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Introduction

Context

Public key cryptography

In the area of cryptography, public key cryptography, or asymmetric cryptography, concerns
schemes using a pair of keys: the public key which can be known by everyone and the private
key, only known by one person which is the recipient of messages. This family of cryptosystems
was presented for the first time by Diffie and Hellman in 1976 [DH76]. Before this date, the main
family in cryptography was secret key cryptography, or symmetric cryptography, which concerns
schemes using the same key to encrypt and to decrypt a message.

The first scheme in the area of public key cryptography was proposed in 1978 by Rivest,
Shamir and Adleman [RSA78], it is the encryption scheme RSA. The security of this scheme
is based on the problem of factoring large numbers. Since 40 years, other schemes have been
proposed whose security is based on problems coming from number theory too, as the discrete
logarithm problem. However, these kinds of problems could be solved in polynomial time using
a quantum computer, with the Shor’s algorithm [Sho94]. This leads to expand the domain of
public key cryptography to scheme relying on other assumptions than number-theory problems
and resistant to quantum algorithms. Post-quantum cryptography is the domain which concerns
these kinds of cryptosystem. In this thesis, we are interested in the case of cryptography using
error correcting codes which is based on the problem of decoding a random linear code. For now,
no quantum algorithm is known to decode a random linear code in polynomial time, that is why
code based cryptography is an interesting family in the area of post-quantum cryptography.

Code-based cryptography

In 1978, McEliece [McE78] introduced a public key encryption scheme based on linear codes. The
idea is to use an error correcting code whose structure would be hidden, making it impossible to
decode a message for anyone who do not know a specific decoding algorithm for the chosen code.
Therefore the encryption consists in encoding a message, thanks to the knowledge of a basis of
the code, then introducing errors in the encoded word. The public basis of the chosen code is
represented by a matrix referred to as a generator matrix of the code. This matrix has to seem
random to hide the structure of the code, it is the public key. The private key is an efficient
decoding algorithm coming from the knowledge of the structure of the code. So the decryption
consists in applying this decoding algorithm to recover the encoded word and then the message.

Someone who wants to decrypt the cyphertext, without the knowledge of the private key, has
two solutions. First, one can try to decode the message as a noisy word of a random code, since
the public key is a random looking matrix. This method is related to the (decisional) generic
decoding problem which consists from a random code C , a vector y in the ambient space and
an integer t in deciding if there exists a vector e of weight t such that y − e ∈ C . In general,
this problem is hard to solve and actually in [BMvT78] the authors proved that the problem is
NP-complete. The second method consists in recovering the structure of the chosen code from
the public generator matrix. From the knowledge of this structure one can build a decoding
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algorithm to decode any message. Therefore the security of the McEliece scheme is related both
on the hardness of the generic decoding problem and on the difficulty of recovering the structure
of the chosen code. In the literature, the attacks corresponding to the first problem are referred
to as message recovery attacks while attacks corresponding to recovering the structure are known
as key recovery attacks.

The original proposal of McEliece [McE78] suggests to use classical binary Goppa codes which
belong to the family of alternant codes. Up to now, all attacks on the scheme using classical
Goppa codes have exponential complexity and one considers that this scheme remains secure.
Since 1978, several proposals based on other families of algebraic codes appeared in the literature.
In 1986, Niederreiter [Nie86] proposed to use Generalized Reed Solomon (GRS) codes but this
family is subject to a polynomial attack presented by Sidelnikov and Shestakov few years later in
[SS92]. In [Sid94], Sidelnikov proposed a McEliece-like scheme using Reed Muller codes and this
family was also attacked [MS07]. In 1996, Janwa and Moreno [JM96] proposed to use algebraic
geometry (AG) codes, concatenation or subfield subcode of these codes. For the version with
concatenation of codes, Sendrier has discovered an effective attack in [Sen94]. For AG codes on
curves with genus ≤ 2, Faure and Minder proposed an attack [FM08, Min07, Fau09], and in
2014 the scheme with AG codes have been completely broken by Couvreur, Marquez-Corbella
and Pellikaan [CMCP14] who proposed an attack against AG codes for any genus. These attacks
lead us to consider the last proposition, that is schemes using subfield subcode of AG codes
(SSAG in short). For these codes no other proposition has been made until now.

Reducing key size by using quasi-cyclic codes

The McEliece scheme has some advantages, encryption and decryption are very fast and it is
a good candidate for public-key cryptography in the context of quantum computer. The main
constraint is that the public key is too large compared to other actual public-key cryptosystems.
Many proposals have been made in order to reduce the key size. A manner to do this is to use
quasi-cyclic (QC) or quasi-dyadic (QD) codes. The idea is to use codes with a structure which
permits to describe a given generator matrix with only few rows. The case of QC codes is a
solution presented in [Gab05] where quasi-cyclic subcodes of BCH codes have been proposed.
However, this proposal cannot be used since this family has not enough possible keys. This
first paper was followed by proposals using alternant and classical Goppa codes with different
automorphism groups like (QC) alternant codes [BCGO09] or quasi-dyadic Goppa codes [MB09,
BLM11]. Actually, these codes are nothing else but subfield subcodes of algebraic geometry codes
on the projective line.

