behavior is derived on the basis of a qualitative model that 

is used to represent the process. 

Directed graph or digraph is such a qualitative cause-effect model that can be used to 

infer the mechanism of fault propagation in a system. It normally consists of a set of nodes and 

directed branches. The nodes in a DG model represent states of process variables or malfunctions, 

and the branches correspond to the causal influences between the nodes. The arrow of a branch 

reflects the direction of the effect between variables, and the fault propagation pattern can thus 

be inferred graphically. Based on the DG model of a given process, approaches from the graph 

theory are then employed to design the sensor networks according to some specified criteria. 

The DG modeling is a convenient approach because it clearly illustrates the interactions 

among the important process variables, and can be easily developed from the empirical 

relationships or engineering fundamental principles. Figure 6.1 shows a DG diagram of a 

hypothetical process with the path connections from faults to potential location of sensors, as an 

illustrating example. In this figure, each node corresponding to a fault ( jF ) in the process 

connects through an arrow to a sensor ( iS ), thus indicating that the fault will affect the reading of 
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Figure 6.1. Directed graph of a hypothetical process. 

the corresponding sensor. The method used to solve the problem of sensor location is based on 

identifying directed paths from root nodes where faults can occur to nodes where effects can be 

measured, called the observability set. Using all these paths, the objective is to choose the 

minimum subset of sensors from the observability set that would have at least one directed path 

from every root node. 

The fault-and-sensor maximum connectivity matrix D  is also generated for the 

hypothetical process. The rows of this matrix represent the sensors, and the columns represent 

the faults. The ( , )thi j  entry ijD  of this matrix is 1 if fault jF  affects the potential sensor 

location iS  and is 0 otherwise ( 1,2,...,i M= and 1,2,...,j N= ), where M  is the total number 

of sensors and N  is the total number of faults. The generated matrix is given by: 

D =  

 1F  2F  3F  4F  5F  

1S  1 1 0 0 0 

2S  1 1 1 1 0 

3S  0 0 0 1 1 
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6.3 Sensor Location and Fault Diagnostic Observability Criterion 

6.3.1 Set-Covering Problems 

The sensor placement design that makes use of optimization criteria of fault observability 

and fault discriminability considers finding the optimal sensor locations as one of choosing the 

minimum number of sensors that would cover all the faults (root nodes). This is the well-known 

“minimum set-covering problem”. The greedy search algorithm developed by Raghuraj et al. 

[1999], despite one of the fastest solving methods, does not necessarily find all minimal sensor 

sets [Krysander et al., 2008]. For this purpose, a literature review on solving set-covering 

problems using heuristic algorithms has been performed. 

Set-covering problem is a classical problem in computer science and complexity theory. 

Set-covering problem is one of the most important discrete optimization problems because it 

serves as a model for real world problems. Real world problems that can be modeled as 

set-covering problems include facility location problem, airline crew scheduling, nurse 

scheduling problem, resource allocation, assembly line balancing, vehicle routing, etc. 

Set-covering problem is a problem of covering the rows of an m n×  zero-one matrix with a 

subset of columns at minimal cost [Beasley and Chu, 1996]. Set-covering problem can be 

formulated as follows: 

1
minimize [ ]

n

j j
j

c x
=
∑  (6.1) 

subject to 

1

1,  1,...,
n

ij j
j

a x i m
=

≥ =∑  (6.2) 

{0,1},  1,...,jx j n∈ =  (6.3) 

Equation (6.1) is the objective function of set-covering problem, where jc  ( 1,...,j n= ) 

is refer to weight or cost of covering column j  and jx  is decision variable. Equation (6.2) is a 

constraint to ensure that each row is covered by at least one column where ija  is constraint 

coefficient matrix of size m n×  whose elements comprise of either “1” or “0”. A column j  
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( 1,...,j n= ) is said to cover a row i  ( 1,...,i m= ) if 1ija = . Set-covering problem calls for a 

minimum cost subset S, such that each row i  ( 1,...,i m= ) is covered by at least one 

column, j S∈ . Finally, Equation (6.3) is the integrality constraint in which the value is 

represented as in Equation (6.4). 

1     ,
0   .j

if j S
x

otherwise
∈⎧

= ⎨
⎩

 (6.4) 

Even though it may seem to be a simple problem by judging from the objective functions 

and constraints of the problem, set-covering problem is a combinational optimization problem. 

A number of heuristic algorithms for set-covering problem have been reported in the 

literature. Beasley, as one of main researcher in set-covering problem had implemented several 

algorithms in order to solve set-covering problem. Beasley presented an algorithm that combines 

problem reduction tests with dual ascent, sub-gradient optimization and linear programming. 

This algorithm had performed well in solving set-covering problem [Beasley, 1987]. It was able 

to find feasible optimal solutions for all set-covering problem sets. In a different literature, 

Beasley presented a paper which used Lagrangian relaxation and sub-gradient optimization 

approach to solve the set-covering problem [Beasley, 1990]. But this method did not perform 

well compared to his previous method. It was unable to find optimal solutions for several 

set-covering problems. Haddadi presented a simple Lagrangian heuristic to solve set-covering 

problem [Haddadi, 1997]. The method is based on Lagrangian duality, greedy heuristic for 

set-covering problem, sub-gradient optimization and redundant covers. This method had turned 

out to be efficient for low density set-covering problems with a large number of variables with 

average deviation of 0.35%. 

Beasley and Chu used genetic algorithm for set-covering problem [Beasley and Chu, 

1996]. They presented a new crossover-fusion operator, a variable mutation rate and a heuristic 

feasibility operator to improve the performance of genetic algorithm. This method performs well 

in solving most problems. Aickelin proposed an indirect genetic algorithm [Aickelin, 2002]. The 

indirect genetic algorithm comprises of three phases. In the first phase, the genetic algorithm 

finds good permutation of the rows to be covered. In the second phase, a decoder builds a 



91 

solution from the permutations using the parameter provided. And lastly, in the third phase, a 

hill-climber optimization method is used. The indirect genetic algorithm is able to solve the 

set-covering problem in a shorter computational time. Monfroglio proposed a linear 

programming relaxation model and improvement techniques based on simulated neural network 

[Monfroglio, 1998]. This method is able to find solutions within 0.2% of optimal solution and 

increase the overall computational time. Vasko and Wolf adapted heuristic concentration 

approach to solve the weighted (non-unicost) set-covering problem [Vasko and Wolf, 2001]. 

Their method is able to solve set-covering problem and find solution with deviation of maximum 

of 3.27% from optimum solution. 

6.3.2 Fault Observability 

Fault observability refers to the condition that every fault defined for the process has to 

be observed by at least one sensor. Given a process DG model, the observability problem 

becomes one of finding the minimum number of sensors that would cover all the faults in the 

process (root nodes). This is commonly known as “minimum set-covering problem” [Parker and 

Rardin, 1988], where the sets to be covered are the sets of sensors affected by each process fault. 

Although a simple enumeration can be made for a small system, a systematic approach needs to 

be used for a large system. In this approach, the first step is to build a bipartite graph, which 

consists of a causal set including all the fault nodes and an observability set including all the 

sensor nodes with only input arcs in the DG model. A graph is bipartite if a vertex set can be 

partitioned into two sets in such a way that no two vertices from the same set are adjacent. These 

two sets constitute a bipartition of the original vertex set [Asratian et al., 1998]. After a bipartite 

graph is obtained from the DG model, a subset of the key variables can be chosen from the 

observability set as the minimum sensor requirement for fault detection based on a greedy search 

algorithm developed by Raghuraj et al.[1999]. 

This search algorithm is summarized as follows: 

(1) Initiate C  and G  as empty sets. 
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(2) Construct a bipartite graph between the fault nodes and the key variables in the fault 

observability set. 

(3) Select a variable among the unmarked key variables based on the largest number of 

incident arcs. 

(4) Mark the selected key variable in step (2) and store it in C . 

(5) Determine all the fault nodes covered by C . 

(6) If there exist uncovered fault nodes, delete all the arcs from the fault nodes covered by 

the selected variable to all the previously marked key variables; store in a buffer set G  all the 

arcs from the fault nodes covered by the selected variable to the unmarked key variables, then go 

back to step (3); else, remove the variables from C  that do not have arcs incident on them 

based on the arcs stored in G . Output the set C  and stop. 

(7) End. 

The number of incident arcs used in step (3) is defined as the difference between the 

actual number of arcs incident on a key variable and the number of arcs incident on the same key 

variable that have been stored in the buffer set G . After the algorithm is completed, the same 

set of key variables can be obtained in C  as is obtained from the greedy search algorithm. 

However, the redundant key variables will be stored by tracking the arcs stored in the buffer set 

G  that do not have a connection with the marked key variables. To determine the minimum set 

of sensors, the redundant key variables must be removed from the obtained key variables stored 

in C . 

Example: 

Let us use the hypothetical system shown in Figure 6.1 as a simple example to illustrate 

the greedy search algorithm based on fault observability criteria. In this example, there are five 

fault classes 1 2 3 4 5, , , , and F F F F F , and three key variables 1 2 3, , and S S S  on which sensors can 

be placed. Figure 6.2 depicts the bipartite graph for the original digraph. 
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Figure 6.2. Fault and sensor node bipartite graph for Figure 6.1. 

Figure 6.2 clearly shows that the set 1 2 3[ , , ]S S S  form the “observability set”, as these are 

the nodes in the DG model with only input arcs. It is also clear that by placing sensors on these 

nodes, one could detect all the faults. However, the set 1 2 3[ , , ]S S S  is not the minimum set. The 

minimum set is, in fact, 2 3[ , ]S S . As a first step in the algorithm, node 2S  is chosen as the key 

component, as it has the maximum number of arcs incident on it. In the mean time, the arcs from 

1F  to 1S , 2F  to 1S , and 4F  to 3S  will be stored in set G  because 1 2 4, , and F F F  are 

covered by the selected variable 2S , which is marked. In the next step, 3S  is chosen as the next 

key component, and with this it is clearly seen that all the fault nodes are now covered. Both 2S  

and 3S  have the arcs stored in set G  incident on it. This is the minimum observability set, as 

given by the greedy search algorithm. 

6.3.3 Fault Resolution 

Fault resolution refers to the ability to identify the exact fault within a system of interest 

that has occurred. The maximum resolution that can be attained is restricted by the topology of 

DG and the position of the fault or root nodes in a DG model. Hence, given the constraints on 

measurement points, the problem of fault resolution is equivalent to generating sensor locations 

so that every fault is resolved to the maximum extent possible. This condition is referred to as the 

“highest fault resolution”. As shown by Raghuraj et al. [1999], any fault resolution problem 

(single-fault resolution, multiple-fault resolution, etc.) can be converted to a suitable fault 
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observability problem. Also, the assumption of single-fault or multiple-fault would lead to 

different fault resolution solutions. 

Single-Fault Resolution 

For each pair of faults i  and j , the fault set ij i j i jB A A A A= ∪ − ∩  is generated. In 

this expression, iA  and jA  are the sets of measurable nodes connected to the thi  fault and thj  

fault, respectively. Note that set ijB  represents the symmetric difference of sets iA  and jA , 

which consists of the set of nodes that can be used for differentiating between a pair of fault 

nodes i  and j . Thus, each ijB  is treated as a virtual fault, and a bipartite graph is constructed 

between these nodes and the sensor nodes. This bipartite graph is then added to the original 

bipartite graph. 

The minimum set of sensors for fault resolution can also be determined using the greedy 

search algorithm. The steps are summarized as follows: 

(1) Determine the set of key variables consisting of the different members of iA  and jA  

that covers the virtual fault ijB , which denotes the resolution of the original fault nodes i  and 

j . 

(2) Construct a bipartite graph between the set of virtual fault nodes and their observability 

set. 

(3) This new bipartite graph is added to the original bipartite graph, which is between root 

nodes and sensor nodes. 

(4) Apply the greedy search algorithm developed for fault observability to the updated 

bipartite graph to determine the minimum set of sensor nodes that would cover all the root nodes 

and the virtual fault nodes. The selected sensor set based on this algorithm can ensure that the 

specified faults can be detected and distinguished. 

Example: 



95 

To illustrate the concepts developed, fault diagnosis of the previous example is performed. The 

greedy search algorithm is used for fault diagnosis under the single-fault assumption. As a first 

step, the virtual faults ij i j i jB A A A A= ∪ − ∩ are constructed for all i  and j . The sensor sets 

for the different faults are given in Table 6.1. Some faults may affect the identical sensor set. In 

this case, they have been combined as one fault, and cannot be distinguished from one another. 

For example, nodes 1F  and 2F  share the same sensor set 1 2[ , ]S S , and have been combined 

and denoted by the node 1A . The set ijB  for the faults are shown in Table 6.2. The faults 

consist of the original faults plus the virtual fault set ijB . The greedy search algorithm is applied 

on this extended fault system and the optimum sensor set is found to be 1 2 3[ , , ]S S S . All the 

original faults in Figure 6.2 can be distinguished from one another by the chosen sensor set, 

except for 1F  and 2F . 

Multiple-Fault Resolution 

Assuming multiple faults, the sensor placement problem is solved as an extension of the 

single-fault resolution problem. For the sake of illustration, consider the specific case when a 

maximum of two faults can occur at a time. For each pair of faults i  and j , the set 

ij i jA A A= ∪  is formed, where ijA  represents the set of nodes which are affected when both of 

the faults i  and j  occur simultaneously. The set ijA  is treated as a virtual fault, and is 

therefore added to the original set of faults. 

Solving the single-fault resolution problem for this new system gives the sensor locations 

for resolution under dual-fault assumption. The same methodology can be applied to cases where 

more than two faults occur simultaneously. Clearly, with a greater number of sets generated, the 

computational complexity of the approach increases, but as discussed in Raghuraj et al. [1999], 

one might not be interested in all multiple-fault situations and the above formulation gives the 

designer a methodology by which different sensor location problems can be posed and solved. 
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Table 6.1. Set A  of sensors for different fault nodes in Figure 6.2 

Fault Nodes Sensor Nodes Set A 
1F , 2F  1 2[ , ]S S  1A  

3F  2[ ]S  2A  

4F  2 3[ , ]S S  3A  

5F  3[ ]S  4A  
 

Table 6.2. Set ijB  for single-fault case of Table 6.1 

Set B Sensor Nodes 
12B  1[ ]S  

13B  1 3[ , ]S S  

14B  1 2 3[ , , ]S S S  

23B  3[ ]S  

24B  2 3[ , ]S S  

34B  2[ ]S  
 

6.4 Sensor Location and System Unobservability Criterion 

6.4.1 Formulation of Unobservability Minimization 

The design of a reliable instrumentation system for an industrial process is of the ultimate 

importance. A sensor network is highly reliable if the probability of any fault occurring without 

being detected is low. For a given process, the faults in that process have certain occurrence 

probabilities. The various available sensors also have certain failure probabilities, which depend 

on the type of sensor and the variable being measured. The only way in which a fault can occur 

without being detected is that the fault occurs and the sensors monitoring that fault fail 

simultaneously. The probability of such an event taking place is the product of the fault 

occurrence probability jf  and the corresponding sensor failure probability is , which is defined 

as the unobservability value jU  of the thj  fault. 
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,  1, 2,...,ij i
M

D x
j j i

i

U f s j N
=

= =∏  (6.5) 

In Equation (6.5), ix  is the number of sensors being placed at a particular location, and 

the binary number ijD  is the ( , )thi j  entry of the fault-sensor maximum connectivity matrix. 

Note that in the formulated optimization problem, ix  is allowed to be greater than 1, which, in 

other words, means hardware redundancy is allowed. This feature makes the approach practical 

because it is reasonable to use more than one sensor to measure a variable if that particular 

sensor node has a high tendency to fail or if the covered fault has a high probability of 

occurrence. 

Another useful quantity (redundancy value) used in the algorithm is defined in Equation 

(6.6). This value provides an approximate measure of the total unobservability covered by a 

sensor. 

1
,  1, 2,...,

N

i ij j
j

R D U i M
=

= =∑  (6.6) 

Thus, achieving a minimum unobservability of the system is paramount for the design of 

a reliable sensor network. The sensor placement formulation is based on minimizing the system 

overall unobservability, which is defined as the maximum unobservability among all faults 

(
j

jMaxU
∀

). This concept is based on the philosophy that a chain can be no stronger than its 

weakest link. Therefore, the optimization of sensor placement design is formulated as follows: 

minimize  [ ]
i j

jx
MaxU
∀

 (6.7) 

subject to 

1

M

i i
i

c x TC
=

≤∑  (6.8) 

1
1,  1, 2,...,

M

ij i
i

D x j N
=

≥ =∑  
(6.9) 

{ }0 ,  1, 2,...,ix i M+∈ ∪ =  (6.10) 
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Equation (6.7) is the objective function of the formulated unobservability optimization 

problem, where jU  is given in Equation (6.5). The constraint given by Equation (6.8) ensures 

the utilized cost does not exceed the total available cost TC, where ic  is the cost of placing a 

sensor at node i and ix  is the decision variable. Equation (6.9) is an observability constraint to 

ensure that each column (fault) is covered by at least one row (sensor location) where ijD  is the 

( , )thi j  entry of the fault-sensor maximum connectivity matrix whose elements comprise of 

either ‘1’ or ‘0’. Finally, Equation (6.10) allows the decision variables ix  to take nonnegative 

integer values which may be greater than 1. For instance, 4ix =  indicates that four sensors are 

placed at the same location. 

Even though it may seem to be a simple problem by judging from the objective functions 

and constraints of the problem, the above problem is an integer nonlinear programming (INLP) 

problem which is not easy to solve exactly. However, the problem can be converted to a linear 

integer programming problem through a proper transformation. 

The objective function in Equation (6.7) can be replaced by a linear objective function: 

minimize  [ ln( )]
i j

jx
Max U
∀

 (6.11) 

where 

1
ln( ) ln( ) ln( ),  1, 2,...,

M

j j ij i i
i

U f D x s j N
=

= + =∑  (6.12) 

Thus, ln( )jU is linear in the decision variables ix  and is obtained by taking the natural 

logarithm on both sides of Equation (6.5). 

The objective function given in Equation (6.11) is still not in the standard ILP form 

because it involves minimization of the maximum value. Therefore, it is being modified again. 

minimize  [ ]
ix

U  (6.13) 

subject to 
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ln( ),  1, 2,...,jU U j N≥ =  (6.14) 

1

M

i i
i

c x TC
=

≤∑  
(6.15) 

1
1,  1, 2,...,

M

ij i
i

D x j N
=

≥ =∑  
(6.16) 

{ }0 ,  1, 2,...,ix i M+∈ ∪ =  (6.17) 

The objective function given in Equation (6.13) is now in the standard ILP form. 

6.4.2 One-Step Optimization Formulation 

It has been found that the above optimization problem typically has multiple solutions for 

unobservability of detection with different costs. Lexicographic optimization [Bhushan and 

Rengaswamy, 2000a] is one way of finding the solution with the least cost among these multiple 

solutions. This is done by obtaining a solution that optimizes the objectives in an ordered fashion. 

Minimizing the unobservability is the first objective and minimizing the cost is the next objective. 

Such an ordering would mean that a higher level objective is more important than a lower level 

objective. We will show below a single objective function that combines system unobservability 

minimization and cost minimization. 

minimize  [ ]
i

sx
U xα−  (6.18) 

subject to 

ln( ),  1, 2,...,jU U j N≥ =  (6.19) 

1

M

i i s
i

c x x TC
=

+ ≤∑  
(6.20) 

1
1,  1, 2,...,

M

ij i
i

D x j N
=

≥ =∑  
(6.21) 

{ }0 ,  1, 2,...,ix i M+∈ ∪ =  (6.22) 

{ }0sx +∈ ∪  (6.23) 

In the above problem, the objective function U  is the maximum unobservability of 

detection (on a natural log scale) among all faults, which is ensured by constraints in Equation 

(6.19). The variable sx  is the slack in the cost constraint, which takes nonnegative real values. 
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The higher the value of sx , the less cost is used for sensor placement. α  is a positive constant 

which has to be selected such that the primary objective (minimizing unobservability) still attains 

its earlier optimal value. Among all solutions which yield minimum system unobservability, the 

one which has the highest sx  will be chosen. Therefore, if the constant α  is appropriately 

selected, the solution will give a sensor network that has the least cost among all the potential 

sensor networks that yield the minimum system unobservability. 

6.4.3 Solving Unobservability Minimization Problems 

The problems presented above can be solved by standard solvers for moderate size 

problems. In this dissertation, the commercial ILP optimization software LINGO 8.0, which 

employs a branch and bound enumeration algorithm, is used to solve the formulated 

unobservability minimization problem. Also, a greedy search heuristic is developed to find the 

optimal number of sensors and their placement. The detailed procedure of the algorithm is 

described below. At each step the best available sensor is chosen. Also, a flowchart of the 

algorithm is illustrated in Figure 6.3. 

