9 research outputs found

    On the Composability of Statistically Secure Random Oblivious Transfer

    Get PDF
    We show that random oblivious transfer protocols that are statistically secure according to a definition based on a list of information-theoretical properties are also statistically universally composable. That is, they are simulatable secure with an unlimited adversary, an unlimited simulator, and an unlimited environment machine. Our result implies that several previous oblivious transfer protocols in the literature that were proven secure under weaker, non-composable definitions of security can actually be used in arbitrary statistically secure applications without lowering the security

    Efficient k-out-of-n oblivious transfer protocol

    Get PDF
    A new k-out-of-n oblivious transfer protocol is presented in this paper. The communication cost of our scheme are n+1 messages of sender to receiver and k messages from the receiver to sender. To the best knowledge of the authors, the com-munication complexity of our scheme is the least. Also, our scheme has a lower computation cost with (k+1)n modular ex-ponentiations for sender and 3k modular exponentiations for the receiver. The security of our scheme is only based on the Decision Diffie-Hellman assumption. Further, we proved the sender’s computational security and the receiver’s uncondition-al security under standard model

    Secure two-party computation in applied pi-calculus:models and verification

    Get PDF
    Secure two-party computation allows two mutually distrusting parties to compute a function together, without revealing their secret inputs to each other. Traditionally, the security properties desired in this context, and the corresponding security proofs, are based on a notion of simulation, which can be symbolic or computational. Either way, the proofs of security are intricate, requiring first to find a simulator, and then to prove a notion of indistinguishability. Furthermore, even for classic protocols such as Yao’s (based on garbled circuits and oblivious transfer), we do not have adequate symbolic models for cryptographic primitives and protocol roles, that can form the basis for automated security proofs. We therefore propose new models in applied pi-calculus in order to address these gaps. Our contributions, formulated in the context of Yao’s protocol, include: an equational theory for specifying the primitives of garbled computation and oblivious trans-fer; process specifications for the roles of the two parties in Yao’s protocol; definitions of security that are more clear and direct: result integrity, input agreement (both based on correspondence assertions) and input privacy (based on observational equivalence). We put these models together and illustrate their use with ProVerif, providing a first automated verification of security for Yao’s two-party computation protocol.

    DupLESS: Server-Aided Encryption for Deduplicated Storage

    Get PDF
    Cloud storage service providers such as Dropbox, Mozy, and others perform deduplication to save space by only storing one copy of each file uploaded. Should clients conventionally encrypt their files, however, savings are lost. Message-locked encryption (the most prominent manifestation of which is convergent encryption) resolves this tension. However it is inherently subject to brute-force attacks that can recover files falling into a known set. We propose an architecture that provides secure deduplicated storage resisting brute-force attacks, and realize it in a system called DupLESS. In DupLESS, clients encrypt under message-based keys obtained from a key-server via an oblivious PRF protocol. It enables clients to store encrypted data with an existing service, have the service perform deduplication on their behalf, and yet achieves strong confidentiality guarantees. We show that encryption for deduplicated storage can achieve performance and space savings close to that of using the storage service with plaintext data

    多人数署名の証明可能安全性に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures

    Get PDF
    This work investigates efficient multi-party signature schemes in the discrete logarithm setting. We focus on a concurrent model, in which an arbitrary number of signing sessions may occur in parallel. Our primary contributions are: (1) a modular framework for proving the security of Schnorr multisignature and threshold signature schemes, (2) an optimization of the two-round threshold signature scheme FROST\mathsf{FROST} that we call FROST2\mathsf{FROST2}, and (3) the application of our framework to prove the security of FROST2\mathsf{FROST2} as well as a range of other multi-party schemes. We begin by demonstrating that our framework is applicable to multisignatures. We prove the security of a variant of the two-round MuSig2\mathsf{MuSig2} scheme with proofs of possession and a three-round multisignature SimpleMuSig\mathsf{SimpleMuSig}. We introduce a novel three-round threshold signature SimpleTSig\mathsf{SimpleTSig} and propose an optimization to the two-round FROST\mathsf{FROST} threshold scheme that we call FROST2\mathsf{FROST2}. FROST2\mathsf{FROST2} reduces the number of scalar multiplications required during signing from linear in the number of signers to constant. We apply our framework to prove the security of FROST2\mathsf{FROST2} under the one-more discrete logarithm assumption and SimpleTSig\mathsf{SimpleTSig} under the discrete logarithm assumption in the programmable random oracle model