Since 2010, in the category of key-recovery attacks, new methods appeared, known as algebraic
attacks. This method consists in recovering the secret element of an alternant code by solving a
system of polynomial equations. In [FOPT10], the authors improved this new method to attack
QC and QD alternant codes and broke all the parameters proposed in [BCGO09]. Such attacks
use the specific structure of QC/QD codes in order to build an algebraic system with much fewer
unknowns compared to the generic case. A new approach has been used in [FOP+16a, FOP+16b]
to explain that the reduction of the number of unknowns in the algebraic system comes from
a smaller code easily computable from the public generator matrix. This smaller code can be
obtained by summing up the codewords which belong to the same orbit under the action of
the permutation group and is referred to as the folded code. This time the authors broke some
parameters of proposals [MB09] and [BLM11].
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Contributions

Analysis of McEliece scheme using quasi-cyclic alternant codes

In Chapter 3, we study the security of the key of compact McEliece schemes based on alter-
nant/Goppa codes with a non-trivial permutation group, in particular quasi-cyclic alternant
codes. We improve the technique of Faugère, Otmani, Perret, Portzamparc and Tillich in
[FOP+16a] which uses the folded code to analyse the security. We show that it is possible
to reduce the key-recovery problem on the original quasi-cyclic code to the same problem on a
smaller code derived from the public key: the invariant code. We use a simpler approach with a
unified view on quasi-cyclic alternant codes and we treat the case of automorphisms arising from
a non affine homography. This last case was not treated in [FOP+16a]. In addition, we provide
an efficient algorithm to recover the full structure of the alternant code from the structure of the
invariant code.

The invariant code. In [FOP+16a], the authors attack only codes with an automorphism
induced by an affine transformation acting on the support and the multiplier, we call them affine
induced automorphisms. Another kind of quasi-cyclic alternant codes can be built from the
action of the projective linear group on the support and multiplier. In order to analyse any
QC alternant code built from the action of PGL2(Fqm) on support and multiplier, we use the
invariant code, introduced by Loidreau in [Loi01], and which is the subcode whose elements are
fixed by a given permutation. This invariant code can be built easily from the public generator
matrix of the alternant code C since it is the kernel of the linear map: c ∈ C 7→ c− σ(c), where
σ is a permutation of C .

Our main contribution is to consider more general tools coming from algebraic geometry and
use the invariant code instead of folded code. This approach has two advantages. First the
geometric point of view simplifies the analysis by giving a unified view of quasi-cyclic alternant
codes. It also simplifies some proofs and enables to consider alternant codes as algebraic geo-
metric codes on the projective line. With these two tools, the geometric point of view and the
invariant code, we prove the following results.

Theorem 3.7. Let GRSk(x,y) ⊂ Fnqm be a quasi-cyclic GRS code, and σ ∈ Sn of or-
der `, such that `|n, the permutation acting on the code GRSk(x,y). Then the invariant code
GRSk(x,y)σ is a GRS code of length n/` and dimension bk/`c.

Corollary 3.8. Let Ar,q(x,y) ⊆ Fnq be a quasi-cyclic alternant code, and σ ∈ Sn of order `,
such that `|n, the permutation acting on the code Ar,q(x,y) . Then the invariant code Ar,q(x,y)σ

is an alternant code of length n/` and order r/`.

Reduction of the key security. The structure of the invariant code can be exploited to
recover a part of the secret element of the proposed alternant code. It remains to know if this
part is sufficient to recover completely the secret elements. It is the study of Section 3.3. In
that section we show that the key recovery of McEliece scheme using QC alternant codes built
from induced automorphisms on the support and the multiplier, reduces to the key security of
the invariant code. In other words, from the knowledge of the support and multiplier of the
invariant code we are able to recover the support and the multiplier of the QC alternant code.
However, we can notice that the key recovery on the invariant code can be hard if we chose good
parameters for the QC alternant code.
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NIST competition for post-quantum cryptography

In the last decade, quantum computing progressed and the existence of a quantum computer
would permit to break usual cryptography primitives based on number theoretic problems. This
explains the growing interest for post-quantum cryptography and with this for code-based cryp-
tography. This change of interest was proved by the recent call of the National Institute for
Standards and Technology (NIST) for post quantum cryptography 1.

Contribution to the scheme BIG QUAKE using QC Goppa codes In this context,
I participated to the submission BIG QUAKE which proposed to use QC Goppa codes. More
precisely, the proposal is a key-encapsulation scheme based on quasi-cyclic binary Goppa codes,
reducing the key size by a moderate factor ` in the range [3..19] which is the order of quasi-
cyclicity of the code. We provide an analysis of the key security based on the security of the
invariant code. We study the cost of algebraic attacks against the invariant code and choose
parameters out of the reach of these attacks. Moreover, we choose very carefully the order of
quasi-cyclicity `. These parameters are chosen in order to provide no more information than
the invariant code itself. That is, we avoid the case where another automorphism group acts on
the public code. In that way an attacker cannot compute another invariant code from another
automorphism. We do the same for folded code.