Step 1: Initialize the following variables: current solution (PS), optimal solution (OS), 

total available cost (TC), cost currently utilized (C), optimal cost utilized (OC). 

Step 2: The fault with the highest unobservability value is selected. In the case of more 

than one fault having the highest unobservability, any one among these faults may be selected. 

Step 3: Select a sensor which observes the fault chosen in the previous step, and try to 

lower the unobservability value of that fault. However, there may be more than one qualified 

sensor. Among these sensors, only those whose cost is less than the currently available cost, 

TC-C, can be chosen. Let S be the set of sensors which are connected to the selected fault, as 

well as cost of each member of S is less than or equal to TC-C. A sensor of S with the minimum 

failure probability is to be chosen because this causes a maximum decrease in the 

unobservability value of the fault under consideration. If more than one element of S satisfies this 

criteria (that is more than one element of S has the lowest failure probability), then from those, 

the one with the highest redundancy value is chosen. In case more than one sensor still satisfies 
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Figure 6.3. Flowchart for greedy search algorithm. 
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this criterion, the one with the least cost is chosen. If still there is more than one candidate, any 

sensor among those may be chosen. A crucial point is that no restriction is placed on the number 

of sensors that can be placed to observe the same node (variable). Hence, it is possible that at 

some nodes more than one sensor is placed, while some other nodes are not selected as sensor 

nodes at all. Then perform the updates on PS, C, and TC-C. After this sensor selection, 

recalculate the unobservability values of all faults and the system unobservability (maximum 

unobservability). If the system unobservability is less than the previous value, then update the 

optimal solution to be the current solution: optimal solution OS=PS, optimal cost OC=C. 

Otherwise, go back to step 2. 

Step 4: The procedure is continued until the set S becomes empty. This indicates that no 

more sensors can be selected to decrease the system unobservability. The set of sensors in PS is 

the selected sensor location. Steps 2 and 3 ensure minimization of the system unobservability. 

The procedure of updating the optimal solution only if there is a decrease in the system 

unobservability ensures that the solution is optimal in the lexicographic sense. 

Example: 

Let us still use the previous example whose bipartite graph is shown in Figure 6.4 to 

demonstrate the sensor placement algorithm. The probabilities of occurrence of faults are 

1 2 3 4 50.1, 0.1, 0.01, 0.01,  0.001f f f f and f= = = = = . The probabilities of failures of sensors 

available to measure the three measurable nodes are 1 2 30.1, 0.01,  0.001s s and s= = = . For the 

sake of illustration, we shall assume the same cost of 100 for all of the available sensors. The 

total available cost TC is equal to 400, which means four available sensors in this specific case. 

Depending on the scenario considered, different optimum sensor locations may be obtained. 

(a) Only observability of faults is considered: For this case, the optimal sensor network 

is 2 3[ (3), ]S S . Then the unobservability values of faults are as follows: 

7 7 8 11 6
1 2 3 4 51 10 , 1 10 , 1 10 , 1 10 ,  1 10U U U U and U− − − − −= × = × = × = × = ×  
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Figure 6.4. Bipartite graph for Figure 6.2 with probabilities. 

The system unobservability U  is the maximum unobservability. Hence, 

6
1 2 3 4 5max( , , , , ) 1 10U U U U U U −= = ×  

(b) Resolution for the single-fault case is also considered. Virtual faults are constructed 

exactly like we did in the previous example. 

The probabilities of occurrence of these virtual faults are: 

12 1 2

13 1 3

14 1 4

15 1 5

23 2 3

24 2 4

25 2 5

34 3 4

35 3 5

45 4 5

min( , ) 0.1
min( , ) 0.01
min( , ) 0.01
min( , ) 0.001
min( , ) 0.01
min( , ) 0.01
min( , ) 0.001
min( , ) 0.01
min( , ) 0.001
min( , ) 0.001

f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f

= =
= =
= =
= =
= =

= =
= =
= =
= =
= =
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The virtual faults are then added to the original set of faults. Performing the sensor 

location algorithm on this extended system gives 1 2 3[ (2), , ]S S S  as the optimum sensor network. 

With these sensors, the system unobservability is 41 10U −= × . 

Compared to the previous results based on the fault diagnostic observability and 

resolution criteria, it is seen that the greedy search-based optimization formulation offers a 

similar sensor network. The difference lies in the number of sensors that can be put at one 

location. Because of the additional sensor failure and fault occurrence probability information 

used in the algorithm, multiple sensors could be placed on any particular nodes in order to 

minimize the system unobservability, subject to the cost constraints. 

6.5 Summary 

In many cases, it is found that some faults are still indistinguishable using the sensor set 

obtained from the above sensor placement scheme. Nonetheless, optimal sensor placement 

design from a fault diagnosis perspective will provide valuable information to a fault diagnostic 

system based on principal component analysis, as described later in Chapter 7. The overall 

method as described in the preceding sections consists of the following steps: 

(1) Define all faults of interest in a process (including process fault and sensor fault), based 

on the operation history records and available process knowledge. Then build DG models of the 

monitored process, which can be implemented by using empirical relationships or fundamental 

mathematical model of the process. 

(2) Solve the formulated unobservability minimization problem to decide the allocation of 

sensors. The obtained sensor set would partially guarantee the detection and isolation of all the 

faults defined in the first step. 

(3) Highlight the faults that cannot be isolated by the information provided by the DG 

models and the sensor network obtained in the steps (1) and (2). Those faults will be left to the 

PCA-based fault diagnostic system for further detection and isolation. 
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Chapter 7 

Sensor Placement Design and Fault Diagnosis Application for a MSF 

Desalination System 

7.1 Introduction 

Principal component analysis (PCA) is a dimensional reduction method, where original 

data can be represented by a lower dimensional space without significant loss of the variability. 

From the modeling point of view, PCA transforms correlated variables into uncorrelated ones 

and determines the linear combinations with large and low variability [Flury, 1989]. 

Before original data are transformed into a lower dimensional space, they shall be 

mean-centered because only the variability of the data is of interest. The data are also 

standardized with unit variance so that equal weights are given to all the variables as far as the 

variability is concerned. A complete description of the PCA technique is given in this chapter 

[Jackson, 1991; Jolliffe, 2002]. Also, the sensor placement algorithms developed in Chapter 6, 

along with the PCA-based fault diagnostic approaches using the optimized sensor set, are 

demonstrated with application to a MSF desalination system. Both single-fault and dual-fault 

scenarios are considered in this application. 

7.2 Principal Component Analysis for Fault Diagnosis 

The basic idea of fault diagnosis using multivariate statistical methods such as PCA is to 

project the collected data onto a low-dimensional space where the regions of normal operation 

and abnormal operation can be characterized by fewer state variables. 

Because a PCA model represents the variation of normal operation data in a reduced 

dimensional space, it has better performance of generalization than when the entire measurement 

space is used. PCA modeling separates the entire measurement space into a model subspace 

capturing the variation of state variables and a residual subspace containing random variations. 

The separate characterization of the two subspaces can provide further insights in terms of the 
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changes in operation conditions. In addition, the linear model extracted by PCA enables us to 

determine which variables are most affected by a fault and which variables are most responsible 

for the fault. 

The fault detection and isolation (FDI) methodology consists of building a PCA model to 

characterize the relationships among various measurements. A breakdown in the relationships is 

indicated as abnormal prediction residuals or lack of fit with the model and may be used for fault 

detection. Characteristic patterns in the residuals most probably correspond to faults of a 

particular type and thus may be used for fault isolation. It shall be emphasized that this is true 

irrespective of the type of a model that is used. More formally, given a model, the detection and 

isolation of faults may be achieved using the residuals that signify the mismatch between the 

model predictions and the actual data. It is worth noting that the isolation procedure developed 

here requires all possible faults are postulated, thus enabling the generation of fault residual 

sub-spaces. 

7.2.1 PCA Algorithm 

PCA is a statistical algorithm of dimension reduction by projecting data on to a lower 

dimensional space such that the major variation of the original data can be preserved. Given a 

normalized process data matrix X  ( m n× ) composed of m  observations with n  measured 

variables. PCA decomposes X  into two components, a predicted value X  and an error value 

E , which determine two orthogonal subspaces, i.e., the principal component (PC) subspace and 

the residual component (RC) subspace, respectively. 

T

T
E E

X X E

X TP
E T P

= +

=

=  

(7.1) 

where P  is the orthogonal loading matrix and T  is the score matrix. The scores T  in the PC 

subspace explain the dominant variation of the measured variables, and the scores ET  in the RC 

subspace represent the insignificant variation due to model reduction error. The column vectors 

of principal component loadings P  ( n l× ) are the eigenvectors corresponding to the l  largest 
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eigenvalues of the correlation matrix of the data matrix X  and the columns of EP  are the 

eigenvectors corresponding to the smallest n l−  eigenvalues. 

The number of PCs retained in a PCA model, l , can be estimated as its corresponding 

cumulative percentage variance (CPV) greater than a predetermined value (80%, for example) or 

using algorithms such as the L-curve method. Valle et al. [1999] proposed a new method of 

variance reconstruction error (VRE) to select the number of PCs and compared it with ten other 

methods, including Akaike information criterion (AIC), cross validation (based on the PRESS 

and R ratio), and CPV, etc. Here the CPV is adopted for its simplicity and satisfactory 

performance. For more complicated applications, other advanced techniques, i.e. VRE, AIC, and 

cross validation, might be used. 

Singular value decomposition (SVD) of the correlation matrix of X  can be easily used 

to obtain the PCs. This technique is briefly described below. 

A singular value and corresponding singular vector of a matrix X  ( m n× ) are a scalar 

δ  and a pair of vectors u  and v  that satisfy: 

uvX ** δ=  (7.2) 

By comparison, an eigenvalue λ and the corresponding eigenvector e  of an n n×  

square matrix TA X X=  is defined by: 

eeA ** λ=  (7.3) 

The corresponding matrices of singular values of X  and the eigenvalues of A  are 

written as 

1

2

0 0
0

0

0
0 0

n

δ
δ

δ
=∑

…

… … , 

1

2

0 0
0

0
0 0 n

D

λ
λ

λ

=

 

(7.4) 
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The corresponding singular vectors form the columns of two orthogonal matrices U  

and V , and the eigenvectors of the input matrix X  form the matrix E : 

[ ]
1 2

1 2

1 2

[ , , , ]
, , ,

[ , , , ]

m

n

n

U u u u
V v v v
E e e e

=

=

=  

(7.5) 

The matrices X  and A  are written as 

TVUX **∑=  (7.6) 
TEDEA **=  (7.7) 

Since U  and V  are orthogonal matrices, Equation (7.6) becomes the singular value 

decomposition, and Equation (7.7) is the eigenvalue decomposition. 

The singular value decomposition of an m n×  matrix X  results in an m m×  U  

matrix, an m n×  matrix ∑ , and an n n×  matrix V . The column vectors of V  are the 

principal components or eigenvectors of the input matrix X , and V  is the same as the matrix 

E . 

Since 

( ) ( )TT T T T T T T TX X U V U V V U U V V V= ∑ ∑ = ∑ ∑ = ∑ ∑
  

T TA X X EDE= =  and E V=   

Then 

TD = ∑ ∑   

Therefore, we can always get the same principal components for a matrix using either the 

SVD technique or through the eigenvalue decomposition of the covariance matrix. 

In general, the eigenvalue decomposition is the appropriate tool for analyzing a matrix 

when it represents a mapping from a vector space onto itself, as it does for an ordinary 

differential equation. On the other hand, the singular value decomposition is appropriate for 

analyzing a mapping from one vector space onto another vector space, possibly with a different 

dimension. 
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7.2.2 Fault Detection 

Fault detection can be performed by monitoring the change of the correlation structure of 

the measured data. Because the variation of data is separated in the PC subspace and RC 

subspace, two statistics, namely 2T  and Q , are defined to measure the variation in the two 

spaces, respectively. If a new observation exceeds the effective region in the PC space defined 

by the normal operation data, a change in operation regime can be detected. If a significant 

residual is observed in the RC space, a special event, either due to disturbance changes or due to 

changes in the relationship between variables, can be detected. 

The 2T  statistic measures the variation in the PC subspace, which is defined as: 

2 1 1 2T T T
i i i i i TT t t x P P xλ λ δ− −= = ≤  (7.8) 

where λ  is a diagonal matrix of the first l  eigenvalues of the correlation matrix of X , which 

are associated with the PCs retained in the model. i it x P=  is referred to as the principal score 

vector on the thi  eigenvector of the PCA model. P  is the set of PCs kept in the model and ix  

is the thi  observation. Here 2
Tδ  is the control (or confidence) limit of the 2T  statistic. 

The 2T  statistic may be oversensitive when some of the eigenvalues of the correlation 

matrix are close to zeros. Another limitation of the 2T  statistic arises from the assumption that 

the raw data follows multivariate normal distribution. The assumption is true only when the 

normal operation data are collected at one operating condition. However, the normal operation 

data are usually collected under different operating conditions for an engineering process where 

many operation modes are possible. Therefore, one shall be cautious when the 2T  statistic is 

used for process monitoring. 

The statistic used in the RC subspace is the Q  statistic, or the squared prediction error 

(SPE), which is defined as: 

2( )T T T
i i i i i QQ e e x I PP x δ= = − ≤  (7.9) 

where 2
Qδ  is the control limit of the Q  index. 
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The Q  statistic quantifies the lack of fit between the sample and the model and denotes 

the distance of the sample from the nominal operation surface. Under the standard assumptions 

of a multivariate normal distribution for error matrix E , control limits at confidence level α  

may be obtained using the 2χ  distribution as [Jackson and Mudholkar, 1979]: 

01/
2

2 0 2 0 0
1 2

1 1

2 ( 1)1 ,

h
c h h hQ α

α

⎡ ⎤Θ Θ −
⎢ ⎥= Θ + +

Θ Θ⎢ ⎥⎣ ⎦  
(7.10) 

where 

( )  for 1, 2,3
1

T
i

i
EEtrace i
I

Θ = =
−  

 

1 3
0 2

2

21
3

h Θ Θ
= −

Θ  

 

And cα  is the standard normal deviate (2.57 for 0.01α = ). In the above equations, i  

is the number of samples in the normal operation set and iΘ  is the sum of the thi  power of the 

singular values of 0.5/( 1)E I − . For normal operation, the Q  statistic would be very small. 

Detection of faults is accomplished as violations of the control limit, that is, when Q  exceeds 

Qα . Because the assumption that the residual vector follows multivariate normal distribution is 

much more relaxed than multivariate normal distribution of the original measured data, the Q  

statistic is more appropriate than the 2T  statistic for process monitoring. 

7.2.3 Fault Isolation 

Building a model to characterize the relationships among the various measurements is an 

essential part of the FDI methodology. Patterns of the residuals that signify the mismatch 

between the model and the actual data most likely correspond to faults of a particular type. 

Specifically, different faults would cause the corresponding residuals to orient toward different 

directions. These various prediction error directions are referred as the fault directions, and the 

particular fault may be isolated as the one with maximum projection on the enumerated set of 

fault directions. The proposed fault isolation scheme is described as follows [Kaistha and 

Upadhyaya, 2001]. 
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Let [ ]1 2 3  ... RF f f f f= , where 1 2 3 ... Rf f f f  are column vectors, denote the fault 

directions for the various fault scenarios that are observed in an existing database. These fault 

directions can be extracted from the historical data using clustering techniques. The fault 

direction if  in the fault matrix F  represents the direction in the residual space for the thi  

fault such that the samples corresponding to the fault have the maximum projection on if . In 

other words, if iE  denotes the residuals for samples corresponding to the thi  fault, the 

optimization problem is 

max
i

T T
i i i if

J f E E f=
 (7.11) 

subject to the constraint 

1T
i if f =  (7.12) 

Using the Lagranian multiplier and differentiating J  with respect to if  and setting the 

derivative to zero for maximization, 

2 2 0T
i i i iE E f fσ− =  (7.13) 

and 

T
i i i iE E f fσ=  (7.14) 

The fault direction if  is thus obtained as the first eigenvector of T
i iE E . The SVD 

technique may be used to obtain the eigenvector. 

Once the fault matrix F  is properly defined, fault isolation is accomplished by 

calculating the projections onto F  and classifying the fault as the one with the maximum 

projection norm. A fault isolation index for the thi  fault is defined as 

1 /i iFI Q Q= −  (7.15) 

where 

( )( )T T T
i i i i iQ e I f f I f f e= − −  (7.16) 
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In the above equations, iQ  is the distance of the sample from the origin after subtracting 

the projection of the residuals on the fault direction if . It represents the sum of squares of 

residuals remaining after removing the contribution from the thi  fault direction. The fault 

isolation index quantifies the fraction of Q  that is due to if . When a particular type of fault 

scenario, the thj , occurs, the projection of the residuals on jf  would be very high. In other 

words, iFI  would be the largest and close to 1 for i j= , where i  varies from 1 to R . This 

results in the isolation of the fault from the various existing scenarios. 

In historical databases, the number of fault scenarios and the correspondence of the fault 

samples to the particular fault scenarios are not known a priori. Classification of the residuals 

must then be used to establish the number of fault scenarios and also the correspondence of the 

samples to the particular scenarios. Existing classification algorithms [James, 1985] can be 

suitably adapted for this purpose. 

7.3 DG Model Development of a MSF System 

A MSF desalination process has been described in Chapter 4. Due to the large size of the 

MSF plant, it must be appropriately divided into sections before the DG models can be built. The 

structural decomposition is quite suitable for this case thanks to the similarities among stages. A 

directed graphical model is built for each stage, which only consists of its process variables. 

Each DG model is a qualitative model corresponding to a normal stage. It can be obtained either 

automatically by a computer program using the modular approach or by using the set of 

equations employed in the quantitative model. The first method builds a DG model by joining 

the common nodes of the corresponding sub-models (e.g. DGs of valves, pumps, etc). These 

sub-models are contained in a given model library. In this work, the second method is adopted. 

That is, DG models are obtained from the equations of the quantitative models, which were 

described in Chapter 4. 
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Figure 7.1 illustrates the input and output variables in the brine heater and the first flash 

stage of the MSF plant; and Table 7.1 lists the definitions of these variables. Figure 7.2 shows 

the DG model corresponding to the brine heater and the first stage. 

Figure 7.3 shows a flash stage with its input and output variables. The definitions of the 

variables are listed in Table 7.2. The DG model of a generic flash stage i  is illustrated in Figure 

7.4. 

For the sake of illustration, we shall employ a simplified MSF system with two flash 

stages and a brine heater to demonstrate the developed sensor placement and fault diagnostic 

approaches. The DG model of this system is shown in Figure 7.5. The yellow F  nodes 

represent the root nodes of the system, each of which corresponds to a fault. The 27 

measurements that are available are listed in Table 7.3. And Table 7.4 lists eight fault cases that 

need to be monitored. The fault diagnosis of the simplified MSF system takes into account the 

sensor faults, process faults, and controller faults. The four sensor faults are all sensor drifts; the 

heat transfer degradation faults of flash stages #1 and #2 are considered to be process anomalies 

in the MSF system. Changes in the set points of the top brine temperature (TBT) controller and 

the brine level controller of stage #2 are identified as the two controller faults for the desalination 

process. 

 

Steam

Condensate

0BT
T
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1P

1L

0sT

 

Figure 7.1. Brine heater section of a MSF plant. 
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Figure 7.2. Directed graph of brine heater section. 
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Table 7.1. DG model variables of brine heater 

Variable Definition 
STEAMT  Inlet steam temperature 

STEAMW  Inlet steam flow rate 

0BT  Top brine temperature 

0sT  Top brine temperature set point 

1BT  Flashing brine temperature exiting stage #1 

1FT  Cooling brine temperature exiting stage #1 

2FT  Cooling brine temperature exiting stage #2 

1PT  Distillate product temperature exiting stage #1 

1FW  Cooling brine flow exiting stage #1 

2FW  Cooling brine flow exiting stage #2 

0BW  Cooling brine flow exiting the brine heater 

1BW  Flashing brine flow exiting stage #1 

1PW  Distillate product flow exiting stage #1 

FX  Inlet cooling brine salinity 

1BX  Flashing brine salinity exiting stage #1 

1L  Brine level in stage #1 

1P  Stage #1 pressure 
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Figure 7.3. A generic flash stage of a MSF plant. 

