How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures

Abstract

This work investigates efficient multi-party signature schemes in the discrete logarithm setting. We focus on a concurrent model, in which an arbitrary number of signing sessions may occur in parallel. Our primary contributions are: (1) a modular framework for proving the security of Schnorr multisignature and threshold signature schemes, (2) an optimization of the two-round threshold signature scheme FROST\mathsf{FROST} that we call FROST2\mathsf{FROST2}, and (3) the application of our framework to prove the security of FROST2\mathsf{FROST2} as well as a range of other multi-party schemes. We begin by demonstrating that our framework is applicable to multisignatures. We prove the security of a variant of the two-round MuSig2\mathsf{MuSig2} scheme with proofs of possession and a three-round multisignature SimpleMuSig\mathsf{SimpleMuSig}. We introduce a novel three-round threshold signature SimpleTSig\mathsf{SimpleTSig} and propose an optimization to the two-round FROST\mathsf{FROST} threshold scheme that we call FROST2\mathsf{FROST2}. FROST2\mathsf{FROST2} reduces the number of scalar multiplications required during signing from linear in the number of signers to constant. We apply our framework to prove the security of FROST2\mathsf{FROST2} under the one-more discrete logarithm assumption and SimpleTSig\mathsf{SimpleTSig} under the discrete logarithm assumption in the programmable random oracle model

    Similar works