An attack on the submission DAGS using quasi-dyadic alternant codes Among the
NIST submissions, the proposal DAGS [BBB+17a] is based on using quasi-dyadic (QD) Strivas-
tava codes. Strivastava codes form a subfamily of alternant codes and the term quasi-dyadic
means that codes are stable under a permutation group of the form (Z/2Z)s, with s ∈ N∗. The
study of the proposal DAGS showed a weaknesses coming from the large size of the permutation
group and the choice of the authors to take an extension degree 2 for alternant codes. An attack
exploiting these weaknesses permits to recover the secret key in O(n

3+ 2q
|G| ) operations over Fq,

where n is the length, G is the permutation group and Fq is the base field of the code. This
attack is based on the use of Schur product and conductor operations. The key step of the attack
consists in finding some subcode of the public code referred to as D . From this subcode, using
the conductor operation, we can compute a subfield subcode of Reed Solomon (RS) code whose
support is same as the public code. This subfield subcode of RS code is very small and it is
easy to recover its support. The difficult part of the attack is to recover the code D . For this,
the naive approach is to preform a brute force search on subcodes of given dimension. Actually,
we can improve this brute force search and the code D can be recovered in 270, 280 and 258

operations over Fq for the proposed schemes claiming a security of 2128, 2192 and 2256 binary
operations. Another method was studied to recover directly an RS code from which the secret
key can easily be recovered. This approach is based on solving a polynomial system of degree 2,
using Gröbner bases. We are not able to provide a complexity analysis for this second method.
However its practical implementation using Magma [BCP97] is impressively efficient on some
DAGS parameters. In particular, it permits to break claimed 256 bits security keys in less than
one minute!

Security analysis of quasi-cyclic algebraic geometry codes

As in the case of classical alternant codes, we show that in the general case of quasi-cyclic AG
code, the invariant code is also an AG codes. Actually, we can described this smaller AG code
as an AG code on the quotient curve X/〈σ〉. More precisely we show the two following results.

1https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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Theorem 5.2. Let X be an algebraic curve and G be a divisor of X invariant by an auto-
morphism σ ∈ Aut(X ). Let P be a set of n distinct places of X , of degree 1, such that σ(P) = P.
Then the invariant code CL(X ,P, G)σ is the AG code CL(X/〈σ〉, P̃, G̃), for some P̃ ⊆ X/〈σ〉
and G̃ ∈ Div(X/〈σ〉).

Corollary 5.3. With the notation of Theorem 5.2, let SSAGq(X ,P, G) be a subfield sub-
code of an AG code and σ acting on it. Then the invariant code SSAGq(X ,P, G)σ is the code
SSAGq(X/〈σ〉, P̃, G̃) for some P̃ ⊂ X/〈σ〉 and G̃ ∈ Div(X/〈σ〉)

A first example: QC codes from cyclic cover of the projective line An illustrative
example to understand the link between the security of the QC AG code and the invariant code
is codes over cyclic covers of the projective line. In this thesis, we choose to study curves with
an equation on the form y` = f(x). It is easy to provide an automorphism for such a curve, it
suffices to consider the automorphism σ : (x, y) 7→ (x, ξy), where ξ is an `-th primitive root of
unity. Moreover, we can compute Riemann-Roch spaces stable under this automorphism σ, then
we can construct easily QC SSAG codes on these curves. In this particular case, the invariant
code is an SSAG code over the projective line, that is a subfield subcode of GRS code. In this
thesis we show that, from the knowledge of secret elements of the invariant code we are able to
recover the secret elements of the SSAG code over the cyclic cover of the projective line. This
means that the key security of QC SSAG codes over the curve “y` = f(x)” reduces to the key
security of a subfield subcode of a GRS code.

QC codes from the Hermitian curve To build quasi-cyclic SSAG alternant codes, we need
to use curves with non-trivial automorphisms for which we can easily compute Riemann-Roch
spaces. In this thesis, we chose to propose QC SSAG codes on the Hermitian curve. The
Hermitian curves presents two advantages. First, it is a maximal curve and so we can construct
codes with bigger length than the size of the field. This permits us to obtain better parameters
than codes on random curves. The second advantage is that its automorphism group is well
known and we can use it to construct QC codes. Actually, all quotient curves of the Hermitian
curve have been studied in [GSX00] and the authors provide a formula to know the genus of
these quotient curves. From that, we are able to construct QC SSAG code on the Hermitian
curve such that the invariant code is not a classical alternant code. Then we provide an analysis
of the key security based on the security of the invariant code. We know that the invariant
code is an SSAG code over the quotient curve and we saw that in the case of cyclic cover of the
projective line, the quotient curve is the projective line. Then to avoid this case, the choice of
the automorphism on the Hermitian curve is crucial.

Improvement of lower bound on the minimum distance for some AG codes

In March 2017, I had the opportunity to work in a research team from the COMPUTE laboratory
at the University of Lyngby in Denmark. This collaboration resulted in an article [BBD+17].
This work is an improvement of the lower bound on the minimum distance of certain geometrical
codes “two points” on the generalized Giulietti–Korchmaros (GGK) curves. These codes admit
a divisor whose support has only two points and the improvement of the lower bound on the
minimum distance is based on the study of the Weierstrass semi-group of these two points. This
result is not directly related to code-based cryptography and reduction of key length in this
domain, that is why we choose to report this result in Appendix A.





Résumé

Contexte

Cryptographie à clé publique

Dans le domaine de la cryptographie, la cryptographie à clé publique, ou cryptographie asymétrique,
regroupe les schémas utilisant une paire de clés : la clé publique qui est connue de tous et permet
de réaliser le chiffrement et la clé privée, seulement connue du destinataire des messages chiffrés
et qui permet le déchiffrement. Cette famille de schémas de chiffrement a été présentée pour la
première fois par Diffie et Hellman en 1976 [DH76]. Avant cela, les schémas cryptographiques
provenaient de la cryptographie à clé secrète, ou cryptographie symétrique qui utilise la même clé
pour le chiffrement et le déchiffrement.