 
 
 
 

 

Figure 7.4. Directed graph of a flash stage i . 
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Table 7.2. DG model variables of flash stage i  

Variable Definition 

iFT  Cooling brine temperature exiting stage i  

1iFT
+

 Cooling brine temperature entering stage i  

iPT  Distillate product temperature exiting stage i  

1iPT
−

 Distillate product temperature entering stage i  

iBT  Flashing brine temperature exiting stage i  

1iBT
−

 Flashing brine temperature entering stage i  

iFW  Cooling brine flow exiting stage i  

1iFW
+

 Cooling brine flow entering stage i  

iPW  Distillate product flow exiting stage i  

1iPW
−

 Distillate product flow entering stage i  

iBW  Flashing brine flow exiting stage i  

1iBW
−

 Flashing brine flow entering stage i  

iBX  Flashing brine salinity exiting stage i  

1iBX
−

 Flashing brine salinity entering stage i  

iL  Brine level in stage i  

sL  Brine level set point 

iP  Stage i  pressure 
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Figure 7.5. Directed graph of a two-stage MSF system. 
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Table 7.3. Two-stage MSF system available variables 

Index Description 
S1 Inlet cooling brine temperature 

S2 Inlet cooling brine flow 

S3 Inlet cooling brine salinity 

S4 Inlet steam temperature 

S5 Inlet steam flow rate 

S6 Distillate product temperature exiting stage #1 

S7 Distillate product temperature exiting stage #2 

S8 Flashing brine temperature exiting stage #1 

S9 Flashing brine temperature exiting stage #2 

S10 Cooling brine temperature exiting stage #1 

S11 Cooling brine temperature exiting stage #2 

S12 Flashing brine flow exiting stage #1 

S13 Flashing brine flow exiting stage #2 

S14 Flashing brine salinity exiting stage #1 

S15 Flashing brine salinity exiting stage #2 

S16 Top brine temperature 

S17 Top brine temperature controller set point 

S18 Distillate product flow exiting stage #1 

S19 Distillate product flow exiting stage #2 

S20 Stage #1 pressure 

S21 Stage #2 pressure 

S22 Brine level in stage #1 

S23 Brine level in stage #2 

S24 Stage #2 brine level controller set point 

S25 Cooling brine flow exiting the brine heater 

S26 Cooling brine flow exiting stage #1 

S27 Cooling brine flow exiting stage #2 
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Table 7.4. Faults considered for two-stage MSF system 

Fault Nodes System Faults 
F1 Inlet cooling brine temperature sensor drift 

F2 Inlet cooling brine flow sensor drift 

F3 Inlet cooling brine salinity sensor drift 

F4 Flashing stage #1 heat transfer degradation 

F5 Flashing stage #2 heat transfer degradation 

F6 Top brine temperature sensor drift 

F7 Top brine temperature controller fault 

F8 Stage #2 brine level controller fault 

 

7.4 Sensor Placement Design 

Both the greedy search heuristic and LINGO 8.0 are used to find the minimum set of 

sensors required to observe all the eight faults listed in Table 7.4 for the two-stage MSF system. 

This is a set-covering problem that has been discussed in Chapter 6. This optimization problem 

can be formulated as follows: 

27

1
minimize [ ]i

i
x

=
∑  (7.17) 

subject to 

27

1

1,  1,...,8ij i
i

D x j
=

≥ =∑  (7.18) 

{0,1},  1,..., 27ix i∈ =  (7.19) 

Equation (7.17) is the objective function of the set-covering problem, where ix  is the 

decision variable. Equation (7.18) is a constraint to ensure that each column (fault) is covered by 

at least one row (sensor location) where ijD  is the ( , )thi j  entry of the fault-sensor maximum 

connectivity matrix whose elements comprise of either ‘1’ or ‘0’. A row i  ( 1,...,i m= ) covers a 

column j  ( 1,...,j n= ) if 1ijD = . Finally, Equation (7.19) allows the decision variables ix  to 

only take binary numbers. 
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Both methods give nodes 9 15 16 23[ , , , ]S S S S  as the sensor set. Although all the faults can 

be detected, not every fault can be distinguished from one another. 

To obtain the set of sensors that would give maximum resolution under single-fault 

assumption, additional virtual faults have to be created as discussed in Chapter 6. Sets A  are 

associated with the original faults. The virtual faults ij i j i jB A A A A= ∪ − ∩ are also constructed. 

This involves generation of 2
8 28C =  virtual faults, so that the system now has 36 faults. Now 

each ijB  is represented as a fault node, and a bipartite graph is constructed between these nodes 

and the sensor nodes. The new bipartite graph is added to the original bipartite graph, and the 

new optimization problem can be modified as follows: 

27

1
minimize [ ]i

i
x

=
∑  (7.20) 

subject to 

27

1

1,  1,...,36ij i
i

D x j
=

≥ =∑  (7.21) 

{0,1},  1,..., 27ix i∈ =  (7.22) 

The greedy search based heuristic presented for fault diagnostic observability criterion is 

applied to the new problem. This gives 1 2 3 8 9 10 11 12 15 16 17 23 24[ , , , , , , , , , , , , ]S S S S S S S S S S S S S  as the 

minimum sensor set for full isolation of the selected faults. 

For the dual-fault case, solving the sensor location problem is done by assuming that two 

simultaneous faults can occur along with the possibility of the occurrence of a single fault. Under 

this assumption, the sets ij i jA A A= ∪  are formed for all faults. Each new virtual fault is treated 

as a root node along with the original faults. The above greedy algorithm gives 

1 2 3 8 9 10 11 12 15 16 17 23 24[ , , , , , , , , , , , , ]S S S S S S S S S S S S S  as the set of sensor nodes. An interesting point 

to note is that the minimum number of sensors for solving single-fault and dual-fault resolution 

problems turns out to be the same. This would mean that dual-fault resolution cannot be 

improved with adding more sensors. This is a result that is not obvious from the DG of the 

process. 
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7.5 PCA Model Development of a MSF System 

In the previous section, the design problem of sensor network with maximum fault 

resolution using fault observability criterion has been presented. The greedy search algorithm 

gives 1 2 3 8 9 10 11 12 15 16 17 23 24[ , , , , , , , , , , , , ]S S S S S S S S S S S S S  as the minimum sensor set for fully 

isolation of the identified faults. The advantage of using this optimized sensor set is that more 

information about the system is utilized, and some basic properties such as the fault detectability 

and identifiability are already partially guaranteed before PCA has been employed to monitor 

system behavior. 

7.5.1 Database Generation 

A normal operation database was generated using the developed two-stage MSF 

SIMULINK model. The TBT controller set point and the brine level controller set point in the 

last flashing stage (Stage #2) were systematically changed one at a time. About 1,728 cases were 

simulated and the data generated were stored in a database. The list of the measured variables 

used to develop the PCA model is given in Table 7.5. 

7.5.2 PCA Modeling 

A PCA model is built using the data for the nominal operation case. The nominal 

operation data matrix is preprocessed by auto-scaling the columns in the data matrix to zero 

mean and unit variance. This puts all the measurements with their different units on a common 

unit variance scale. The percentage information explained by each PC is shown in Figure 7.6. 

Five principal components are retained, and they explain ~99.9% of the total variation in the data, 

indicating the high degree of redundancy in the measurements. The 2T  and Q  statistics with 

95% confidence level for the samples in the fault-free database are plotted in Figure 7.7 and 

Figure 7.8, respectively. If the corresponding statistics exceeds the limit, the confidence to state 

that the fault free model cannot explain the data is at a level greater than 95%. The two figures 

illustrate that all the fault free data are well below the limit lines. The probability of false alarms 

due to process disturbance is low. 
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Table 7.5. MSF variables used to develop PCA models 

Variable Description 
1 Inlet cooling brine temperature (S1) 
2 Inlet cooling brine flow (S2) 
3 Inlet cooling brine salinity (S3) 
4 Flashing brine temperature exiting stage #1 (S8) 
5 Flashing brine temperature exiting stage #2 (S9) 
6 Cooling brine temperature exiting stage #1 (S10) 
7 Cooling brine temperature exiting stage #2 (S11) 
8 Flashing brine flow exiting stage #1 (S12) 
9 Flashing brine salinity exiting stage #2 (S15) 
10 Top brine temperature (S16) 
11 Top brine temperature controller set point (S17) 
12 Brine level in the stage #2 (S23) 
13 Stage #2 brine level controller set point (S24) 
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Figure 7.6. Percentage of variance explained by principal components. 
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Figure 7.7. Q  statistic for MSF PCA model. 
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Figure 7.8. 2T  statistic for MSF PCA model. 
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7.6 Fault Detection Results 

Under normal conditions, small residuals would be generated and limited to a certain 

range. In the test cases when one or several components in the system are under degradation, the 

so-called causal relations among these variables will be violated. As a result, the mapping of 

residuals from residual generators or system models will increase in a specific direction. As an 

example, Figure 7.9 (a) shows the residual patterns from the PCA models when there is a drift of 

0.2% to 1% nominal value in the inlet cooling brine temperature sensor (Fault #1). The residuals 

are the differences between the measurement values and their PCA model predictions. Figure 7.9 

(b) shows a significant increase in the Q  statistic of the PCA model exceeding the 95% 

confidence level. The 2T  statistic for the faulty conditions stays within the range, as in Figure 

7.9 (c). This would be categorized as the fault scenario where the Q  statistic is outside the 

limits and the 2T  statistic is within the limits [Humberstone, 2010]. These illustrate the 

capability of data-driven models in detecting system anomalies. It should be kept in mind that 

both 2T  and Q  statistics must be used for fault detection. Either statistic being violated will 

signify that a fault has happened. Violation of the 2T  statistic represents that the system 

operates at an abnormal state beyond the model space, while departure of the Q  statistic 

represents that some of the constraint equations defined in the residual space are violated and the 

system is abnormal. 

It is clear that the residuals reflect not only whether there is an abnormal component, but 

also the severity of the fault, which is very important in helping the operator or the automatic 

controller to select the correct strategy in order to avoid severe negative effect caused by faulty 

devices. The residual patterns for the other seven faults are shown in the following figures 

(Figure 7.10-7.16). 

It should be noted that PCA can only deal with steady-state condition or a slow dynamic 

process. The algorithm to perform PCA based fault detection is only applicable to steady-state 

condition. The confidence level will affect the false alarm. In a real application, the confidence 

level needs to be adjusted according to the operation requirements. 
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Figure 7.9. Residual pattern for inlet cooling brine temperature sensor drift (Fault #1). 
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Figure 7.10. Residual pattern for inlet cooling brine flow sensor drift (Fault #2). 
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Figure 7.11. Residual pattern for inlet cooling brine salinity sensor drift (Fault #3). 
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Figure 7.12. Residual pattern for flashing stage #1 heat transfer degradation (Fault #4). 
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Figure 7.13. Residual pattern for flashing stage #2 heat transfer degradation (Fault #5). 
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Figure 7.14. Residual pattern for top brine temperature sensor drift (Fault #6). 
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Figure 7.15. Residual pattern for top brine temperature controller fault (Fault #7). 
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Figure 7.16. Residual pattern for Stage #2 brine level controller fault (Fault #8). 
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7.7 Fault Isolation Results 

Under normal conditions, small residuals would be generated and limited to a certain 

range. In the test cases when one or several components in the system are under degradation, the 

causal relations among the variables will be violated. As a result, the mapping of residuals from 

residual generators or system models will increase in a specific direction. 

7.7.1 Single-Fault Cases 

The PCA fault direction analysis is performed through processing the fault residuals. The 

eight fault directions which correspond to the eight fault scenarios considered for the MSF 

system are given in Table 7.6. 

The following plots (Figures 7.17 - 7.24) illustrate the fault isolation indices for the eight 

fault cases. For instance, Figure 7.17 shows the fault isolation index for the inlet cooling brine 

temperature sensor drift (Fault #1) scenario in the MSF system. Note that the fault index is close 

to unity for the particular fault that occurs and is smaller for the others. 

 

Table 7.6. PCA fault direction analysis for MSF system under single fault assumption 

Fault direction # System faults % of residual variances 
explained by the 1st PC 

1 Inlet cooling brine temperature sensor drift 92.56% 

2 Inlet cooling brine flow sensor drift 88.29% 

3 Inlet cooling brine salinity sensor drift 94.45% 

4 Flashing stage #1 heat transfer degradation 93.68% 

5 Flashing stage #2 heat transfer degradation 91.15% 

6 Top brine temperature sensor drift 89.47% 

7 Top brine temperature controller fault 86.44% 

8 Stage #2 brine level controller fault 87.96% 
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Figure 7.17. Fault isolation index for inlet cooling brine temperature sensor drift. 
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Figure 7.18. Fault isolation index for inlet cooling brine flow sensor drift. 
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Figure 7.19. Fault isolation index for inlet cooling brine salinity sensor drift. 
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Figure 7.20. Fault isolation index for flashing stage #1 heat transfer degradation. 
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Figure 7.21. Fault isolation index for flashing stage #2 heat transfer degradation. 
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Figure 7.22. Fault isolation index for top brine temperature sensor drift. 
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Figure 7.23. Fault isolation index for top brine temperature controller fault. 
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Figure 7.24. Fault isolation index for Stage #2 brine level controller fault. 



135 

As can be seen from the above figures, all fault cases are diagnosed correctly using the 

developed fault isolation approach. Thus, PCA provides a convenient method in dealing with 

directional residuals. The important assumption that should be emphasized is that the faulty 

residuals are projected onto the first eigenvector of the residual covariance matrix without losing 

the direction. In other words, the first PC provides most of the information about the faulty 

device. However, one shall be cautious about this assumption since it is not always satisfied, 

especially during a transient of the system operation. Nonetheless, the PCA algorithm 

demonstrates its effectiveness for fault detection and isolation in complex systems with the 

optimized sensor allocation, and therefore deserves further studies. 

7.7.2 Dual-Fault Cases 

The PCA based directional approach can be extended to detect and isolate 

multi-dimensional faults such as simultaneous multiple faults. The application to the two-stage 

MSF system is presented in this section. It is assumed that the possible simultaneous faults are 

limited to dual faults for all the considered faults in the system. The previous work that is 

publicly available on simultaneous multiple fault detection is rather limited [Watanabe, 1994]. 

The research results presented in this section are, therefore, original contributions to the area of 

fault diagnosis. 

The same sensor set is applied to detect and isolate the dual faults. As in the single fault 

cases, the following eight fault directions which correspond to the eight fault scenarios are 

defined in the designed FDI scheme: 

Single fault direction 1: Inlet cooling brine temperature sensor drifting fault 

Single fault direction 2: Inlet cooling brine flow sensor drifting fault 

Single fault direction 3: Inlet cooling brine salinity sensor drifting fault 

Single fault direction 4: Flashing stage #1 heat transfer degradation 

Single fault direction 5: Flashing stage #2 heat transfer degradation 

Single fault direction 6: Top brine temperature sensor drifting fault 

Single fault direction 7: Top brine temperature controller fault 

Single fault direction 8: Stage #2 brine level controller fault 
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The additional dual-fault directions are considered as well: 

Dual fault direction 1: Inlet cooling brine temperature sensor drifting fault & Inlet 

cooling brine flow sensor drifting fault 

Dual fault direction 2: Inlet cooling brine temperature sensor drifting fault & Inlet 

cooling brine salinity sensor drifting fault 

Dual fault direction 3: Inlet cooling brine temperature sensor drifting fault & Flashing 

stage #1 heat transfer degradation 

Dual fault direction 4: Inlet cooling brine temperature sensor drifting fault & Flashing 

stage #2 heat transfer degradation 

Dual fault direction 5: Inlet cooling brine temperature sensor drifting fault & Top brine 

temperature sensor drifting fault 

Dual fault direction 6: Inlet cooling brine temperature sensor drifting fault & Top brine 

temperature controller fault 

Dual fault direction 7: Inlet cooling brine temperature sensor drifting fault & Stage #2 

brine level controller fault 

Dual fault direction 8: Inlet cooling brine flow sensor drifting fault & Inlet cooling brine 

salinity sensor drifting fault 

Dual fault direction 9: Inlet cooling brine flow sensor drifting fault & Flashing stage #1 

heat transfer degradation 

Dual fault direction 10: Inlet cooling brine flow sensor drifting fault & Flashing stage #2 

heat transfer degradation 

Dual fault direction 11: Inlet cooling brine flow sensor drifting fault & Top brine 

temperature sensor drifting fault 

Dual fault direction 12: Inlet cooling brine flow sensor drifting fault & Top brine 

temperature controller fault 

Dual fault direction 13: Inlet cooling brine flow sensor drifting fault & Stage #2 brine 

level controller fault 

Dual fault direction 14: Inlet cooling brine salinity sensor drifting fault & Flashing stage 

#1 heat transfer degradation 
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Dual fault direction 15: Inlet cooling brine salinity sensor drifting fault & Flashing stage 

#2 heat transfer degradation 

Dual fault direction 16: Inlet cooling brine salinity sensor drifting fault & Top brine 

temperature sensor drifting fault 

Dual fault direction 17: Inlet cooling brine salinity sensor drifting fault & Top brine 

temperature controller fault 

Dual fault direction 18: Inlet cooling brine salinity sensor drifting fault & Stage #2 brine 

level controller fault 

Dual fault direction 19: Flashing stage #1 heat transfer degradation & Flashing stage #2 

heat transfer degradation 

Dual fault direction 20: Flashing stage #1 heat transfer degradation & Top brine 

temperature sensor drifting fault 

Dual fault direction 21: Flashing stage #1 heat transfer degradation & Top brine 

temperature controller fault 

Dual fault direction 22: Flashing stage #1 heat transfer degradation & Stage #2 brine 

level controller fault 

Dual fault direction 23: Flashing stage #2 heat transfer degradation & Top brine 

temperature sensor drifting fault 

Dual fault direction 24: Flashing stage #2 heat transfer degradation & Top brine 

temperature controller fault 

Dual fault direction 25: Flashing stage #2 heat transfer degradation & Stage #2 brine 

level controller fault 

Dual fault direction 26: Top brine temperature sensor drifting fault & Top brine 

temperature controller fault 

Dual fault direction 27: Top brine temperature sensor drifting fault & Stage #2 brine level 

controller fault 

Dual fault direction 28: Top brine temperature controller fault & Stage #2 brine level 

controller fault 

Both single-fault directions and dual-fault directions are used as fault signature for dual 

fault isolation. Vector projection is introduced for isolating different dual faults. In this method, 
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the PCA is used for fault signature collection from the samples corresponding to the different 

single-fault and dual-fault scenarios. Through the clustering techniques described in the previous 

sections, the first eigenvector of faulty residuals is obtained as the fault direction in the residual 

space. Finally, the new faulty samples are projected onto each fault direction. If a fault is of a 

particular type, the projection of the residuals of that fault direction would be higher than those 

of other directions. In case of a dual-fault scenario occurs, the samples are expected to have large 

projections on the both single-fault directions in the residual space for the two faults involved. 

As far as the dual-fault direction is concerned, we expect to see the maximum projection of the 

faulty sample residuals on the corresponding dual-fault direction. 

Figures 7.25 - 7.31 show the plots of the fault directions of the measurements for the first 

seven dual-fault cases, all of which involve the inlet cooling brine temperature sensor drifting 

fault. As can be seen, the directional signatures of the studied dual-faults are around 0.2~0.4 

when they are projected onto the 8 single-fault directions, as opposed to the much higher values 

shown in the previous section for the single-fault cases. This is expected due to the difference 

between single-fault and dual-fault scenarios. Nevertheless, the single-fault directional signatures 

for the dual-faults are still distinct enough to provide an initial idea of fault isolation. The bottom 

plots of Figure 7.25-7.31, which are the plots of the residual projections onto the 28 dual-fault 

directions, clearly illustrate the maximum projection of around one on the corresponding fault 

direction for each of the seven studied dual-fault cases. All fault cases are diagnosed correctly 

using the developed fault isolation approach. A caveat with the developed PCA fault diagnostic 

method is the faults considered for the system of interest must be defined beforehand. In the 

event of undefined faults occurring in the system, one may be able to observe the faults using the 

fault directional approach, but the clear fault isolation may not be achievable with the existing 

fault directions. These faults, if properly identified later, may be included in the fault set. 

The fault isolation results for the remaining dual-fault cases are given in Appendix C. 
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Figure 7.25 Fault isolation index for dual-fault case #1. 
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Figure 7.26 Fault isolation index for dual-fault case #2. 
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Figure 7.27 Fault isolation index for dual-fault case #3. 
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Figure 7.28 Fault isolation index for dual-fault case #4. 
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Figure 7.29 Fault isolation index for dual-fault case #5. 
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Figure 7.30 Fault isolation index for dual-fault case #6. 
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Figure 7.31 Fault isolation index for dual-fault case #7. 