    Anonymous Point Collection - Improved Models and Security Definitions

    Get PDF
    This work is a comprehensive, formal treatment of anonymous point collection. The proposed definition does not only provide a strong notion of security and privacy, but also covers features which are important for practical use. An efficient realization is presented and proven to fulfill the proposed definition. The resulting building block is the first one that allows for anonymous two-way transactions, has semi-offline capabilities, yields constant storage size, and is provably secure

    Anonymous Point Collection - Improved Models and Security Definitions

    Get PDF
    This work is a comprehensive, formal treatment of anonymous point collection. The proposed definition does not only provide a strong notion of security and privacy, but also covers features which are important for practical use. An efficient realization is presented and proven to fulfill the proposed definition. The resulting building block is the first one that allows for anonymous two-way transactions, has semi-offline capabilities, yields constant storage size, and is provably secure

    Étude de la sécurité de certaines clés compactes pour le schéma de McEliece utilisant des codes géométriques

    Get PDF
    In 1978, McEliece introduce a new public key encryption scheme coming from errors correcting codes theory. The idea is to use an error correcting code whose structure would be hidden, making it impossible to decode a message for anyone who do not know a specific decoding algorithm for the chosen code.The McEliece scheme has some advantages, encryption and decryption are very fast and it is a good candidate for public-key cryptography in the context of quantum computer. The main constraint is that the public key is too large compared to other actual public-key cryptosystems. In this context, we propose to study the using of some quasi-cyclic or quasi-dyadic codes.In this thesis, the two families of interest are: the family of alternant codes and the family of subfield subcode of algebraic geometry codes. We can constructquasi-cyclic alternant codes using an automorphism which acts on the support and the multiplier of the code. In order to estimate the securtiy of these QC codes we study the {\em invariant code}. This invariant code is a smaller code derived from the public key. Actually the invariant code is exactly the subcode of codewords fixed by the automorphism σ\sigma. We show that it is possible to reduce the key-recovery problem on the original quasi-cyclic code to the same problem on the invariant code. This is also true in the case of QC algebraic geometry codes. This result permits us to propose a security analysis of QC codes coming from the Hermitian curve. Moreover, we propose compact key for the McEliece scheme using subfield subcode of AG codes on the Hermitian curve.The case of quasi-dyadic alternant code is also studied. Using the invariant code, with the {\em Schur product} and the {\em conductor} of two codes, we show weaknesses on the scheme using QD alternant codes with extension degree 2. In the case of the submission DAGS, proposed in the context of NIST competition, an attack exploiting these weakness permits to recover the secret key in few minutes for some proposed parameters.En 1978, McEliece introduit un schéma de chiffrement à clé publique issu de la théorie des codes correcteurs d’erreurs. L’idée du schéma de McEliece est d’utiliser un code correcteur dont la structure est masquée, rendant le décodage de ce code difficile pour toute personne ne connaissant pas cette structure. Le principal défaut de ce schéma est la taille de la clé publique. Dans ce contexte, on se propose d'étudier l'utilisation de codes dont on connaît une représentation compacte, en particulier le cas de codes quais-cyclique ou quasi-dyadique. Les deux familles de codes qui nous intéressent dans cette thèse sont: la famille des codes alternants et celle des sous--codes sur un sous--corps de codes géométriques. En faisant agir un automorphisme σ\sigma sur le support et le multiplier des codes alternants, on sait qu'il est possible de construire des codes alternants quasi-cycliques. On se propose alors d'estimer la sécurité de tels codes à l'aide du \textit{code invariant}. Ce sous--code du code public est constitué des mots du code strictement invariant par l'automorphisme σ\sigma. On montre ici que la sécurité des codes alternants quasi-cyclique se réduit à la sécurité du code invariant. Cela est aussi valable pour les sous--codes sur un sous--corps de codes géométriques quasi-cycliques. Ce résultat nous permet de proposer une analyse de la sécurité de codes quasi-cycliques construit sur la courbe Hermitienne. En utilisant cette analyse nous proposons des clés compactes pour la schéma de McEliece utilisant des sous-codes sur un sous-corps de codes géométriques construits sur la courbe Hermitienne. Le cas des codes alternants quasi-dyadiques est aussi en partie étudié. En utilisant le code invariant, ainsi que le \textit{produit de Schur} et le \textit{conducteur} de deux codes, nous avons pu mettre en évidence une attaque sur le schéma de McEliece utilisant des codes alternants quasi-dyadique de degré 22. Cette attaque s'applique notamment au schéma proposé dans la soumission DAGS, proposé dans le contexte de l'appel du NIST pour la cryptographie post-quantique
    corecore