Le premier schéma en cryptographie asymétrique fût proposé en 1978 par Rivest, Shamir
et Adelman [RSA78], c’est le schéma de chiffrement RSA. La sécurité de ce schéma repose
sur le problème de factorisation des grands entiers. Depuis 40 ans, d’autres schémas à clé
publique ont été proposés dont la sécurité repose principalement sur des problèmes issus de la
théorie des nombres, comme par exemple le problème du logarithme discret. Cependant, ce
type de problèmes pourrait être résolu en temps polynomial par un ordinateur quantique, en
utilisant l’algorithme de Shor [Sho94]. Cela a renforcé l’intérêt pour des schémas de chiffrement
à clé publique dont la sécurité repose sur d’autres problèmes qui peuvent résister à l’ordinateur
quantique. La cryptographie post-quantique est précisément le domaine qui étudie ces schémas.
Dans cette thèse, on s’intéresse plus particulièrement au cas de la cryptographie utilisant des
codes correcteurs d’erreurs et dont la sécurité repose sur le problème du décodage d’un code
linéaire. À ce jour, aucun algorithme quantique n’est connu pour résoudre le problème du
décodage d’un code linéaire en temps polynomial. C’est pour cela que la cryptographie basée
sur les codes est une famille de schémas intéressante dans le domaine de la cryptographie post-
quantique.

Cryptographie basée sur les codes correcteurs d’erreurs

En 1978 McEliece introduit dans [McE78] un schéma de chiffrement à clé publique issu de la
théorie des codes correcteurs d’erreurs. L’idée du schéma d de McEliece est d’utiliser un code
correcteur dont la structure est masquée, rendant le décodage de ce code difficile pour toute
personne ne connaissant pas cette structure. Le schéma de chiffrement est alors défini de la
manière suivante : le chiffrement consiste à encoder un message, grâce une matrice génératrice
d’un code C , et y introduire une erreur. La matrice génératrice choisie doit sembler aléatoire,
c’est la clé publique du système. La clé privée est la connaissance de la structure du code
C permettant d’utiliser un algorithme de décodage efficace; le déchiffrement est précisément
l’application de l’algorithme de décodage.

La sécurité du schéma de chiffrement repose à la fois sur la difficulté du décodage d’un code
aléatoire et sur la difficulté de retrouver la structure du code à partir de la seule clé publique. Le
premier problème consiste, à partir d’une matrice génératrice G d’un code linéaire, d’un vecteur
y de l’espace ambiant et d’un entier positif t, à décider de l’existence d’un vecteur x de poids
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de Hamming inférieur à t tel que xG = y. Ce problème spécifique fut prouvé NP-complet en
1978 par Berlekamp, McEliece et Van Tilborg [BMvT78]. Le second problème est la recherche de
la clé privée, qui est la structure du code utilisé permettant la construction d’un algorithme de
décodage efficace pour ce code. La méthode générique est la recherche exhaustive sur la famille
du code choisi. Les méthodes plus spécifiques dépendent de la famille de codes choisie pour le
schéma. Cela représente donc deux types d’attaques possibles : le premier type est appelé «
attaque sur le message », le second est appelé « attaque structurelle » ou « attaque sur la clé
privée ».

La première famille de codes proposée par McEliece [McE78], est celle des codes de Goppa
binaires classiques qui reste actuellement une bonne candidate pour un système résistant aux
deux types d’attaques. Depuis 1978, plusieurs propositions utilisant des codes algébriques ont
été faites. En 1986, Niederreiter [Nie86] propose un schéma équivalent au schéma de McEliece
et donne en exemple l’utilisation des codes de Reed Solomon généralisés (GRS). Cette famille
de codes n’est cependant pas résistante aux attaques structurelles puisque en 1992 Sidelnikov et
Shestakov propose un algorithme polynomial qui permet de retrouver la structure des codes GRS
[SS92]. Dans l’article [Sid94], Sidelnikov propose un schéma utilisant les codes de Reed-Muller
mais cette famille a aussi été attaquée [MS07]. En 1996, Janwa et Moreno [JM96] proposent
d’utiliser des codes issus de la géométrie algébrique. Ils proposent notamment les codes al-
gébriques géométriques (AG), la concaténation de code AG ou les sous-codes sur un sous- corps
des codes AG. Pour la version utilisant des codes concaténés, Sendrier avait déjà proposé une
attaque en 1994 [Sid94]. Pour les codes AG sur les courbes de genre ≤ 2, Faure et Minder ont
proposé une attaque [FM08, Min07, Fin09] et en 2014 le schéma utilisant les codes AG a été
complètement attaqué par Couvreur, Marquez-Corbella et Pellikaan [CMCP14] qui proposent
une attaque contre les codes AG sur des courbes de n’importe quel genre. Cette série d’attaque
nous pousse à considérer la dernière proposition, à savoir les sous-codes sur un sous-corps de code
AG (SSAG). Pour ces codes, aucune proposition de paramètres n’a été faite jusqu’à maintenant.