7.8 Summary 

In this chapter, the developed optimum sensor placement design formulations and a 

PCA-based fault diagnostic method were employed to diagnose the faults defined within a MSF 

system. When the optimal sensor sets were used, both sensor faults and process faults were 

correctly detected and isolated using 2T  and Q  statistics, as well as fault isolation index. It 

was also discovered through the FDI case studies that the PCA fault diagnostic approach could 

be extended to detect and isolate simultaneous dual-faults using the optimal sensor sets identified 

for the single-fault cases, in which case both single-fault and dual-fault directions shall be used 

as fault signatures in order to achieve dual-fault isolation. The fault diagnostic results 

demonstrated the effectiveness of the developed FDI methods, when used in conjunction with the 

optimal sensor selection strategy. 
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Chapter 8 

Sensor Placement Design and Fault Diagnosis Application for HCSG 

Systems 

8.1 HCSG System Description 

International Reactor Innovative and Secure (IRIS) is one of the next generation nuclear 

reactor designs for near term deployment. This integral LWR type system has eight helical coil 

steam generators (HCSG) connected to four steam lines and four feed water lines. Eight steam 

generators are installed in four pairs in the annular space between the core barrel and the reactor 

vessel wall, which is shown in Figure 8.1 [Carelli et al., 2003]. On the primary side, each reactor 

coolant pump (RCP) is dedicated to discharging primary coolant into one steam generator. 

Therefore, each RCP+HCSG module constitutes a separate flow path. On the secondary side, a 

common feed water supply line splits at the vessel and goes to two steam generators. Similarly, 

the steam discharge lines from two steam generators join to create a common steam line. 

 

Figure 8.1. IRIS steam generator layout [Carelli et al., 2003]. 
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This pairing design of steam generators reduces the number of feed water and steam lines, 

and the number of penetrations into and out of the containment, but it has an unfavorable 

consequence on individual steam generator monitoring in terms of its thermal performance and 

the secondary flow rate. Figure 8.2 shows a schematic of one pair of steam generators. 

Twelve potential sensor locations shown in Figure 8.2 are denoted in numerical order as 

follows: 

1. Primary pump outlet; 

2. Primary inlet of steam generator 1; 

3. Primary outlet of steam generator 1; 

4. Primary inlet of steam generator 2; 

5. Primary outlet of steam generator 2; 

6. Cold leg connection line; 

7. Feedwater connection line; 

8. Secondary inlet of steam generator 2; 

9. Secondary outlet of steam generator 2; 

10. Secondary inlet of steam generator 1; 

11. Secondary outlet of steam generator 1; 

12. Steam connection line. 

 

Figure 8.2. A schematic of a pair of HCSGs [Zhao, 2005a]. 
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For one pair of HCSGs, the steady state models that are based on mass balance and heat 

balance equations are given as follows. 

1 2 4
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6 3 5

12 9 11

10 11
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The symbols , ,  W h and T  denote mass flow rate, specific enthalpy, and temperature, 

respectively. The numeric number appended to the symbols corresponds to a potential sensor 

location in the HCSG system configuration, as shown in Figure 8.2. It is assumed that the system 

pressures are constant. Thus, the specific enthalpy can be approximated as a function of local 

fluid temperature. We shall build a HCSG digraph upon these steady state linear balance 

equations for one pair of HCSGs due to the symmetry of their configuration. 

The HCSG digraph is shown in Figure 8.3. The yellow nodes represent the root nodes of 

the system, each of which corresponds to a fault. Table 8.1 lists the six faults that the HCSG 

diagnostic system needs to monitor. Both process faults and sensor faults are considered in the 

HCSG fault diagnosis. The three sensor faults considered are sensor drifts; and the thermal 

degradation of SG-A and SG-B, as well as the secondary flow distribution anomaly, are process 

faults considered for the HCSG systems. The digraph has clearly illustrated the cause-effect 

relationships among the involved variables and the propagation pathways from the fault nodes to 

the other nodes. 
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Figure 8.3. Directed graph of a pair of HCSGs. 

 

Table 8.1. Fault nodes of a pair of HCSGs 

Fault Nodes System Faults 
F1 Hot leg temperature sensor fault 

F2 SG-A heat transfer degradation 

F3 SG-B heat transfer degradation 

F4 Secondary flow distribution anomaly 

F5 Feedwater temperature sensor fault 
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8.2 Sensor Placement Design 

8.2.1 Fault Diagnostic Observability Criterion 

As a first step, the greedy search algorithm for fault observability is applied to find the 

minimum set of sensors required to observe all the faults listed in Table 8.1 for one pair of 

HCSGs. This gives nodes 3 5[ , ]T T  as the sensor set. It is noted that in this case, nodes can also 

be the sensor set, because they are connected to all the faults. Although all the faults can be 

detected, every one of them, however, cannot be distinguished from one another. 

The algorithm is applied to obtain the set of sensors that will give maximum resolution 

under the single-fault assumption case, which generates 3 5 9 11 7 12[ , , , , , ]T T T T W W  as the minimum 

sensor set for fully isolation of the selected faults. Note that none of the fault nodes affect the 

same sensor set, therefore, they should be distinguished from one another by the selected sensor 

set. 

8.2.2 System Unobservability Criterion 

In this sub-section, sensor placement design is carried out for the pair of HCSGs by 

solving the optimization problem that minimizes the system overall unobservability, which is 

defined as the maximum unobservability across all faults. The objective function of the 

optimization is given in Equation (6.13). The cost is assumed to have the same value at 100 per 

sensor for all the sensors. The fault occurrence probabilities are listed in Table 8.2. The sensor 

failure probabilities are given in Table 8.3. The previously developed greedy search heuristic is 

employed to solve for optimal selection of the sensors. For the sake of comparison, the one-step 

optimization problem formulated in Equation (6.18) is solved by the LINGO 8.0 optimization 

software package under the same cost constraints as greedy search. The one-step approach 

minimizes the system overall unobservability and, among candidates offering the minimum 

system unobservability, selects the one with the least cost. 
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Table 8.4 shows the sensor selection results under a variety of total available cost 

constraints. The objective function, that is, system overall unobservability, is also reported in this 

table. It is seen that the greedy search heuristic offers the results similar to those obtained by 

LINGO 8.0. And the main difference between the two distinct optimization algorithms is that the 

greedy search tends to use all the available resources, while LINGO sometimes achieves the 

same system unobservability with fewer sensors. 

Table 8.2. Fault data for a pair of HCSGs 

Fault Nodes 
Occurrence 

Probability ( log jf ) Fault Nodes 
Occurrence 

Probability ( log jf )
F1 -2 F4 -1 

F2 -2 F5 -1 

F3 -2 F6 -1 

Table 8.3. Sensor data for a pair of HCSGs 

Sensor 
Nodes Variable 

Failure 
Probability 

( log is ) 
Sensor 
Nodes Variable 

Failure 
Probability 

( log is ) 
S1 1T  -2 S12 4W  -1 

S2 2T  -2 S13 7W  -1 

S3 3T  -2 S14 8W  -1 

S4 4T  -2 S15 10W  -1 

S5 5T  -2 S16 12W  -1 

S6 7T  -2 S17 6T  -2 

S7 8T  -2 S18 12T  -2 

S8 9T  -2 S19 3W  -1 

S9 10T  -2 S20 5W  -1 

S10 11T  -2 S21 11W  -1 

S11 2W  -1 S22 9W  -1 
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Table 8.4. Sensor selection results using greedy search heuristic and LINGO 8.0 

Sensors Selected Total 
Cost 

System 
Unobservability LINGO 8.0 Greedy Search 

400 0.01 S3, S5, S6, S13 S3, S5, S6, S13 

500 0.01 S3, S5, S6, S13 S3, S5, S6, S13(2) 

800 0.001 S3, S5, S6, S11, S12, S13(2), S14 S3, S5, S6, S11, S12, S13(2), S14 

1000 0.001 S3, S5, S6, S11, S12, S13(2), S14 S1, S3, S5(2), S6, S11, S12, S13(3) 

1500 10-4 
S1, S3, S5(2), S6, S11(2), S12(2), 

S13(3),S14 

S1, S3(2), S5(2), S6(2), S11(2), 

S12(2), S13(4) 

2000 10-5 
S1, S3(2), S5(2), S6(2), S11(3), 

S12(3), S13(4), S14 

S1(2), S3(2), S5(2), S6(2), S11(4), 

S12(4), S13(4) 

In order to show the decreasing trend of the system unobservability as the iteration 

progresses, the greedy search algorithm is applied to the HCSG system when the total available 

cost is 1000. The results are tabulated in Table 8.5. The first column in the table indicates the 

number of available sensors. For each extra available sensor, the positions of the already located 

sensors do not change. Hence only the additional sensor is listed in the second column of Table 

8.5. The third column in the table is the unobservability of the fault with the highest value after 

sensor selection. The sensor location results are shown for ten available sensors. 

In order to verify the effectiveness of the greedy search optimization algorithm, the 

unobservability values of the six faults are calculated. When the total available cost is 1500, it 

takes 16 iterations before the algorithm stops. Figure 8.4 shows the trending of unobservability. 

It can be clearly seen that the greedy search optimization algorithm reduces the unobservability 

values for all the six faults. 
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Table 8.5. HCSG sensor placement results (TC=1000) 

# of available 
sensors Additional sensor System unobservability 

after sensor selection 
1 S5 0.1 

2 S3 0.1 

3 S6 0.1 

4 S13 0.1 

5 S13 0.01 

6 S1 0.01 

7 S11 0.01 

8 S12 0.01 

9 S13 0.001 

10 S5 0.001 

 
 
 

 

Figure 8.4. Unobservability trending of the faults in a pair of HCSGs. 
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8.3 PCA Fault Diagnostic Results 

For a pair of HCSGs, the digraph has been constructed based on mass and heat balance 

equations, as shown in Figure 8.3. In the previous section, the design problem of sensor network 

with maximum fault resolution using fault observability criterion has been studied. The greedy 

search algorithm gives 3 5 9 11 7 12[ , , , , , ]T T T T W W  as the minimum sensor set for fully isolation of 

the selected faults. The advantage of using this optimized sensor set is that more information 

about the system is utilized, and some basic properties such as the fault detectability and 

identifiability are already partially guaranteed before PCA has been used to monitor system 

behavior. 

To build the model for nominal operation, a simulation database was created for different 

power levels ranging from 40% to 100% of the plant capacity. The data were generated for one 

pair of the steam generators, SG-A and SG-B, to simulate the measurements in actual nuclear 

power plants. For this pair of steam generators, the above six sensors identified as the optimized 

sensor set are used as the measured variables to provide process information of the HCSG 

systems. (a) T3: cold leg temperature of SG-A; (b) T5: cold leg temperature of SG-B; (c) T9: 

steam temperature leaving the secondary side of SG-B; (d) T11: steam temperature leaving the 

secondary side of SG-A; (e) W7: feed water flow rate into the secondary side of SG-A and SG-B; 

(f) W12: steam flow rate leaving the secondary side of SG-A and SG-B. 

A PCA model was developed using the data for the nominal operation case with the six 

variables in the minimum sensor set. The nominal operation data matrix is preprocessed by 

auto-scaling the columns in the data matrix to zero mean and unit variance. This puts all the 

measurements with their different units on a common unit variance scale. Under normal 

conditions, small residuals would be generated and limited to a certain range. In the test cases 

when one or several components in the system are under degradation, the causal relations among 

the variables will be violated. As a result, the mapping of residuals from residual generators or 

system models will increase in a specific direction. The residual patterns for different types of 

faults are shown in Figure 8.5-8.10. 
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Figure 8.5. Residual pattern for Thot sensor fault (Fault #1). 
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Figure 8.6. Residual pattern for SG-A thermal degradation (Fault #2). 
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Figure 8.7. Residual pattern for SG-B thermal degradation (Fault #3). 
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Figure 8.8. Residual pattern for secondary flow distribution anomaly (Fault #4). 
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Figure 8.9. Residual pattern for feed temperature sensor fault (Fault #5). 
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Figure 8.10. Residual pattern for feed flow sensor fault (Fault #6). 
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To understand the fault residual patterns, the residual pattern plot for the secondary flow 

distribution anomaly (Fault #4), shown in Figure 8.8, is discussed here. The secondary flow 

distribution anomaly is a process fault in the HCSG systems. When this process fault occurs, the 

flow rate into the secondary side of each steam generator will be different. However, because the 

secondary fluid flows inside the helical coil tubes, it is unrealistic to directly measure the flow 

rate into each steam generator and the fault effects cannot be directly observed based on the flow 

rates. For this reason, the fault needs to be monitored from the other measured variables such as 

the primary outlet temperatures and the steam outlet temperatures. 

The fault data for the secondary flow distribution anomaly (Fault #4) is generated by 

linearly reducing the feed flow rate into SG-A from 100% value to 90% value, while increasing 

the feed flow rate into SG-B from 100% to 110% value. Thus as shown in Figure 8.8, the 

temperatures T3 and T11 have positive components, indicating the increase in both 

measurements when the secondary flow rate into the SG-A decreases; and the temperatures T5 

and T9 have negative components, indicating the decrease in them when the secondary flow rate 

into the SG-B increases. 

Then, the PCA fault direction analysis is performed for processing the fault residuals. 

The six fault directions which correspond to the six fault scenarios are listed in Table 8.6. The 

following plots (Figures 8.11-8.16) illustrate the fault isolation indices for the different fault 

cases. Note that the fault index is close to unity for the particular fault that occurs and is smaller 

for the others. It is shown that all the fault cases are distinguished correctly using the fault 

isolation approach when the PCA model includes the six sensors that are chosen by the sensor 

placement algorithm. 

Table 8.6. PCA fault direction analysis for a pair of HCSGs 

Fault direction # System faults % of residual variances 
explained by the 1st PC 

1 Hot leg temperature sensor fault 98.22 
2 SG-A thermal degradation 96.71 
3 SG-B thermal degradation 94.52 
4 Secondary flow distribution anomaly 92.06 
5 Feed temperature sensor fault 95.84 
6 Feed flow sensor fault 94.39 
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Figure 8.11. Fault isolation index for Thot sensor fault. 
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Figure 8.12. Fault isolation index for SG-A thermal degradation. 
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Figure 8.13. Fault isolation index for SG-B thermal degradation. 
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Figure 8.14. Fault isolation index for secondary flow distribution anomaly. 
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Figure 8.15. Fault isolation index for feed temperature sensor fault. 
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Figure 8.16. Fault isolation index for feed flow sensor fault. 
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For the sake of comparison, the following plots (Figures 8.17-8.22) illustrate the fault 

isolation indices for the different fault cases when the reduced sensor set is used to develop the 

PCA model for HCSG fault monitoring. For instance, only T3, T11, W7, and W12 are included 

in this case study. 

In summary, Figure 8.23(a) shows the fault isolation indices for each of the detected fault 

scenarios in the HCSG system. All the fault cases are detected correctly using the fault isolation 

approach. In comparison, Figure 8.23(b) illustrates the fault isolation indices when the reduced 

sensor set (T3, T11, W7, and W12) is used to develop the PCA model for HCSG fault 

monitoring. It is seen that when the hot leg temperature sensor is under degradation (Fault #1), 

the fault isolation indices of both fault direction #1 and fault direction #4 have significant values, 

which are difficult to distinguish. The same problems occur for the fault cases 2, 3, and 4. 

Therefore, we can draw the conclusion that the reduced sensor set is not sufficient for the 

purpose of fault isolation in the HCSG systems, thus illustrating the effectiveness of optimal 

sensor allocation strategy. 

8.4 Summary 

In this chapter, the application of optimal sensor allocation for the IRIS helical coil steam 

generator system is demonstrated. A PCA-based fault isolation method is introduced to generate 

fault signatures of typical faults found in the HCSG systems. The confidence levels on each fault 

direction were calculated through vector projection. Fault isolation index provides a convenient 

way to isolate the faults using projections on the fault directions. Fault diagnostic results were 

also examined using reduced sensor sets (non-optimal sensor selection) for the same fault 

scenarios, and the results indicated that the reduced sensor sets were not sufficient for the 

purpose of fault isolation. 
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Figure 8.17. Fault isolation index for Thot sensor fault (reduced sensor set). 
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Figure 8.18. Fault isolation index for SG-A thermal degradation (reduced sensor set). 
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Figure 8.19. Fault isolation index for SG-B thermal degradation (reduced sensor set). 
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Figure 8.20. Fault isolation index for secondary flow anomaly (reduced sensor set). 
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Figure 8.21. Fault isolation index for feed temperature sensor fault (reduced sensor set). 
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Figure 8.22. Fault isolation index for feed flow sensor fault (reduced sensor set). 
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Figure 8.23. Fault isolation index for a pair of HCSGs. 
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Chapter 9 

Summary, Conclusions, and Suggestions for Future Research 

9.1 Summary and Conclusions 

Both nuclear and seawater desalination are mature and proven technologies, and are 

commercially available from a variety of suppliers. Nuclear plants can provide both electrical 

and thermal energy in an integrated, co-generation fashion to produce a spectrum of energy 

products including electricity, process heat, district heating, and potentially hydrogen generation. 

The prospects of using nuclear energy for seawater desalination on a large scale are very 

attractive since desalination is an energy-intensive process that can utilize the heat and/or the 

electricity produced by nuclear plants. While all nuclear reactor types can provide the energy 

required by the various desalination processes, it has been shown that small and medium 

modular reactors, a burgeoning field in the nuclear community today, offer the largest potential 

as coupling options of nuclear desalination systems in some developing countries where less 

stable electrical grids and increasing necessity for potable water sources are often found. IRIS is 

such a novel SMR with an advanced, modular, passively safe design that is well suited for 

desalination applications. However, coupling a SMR system and a desalination process involves 

a number of issues that have to be addressed in the design phase. Among these issues, 

instrumentation and controls, performance monitoring and fault diagnosis are of high importance 

for the safe and optimal operation of a coupled nuclear desalination plant. 

The preceding chapters have presented an integrated approach to the performance 

monitoring and fault diagnosis of a large industrial plant, such as nuclear desalination systems 

using robust data-based empirical methods. Sensor placement design is a critical piece in a fault 

monitoring system, which typically includes process performance monitoring, fault detection and 

isolation, and maintenance planning. Thus, it is emphasized in the developed integrated approach. 

Nowadays, most processes are extremely well instrumented with a multitude of sensors 

providing both control and safety-related measurements, especially in a nuclear desalination 

plant. The ability of the sensor network to detect and discriminate failure modes and anomalous 
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conditions is critical for the effectiveness of any fault monitoring system. With hundreds of 

process variables available for measurement in both nuclear power plants and desalination 

processes, selection of optimum number of sensors and their locations poses a unique challenge. 

Six areas of original contribution are discussed in the dissertation. These contributions 

are innovative and significant in that, to the best of the author’s knowledge, they represent the 

first comprehensive studies of modeling, simulation, sensor placement design, and fault 

diagnosis of a nuclear desalination process. The original contributions are summarized here. 

1. Both steady-state and dynamic models were developed for MSF desalination 

systems using MATLAB and SIMULINK. The steady-state model was simulated for a real 

plant operating conditions and a close agreement was observed between the predicted results and 

the actual plant operating parameters. Dynamic models were suitable for solving problems 

involving transient behavior, such as studying control strategies, stability problems, process 

interactions, start-up and shut-down conditions. In this research, the developed MSF dynamic 

model is a lumped parameter model that consists of ordinary differential equations and 

supporting algebraic equations. The initial conditions were known from steady-state simulations. 

The developed dynamic model was used to simulate the effect of step changes in several key 

state variables. The simulation results obtained were physically plausible and similar to those 

found in the literature. 

2. A dynamic SIMULINK model of the coupled IRIS-MSF nuclear desalination 

system was also developed in this dissertation research. An existing IRIS SIMULINK model 

was used for coupling with the developed dynamic MSF model. A simple BOP system was also 

included in the coupled SIMULINK model. The BOP model incorporated the subsystem models 

of the turbine, condenser, and feedwater heater systems. The dynamic model of the coupled plant 

was simulated for a 10% step decrease in the turbine power demand, and the simulation results 

were examined and analyzed. The results showed that the developed dynamic model was able to 

characterize system dynamic behavior with reasonably good accuracy to study the control and 

fault diagnosis of the IRIS-MSF coupled system. 
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3. An integrated architecture of performance monitoring and fault diagnostics with 

emphasis on the importance of optimum sensor placement was developed in this 

dissertation. The solution to the problem of optimum sensor placement from a fault diagnosis 

perspective can be broadly broken down into two tasks: (1) fault modeling or prediction of 

cause-effect behavior of the system, generating a set of variables that are affected whenever a 

fault occurs, and (2) use of the generated sets to identify sensor locations based on various design 

criteria, such as fault observability, fault resolution, etc. In this dissertation, the DG causal graph 

modeling method that represents cause-effect behavior of the process was used as a basis for the 

sensor placement design. Issues such as fault observability and fault resolution are discussed to 

ensure the designed sensor network could observe every defined fault in the process, meanwhile 

obtain a maximum possible fault resolution.  