Réduire la taille des clés publiques en utilisant des codes quasi-cycliques

Le schéma de McEliece présente plusieurs avantages: le chiffrement et le déchiffrement sont
assez rapides, de plus ce schéma est un bon candidat dans le contexte de la cryptographie post-
quantique. La principale contrainte pour une utilisation pratique de ce schéma est la taille
de la clé publique qui est importante en comparaison à d’autres systèmes de chiffrement à clé
publique. Pour cette raison, de nombreuses propositions ont été faites avec des codes plus
structurés admettant des clés plus faciles à stocker. C’est le cas des codes quasi-cycliques et en
particulier les codes de Goppa et les codes alternants quasi-cycliques ont été proposés. L’idée est
d’utiliser des codes structurés permettant une description compacte de la matrice génératrice,
c’est à dire avec seulement quelques lignes. Le cas des codes quasi-cycliques a été présenté dans
l’article [Gab05] où des sous-codes quasi-cycliques de codes BCH ont été proposés. Cependant,
cette proposition n’est pas sécurisée puisque la famille choisie ne contient pas suffisamment de
codes distincts. Ce premier papier a été suivi par des propositions utilisant des codes alternants
et des codes de Goppa quasi-cycliques [BCGO09] ou des codes de Goppa quasi-dyadique [MB09,
BLM11]. Ces codes sont simplement des sous-codes sur un sous-corps de codes AG construits
sur la droite projective.

Depuis 2010, dans le domaine des attaques structurelles, de nouvelles méthodes sont ap-
parues, elles sont connues sous le nom d’attaques algébriques. Cette technique se base sur la
construction d’un système algébrique dont la clé secrète est solution. Cette modélisation al-
gébrique ne permet pas en soi de retrouver la clé secrète dans le cas général des codes alternants
lorsque les paramètres du code sont trop importants. Cependant dans le cas de codes alter-
nants quasi-cycliques, ce système d’équation peut être simplifié et donne lieu à une attaque.
Dans l’article [FOPT10], les auteurs proposent cette méthode pour retrouver la structure de
certains codes alternants quasi-cycliques et quasi- dyadiques et attaquent différents paramètres
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proposés dans [BCGO09]. Cette attaque utilise la structure spécifique des codes quasi-cycliques
ou quasi-dyadiques pour construire un système algébrique avec moins d’inconnues que pour le
cas générique. Dans [FOP+16b, FOP+16a] les auteurs expliquent que cette réduction du nom-
bre d’inconnues provient d’un code alternant plus petit que l’on peut construire à partir de la
matrice génératrice. Cette fois les auteurs ont pu attaquer les paramètres proposés dans [MB09]
et [BLM11].

Contribution

Sécurité du schéma de McEliece utilisant des codes alternants quasi-cycliques

Dans le chapitre 3, nous étudions la sécurité du schéma de McEliece utilisant des codes alter-
nants, ou des codes de Goppa, quasi- cycliques en améliorant le travail de Faugère, Otmani,
Perret, Portzamparc et Tillich [FOP+16a]. En effet, l’attaque décrite dans [FOP+16a] fonc-
tionne uniquement pour les automorphismes induits par les transformations affines de la droite
projective. D’autres permutations existent, ce sont celles induites par l’action du groupe linéaire
projectif. On peut construire un code alternant plus petit à partir de la matrice génératrice d’un
code alternant quasi-cyclique dont la permutation est induite par une transformation linéaire
projective. Ce résultat est possible grâce à l’utilisation du code invariant. En utilisant une ap-
proche plus simple grâce à la géométrie algébrique, nous sommes capable d’améliorer le résultat
du cas affine et d’étendre l’attaque à tous les codes alternants dont le support est globalement
invariant par une homographie. Ce cas n’était pas traité dans [FOP+16a]. De plus, nous pro-
posons un algorithme efficace qui permet, en temps polynomial, de retrouver la structure d’un
code alternant quasi-cyclique à partir de la structure de son code invariant. La structure d’un
code invariant étant défini par son support et son multiplier, ce sont ces éléments qui seront
considérés comme secrets.

Le sous-code invariant. Dans le but d’étudier la sécurité des codes alternants quasi-cycliques
construits à partir de l’action de PGL2(Fqm) sur le support et le multiplier, nous utilisons le code
invariant. Ce code a été introduit par Loidreau dans [Loi01] et est le sous-code strictement
invariant par la permutation. Ce code peut facilement être construit à partir de la matrice
génératrice du code original C , puisqu’il s’agit du noyau de l’application linéaire: c ∈ C 7→
c− σ(c), où σ désigne la permutation qui agit sur C .

Notre principale contribution, en plus de considérer le code invariant, est d’utiliser des outils
provenant de la géométrie algébrique. Cette approche a deux avantages. Tout d’abord, le point
de vue géométrique simplifie l’analyse en donnant une définition unifiée des codes alternants
quasi-cycliques. De plus ce point de vue géométrique permet de simplifier certaines preuves en
considérant les codes alternants comme des codes géométriques sur la droite projective. En étu-
diant le code invariant, nous avons pu démontrer les résultats suivants.

Théorème 3.7. Soit GRSk(x, y) ⊂ Fnqm un code GRS quasi-cyclique, avec σ ∈ Sn d’ordre `,
tel que ` | n, la permutation qui agit sur le code GRSk(x, y). Alors le code invariant GRSk(x, y)σ

est un code GRS de longueur n/` et de dimension bk/`c.

Corollary 3.8. Soit Ar,q(x,y) ∩ Fnq un code alternant quasi-cyclique, avec σ ∈ Sn d’ordre
`, tel que ` | n, la permutation qui agit sur le code Ar,q(x,y). Alors le code invariant Ar,q(x,y)σ

est un code alternant de longueur n/` et de degré br/`c.