4. Development of an optimal and automated sensor placement procedure was 

conducted as well. The developed sensor placement design algorithm treats finding the optimal 

sensor locations as one of choosing the minimum number of sensors that would cover all the 

faults defined for the system of interest, which is the commonly known “minimum set-covering 

problem”. The fault observability and resolution problems could be solved exactly by 

enumeration, but with an increasing number of system faults and sensor locations, it may not be 

computationally feasible to solve the problem in that fashion. In many instances, heuristics often 

give a quick and reasonably approximate solution. An ILP embedded greedy search heuristic was 

developed for solving the fault observability and resolution problems in this research. The 

optimal sensor placement design in terms of fault diagnosis was further formulated as a system 

unobservability minimization problem which took into account the cost of building a sensor 

network. Moreover, various information features, such as fault occurrence probability and sensor 

failure probability, were incorporated in the formulation. The greedy search heuristic was applied 

to solve the formulated optimization problem, and the optimization performances were evaluated 

and compared with a commercial optimization solver, LINGO 8.0. Application results showed 

that the greedy search heuristic and the LINGO solver resulted in optimal sensor sets of 

comparable performance. 
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5. A PCA-based fault diagnostic approach, in conjunction with optimized sensor 

selection, was developed in this dissertation with applications to an IRIS-MSF nuclear 

desalination plant. Despite using the optimal sensor set obtained from sensor placement design, 

it was found that some faults of the system were still indistinguishable in many cases. 

Nonetheless, optimal sensor placement design from a fault diagnosis perspective would provide 

valuable information to a fault monitoring system based on PCA. The PCA algorithm was 

utilized in this research to describe the relationships among the process variables. The fault 

directions for various fault scenarios were obtained using the SVD technique on the prediction 

errors, and fault isolation was then accomplished using new projections on these existing fault 

directions. The fault isolation index provides a convenient means of isolating the faults as it is 

close to unity on a particular direction for the corresponding fault whenever it occurs and is 

smaller for the others. The developed optimum sensor placement design formulations and the 

PCA-based fault diagnostic methods were demonstrated with application to the coupled 

IRIS-MSF nuclear desalination plant. When the optimal sensor sets were used, both sensor faults 

and process faults were correctly detected and isolated based on 2T  and Q  statistics, as well 

as fault isolation index. Fault diagnostic results were also examined using the reduced sensor sets 

for the same fault scenarios, and the results indicated that the reduced sensor sets were not 

enough for the purpose of fault isolation. Another important discovery through the FDI case 

studies was that the PCA fault diagnostic approach could be extended to detect and isolate 

simultaneous dual faults using the optimal sensor sets identified for the single-fault cases, in 

which case both single-fault and dual-fault directions were used as fault signatures for dual-fault 

isolation. The results demonstrated the effectiveness of the developed methods for fault detection 

and isolation in complex systems with optimized sensor network. 

6. The results of this R&D also showed that it would be sufficient to use the optimal 

sensor set to build effective PCA models for FDI. It is not necessary to use all the 

measurements in the database to develop a PCA representation, but those that are given through 

optimal sensor selection algorithms. This eliminates the arbitrary decision making in the 

selection of measurements needed for PCA modeling. 
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9.2 Suggestions for Future Research 

The area of FDI holds many opportunities for continuing research beyond the scope of 

this dissertation. Although demonstrated through the simulation data generated by a developed 

SIMULINK model of the IRIS-MSF nuclear desalination plant, the developed FDI algorithms 

need to be implemented and tested on a laboratory system and possibly using real nuclear 

desalination plant data. This would indicate areas where further development is necessary to 

establish a more efficient fault monitoring system. As part of future research, it is suggested that 

the fault diagnostic procedure be expanded to more fault scenarios and attempts be made to 

automate the procedure. 

Sensor placement design based on directed graph was presented to determine the 

minimum set of sensors for fault detection and isolation, and was applied to the IRIS-MSF 

nuclear desalination system. In this dissertation, the DG models were developed manually from 

engineering models. To facilitate computer aided design, this process should be automated by 

developing a generic software package that allows an automatic transformation of engineering 

models into DGs and the determination of minimum requirements of sensor placement from a 

fault diagnosis perspective. 

Future research also should consist of the use of other optimization criteria for sensor 

placement design, such as process controllability constraint, residual precision, data 

reconciliation, and gross error robustness, as well as the treatment of the sensor placement design 

as a multi-objective optimization problem. Development of an integrated sensor network design 

strategy will make the seamless incorporation of various optimization criteria possible, so that 

the resulting sensor placement is optimal in a much broader sense, as opposed to the sole 

consideration of fault diagnostics. 
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Appendix A:  Thermo-Physical Properties 
Pressure of saturated steam 

3

10log
1
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P X a bX cX
P T dX
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where 

3.2437814a =  
35.86826 10b −= ×  

81.1702379 10c −= ×  
32.1878462 10d −= ×  

 ( )P pressure atm=  
  (218.167 )cP critical pressure atm=  
  (647.27 )cT critical temperature K=  

c SX T T= −  
The above equation is specified for temperatures from 50 to 300 oF  
 
Specific enthalpy of saturated steam 

-4 21059.237 0.4833 - 2.558 10Vh T T= + ×  
 
where 

Vh =specific enthalpy of saturated steam (BTU/lb)  
oT=temperature ( F)  

 
Specific heat capacity of pure water 

5 7 2 9 31.0011833 6.1666652 10 1.3999989 10 1.3333336 10wCp T T T− − −= − × + × + ×  
 
where 

wCp =specific heat capacity of water (BTU/lb F)o⋅  
oT=boiling temperature of water ( F)  

The above expression for the heat capacity of saturated water is adequate for computations 
within the temperature range of 50 ~ 300 oF . 
 
Specific enthalpy of saturated water 

-5 2 -8 3 -10 431.92 1.0011833 -3.0833326 10 4.6666663 10 3.333334 10Wh T T T T= − + × + × + ×  
 
where 

wh =specific enthalpy of saturated water (BTU/lb)  
oT=boiling temperature of water ( F)  
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Latent heat of vaporization of water 
S V Wh hλ = −  

 
where 

S =latent heat of vaporization (BTU/lb)λ  

Vh =specific enthalpy of saturated steam (BTU/lb)  

wh =specific enthalpy of saturated water (BTU/lb)  
 
Specific heat capacity of brine 

[1.0 (0.011311 0.00001146 )]b b b wCp X T Cp= − −  
 
where 

bCp =specific heat capacity of brine (BTU/lb F)o⋅  

wCp =specific heat capacity of water (BTU/lb F)o⋅  
o

bT =brine temperature ( F)  

bX =salt concentration (wt%)  
 
Density of brine 
The expression for the brine density given here is valid for the range of 0~26% concentration and 
40~300 oF. Density of pure water is calculated from the given equation putting Xb=0. 
 

-2
b

-4 2 -4 2

62.707172 49.364088 - 0.43955304 10 0.032554667X

0.46076921 10 0.63240299 10
b b b b

b b b

X T T

T X T

ρ = + × −

− × + ×
 

 
where 

3 (lb/ft )b densityρ =  
o

bT =brine temperature ( F)  

bX =salt concentration (mass fraction)  
 
Boiling point elevation 

K K K K
2 2

K K K K

1.8 [565.757/T 9.81559+1.54739lnT (337.178/T 6.41981+0.922753lnT )

(32.681/T 0.55368+0.079022lnT ) ] [ /(266919.6/T 379.669/T 0.334169)]

BPE X

X X

= × − − −

+ − × − +
 

 
where 

o point elevation ( F)BPE boiling=  
( 460) /1.8 ( )o

K bT T K= +  
o

bT =brine temperature ( F)  
(19.819 ) /(1 )b bX X X= −  
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bX =salt concentration (mass fraction)  
Non-equilibrium allowance 

1.1 0.25 3 0.5 2.5352 ( 10 )
j jj B j SNEA H T Tω− − −= Δ ×  

 
where 

o allowance ( F)NEA non equilibrium= −  
height of brine pool in stage j (in.)jH =  

1
( )

j j j

o
B B BT T T F

−
Δ = −  

j
j

Wω = =chamber load lb/hr per ft width
w

 

jw =width of stage j (ft)  
W=total mass circulated in the system (recycle R + make-up F, lb/hr) 
 
Temperature loss across the demister and condenser tubes 

exp(1.885 0.02063 )
jPTΔ = −  

 
where 

j

o
PT =temperature of the distillate product ( F)  

 
Overall heat transfer coefficient 
The data submitted by the Office of Saline Water (OSW), based on the Point Loma 
Demonstration Plant, have been correlated to calculate the sum of the different resistances 
included in the classical equation for U, except the inside film resistance [Griffith and Keller, 
1965]. The correlation ties those resistances with the saturation temperature prevailing in the 
flash chamber. The polynomial fit is expressed as follows: 
 

-2 -5 -7 2

-9 3 -12 4

0.1024768 10 0.7473939 10 0.999077 10

    0.430046 10 0.6206744 10
j j

j j

P P

P P

z T T

T T

= × − × + ×

− × + ×
 

 
where 

j

oT =temperature of the distillate product ( F)P , the above equation is specified for temperatures 
ranging from 100 to 250 oF . 

0.2( )
(160 1.92 )

j

j j

F j

v ID
y

T v
×

=
+

 

 
where 

jv =linear velocity of brine stream (ft/sec)  
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jID =tube inner diameter (in.)  

j

oT =temperature of the cooling brine at the exit of condenser ( F)F  

From the values of z and y, the overall heat transfer coefficient ( 2BTU/hr F fto⋅ ⋅ ) is calculated 
by the equation 

1U
z y

=
+

 

 
Inter-stage flow rate 

8( /1000 /1.96 10 ) / 0.45359Q Kwh Pρ −= Δ ×  
5

1 1.0 10 ( )i iP P P g L Chρ−
−Δ = − + × −  

2 30.61 0.18 0.58 0.7C x x x= + − +  

1

/1000
100( ) /1000i

ghx
P P gL

ρ
ρ−

=
− +

 

 
where 
Q=inter-stage flow rate (lb/hr)  
w=orifice width (m)  
h=orifice height (m)  
L=liquid level in the upstream stage (m)  

3=liquid density (kg/m )ρ  
P=stage pressure (bar)  
K=orifice discharge coefficient  
C=orifice contraction coefficient  
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Appendix B:  IRIS Nuclear System Mathematical Model 
1. Reactor Core 
 
Point Reactor Dynamic Model 

0

0

( / ) td P P P C
dt P

ρ β λ−
= +

Λ  

0

dC P C
dt P

β λ= −
Λ  

 
Reactor Core Heart Transfer Model (Mann’s Model) 

0
1

0

( )
( ) ( )

r FC FCF
F

p F p F

F P U AdT P T
dt MC P MC

θ= + −
 

0 11
1

0

(1 ) ( )( )
2( ) ( ) 2

r FC FC C cold
F

p c p C C

F P U A W Td P T
dt MC P MC M

θθ θ− −
= + − +

 
0 1 22

1
0

(1 ) ( )( )
2( ) ( ) 2

r FC FC C
F

p C p C C

F P U A Wd P T
dt MC P MC M

θ θθ θ− −
= + − +

 
2( )hot C hot

up

dT W T
dt M

θ −
=

 
 

Variable  Definition 
FCA  Effective heat transfer area between fuel and coolant 
C Precursor concentration 
pCC  

Coolant heat capacity 

pFC  
Fuel heat capacity 

rF  Fraction of the total power generated in fuel elements 

FCU  Average overall heat transfer coefficient 

CM  Coolant mass in the core 

Cρ  Coolant density 

FM  Fuel mass in the core 

upM  
Coolant mass in the upriser 

W Coolant flow rate 
P  Reactor Core power 

FT  Fuel temperature 

coldT  Cold part temperature 

hotT  Hot part temperature 

Cα  Coolant coefficient of reactivity 
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Fα  Fuel coefficient of reactivity 
β  Delayed neutron group fraction (one group) 
λ  Average of six group decay constant 
Λ  Neutron generation time 
ρ  Total reactivity 

exρ  External reactivity 

fbρ  
Feedback reactivity 

 
Note:  
1 lbm = 0.4732 kg 
1 BTU = 1.055E3 Joule 
1 ft =0.3048 m 
1 ft^2= 0.0929 m^2 
F= 9/5*C +32 
 
2. Helical Coil Steam Generator 
 
A dynamic process is generally modeled as a distributed parameter system characterized by a set 
of partial differential equations. It is usually rather complicated to solve such a time dependent 
system with spatial variations. For this reason, a lumped model is used to describe the HCSG 
dynamic behavior. Each lump has the same averaged properties, so the spatial dependence can be 
represented simply by the interaction between adjacent lumps. In addition to the assumptions 
implied in a lumped model, the other major assumptions are as follows: 

 Only one pressure is used to characterize the superheated region. 
 The superheated vapor satisfies ideal gas law modified by an expansion coefficient. 
 The temperature of the second node in the subcooled region is equal to the saturated 

temperature. 
 The pressure drop between superheated region and saturated region is constant during any 

perturbation 
 The pressure drop between the saturated region and the subcooled region is constant during 

any perturbation 
 The steam quality in the boiling region can be assumed as a linear function of the axial 

coordinate so the density in the boiling region can be approximated as a function of steam 
pressure. 

 The steam generation rate assumes to be equal to the boiling rate. 
 The heat transfer coefficient for the superheated region, the saturated region and the 

subcooled region is assumed constant. 
 
2.1 Nodalization 
Three regions, subcooled region, saturated region and superheated region, are used to 
characterize the significant difference of heat transfer and hydraulic behavior. In each region, 
two lumps with each volume are used to consider the axial temperature changes. 
Correspondingly, six metal nodes are needed to describe the heat transfer from the primary side 
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to the secondary side. For the two lumps of the secondary side in the saturated region, saturated 
temperature is maintained. 
 
2.2 Primary Side Equations 
The primary side temperature is given by:  

)(2
1

1 wipi
i

pipipi TTa
L

TT
a

dt
dT

−−
−

= −

                
where 

⎪
⎩

⎪
⎨

⎧

=
=
=

=
6,5
4,3
2,1

iforL
iforL
iforL

L

sc

b

s

i

 

2/)(1
ppxs

ppp

CA
WC

a
ρ

=
 

2/)(2
ppxs

wppw

CA
Ph

a
ρ

=
 

sL = superheated length. 
bL = boiling length. 
scL = subcooled length. 

T = primary side temperature. 
pW = coolant flow rate. 
pC = specific heat. 

ρ = density of the primary coolant. 
xsA = flow area. 

h = heat transfer coefficient. 
wP = perimeter for heating.  

In the above equations, subscript p and w  refer to primary coolant and tube wall respectively. 
 
2.3 Metal Equations 
The metal temperature is given by:  

iiwiwiiiwiwisiwiiwipiwi LZTTLZTTTTaTTaT
dt
d /)(/)()()( 11143 −+−+−−−= +−−

     
for 6,5,4,3,2,1=i                         
where                                                                                      

)(3
Pwww

wppw

cA
Ph

a
ρ

=
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where 

=wscwbws hhh ,,  heat transfer coefficient on the tube side for superheated steam region, saturated 
water region, and subcooled water region respectively  

=wscwbws PPP ,,  heating circumference on the tube side for superheated steam region, saturated 
water region, and subcooled water region respectively  
 
2.4 Equations for the Superheated Region 
The mass balance of the steam in the superheated steam nodes, node 1 and node 2, are given by: 

ss WWM −= 211  
212 WWM bs −=  

where 
sM = steam mass in the superheated region. 

sW = steam flow rate to turbine, which is an external constraint imposed by the controller. 
bW = steam production rate. 

The heat balance equations of the two superheated steam nodes, node 1 and node 2, are given by: 

1112211111 )( ssssssssss VPHWHWQVPHM
dt
d

−−+=−
 

222212222 )( sssgbsssss VPHWHWQVPHM
dt
d

−−+=−
 

where 
sM = steam mass in the superheated region. 

sP = steam pressure in the superheated region. 
sV = steam volume in the superheated region. 
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sH = specific enthalpy of the steam. 
21 , ss QQ = heat transfer rate to the two superheated nodes. 

2/)( 111 swswswss TTLPhQ −=  
2/)( 222 swswswss TTLPhQ −=  

Assuming the pressure loss in the superheated steam region is small, we have: 
21 sss PPP ==  

 Since specific enthalpy is a function of temperature and pressure, then we have: 

s
s

s
s

s

s
s P

P
H

T
T
H

H
∂
∂

+
∂
∂

=
 

and 

)( 1212 ss
s

s
ss TT

T
H

HH −
∂
∂

=−
 

Combining with the mass balance equations and the expansion of the specific enthalpy, the 
energy balance equations can be rewritten as follows: 

)()()( 2111112111 sspsssss
s

s
sssspsspss TTCWQPV

P
H

MMTTCTCM −−=−
∂
∂

+−+
  

)()( 222222 satspsbsss
s

s
sspss TTCWQPV

P
H

MTCM −−=−
∂
∂

+
   

The steam pressure in the superheated region can be described by compressibility adjusted ideal 
gas law, which is given by:   

)2/()( 21
*

stmssssss MTTRMZVP +=  
The time derivative of the steam pressure can then be determined by the following equation: 
       

ss
sssssssss

stm

s
s LA

LAPTTMTTM
M

RZP 1})}()({
2

{ 2121

*

−+++=
    

where 
stmM = mole mass of steam. 

*
sZ = steam expansion coefficient. 

 
2.5 Equations for Boiling Region 
The mass balance equation for the boiling region is given by: 

bdbbsb WWLA
dt
d

−=)(ρ
 

If we notice 

dt
dP

dP
d

dt
d sat

s

bb ρρ
=

 
then 

bdbsatbbsbbs WWPKLALA −=+ρ         
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where 

P
K b

b ∂
∂

=
ρ

 
If we assume that the steam quality is linear function of the axial position along the channel, then  
 

∫
∫

∫
+

==
1

01

0

1

0
)(

fgf
b xvv

dx

dx

dxxρ
ρ

 
In the operation pressure range, we have: 

ssb PP 00552445.061594.1)( +=ρ  
Therefore,  

)/(}{ bssatbbsbdbb APKLAWWL ρ−−=        

fgbsat
ww

wbwbb hLT
TT

UhW /)
2

( 43 −
+

=
 

dbW = flow rate leaving subcooled region to the saturated region. 
fgh = vaporization heat. 

 
2.6 Equations for Subcooled Region 
In analogy to the boiling region, the mass balance equation for the subcooled region can be given 
as follows: 

scscscsscscscfwdb PKLALAWW −−= ρ  
where 

2/)( ffw
scsc

sc
sc PP

K ρρ
ρ

+
∂
∂

=
∂
∂

=
 

fwW = feed water flow rate. 
 
Heat balance equation for the subcooled region 1 is given by: 

)()(
)(

12151
1

scdbscscpscscwscwscwscscsc
scp TWTWCTTLPhPV

dt
TMCd

−+−=−
 

Since the outlet temperature of the first subcooled node can be approximated by the saturated 
temperature, then 

)(2/)(
2
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2

)(

25

1
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P
T

K sat

∂
∂

=1
 

Heat balance equation for the subcooled region 2: 
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After simplification, we obtain 
 

scscscscpssc
scs

scscfwfwpscscwscwscwscsc

LLTCAP
LA

TWTWCTTLPhT

/}})(/(2*}
2

)()(*5.0{{

2
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ρ
    

 

If we assume 21 scsc MM = , then we have: 
2/)( dbfwsc WWW +=  

 

Substituting the expression of scW and dbW  into the heat balance equation for the subcooled 
region 1, we have: 

})(5.0}]1)2([
2

)()(*5.0{{
))()((5.0

1

12

25
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Noticing the pressure relationship between scP , satP  and sP , we have  

)(
2
1

spsctpbsatsc PPPP Δ+Δ+=
 

)(
2
1

spsstpbsssat PPPP Δ+Δ+=
 

where 
scP = pressure at the subcooled region. 
satP = pressure at the saturated region. 

tpbPΔ = two phase pressure loss in the boiling region. 
spscPΔ = single phase pressure loss in the subcooled region. 
spssPΔ = single phase pressure loss in the superheated region. 