Réduction de sécurité. La structure du code invariant peut être utilisée pour retrouver une
partie de la structure du code alternant quasi-cyclique choisi pour le schéma de chiffrement. Il
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reste à savoir si cette partie est suffisante pour retrouver complètement la structure du code
choisi, c’est à dire son support et son multiplier. Cette question est étudiée dans la section 3.3.
Dans cette section, nous montrons qu’une attaque sur la clé publique d’un schéma de McEliece
utilisant des codes alternants quasi-cycliques se réduit à une attaque sur le code invariant. C’est
à dire qu’à partir du support et du multiplier du code invariant nous pouvons retrouver, en
temps polynomial, le support et le multiplier du code original. Cependant, on peut noter que
retrouver le support et le multiplier du code invariant peut s’avérer difficile si on choisit bien les
paramètres du code.

La compétition du NIST pour une cryptographie post-quantique

Au cours de la dernière décennie, des progrès ont été faits dans le domaine du calcul quantique
et l’existence d’un ordinateur quantique menacerait la sécurité d’une longue liste de systèmes de
chiffrement à clé publique. Cela explique l’intérêt croissant pour la cryptographie post-quantique
et ainsi pour la cryptographie basée sur les codes. Ce changement d’intérêt a été prouvé par le
récent appel à contribution du National Institut for Standards and Technology (NIST) pour la
standardisation de schémas cryptographiques post-quantique 2.

Contribution à la proposition BIG QUAKE. Dans ce contexte, j’ai eu l’occasion de
participer à la soumission BIG QUAKE 3 (BInary Goppa QUAsi–cyclic Key Encapsulation).
Plus précisément, la proposition est un schéma d’encapsulation de clé utilisant des codes de
Goppa quasi-cycliques et réduisant la taille de la clé publique par un facteur ` ∈ [3..19], qui est
l’ordre de la permutation utilisée. Nous proposons une analyse de la sécurité du schéma basée sur
la sécurité du code invariant. Nous avons en particulier étudié le coût d’une attaque algébrique
sur le code invariant et proposé des paramètres en fonction de ces données. Les paramètres sont
choisis dans le but de ne pas donner plus d’information que le code invariant lui-même. C’est à
dire, nous avons évité les cas où un autre groupe d’automorphismes agit sur le code publique.
De cette manière, une attaquant ne peut pas construire d’autres sous-codes invariants.

Attaque structurelle de DAGS, une soumission à l’appel du NIST. Parmi les soumis-
sions faites au NIST pour la standardisation de schéma post-quantique, une proposition, DAGS
[BBB+17a], est basée sur l’utilisation de codes de Srivastava quasi-dyadiques. Les codes de Sri-
vastava forment une sous-famille des codes alternants. Le terme quasi-dyadique signifie que les
codes sont invariants par un groupe de permutations de la forme (Z/2Z)s, avec s ∈ N∗. L’étude
de DAGS a révélé une faille provenant de la taille trop importante du groupe de permutations
choisi et du degré d’extension 2. Une attaque exploitant cette faille permet de retrouver la clé
secrète en O(n

3+ 2q
|G| ) opérations dans Fq, avec n la longueur du code utilisé et G le groupe de per-

mutations qui agit sur le code. Cette attaque est basée sur la recherche d’un sous-code particulier
du code invariant, le code norme-trace. Une fois ce sous-code obtenu, le support et le multiplier
du code de Srivastava, qui sont les éléments secrets, se calculent facilement grâce à l’utilisation
du produit de codes et de l’algèbre linéaire. La partie difficile est de retrouver ce sous-code, pour
cela une première approche est la recherche exhaustive. Avec cette méthode il est possible de
retrouver le code norme-trace pour les paramètres de clés proposés dans DAGS, de sécurité 128,
192 et 256, en effectuant une recherche sur respectivement 270, 280 et 258 éléments. Une seconde
méthode, basée sur la résolution d’un système bilinéaire, a aussi été étudiée pour retrouver le
code norme-trace mais nous n’avons pas pu produire une analyse de sa complexité. En revanche
cette seconde méthode a été implémentée, avec l’aide du logiciel MAGMA, est permet de retrou-
ver la clé secrète en moins d’une minute pour les paramètres DAGS5, d’une sécurité de 256 bits,
et moins de 20 minutes pour les paramètres DAGS1, d’une sécurité de 128 bits. Toutefois cette

2https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
3https://bigquake.inria.fr/

https://csrc.nist.gov/Projects/Post-Quantum- Cryptography
https://bigquake.inria.fr/
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seconde méthode n’a pas permis d’attaquer les paramètres proposés pour le niveau de sécurité
192 bits.

Étude de la sécurité du schéma de McEliece utilisant des codes géométriques
quasi-cycliques

À l’instar des codes alternants quasi-cycliques, nous avons montré que dans le cas général des
codes géométriques quasi-cycliques, le sous-code invariant est aussi un code géométrique. On
peut alors décrire ce sous-code invariant comme un code géométrique sur la courbe quotient
X/〈σ〉. Plus précisément, nous avons pu montrer les deux résultats suivants :

Théorème 5.2. Soit X une courbe algébrique et G un diviseur de X invariant par un au-
tomorphisme σ ∈ Aut(X ). Soit P un ensemble de n places distinctes de X , de degré 1, tel que
σ(P) = P. Alors le code invariant CL(X ,P, G)σ est un code géométrique CL(X/〈σ〉, P̃, G̃), pour
un certain support P̃ ⊆ X/〈σ〉 et un certain diviseur G̃ ∈ Div(X/〈σ〉).