 
2.7 Equations for the Pressure Controller 
The secondary side pressure is maintained by regulating the steam flow rate. The steam flow rate 
satisfies the following equation: 

s

ssts
s

WuCW
W

τ
−−

=
)1(0

 
where 
=u  controller output. 
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=τ  time constant. 
0sW = initial steam flow rate on the secondary side. 

stC = an adjustable parameter. 
If a PI controller is used, the controller output has both the proportional part )(1 tu and the 
integral part )(2 tu , which is given by: 

)()(
00

11 P
P

P
P

ktu settb −=
 

)()(

00
2

2

P
P

P
P

k
dt

tdu settb −=
 

where 
=1k  proportional gain. 
=2k  integral gain. 

tbP = turbine header pressure. 
setP = turbine header pressure set point. 
0P = turbine header pressure set point. 

 
 
 
3. Steam Turbine 
 
The model development of the turbine system incorporates the following assumptions: 
Reversible adiabatic expansion process exists in the nozzle chest and moisture separator. 
Thermodynamic properties of the saturated steam and water are assumed to be linear functions of 
the steam pressure at each state. 
The bypass flow to the reheater is proportional to the main steam pressure and steam valve 
coefficient. 
Heat transfer coefficients for the reheater and feedwater heaters are assumed to be constant. 
Steam flow losses in the turbine system are considered to be zero. 
To simplify the model complexity, modifications have been made for the evaluation of high 
pressure and low pressure turbine efficiencies. The efficiencies of the high and low pressure 
turbines are considered to be constant within a range of 100±  PSI deviations in the exhaust 
pressure of the high pressure turbine from its initial value (at full power of operating condition of 
the plant). 
 

2
'
2

c
hp

c

h h
h h

η −
=

−  
4
'
4

r
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r

h h
h h

η −
=

−  
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Variable Definition 
hpη  

High pressure turbine efficiency 

lpη  
Low pressure turbine efficiency 

2 4,h h  Steam enthalpy leaving the high and low pressure 
turbine at points 2 and 4 respectively 

' '
2 4,h h  

Isotropic enthalpy at points 2 and 4 

ch  Steam enthalpy leaving the nozzle chest 
 
4. Main Condenser 
A condenser is a large surface-type heat exchanger, which condenses steam from the exhaust of 
turbine by transferring steam latent heat to circulating water inside the condenser. The condenser 
is desired to work under vacuum condition to obtain a maximum mechanical power from the 
turbine system. 
The main condenser is simulated as an equilibrium tow-phase tank. The space inside the tank is 
divided into tow independent control volumes, steam and water. They are assumed to be in 
thermal equilibrium during steady state condition. Turbine exhaust flow enters the system at the 
condenser pressure. The water part of the flow falls into the hotwell region and mixes perfectly 
with the water already present there. The vapor part condenses on the outer surface of metal 
tubes through which the circulating water flows. The condensation process is associated with a 
time delay which is due to the dynamics of heat transfer between the vapor and the circulating 
water. The following assumptions are made to simplify the mathematical model. 
Constant pressure exists in the condenser model. 
Mass transfer at steam-liquid interface is assumed to be negligible. 
Wall condensation is considered to be zero. 

 

Cooling water

Turbine  
exhaust flow Vapor 

Water 

Condensate 

Vapor phase 

Liquid phase 
(Hotwell region)

Outlet flow 

oW  

2W  

1W  
3W

iW  

wM
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The describing equations of the model are derived based on the conservation of mass and energy 
equations at each phase. These equations are introduced below. 
 
Mass Balance Equations 
Liquid phase: 

1 3
w

o
dM W W W

dt
= + −

 
Vapor phase: 

3 2 3dW W W
dt τ∞

−
=

 
Energy Equations 

( ) ( )1 3w o f o o
d M h W W h W h
dt

= + −
 

( )( )1 3 f oo

w

W W h hdh
dt M

+ −
=

 
 
Constitutive Relations 
Mass balance: 

1 2iW W W= −  
where 

2

( )i f
i

fg

h h
W W

h
−

=  

 
Variable Definition 

wM  Water mass inside the condenser 

1W  Water droplet rate into the hotwells 

3W  Water condensation flow rate 

oW  Outlet flow rate to the low pressure feed water heater 

2W  Steam flow rate in the condenser 

coτ  Time constant of the condensation process 

fh  Enthalpy of the saturated water 

oh  Enthalpy of the outlet water 

iW  Entering flow rate to the condenser 

fgh  Latent enthalpy of the water 

ih  Enthalpy of the entering flow rate 
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5. Feedwater Heater 
 
Low Pressure Feedwater Heater Equations 
Energy balance: 

1 11

1 1

fw o fwh

h fw h

dh h hQ
dt Wτ τ

−
= +  

Heat flow relation: 
1 1 1( )h fw hp blpQ H W W= +  

 
High Pressure Feedwater Heater Equations 
Mass balance: 

1 1 1

2

hp bhp ms pr hp

h

dW W W W W
dt τ

+ + −
=  

Energy balance: 
2 1 22

2 2

fw fw fwh

h fw h

dh h hQ
dt Wτ τ

−
= +  

Heat flow relation: 
2 2 1( )h fw ms pr bhpQ H W W W= + +  
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Appendix C:  Fault Isolation Index Plots of Dual-Fault Scenarios 
Dual-fault case #8: 
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Dual-fault case #9: 
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Dual-fault case #10: 
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Dual-fault case #11: 
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Dual-fault case #12: 
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Dual-fault case #13: 
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Dual-fault case #14: 
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Dual-fault case #15: 
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Dual-fault case #16: 

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Single-fault direction #

C
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en

ce

Fault #3 & Fault #6
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ce

 
 
 
 

Dual-fault case #17: 
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Fault #3 & Fault #7
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C
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Dual-fault case #18: 

1 2 3 4 5 6 7 8
0
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Single-fault direction #

C
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ce

Fault #3 & Fault #8
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ce

 
 
 
 

Dual-fault case #19: 
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Fault #4 & Fault #5
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C
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ce
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Dual-fault case #20: 

1 2 3 4 5 6 7 8
0
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Single-fault direction #

C
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ce

Fault #4 & Fault #6
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ce

 
 
 
 

Dual-fault case #21: 
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Dual-fault direction #

C
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ce
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Dual-fault case #22: 

1 2 3 4 5 6 7 8
0

0.1
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Single-fault direction #

C
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ce

Fault #4 & Fault #8
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Dual-fault direction #

C
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ce

 
 
 
 

Dual-fault case #23: 

1 2 3 4 5 6 7 8
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C
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ce
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Dual-fault case #24: 

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Single-fault direction #

C
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ce

Fault #5 & Fault #7
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Dual-fault direction #

C
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ce

 
 
 
 

Dual-fault case #25: 

1 2 3 4 5 6 7 8
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ce
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Dual-fault case #26: 

1 2 3 4 5 6 7 8
0
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Dual-fault case #27: 

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Single-fault direction #

C
on

fid
en

ce
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Dual-fault case #28: 

1 2 3 4 5 6 7 8
0
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Dual-fault direction #
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ce
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Appendix D:  MSF Desalination Plant Simulation Codes 
Steady-state Simulation Code : 
 
% The steady state MSF simulation 
clear all; 
close all; 
clc 
  
% Heat recovery section tube inner diameter (in.)  
di_rec = 0.866; 
% Heat recovery section tube thickness (in.) 
th_rec = 0.048; 
% Heat recovery section tube length (ft) 
len_rec = 40; 
  
% Heat rejection section tube inner diameter (in.)  
di_rej = 0.9394; 
% Heat rejection section tube thickness (in.) 
th_rej = 0.0303; 
% Heat rejection section tube length (ft) 
len_rej = 35; 
  
% Brine heater tube inner diameter (in.)  
di_br = 0.866; 
% Brine heater tube thickness (in.) 
th_br = 0.048; 
% Brine heater tube length (ft) 
len_br = 40; 
  
% Seawater temperature (F) 
Tsea = 95; 
% Cooling seawater mass flowrate (lb/hr) 
Lsea = 0.249*1.0E8; 
% Seawater salt concentration (weight percentage) 
Xsea = 5.6; 
  
% Recycle stream flowrate (lb/hr) 
R = 0.140*1.0E8; 
% Make-up flowrate (lb/hr) 
F = 0.125*1.0E8; 
  
% Reject cooling seawater flowrate (lb/hr) 
Cw = Lsea-F; 
  
%  
  
% Heat transfer area of heat recovery stages (ft^2) 
A_rec = 43000; 
% Heat transfer area of heat rejection stages (ft^2) 
A_rej = 38000; 
% Heat transfer area of brine heater (ft^2) 
A_br = 38000; 
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% Steam temperature (F) 
Ts = 206; 
% Reference temperature (F) 
Tref = 32; 
% Height of brine pool in each stage (in.) 
H = 18; 
% Width of a recovery stage (ft) 
w_rec = 40; 
% Width of a rejection stage (ft) 
w_rej = 35; 
  
% Initialize all the variables, assuming 3 stages and a brine heater 
% Temperatures (F): cooling brine temperatures Tw(1-3) 
%                   flashing brine temperature Tb(1-3) 
%                   distillate product saturation temperature Tp(1-3) 
% Tw = [192;184;176]; 
% Tb = [192.66;186;179.47]; 
% Tp = [190.53;183.66;177.29]; 
  
Tw = [190;183;176;169;162;155;148;141;134;127;120;113;110;110;103;100;98]; 
Tb = [190;183;176;169;162;155;148;141;134;127;120;113;110;110;103;100;98]; 
Tp = [190;183;176;169;162;155;148;141;134;127;120;113;110;110;103;100;98]; 
  
% Flowrates (lb/hr): 
% Lw: cooling brine mass flowrates in the recovery section 
% Lb: flashing brine mass flowrates 
% Lp: distillate product mass flowrates 
Lw_rec = R+F; 
Lw_rej = Lsea; 
%Lb = [0.2633;0.26165;0.2600]*1.0E8; 
%Lp = [0.17;0.34;0.51]*1.0E6; 
  
% Salt concentration (mass fraction): cooling brine concentration Xw 
%                    flashing brine concentrations Xb(1-3) 
Xw_rej = Xsea; 
Xb = [6.4;6.45;6.5;6.55;6.6;6.65;6.7;6.75;6.8;6.85;6.9;6.95;7;7;7.05;7.1;7.15]; 
  
% brine heater outlet flow properties 
Lb0 = Lw_rec; 
Tb0 = 200; 
Xb0 = 6.25; 
  
count = 0; 
Tb_ref = zeros(17,1); 
while sum((Tb-Tb_ref).^2)>17*1.0E-5  
  
Tb_ref = Tb; 
  
Cpb0 = heatcapa(Tb0,Xb0);  
hb0 = hbrine(Tb0,Xb0);  
% Specific enthalpy of flashing brine leaving each stage 
for i = 1:17 
    hb(i) = hbrine(Tb(i),Xb(i)); 
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end 
  
% Specific enthalpy of flashing vapor at each stage 
for i = 1:17 
    hv(i) = hsteamsat(Tp(i)); 
end 
  
% step 1 in the loop 
Lb(1) = Lb0*(hb0-hv(1))/(hb(1)-hv(1)); 
for i = 2:13 
    Lb(i) = Lb(i-1)*(hb(i-1)-hv(i))/(hb(i)-hv(i)); 
end 
Lb(14) = Lb(13); 
for i = 15:17 
    Lb(i) = Lb(i-1)*(hb(i-1)-hv(i))/(hb(i)-hv(i)); 
end 
% step 2 in the loop 
Lp(1) = Lb0-Lb(1); 
for i = 2:13 
    Lp(i) = Lb(i-1)+Lp(i-1)-Lb(i); 
end 
Lp(14) = Lp(13); 
for i = 15:17 
    Lp(i) = Lb(i-1)+Lp(i-1)-Lb(i); 
end 
% Blowdown mass flowrate (lb/hr) 
BD = Lb(17)-R; 
  
% Salt balance on mixer for Xw_rec 
Xr = Xb(17);Xf = Xw_rej; 
Xw_rec = (R*Xr+F*Xf)/Lw_rec; 
% Salt concentration of brine heater outlet flow 
Xb0 = Xw_rec; 
  
% step 5 in the loop 
Xb(1) = Lb0*Xb0/Lb(1); 
for i = 2:13 
    Xb(i) = Lb(i-1)*Xb(i-1)/Lb(i); 
end 
Xb(14) = Xb(13); 
for i = 15:17 
    Xb(i) = Lb(i-1)*Xb(i-1)/Lb(i); 
end 
  
  
% The overall heat transfer coefficients for each of the stages 
for i = 1:13 % recovery stages 
    U(i) = htcoeff(Tp(i),Tw(i),Lw_rec,Xw_rec,A_rec,di_rec,th_rec,len_rec); 
end 
U(14) = 0; 
for i = 15:17 % rejection stages 
    U(i) = htcoeff(Tp(i),Tw(i),Lw_rej,Xw_rej,A_rej,di_rej,th_rej,len_rej); 
end     
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% Specific heat capacity of cooling brine leaving each stage 
for i = 1:13 % recovery stages 
  Cpw(i) = heatcapa(Tw(i),Xw_rec); 
end 
Cpw(14) = heatcapa(Tw(14),Xw_rec); 
for i = 15:17 % rejection stages 
  Cpw(i) = heatcapa(Tw(i),Xw_rej); 
end 
  
Cpsea = heatcapa(Tsea,Xsea); 
% Mean specific heat capacity of cooling brine at each stage 
for i = 1:13 
    Cpav(i) = (Cpw(i)+Cpw(i+1))/2; 
end 
Cpav(14) = 0; 
for i = 15:16 
    Cpav(i) = (Cpw(i)+Cpw(i+1))/2; 
end 
Cpav(17) = (Cpw(17)+Cpsea)/2; 
  
% Specific heat capacity of distillation product leaving each stage 
for i = 1:17 
    Cpp(i) = heatcapa(Tp(i),0); 
end 
% Specific heat capacity of flashing brine leaving each stage 
for i = 1:17 
    Cpb(i) = heatcapa(Tb(i),Xb(i)); 
end 
  
% alpha calculation for each stage 
for i = 1:13 
    alpha(i) = exp(U(i)*A_rec/Lw_rec/Cpav(i)); 
end 
alpha(14) = 0; 
for i = 15:17 
    alpha(i) = exp(U(i)*A_rej/Lw_rej/Cpav(i)); 
end 
  
% parameter calculation for each stage 
a1(1) = 0; 
for i = 2:13 
    a1(i) = Lp(i-1)*Cpp(i-1)/Lw_rec/Cpav(i); 
end 
a1(14) = a1(13); 
for i = 15:17 
    a1(i) = Lp(i-1)*Cpp(i-1)/Lw_rej/Cpav(i); 
end 
  
a2(1) = Lb0*Cpb0/Lw_rec/Cpav(1); 
for i = 2:13 
    a2(i) = Lb(i-1)*Cpb(i-1)/Lw_rec/Cpav(i); 
end 
a2(14) = a2(13); 
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for i = 15:17 
    a2(i) = Lb(i-1)*Cpb(i-1)/Lw_rej/Cpav(i); 
end 
  
for i = 1:13 
    a3(i) = Lp(i)*Cpp(i)/Lw_rec/Cpav(i); 
end 
a3(14) = a3(13); 
for i = 15:17 
    a3(i) = Lp(i)*Cpp(i)/Lw_rej/Cpav(i); 
end 
  
for i = 1:13 
    a4(i) = Lb(i)*Cpb(i)/Lw_rec/Cpav(i); 
end 
a4(14) = a4(13); 
for i = 15:17 
    a4(i) = Lb(i)*Cpb(i)/Lw_rej/Cpav(i); 
end 
  
for i = 1:17 
    a5(i) = (a3(i)+a4(i)-a1(i)-a2(i))*Tref; 
end 
  
Z(1) = bpe(Tb(1),Xb(1))+nea(Tb0,Tb(1),H,w_rec,Lw_rec,Tp(1))+temploss(Tp(1)); 
for i = 2:13 
    Z(i) = 
bpe(Tb(i),Xb(i))+nea(Tb(i-1),Tb(i),H,w_rec,Lw_rec,Tp(i))+temploss(Tp(i)); 
end 
Z(14) = Z(13); 
for i = 15:17 
    Z(i) = 
bpe(Tb(i),Xb(i))+nea(Tb(i-1),Tb(i),H,w_rej,Lw_rej,Tp(i))+temploss(Tp(i)); 
end 
  
for i = 1:17 
    b1(i) = a1(i)+a2(i); 
    b2(i) = -a3(i)-a4(i); 
end 
  
b3(1) = a5(1)+a2(1)*Tb0-a4(1)*Z(1); 
for i = 2:17 
    b3(i) = a5(i)+a2(i)*Z(i-1)-a4(i)*Z(i); 
end 
  
c1(1) = 0; % 
for i = 2:17 
    c1(i) = b1(i)*alpha(i-1)/(alpha(i-1)-1); 
end 
  
c2(1) = b2(1)*alpha(1)/(alpha(1)-1); 
for i = 2:17 
    c2(i) = b1(i)/(1-alpha(i-1))-b2(i)*alpha(i)/(1-alpha(i)); 
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end 
  
for i = 1:17 
    c3(i) = b2(i)/(1-alpha(i)); 
end 
  
% Rejection section cooling brine temperatures 
TDM_rej = zeros(3,3); 
Y_rej = zeros(3,1); 
TDM_rej(1,1:3) = [-1-alpha(15)*b2(15)/(1-alpha(15)) c3(15)+1 0]; 
TDM_rej(2,1:3) = [c1(16) c2(16)-1 c3(16)+1]; 
TDM_rej(3,1:3) = [0 c1(17) c2(17)-1]; 
  
Y_rej(1) = -b3(15)-b1(15)*(Tw(14)-alpha(13)*Tw(13))/(1-alpha(13)); 
Y_rej(2) = -b3(16); 
Y_rej(3) = -b3(17)-Tsea*(c3(17)+1); 
  
Tw(15:17) = inv(TDM_rej)*Y_rej; 
  
% Mixer enthalpy balance 
Tw(14) = (R*Cpb(17)*(Tb(17)-Tref)+F*Cpw(15)*(Tw(15)-Tref))/Lw_rec/Cpw(14)+Tref; 
  
% Recovery section cooling brine temperatures 
TDM_rec = zeros(13,13); 
Y_rec = zeros(13,1); 
TDM_rec(1,1:2) = [c2(1)-1 c3(1)+1]; 
for i = 2:12 
     TDM_rec(i,i-1:i+1) = [c1(i) c2(i)-1 c3(i)+1]; 
end 
TDM_rec(13,12:13) = [c1(13) c2(13)-1]; 
for i = 1:12 
Y_rec(i) = -b3(i); 
end 
Y_rec(13) = -b3(13)-Tw(14)*(c3(13)+1); 
  
Tw(1:13) = inv(TDM_rec)*Y_rec; 
 
% Update thermal parameters 
% The overall heat transfer coefficients for each of stages 
for i = 1:13 % recovery stages 
    U(i) = htcoeff(Tp(i),Tw(i),Lw_rec,Xw_rec,A_rec,di_rec,th_rec,len_rec); 
end 
U(14) = 0; 
for i = 15:17 % rejection stages 
    U(i) = htcoeff(Tp(i),Tw(i),Lw_rej,Xw_rej,A_rej,di_rej,th_rej,len_rej); 
end     
  
% Specific heat capacity of cooling brine leaving each stage 
for i = 1:13 % recovery stages 
  Cpw(i) = heatcapa(Tw(i),Xw_rec); 
end 
Cpw(14) = heatcapa(Tw(14),Xw_rec); 
for i = 15:17 % rejection stages 
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  Cpw(i) = heatcapa(Tw(i),Xw_rej); 
end 
  
Cpsea = heatcapa(Tsea,Xsea); 
% Mean specific heat capacity of cooling brine at each stage 
for i = 1:13 
    Cpav(i) = (Cpw(i)+Cpw(i+1))/2; 
end 
Cpav(14) = 0; 
for i = 15:16 
    Cpav(i) = (Cpw(i)+Cpw(i+1))/2; 
end 
Cpav(17) = (Cpw(17)+Cpsea)/2; 
  
% alpha calculation for each stage 
for i = 1:13 
    alpha(i) = exp(U(i)*A_rec/Lw_rec/Cpav(i)); 
end 
alpha(14) = alpha(13); 
for i = 15:17 
    alpha(i) = exp(U(i)*A_rej/Lw_rej/Cpav(i)); 
end 
  
% step 7 in the loop 
% obtain distillation product temperature for each stage 
for i = 1:13 
    Tp(i) = (Tw(i+1)-alpha(i)*Tw(i))/(1-alpha(i)); 
end 
Tp(14)=Tp(13); 
for i = 15:16 
    Tp(i) = (Tw(i+1)-alpha(i)*Tw(i))/(1-alpha(i)); 
end 
Tp(17) = (Tsea-alpha(17)*Tw(17))/(1-alpha(17)); 
  