Corollaire 5.3. En conservant les mêmes notations que le théorème 5.2, soit SSAGq(X ,P, G)
le sous-code sur un sous-corps d’un code géométrique globalement invariant par σ. Alors le code
invariant SSAGq(X ,P, G)σ est le code SSAGq(X/〈σ〉, P̃, G̃) pour un certain support P̃ ⊂ X/〈σ〉
et un certain diviseur G̃ ∈ Div(X/〈σ〉)

Des codes construits sur des revêtements de la droite projective. Un premier exemple
de codes géométriques a été étudié, celui des codes construits à partir de revêtement cyclique de
la droite projective, ie : des courbes d’équation algébrique de la forme y` = f(x). L’étude de
cette famille de courbes est particulièrement intéressante pour deux raisons. La première est que
l’on connaît au moins un automorphisme σ de cette courbe, c’est celui qui au couple (x, y) associe
le couple (x, ξy), où ξ est une racine `-ième de l’unité. Il est donc possible de construire un code
alternant géométrique sur cette courbe qui admette σ comme automorphisme. La seconde raison
est que l’on sait facilement décrire les espaces de Riemann-Roch globalement invariants par σ,
en prenant par exemple un espace de Riemann-Roch associé au point à l’infini sur cette courbe.
On peut donc aisément construire des sous-codes sur un sous-corps de codes géométriques, avec
une description compacte, sur ces courbes. Dans ce cas particulier, le code invariant est alors
un code alternant puisqu’il s’agit d’un sous-code sur un sous-corps de codes géométriques sur la
droite projective. Dans cette thèse, nous montrons qu’il est possible de retrouver le support et le
diviseur du code géométrique original à partir des éléments secrets du code invariant. Cela signifie
que la sécurité de la clé des sous-codes sur un sous-corps de codes géométriques quasi-cycliques
sur la courbe « y` = f(x) », se réduit à la sécurité d’un code alternant plus petit.

Codes quasi-cycliques sur la courbe Hermitienne. La courbe Hermitienne est une courbe
souvent étudiée mais elle présente deux caractéristiques intéressantes dans le cadre de la théorie
des codes correcteurs. Tout d’abord c’est une courbe maximale, c’est à dire que son nombre de
points rationnels atteint la borne supérieure du nombre de points rationnels des courbes de même
genre. Cela permet de construire des codes plus longs que la taille de l’alphabet choisi et d’obtenir
des paramètres meilleurs que pour des codes construits sur des courbes aléatoires. Le second
intérêt de la courbe Hermitienne est la connaissance de son groupe d’automorphismes. Ce groupe
d’automorphismes est de taille assez importante et a été bien étudié. On peut construire des
codes quasi-cycliques grâce à l’action d’un automorphisme de la courbe Hermitienne. De plus,
les quotients de la courbe Hermitienne ont aussi été bien étudié dans [GSX00] et les auteurs
proposent une formule pour calculer le genre de ces courbes quotient. En étudiant ces courbes
quotient, nous sommes capable de construire des sous- codes sur un sous-corps de code AG sur
la courbe Hermitienne dont le code invariant n’est pas un code alternant classique. Le choix de
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l’automorphisme est important dans cette étape. À partir de cela, nous fournissons une analyse
de la sécurité structurelle d’un schéma utilisant ces codes, basée sur la sécurité du code invariant.

Amélioration de la borne inférieure sur la distance minimale de certains codes
géométriques

Au mois de mars 2017 j’ai eu l’occasion de travailler au sein d’une équipe de recherche du
laboratoire COMPUTE de l’Université de Lyngby au Danemark. Cette collaboration a donné
lieu à un article [BBD+17].

Ce travail est une amélioration de la borne inférieure sur la distance minimale de certains
codes géométriques « deux points » sur les courbes de Giulietti-Korchmaros généralisées. Ces
codes admettent un diviseur dont le support ne comporte que deux points et l’amélioration de
la borne sur la distance minimale repose sur l’étude du semi-groupe de Weierstrass de ces deux
points. Ce résultat n’est pas directement lié à la cryptographie sur les codes, j’ai donc fait le
choix de le détailler dans l’annexe A.
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Chapter 1

Algebraic geometry codes

1.1 Coding theory

Let Fq be a finite field of q elements, with q a power of a prime p. For the following definitions
and properties we refer to [MS86] and [HP03].

1.1.1 Linear codes

Definition 1.1 (Linear code). Let n and k be two non-negative integers with k ≤ n. A linear
[n, k] code over Fq is a subset C ⊆ Fnq of dimension k. The integer n is the length of C , k its
dimension and a vector of C will be called a codeword. The information rate of the code is the
ratio R := k

n .
A generator matrix G of the code C is a matrix whose rows are formed by a basis of C . Then

we have
C = {mG |m ∈ Fkq}.

A parity check matrix H of the code C is a (n− k)× k matrix over Fq of rank (n− k) such
that

∀c ∈ C ,Hc> = 0.

There exist several generator matrices, such matrices are not unique and it is the same for
parity check matrices. However, it is convenient to have a generator matrix with the specific
form

G =
(
Ik | A

)
,

for some k× (n− k) matrix A over Fq. If it is the case, the matrix G is said to be systematic. A
linear code does not always admit a systematic generator matrix but, if it is the case, this matrix
is unique and we say that the code is systematic. In this thesis we assume on many occasions
that linear codes considered are systematic.