% update Z 
Z(1) = bpe(Tb(1),Xb(1))+nea(Tb0,Tb(1),H,w_rec,Lw_rec,Tp(1))+temploss(Tp(1)); 
for i = 2:13 
    Z(i) = 
bpe(Tb(i),Xb(i))+nea(Tb(i-1),Tb(i),H,w_rec,Lw_rec,Tp(i))+temploss(Tp(i)); 
end 
Z(14) = Z(13); 
for i = 15:17 
    Z(i) = 
bpe(Tb(i),Xb(i))+nea(Tb(i-1),Tb(i),H,w_rej,Lw_rej,Tp(i))+temploss(Tp(i)); 
end 
  
% step 8 in the loop 
% obtain flashing brine temperature for each stage 
for i = 1:17 
    Tb(i) = Tp(i)+Z(i); 
end 
  
% calculate the maximum brine temperature Tb0 
U_br = htcoeff(Ts,Tb0,Lw_rec,Xw_rec,A_br,di_br,th_br,len_br); % heat transfer 
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coefficient of brine heater 
Cpav_br = (Cpw(1)+Cpb0)/2; 
alpha_br = exp(U_br*A_br/Lw_rec/Cpav_br); % alpha calculation for brine heater 
Tb0 = (Tw(1)-(1-alpha_br)*Ts)/alpha_br; 
count = count+1; 
end 
Tb0 
Ws = Lb0*Cpav_br*(Tb0-Tw(1))/(hsteamsat(Ts)-hwatersat(Ts)) 
Tb 
Tp 
Tw 
Count 
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Dynamic Simulation Code : 
 
% The dynamic MSF simulation  
close all; 
clear all; 
clc 
  
% Heat recovery section tube inner diameter (in.)  
di = 0.866; 
% Heat recovery section tube thickness (in.) 
th = 0.048; 
% Heat recovery section tube length (ft) 
len = 40; 
  
Axs = 36; % chamber area (m^2) 
Apxs = 3; % distillation tray area (m^2) 
  
w = 9.6; % orifice width (m) 
h = 0.11; % orifice height (m) 
C = 0.623; % orifice contraction coefficient 
%K = 0.6413; % orifice discharge coefficient 
K1 = 0.6467; 
K2 = 0.6319; 
  
wp = 0.6; % orifice width (m) 
hp = 0.11; % orifice height (m) 
Cp = 0.623; % orifice contraction coefficient 
%Kp = 0.1235; % orifice discharge coefficient 
Kp1 = 0.0615; 
Kp2 = 0.1214; 
% specific heat capacity (Btu/lb*F) 
Cpb0 = 0.9486; 
Cpb1 = 0.9472; 
Cpb2 = 0.9457; 
Cpp1 = 1.0041; 
Cpp2 = 1.0033; 
Cpw1 = 0.9454; % Btu/lb*F 
Cpw2 = 0.9443; % Btu/lb*F 
  
U1 = 676.7345/3600; % overall heat transfer coefficient Btu/(sec F ft^2) 
U2 = 674.91/3600; % overall heat transfer coefficient Btu/(sec F ft^2) 
A = 43000; % heat transfer area (ft^2) 
U_br = 696.745/3600; % overall heat transfer coefficient Btu/(sec F ft^2) 
A_br = 38000; % heat transfer area (ft^2) 
  
rhow = 63.1691; %cooling brine density (lb/ft^3) 
rhob = 1010.6561133; %flashing brine density in kg/m^3 
rhop = 965; % distillate product density in kg/m^3 
  
% surface area per tube (ft^2) 
As = 2*pi*((di/2+th)/12)*len; 
% # of tubes in one stage 
tube = A/As; 
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% # of tubes in brine heater 
tube_br = A_br/As; 
% volume per tube (ft^3) 
Vol = 0.25*pi*(di/12)^2*len; 
  
Mw = rhow*Vol*tube; % total mass in tubes (lb) 
Mb0 = rhow*Vol*tube_br; % total mass in tubes (lb) 
  
  
% inputs 
Tw_in = 178.55; 
Lw_in = 0.265*1.0E8/3600; % lb/sec 
Xw_in = 6.2412; 
  
Tv1=192.5; 
Tv2=186.7; 
Hfg1 = hsteamsat(Tv1)-hwatersat(Tv1);  % vapor latent heat (Btu/lb) 
Hfg2 = hsteamsat(Tv2)-hwatersat(Tv2); 
Pv1 = pft(Tv1); 
Pv2 = pft(Tv2); 
Pv_in = 0.5328; % 3rd stage pressure value in bar 
  
Tsteam = 206; 
Lsteam = 73.6; % lb/sec 
  
Kv1 = 0.0599; 
Kv2 = 0.058; 
  
% controller parameters 
TBTsetpoint = 200; 
Kp=.1;Ki=.1; 
Levelsetpoint = 0.6264; 
Kp_level=.01;Ki_level=.0005; 
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Appendix E:  IRIS-MSF Nuclear Desalination Simulation Codes 
 
% The IRIS-MSF nuclear desalination simulation  
close all; 
clear all; 
clc 
  
% Heat recovery section tube inner diameter (in.)  
di = 0.866; 
% Heat recovery section tube thickness (in.) 
th = 0.048; 
% Heat recovery section tube length (ft) 
len = 40; 
  
Axs = 36; % chamber area (m^2) 
Apxs = 3; % distillation tray area (m^2) 
  
w = 9.6; % orifice width (m) 
h = 0.11; % orifice height (m) 
C = 0.623; % orifice contraction coefficient 
%K = 0.6413; % orifice discharge coefficient 
K1 = 0.6467; 
K2 = 0.6319; 
  
wp = 0.6; % orifice width (m) 
h_p = 0.11; % orifice height (m) 
Cp = 0.623; % orifice contraction coefficient 
%Kp = 0.1235; % orifice discharge coefficient 
Kp1 = 0.0615; 
Kp2 = 0.1214; 
% specific heat capacity (Btu/lb*F) 
Cpb0 = 0.9486; 
Cpb1 = 0.9472; 
Cpb2 = 0.9457; 
Cpp1 = 1.0041; 
Cpp2 = 1.0033; 
Cpw1 = 0.9454; % Btu/lb*F 
Cpw2 = 0.9443; % Btu/lb*F 
  
U1 = 676.7345/3600; % overall heat transfer coefficient Btu/(sec F ft^2) 
U2 = 674.91/3600; % overall heat transfer coefficient Btu/(sec F ft^2) 
A = 43000; % heat transfer area (ft^2) 
U_br = 696.745/3600; % overall heat transfer coefficient Btu/(sec F ft^2) 
A_br = 38000; % heat transfer area (ft^2) 
  
rho_w = 63.1691; %cooling brine density (lb/ft^3) 
rho_b = 1010.6561133; %flashing brine density in kg/m^3 
rho_p = 965; % distillate product density in kg/m^3 
  
% surface area per tube (ft^2) 
A_s = 2*pi*((di/2+th)/12)*len; 
% # of tubes in one stage 
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tube = A/A_s; 
% # of tubes in brine heater 
tube_br = A_br/A_s; 
% volume per tube (ft^3) 
Vol = 0.25*pi*(di/12)^2*len; 
  
Mw = rho_w*Vol*tube; % total mass in tubes (lb) 
Mb0 = rho_w*Vol*tube_br; % total mass in tubes (lb) 
  
  
% inputs 
Tw_in = 178.55; 
Lw_in = 0.265*1.0E8/3600; % lb/sec 
Xw_in = 6.2412; 
  
Tv1=192.5; 
Tv2=186.7; 
Hfg1 = hsteamsat(Tv1)-hwatersat(Tv1);  % vapor latent heat (Btu/lb) 
Hfg2 = hsteamsat(Tv2)-hwatersat(Tv2); 
Pv1 = pft(Tv1); 
Pv2 = pft(Tv2); 
Pv_in = 0.5328; % 3rd stage pressure value in bar 
  
% Tsteam = 206; 
% Lsteam = 73.6; 
  
  
Kv1 = 0.0599; 
Kv2 = 0.058; 
  
% controller parameters 
TBTsetpoint = 200.5; 
Kp=.1;Ki=.1; 
Levelsetpoint = 0.6264; 
Kp_level=.01;Ki_level=.0005; 
  
TwBias = 0.0; 
LwBias = 0.0; 
XwBias = 0.0; 
Tb0Bias = 0.0; 
TBTsetpointBias = 0.0; 
LevelsetpointBias = 0.0; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% IRIS Reactor System Parameters 
  
  
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Reactor Core 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Units converter 
kk=1.054e-3;  % 1BTU =1.054e3 J = 1.054 e-3MJ 
  
%from mm to ft; 
  
c1=0.1*0.3937/12;  
  
%conversion from kg to lbm;  
  
c2=1/0.4536;  % 1lb= 0.4536kg 
  
% 1 ft =0.3m 
  
% One group delayed neutron fraction 
% beta=0.0044; 
% decay constant  (sec-1) 
% lamda=0.07561; 
  
% 6 groups delayed neutron  
beta = [0.000215,0.001424,0.001274,0.002568,0.000748,0.000273]; % Neutron 
fraction 
  
lamda =[0.0124,0.0305,0.111,0.301,1.14,3.01]; % Decay constant (sec-1) 
%lamda =[0.0125,0.0308,0.1140,0.307,1.19,3.19]; 
  
beta_tot=sum(beta); 
  
  
%C0=[2.56044980203996, 5.98380618825848, 1.50806782543339, ... 
%    1.22026479381736, 0.09438247614957,   0.00809051173591]*1.0E11; 
%C0= [2.3235,6.2567,1.5381,1.1433,0.0879,0.0122]*1.0e11; 
  
  
% average prompt neutron generation time (s) 
kapa=1.0e-4; 
  
C0=lamda.\beta/kapa; 
  
% Nominal Power output (MWth) 
 P0=1000; 
  
  
% total coolant mass flow rate  
% Core flow rate (lbm/sec) 
Wc=3.7397e7/3600; 
%Wc=3.7e7/3600; 
W=Wc/8;   % Coolant going to one HCSG 
  
% Mann's two nodes model 
Wc1=Wc;    
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Wc2=Wc; 
  
mf = 1.8e5; % Mass of fuel (lb) 
  
% total mass of coolant in core 
mc= 7.45e5; % lb  
  
mc1=mc/2; 
mc2=mc-mc1; 
  
%% reactor core thermal model 
% Moderator temperature coefficient of reactivity (1/F) 
Alpha_c = -4.0e-4; 
%Alpha_c = -3.6e-4 ; % 1/K; 
% Fuel Temperature Coefficient of Reactivity (1/F) 
Alpha_f = -1.65e-5;  % 1/K 
  
% Fraction of Total Power Deposited in Fuel 
Fc = 0.97; 
  
% Specific Heat capacity of Fule (BTU/lbm-F) 
Cpf = 0.059*kk; 
% Cpf=246.5; % (J/kg-K) 
% Specific heat capacity of Moderator (BTU/lbm-F) 
Cpc = 1.394*kk; 
%Cpc = 5807; % (J/kg-K) 
% Effective fuel-to-coolant heat transfer area (ft2)  
Afc = 41631.6; 
Afc1=Afc/2; 
Afc2=Afc/2; 
%Afc =5570.7; % m2 
  
% overall fule-to-coolant heat transfer coefficient (BTU/Hr-ft2-F) 
Ufc = 327.4/3600*kk; 
%Ufc = 5.672; % J/s-kg-K 
rho_h2o = 45.71; %lbm/ft3 
%rho_h2o = 732.6 ; % kg/m3 
  
% lower riser volume  
Vlr=19.0*35.288;  %ft3 
% upper riser volume 
Vur = 35.4 * 35.288;   %ft3 
%RCP suction plenum 
Vcp = 23.5 *35.288; %ft3 
  
% 1 m3 = 35.288 ft3 
Vtotal=(19.0+35.4+23.5)/8*35.288; % ft3 
Vhl=1000; 
  
mm=rho_h2o*Vtotal; 
  
%Tfuel0=841.59; 
Tfuel0=841.62; 
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%Theta10=(557.6+(622.4-557.6)/3-32)*5/9; 
Theta10=590.65; 
%Theta20=(557.6+(622.4-557.6)*2/3-32)*5/9; 
Theta20=622.4; 
%Theta20=623.12; 
Thot0=624; 
%Thot0=623.12; 
%Tcold0=557.6; 
% 
Tcold0=556; 
sim('coress_MSF'); 
  
%P0 = core_ss(end,3); 
%C0 = core_ss (end,4:9); 
%Tfuel0 = core_ss(end,10); 
%Theta10 = core_ss(end,11); 
%Theta20 = core_ss(end,12); 
%Thot0 = core_ss(end,13); 
  
%ini_core=[P0,C0,Tfuel0,Theta10,Theta20,Thot0]; 
ini_core =core_ss(end,3:end); 
coreSS=core_ss(end,:); 
Kp_shim=0.1;%0.0001; 
%Ki_shim=0.000044; 
Kp_tavg=0.01; 
Ki_tavg=0.00044; 
  
Tavg_set=590.00; 
  
%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   IRIS HCSG Model 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
JJ=778.16; %BTU/ft/lbf; 
  
  
Fudge1=1.0; 
Fudge2=1.0; 
%from mm to ft; 
c1=0.1*0.3937/12;  
%conversion from kg to lbm; 
c2=1/0.4536;  
  
%N =636;  
N=656; 
Ntube=N; 
% Tube inner diameter=13.24mm 
Ri_thermal=13.24/2*c1; 
% Tube outside diameter=17.46mm 
Ro_thermal=17.46/2*c1; 
% Inlet temperature on the primary side 
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Tpin=ini_core(11); 
%Tpin=1.8*328.62+32;%(From NCSU code: 328.62F, original=328.4F) 
%Tube inside flow area; 
%Ri_hydraulic=Ri_thermal; 
%As=pi*Ri_hydraulic^2; 
  
%Internal shell external diameter Di=0.61 m; 
Di=0.61*1000*c1; 
%External shell internal diameter Dt=1.62m 
Do=1.62*1000*c1; 
%Radial pitch=25mm; 
t=25*c1; 
%Total shell side projected area 
Ap_total=1/4*pi*(Do^2-Di^2)*(1-Ro_thermal*2/t); 
%Shell side hydraulic radius=2*flow area/wetting perimeter 
%Wetting area 
Peri_wet=N*2*pi*Ro_thermal; 
Ro_hydraulic=2*Ap_total/Peri_wet; 
Ap=pi*Ro_hydraulic^2;   
  
%Tube side hydraulic dimater 
Ri_hydraulic=Ri_thermal; 
%Flow area on the secondary side; 
As=pi*(Ri_hydraulic^2);   
%Cross section for the tube; 
Aw=pi*(Ro_thermal^2-Ri_thermal^2); 
  
%Specific heat capacity; 
%Cpp=1.3355; 
Cpp=1.39; 
Cpw=0.109; 
%Cps=1.0185; 
Cpfw=1.122; 
Cpsc=1.122; 
  
%Density lbm/ft**3 
rhop=44.75; 
rhow=526.0; 
%rhos=1.876; 
rhoavg=8.86; %for entire boiling region; 
rhofw=51.71; 
rhof=46.91; %for boiling water 
rhosc=(rhofw+rhof)/2; 
  
  
Ps=5.8; 
%Ps=Ps;  
Ts=(280+318)/2+273;  
[dum,dum,Cps,vss]=hsh(Ps,Ts); 
Cps=Cps*9.4783E-4/(2.2046*1.8); 
rhos=1/vss*0.06243; 
  
%Initial heat transfer coefficient 
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%hpw=2212/3600; 
%hws=710/3600; 
%hwsc=1758/3600; 
%hwb=6000/3600; 
  
Rii=Ri_thermal; 
Roo=Ro_thermal; 
ccc=0.1761; 
  
Kw=(10.1924/3600)*1.0; 
hp=21000*ccc/3600.0; 
hs=8500*ccc/3600.0; 
hsc=16000*ccc/3600.0; 
hb=55000*ccc/3600.0; 
  
hpw=Kw*hp/(Kw+hp*Roo*(0.5+log(Roo/Rii)/(1-(Roo/Rii)^2))); 
hws=Kw*hs/(Kw+hs*Rii*(log(Rii/Roo)/(((Rii/Roo)^2)-1)-0.5)); 
hwsc=Kw*hsc/(Kw+hsc*Rii*(log(Rii/Roo)/(((Rii/Roo)^2)-1)-0.5)); 
hwb=Kw*hb/(Kw+hb*Rii*(log(Rii/Roo)/(((Rii/Roo)^2)-1)-0.5)); 
  
  
%Feed water temperature=224C; 
Tfw=1.8*224+32;  
  
%Tube length 
Lt=32*3.2808; %total bundle length 
Lb=21.5*3.2808;  %this value is fixed to determine accurate heat transfer 
coefficient in this region. 
Lsc=4.5*3.2808; %this value is malipulated given that hwsc is known. 
Ls=Lt-Lb-Lsc; 
%%%%%Heating circumference%%%%% 
Ri=Ri_thermal; 
%Ro=Ro_thermal; 
Uwb=2*pi*Ri; 
Uws=2*pi*Ri; 
Uwsc=2*pi*Ri; 
  
Ptable=5.0:0.1:6.0; 
Tsavg=(280+318)/2+273; 
Ttable=[]; 
HfgTable=[]; 
hsTable=[]; 
for PPP=5.0:0.1:6.0 
[Tsat,hf,hg,kf,kg,muf,mug,Prf,Prg]=hsat(PPP); 
[dum,hss,dum,dum]=hsh(PPP,Tsavg); 
Ttable=[Ttable,Tsat]; 
hsTable=[hsTable,hss]; 
HfgTable=[HfgTable,hg-hf]; 
end; 
c3=1000/6.895; 
Ptable=Ptable*c3; %Pressure; 
Ttable=(Ttable-273)*1.8+32; %Saturated temperature; 
cc1=9.4783E-4/2.2046; 
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HfgTable=HfgTable*cc1; 
hsTable=hsTable*cc1; 
a=polyfit(Ptable,Ttable,1); 
X5=a(2);K5=a(1); 
b=polyfit(Ptable,HfgTable,1); 
X4=b(2); K4=b(1); 
c=polyfit(Ptable,hsTable,1); 
dHsdPs=c(1); 
  
N0=8; 
%Flow rate on the primary side=589 kg/s; 1298.5 lb/s (per SG); 
%Core flow rate=589*8=4712 kg/s  
Wp=4712*c2/N/N0*Fudge1;  
Wp0=Wp; 
Wp1=Wp; 
Wp2=Wp; 
Wp3=Wp; 
Wp4=Wp; 
Wp5=Wp; 
  
Fraction=1.0; 
%Flow rate on the secondary side=62.85kg/s (per SG) 
%Total secondary flow=62.85*8=502.8kg/s 
  
AdjustFactor=1.0; 
Wsec=502.8*c2/N0/N*Fraction*AdjustFactor; 
Ws=Wsec; 
Wb=Wsec; 
Wfw=Wsec; 
Wsg=Wsec; 
Ws0=Wsec; 
Ri=Ri_thermal;                             
Ro=Ro_thermal;  
  
  
%Preparing data matrix; 
a1=Ap*Cpp*rhop/2;   %primary side; 
a2=Aw*Cpw*rhow/2;   %metal; 
a3=As*Cps*rhos/2;   %secondary side; 
a4=hpw*pi*Ro/a1; 
  
a51=Cpp*Wp0/a1; 
a52=Cpp*Wp1/a1; 
a53=Cpp*Wp2/a1; 
a54=Cpp*Wp3/a1; 
a55=Cpp*Wp4/a1; 
a56=Cpp*Wp5/a1; 
  
a6=hpw*pi*Ro/a2; 
a7=hwb*pi*Ri/a2; 
a8=hws*pi*Ri/a2; 
a9=hws*pi*Ri/a3;     
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a11=As*Cpsc*rhosc/2; %  
a12=hwsc*pi*Ri/a2; %  
a13=hwsc*pi*Ri/a11; %  
a14=144/(JJ*Cpp*rhop); 
%dHsdPs=(1245.9-1251.8)/50.0; 
a15=144/(JJ*Cps*rhos)-dHsdPs/Cps; 
dHscdPsc=(430.47-430.19)/500; 
a16=144/(JJ*Cpsc*rhosc)-dHscdPsc/rhosc; 
  
%Saturated temperature for 7Mpa 
c3=1000/6.895; % 1Mpa=1000/6.895 psi 
Ps=5.8*c3; 
%Ps=862; 
deltaP=0.2; 
%Psat=(5.8+deltaP)*c3; 
Psat=Ps; 
%X5=402.94; K5=0.14;  %Tsat~Psat 
Tsat=X5+K5*Psat; 
%Tsat=546.6;  %Exit temperature=317C and Degree of superheat is 43.4; 
Hfg=X4+K4*Psat; 
sim('hcsgss_MSF'); 
a99=hws*pi*Ri/Cps;   
a88=2*Wfw/As/rhosc; 
a77=2/As/rhosc; 
Ksc=(1/0.02152-1/0.02145)/20;        
Kb=0.00552445; 
dTsatdP=K5; 
  
Z=0.76634; % 570K, 60atm; steam expansion coefficient 
R=4.55465*3.5314455E-5*14.696006/(5/9*2.2046223E-3); %cm^3atm/deg*g, gas 
constant 
Ct=Ws/Ps; 
Ktb=1.5428e-004; 
  
% Steam valve position controller 
Pset=5.8*c3; % 5.8Mpa -> psi 
%Pset= 862; 
  
% Adustable parameters 
cst=10; 
%cst=0.1; 
taos=1; % the smaller, the faster response, more oscillation 
%taos=0.5; 
  
ti=10; 
%ti2=1; %unit 2 
kc=.5; % 0.5 is the original value change the response of pressure;  the smaller, 
the larger change 
  
PsBias=0.0; 
WsBias=0.0; 
  
% sim('HCSG') 
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% ini_hcsg=out_hcsg(end,:); 
%  
%  
% %%% IRIS Primary 
%  
% sim('Primary_IRIS') 
%  
% coreSS=core_tran(end,:); 
% HCSGSSV=para_out(end,:); 
  
%% Balance of Plant 
epsilon = 0.6354; 
Kapp = 3.4137e6; % 1MW = 3.4137e6 BTU/hour 
% number of steam generators 
Nsg = 8; 
gc=32.174; 
% turbine control valve open loss coefficient 
Ktcv=44.85; 
Refload = 335;  % MWe 
  
Wfw = 4.9877e5/3600;  % Feedwater flow rate at 100% power level per SG (lbm/sec) 
  
%% Condenser 
K1co = 37.74; 
K2co = 32; 
K5co = 1054; 
K6co = -18; 
Pco0 = 0.71; % Condenser pressure (psi) 
TOUco = 7; 
MLco = 4.1423e4;  
 
K_msf = 0.081; 
K_fwh = 0.2; 
TOU = 10; 
  
%% Feedwater heater 
TOUh = 20; 
CPfw = 1.2181; 
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Appendix F:  Greedy Search Optimization Algorithm Codes 
Fault Observability: 
 
% greedy search algorithm  
% under single-fault assumption 
clc 
clear 
% Taking number of root nodes from user 
n=input('Please enter the number of root nodes = '); 
  
% Taking number of key components from user 
m=input('Please enter the number of key components = '); 
 
con=zeros(m,n); 
for p=1:m 
    for q=1:n 
        con(p,q)=input(['Arcs between key components and root nodes 
[C',num2str(p),']','[R',num2str(q),'] = ']); 
    end 
end 
  
% combine the sensors that are connected to the same root node set 
row = []; 
for i = m:-1:2 
    if nnz(con(i,:))==0 
        continue        
    end 
    record = []; 
    for j = i-1:-1:1 
        if nnz(con(j,:))==0 
        continue 
        end 
        sumcol = sum(con([i j],:),1); % add two rows up 
        if nnz(sumcol==1)==0 % identical rows consisting of 0 and 2 
            if nnz(i==record)==0 % no i in the record 
                record = [record;i]; 
            end 
            if nnz(j==record)==0  
                record = [record;j]; 
            end 
        end 
    end 
    if isempty(record)~=1 % if record is not empty 
        last = record(size(record,1)); 
        if nnz(last==row)==0 
        row = [row;last]; 
        end 
    else % if record is empty 
        if nnz(i==row)==0 
            row = [row;i];                 
        end 
    end 
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end 
if (nnz(1==row)==0) && (nnz(con(1,:))>0) 
   row = [row;1]; 
end 
% array "row" consists of sensors that have different root node set. 
  
% remove redundant sensors 
for i=1:m 
    if nnz(i==row)==0 
        con(i,:)=0; 
    end 
end 
  
% combine the root nodes that are connected to the same sensor set 
column = []; 
for i = 1:n-1 
    record = []; 
    for j = i+1:n 
        sumcol = sum(con(:,[i j]),2); % add two columns up 
        if nnz(sumcol==1)==0 % identical columns consisting of 0 and 2 
            if nnz(i==record)==0 % no i in the record 
                record = [record i]; 
            end 
            if nnz(j==record)==0  
                record = [record j]; 
            end 
        end 
    end 
    if isempty(record)~=1 % if record is not empty 
        last = record(size(record,2)); 
        if nnz(last==column)==0 
        column = [column last]; 
        end 
    else % if record is empty 
        if nnz(i==column)==0 
            column = [column i];                 
        end 
    end 
    if i==n-1 
        if nnz(i+1==column)==0 
            column = [column i+1]; 
        end 
    end 
end 
% array "column" consists of root nodes that have different sensor set. 
  
con = con(:,column); % combine indistinguishable faults 
[m,n] = size(con); 
  
% creating set B for all columns of the new connectivity matrix for single 
% fault isolation 
B = []; 
for i=1:n-1 
    for j=i+1:n 
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        sumcol = sum(con(:,[i j]),2); 
        sumcol(find(sumcol==2))=0; 
        B = [B sumcol]; 
    end 
end 
con = [con B]; 
[m,n] = size(con); 
  
%original greedy search algorithm to find the minimal set of sensors for 
observability 
con_backup = con; 
  
count=1; 
C=[0]; 
while nnz(con)>0 
for i=1:m 
    if nnz(i==C)>0 % i is in C 
        arc(i)=0; 
        continue 
    else % only select unmarked C with highest unmarked arcs (denoted "1") 
        arc(i)=sum(con(i,find(con(i,:)==1)),2); 
    end 
end 
%    arc_1=sum(con,2); 
maxarc=find(arc==max(arc)); 
% dealing with single unmarked C or multiple unmarked C 
% mark and store C 
if size(maxarc,2)==1 
    count=count+1; 
    C(count)=maxarc; 
else 
    % combine the identical sensors 
    markedcon = zeros(m,n); 
     
    for i=1:m 
        if nnz(i==maxarc)>0 % i is in maxarc 
            markedcon(i,find(con(i,:)==1))=1; 
        end 
    end 
     
    row2 = []; 
    for i = m:-1:2 
        if nnz(markedcon(i,:))==0 
        continue 
        end 
    record = []; 
    for j = i-1:-1:1 
        if nnz(markedcon(j,:))==0 
        continue 
        end 
        sumcol = sum(markedcon([i j],:),1); % add two rows up 
        if nnz(sumcol==1)==0 % identical rows consisting of 0 and 2 
            if nnz(i==record)==0 % no i in the record 
                record = [record;i]; 
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            end 
            if nnz(j==record)==0  
                record = [record;j]; 
            end 
        end 
    end 
    if isempty(record)~=1 % if record is not empty 
        last = record(size(record,1)); 
        if nnz(last==row2)==0 
        row2 = [row2;last]; 
        end 
    else % if record is empty 
        if nnz(i==row2)==0 
            row2 = [row2;i];                 
        end 
    end 
    end 
if (nnz(markedcon(1,:))>0) && (nnz(1==row2)==0) 
    row2 = [row2;1]; 
end 
  
maxarc = sort(row2'); % new maxarc 
    count=count+size(maxarc,2); 
    C(count-size(maxarc,2)+1:count)=maxarc; 
end 
  
% generate all the root nodes covered by C, store them in matrix deletedarc 
deletedarc = zeros(size(maxarc,2),n); 
  
for i=1:size(maxarc,2) 
    index = find(con(maxarc(i),:)>=1); 
    deletedarc(i,1:size(index,2)) = index; 
end 
% form an array including all the root nodes covered by C 
logical = false; 
p = size(deletedarc,1); 
c2 = deletedarc(1,:); 
for i=1:p-1 
    a = c2; 
    b = deletedarc(i+1,:); 
    c2 = b; 
for x=1:size(a,2) 
for y=1:size(b,2) 
if a(x)==b(y) 
    logical = true; 
    break 
end 
end 
if logical==0 
c2 = [c2 a(x)]; 
else logical = false; 
    continue 
end 
end 
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end 
  
c2 = sort(c2); 
storedarc = c2(find(c2~=0)); 
  
% delete the arcs from presently covered root nodes to the previous marked sensors 
for i=1:m 
    if nnz(i==C(1:count-size(maxarc,2)))>0 
        con(i,storedarc(find(con(i,storedarc)>=1))) = 0; 
    end 
end 
  
uncov=n-nnz(sum(con_backup(C(2:size(C,2)),:),1)); % uncovered root nodes exist? 
if uncov~=0 
  % mark all the arcs from presently covered root nodes to all unmarked sensors 
(not in C) 
  % and store these arcs in buffer (denoted "2") 
  for i=1:m 
    if nnz(i==C) == 0 
        con(i,storedarc(find(con(i,storedarc)>=1))) = 2; 
    end 
end 
  
else % no uncovered root nodes 
    C_new = []; 
for i=2:size(C,2) 
    if nnz(con(C(i),:))~=0 
       C_new = [C_new C(i)]; % select and unmark the marked C with no arcs 
    else 
        count=count-1; 
    end 
end 
count=count-1; 
break 
end 
end 
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Unobservability Optimization: 
 
% Algorithm for solving unobservability minimization problem 
% under single-fault assumption 
 
clc 
clear 
% Taking number of root nodes from user 
n=input('Please enter the number of root nodes = '); 
  
% Taking number of key components from user 
m=input('Please enter the number of key components = '); 
con=zeros(m,n); 
for p=1:m 
    for q=1:n 
        con(p,q)=input(['Arcs between key components and root nodes 
[C',num2str(p),']','[R',num2str(q),'] = ']); 
    end 
end 
 
% combine the root nodes that are connected to the same sensor set 
column = []; 
for i = 1:n-1 
    record = []; 
    for j = i+1:n 
        sumcol = sum(con(:,[i j]),2); % add two columns up 
        if nnz(sumcol==1)==0 % identical columns consisting of 0 and 2 
            if nnz(i==record)==0 % no i in the record 
                record = [record i]; 
            end 
            if nnz(j==record)==0  
                record = [record j]; 
            end 
        end 
    end 
    if isempty(record)~=1 % if record is not empty 
        last = record(size(record,2)); 
        if nnz(last==column)==0 
        column = [column last]; 
        end 
    else % if record is empty 
        if nnz(i==column)==0 
            column = [column i];                 
        end 
    end 
    if i==n-1 
        if nnz(i+1==column)==0 
            column = [column i+1]; 
        end 
    end 
end 
% array "column" consists of root nodes that have different sensor set. 
  
con = con(:,column); % combine indistinguishable faults 
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[m,n] = size(con); 
fop = fop(column); 
  
% creating set B for all columns of the new connectivity matrix for single 
% fault isolation 
B = []; fopB = []; 
for i=1:n-1 
    for j=i+1:n 
        sumcol = sum(con(:,[i j]),2); 
        sumcol(find(sumcol==2))=0; 
        B = [B sumcol]; 
        fopB = [fopB min(fop(i),fop(j))]; 
    end 
end 
  
con = [con B]; 
fop = [fop fopB]; 
[m,n] = size(con); 
  
CS=zeros(m,1);OS=zeros(m,1); 
C=0;OC=0; 
Ctotal=1500; 
stp = sfp.^OS; 
unob = fop; 
for j=1:n 
    for i=1:m 
        if con(i,j)==1 
            unob(j)=unob(j)*stp(i); 
        end 
    end 
end 
systemunob = max(unob); 
  
redun = zeros(m,1); 
for i=1:m 
    for j=1:n 
        if con(i,j)==1 
            redun(i)=redun(i)+unob(j); 
        end 
    end 
end 
  
while C<Ctotal 
  
criticalfault = find(unob==max(unob)); 
criticalfault = criticalfault(1); 
Q = find(con(:,criticalfault)==1); 
Cavail = Ctotal-C; 
Q = Q(find(cost(Q)<=Cavail)); 
if isempty(Q)==1 % if Q is empty 
    break 
else 
    Set1 = Q(find(sfp(Q)==min(sfp(Q)))); 
    Set2 = Set1(find(redun(Set1)==max(redun(Set1)))); 
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    Set3 = Set2(find(cost(Set2)==min(cost(Set2)))); 
    CS(Set3(1)) = CS(Set3(1))+1; 
    C = C+cost(Set3(1)); 
     
    stp = sfp.^CS; 
unob = fop; 
for j=1:n 
    for i=1:m 
        if con(i,j)==1 
            unob(j)=unob(j)*stp(i); 
        end 
    end 
end 
redun = zeros(m,1); 
for i=1:m 
    for j=1:n 
        if con(i,j)==1 
            redun(i)=redun(i)+unob(j); 
        end 
    end 
end 
  
%if (systemunob>max(unob)) && (abs(systemunob-max(unob))>=1e-10) 
    OS = CS;OC = C; 
    systemunob = max(unob); 
%end 
end 
end 
OS 
OC 
systemunob 
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Appendix G:  PCA Fault Detection and Isolation Codes 
% FDI codes for MSF system 
 
load MSFerror_2stage_single 
load MSFerror_2stage_dual 
 
% Single-fault directions 
 
trn = F1error'; 
[pc_f1,eig_f1,per_f1]=pcacov(cov(trn)); 
figure; 
bar(F1error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F2error'; 
[pc_f2,eig_f2,per_f2]=pcacov(cov(trn)); 
figure; 
bar(F2error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F3error'; 
[pc_f3,eig_f3,per_f3]=pcacov(cov(trn)); 
figure; 
bar(F3error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F4error'; 
[pc_f4,eig_f4,per_f4]=pcacov(cov(trn)); 
figure; 
bar(F4error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F5error'; 
[pc_f5,eig_f5,per_f5]=pcacov(cov(trn)); 
figure; 
bar(F5error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F6error'; 
[pc_f6,eig_f6,per_f6]=pcacov(cov(trn)); 
figure; 
bar(F6error); 
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xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F7error'; 
[pc_f7,eig_f7,per_f7]=pcacov(cov(trn)); 
figure; 
bar(F7error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
trn = F8error'; 
[pc_f8,eig_f8,per_f8]=pcacov(cov(trn)); 
figure; 
bar(F8error); 
xlabel('Sensor'); 
ylabel('Fault Residuals'); 
grid; 
  
pc_f_single = 
[pc_f1(:,1),pc_f2(:,1),pc_f3(:,1),pc_f4(:,1),pc_f5(:,1),pc_f6(:,1),pc_f7(:,1)
,pc_f8(:,1)]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Dual-fault directions 
 
trn = F12error'; 
[pc_f12,eig_f12,per_f12]=pcacov(cov(trn)); 
  
trn = F13error'; 
[pc_f13,eig_f13,per_f13]=pcacov(cov(trn)); 
  
trn = F14error'; 
[pc_f14,eig_f14,per_f14]=pcacov(cov(trn)); 
  
trn = F15error'; 
[pc_f15,eig_f15,per_f15]=pcacov(cov(trn)); 
  
trn = F16error'; 
[pc_f16,eig_f16,per_f16]=pcacov(cov(trn)); 
  
trn = F17error'; 
[pc_f17,eig_f17,per_f17]=pcacov(cov(trn)); 
  
trn = F18error'; 
[pc_f18,eig_f18,per_f18]=pcacov(cov(trn)); 
  
trn = F23error'; 
[pc_f23,eig_f23,per_f23]=pcacov(cov(trn)); 
  
trn = F24error'; 
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[pc_f24,eig_f24,per_f24]=pcacov(cov(trn)); 
  
trn = F25error'; 
[pc_f25,eig_f25,per_f25]=pcacov(cov(trn)); 
  
trn = F26error'; 
[pc_f26,eig_f26,per_f26]=pcacov(cov(trn)); 
  
trn = F27error'; 
[pc_f27,eig_f27,per_f27]=pcacov(cov(trn)); 
  
trn = F28error'; 
[pc_f28,eig_f28,per_f28]=pcacov(cov(trn)); 
  
trn = F34error'; 
[pc_f34,eig_f34,per_f34]=pcacov(cov(trn)); 
  
trn = F35error'; 
[pc_f35,eig_f35,per_f35]=pcacov(cov(trn)); 
  
trn = F36error'; 
[pc_f36,eig_f36,per_f36]=pcacov(cov(trn)); 
  
trn = F37error'; 
[pc_f37,eig_f37,per_f37]=pcacov(cov(trn)); 
  
trn = F38error'; 
[pc_f38,eig_f38,per_f38]=pcacov(cov(trn)); 
  
trn = F45error'; 
[pc_f45,eig_f45,per_f45]=pcacov(cov(trn)); 
  
trn = F46error'; 
[pc_f46,eig_f46,per_f46]=pcacov(cov(trn)); 
  
trn = F47error'; 
[pc_f47,eig_f47,per_f47]=pcacov(cov(trn)); 
  
trn = F48error'; 
[pc_f48,eig_f48,per_f48]=pcacov(cov(trn)); 
  
trn = F56error'; 
[pc_f56,eig_f56,per_f56]=pcacov(cov(trn)); 
  
trn = F57error'; 
[pc_f57,eig_f57,per_f57]=pcacov(cov(trn)); 
  
trn = F58error'; 
[pc_f58,eig_f58,per_f58]=pcacov(cov(trn)); 
  
trn = F67error'; 
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[pc_f67,eig_f67,per_f67]=pcacov(cov(trn)); 
  
trn = F68error'; 
[pc_f68,eig_f68,per_f68]=pcacov(cov(trn)); 
  
trn = F78error'; 
[pc_f78,eig_f78,per_f78]=pcacov(cov(trn)); 
  
pc_f_dual = 
[pc_f12(:,1),pc_f13(:,1),pc_f14(:,1),pc_f15(:,1),pc_f16(:,1),pc_f17(:,1),pc_f
18(:,1), ... 
             
pc_f23(:,1),pc_f24(:,1),pc_f25(:,1),pc_f26(:,1),pc_f27(:,1),pc_f28(:,1), ... 
             pc_f34(:,1),pc_f35(:,1),pc_f36(:,1),pc_f37(:,1),pc_f38(:,1), ... 
             pc_f45(:,1),pc_f46(:,1),pc_f47(:,1),pc_f48(:,1), ... 
             pc_f56(:,1),pc_f57(:,1),pc_f58(:,1), ... 
             pc_f67(:,1),pc_f68(:,1),pc_f78(:,1)]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
fdata = error'; 
m = size(fdata,1); 
if  max((abs(fdata))') < 0.005 
    figure; 
    plot(error); 
    title(' Residuals'); 
    disp (['There is no fault']);  
else 
f_type = ['Inlet cooling brine temperature sensor (F1)     ';  
          'Inlet cooling brine flow sensor (F2)            '; 
          'Inlet cooling brine salinity sensor (F3)        '; 
          'Flashing stage #1 heat transfer degradation (F4)'; 
          'Flashing stage #2 heat transfer degradation (F5)'; 
          'Top brine temperature sensor (F6)               ';  
          'Top brine temperature controller (F7)           '; 
          'Last stage level controller (F8)                ']; 
f_device = []; 
for j = 1:m 
    for i= 1:size(pc_f_single,2) 
      ftest = fdata(j,:); 
      ff_residual = 
ftest*(eye(size(ftest,2))-pc_f_single(:,i)*pc_f_single(:,i)'); 
      ff1=ff_residual*ff_residual'; 
      fdist= ftest*ftest'; 
      f_ind_single(j,i) = 1-sqrt(ff1/fdist); 
    end 
     ind_f = find(f_ind(j,:)== max(f_ind(j,:))); 
     f_device = [f_device;f_type(ind_f,:)]; 
end 
figure;bar(f_ind_single'); 
xlabel(' directions'); 
ylabel(' confidence'); 
  
for j = 1:m 
    for i= 1:size(pc_f_dual,2) 
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      ftest = fdata(j,:); 
      ff_residual = ftest*(eye(size(ftest,2))-pc_f_dual(:,i)*pc_f_dual(:,i)'); 
      ff1=ff_residual*ff_residual'; 
      fdist= ftest*ftest'; 
      f_ind_dual(j,i) = 1-sqrt(ff1/fdist); 
    end 
     ind_f = find( f_ind(j,:)== max(f_ind(j,:))); 
     f_device = [f_device;f_type(ind_f,:)]; 
end 
figure;bar(f_ind_dual'); 
xlabel(' directions'); 
ylabel(' confidence'); 
end 
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