Definition 1.2 (Dual code). Let C be a linear code over Fq, its dual or orthogonal code, denoted
C⊥, is the set of all vectors which are orthogonal to all codewords of C , that is

C⊥ :=
{

y ∈ Fnq | xy> = 0 for all x ∈ C
}
.

Any parity check matrix of a linear code C is a generator matrix for its dual C⊥. Then the
dual code C⊥ has the same length than C , that is n, and dimension n− k with k the dimension
of C .

Definition 1.3. The Hamming distance between two vectors x,y ∈ Fnq , denoted dH(x,y), is
the number of positions where they differ, that is

dH(x,y) :=
∣∣ {xi 6= yi | i ∈ {1, . . . , n}}

∣∣.
19
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The Hamming weight of a vector x ∈ Fnq , denoted wH(x), is the number of non-zero component
xi, that is

wH(x) :=
∣∣ {xi 6= 0 | i ∈ {1, . . . , n}}

∣∣ = dH(x,0).

In this thesis, we work only with the Hamming metric then for short we speak about the
distance between two words and the weight of a word.

Definition 1.4. The minimum distance of a code C , denoted d, is the minimum (Hamming)
distance between its codewords, that is

d := min{dH(x,y) | x 6= y ∈ C }.

For a linear code it is also the minimum weight of its non-zero codewords, that is to say d =
min{wH(x) | x ∈ C \ {0}}.

Later on, a linear code of length n, dimension k and minimum distance d will be called an
[n, k, d] code. The following theorem makes a link between these three parameters.

Theorem 1.1 (The Singleton bound). If C is an [n, k, d] code, then

n− k ≥ d− 1.

1.1.2 Permutation and automorphism groups

Let Sn be the group of permutations of {1, . . . , n}. For this section, definitions and details can
be also found in [Dür87].

Definition 1.5 (Permutation group). Let C be a linear code of length n over Fq. Let σ ∈ Sn

be a permutation, acting on C via σ(c) = (cσ(1), . . . , cσ(n)). The code C is said to be invariant
by σ if σ(C ) = C . The permutation group of the code C , is

Perm(C ) := {σ ∈ Sn | σ(C ) = C }.

More generally, the semi-direct product (F∗q)n oSn acts on a linear code C of length n by

(a, σ)(c) := (a1cσ(1), . . . , ancσ(n)).

Moreover, the group law in (F∗q)n oSn is defined by

(a, σ) · (b, τ) := (a ? σ(b), σ ◦ τ),

where the symbol ? define the multiplication component by component. If we consider a linear
code C over a prime field Fp then such elements (a, σ) ∈ (F∗p)n oSn which let C invariant form
a group that we call the automorphism group of C . Now considering codes over a field Fq with q
a prime power, the automorphism group of C also contains any field automorphisms of Fq. Then
we consider the most general definition of the automorphism group of a linear code as follows.

Definition 1.6 (Automorphism group). Let C be a linear code of length n over Fq. Let π be
any field automorphism of Fq, a a vector of (F∗q)

n and σ ∈ Sn a permutation. Then we define
the action on C of the semi-direct product (F∗q)n o (Aut(Fq)×Sn) by

(a, π, σ)(c) := (π(a1cσ(1)), . . . , π(ancσ(n))),

where c ∈ C . Moreover, the group law in (F∗q)n o (Aut(Fq)×Sn) is defined by

(a, π, σ) · (b, γ, τ) := (a ? π(σ(b)), π ◦ γ, σ ◦ τ).

The group of elements (a, π, σ) ∈ (F∗q)n o (Aut(Fq) × Sn) which let C invariant is called the
automorphism group of C and denoted by Aut(C ).

Remark 1. In the binary case, that is when we consider codes over F2, the automorphism group
and permutation group coincide. Otherwise we have only the inclusion Perm(C ) ⊆ Aut(C ).

Proposition 1.2. Let C be a linear code, then we have

Perm(C ) = Perm(C⊥).
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1.1.3 Construction of new codes from old

Puncturing and shortening codes. The two operations, puncturing or shortening a code,
result in a reduction of the length of the code. Moreover for the shortening, the dimension is
also reduced, in general.

Definition 1.7 (Puncturing). Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n} be a set of coordinates.
The puncturing of the code C at I, denoted PunctI (C ), is defined by

PunctI (C ) := {(ci)i∈{1,...,n}\I | c ∈ C }.

This is a code of length n− |I|.

Proposition 1.3. Let C ⊆ Fnq be a [n, k, d] code and I ⊆ {1, . . . , n}. Then the code PunctI (C )
is an [n− |I|, k′, d′] code with

k − |I| ≤ k′ ≤ k and d− |I| ≤ d′ ≤ d.

Definition 1.8 (Shortening). Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n} be a set of coordinates.
The shortening of the code C at I, denoted ShortI(C ), is defined by

ShortI(C ) := PunctI ({c ∈ C | ci = 0 for all i ∈ I}) .

This is a code of length n− |I|.

Proposition 1.4. Let C ⊆ Fnq be a [n, k, d] code and I ⊆ {1, . . . , n}. Then the code ShortI(C )
is an [n− |I|, k′, d′] code with

k − |I| ≤ k′ ≤ k and d ≤ d′.

The following result makes a link between these two constructions.

Theorem 1.5. Let C ⊆ Fnq be a code and I ⊆ {1, . . . , n} be a set of coordinates. Then

ShortI(C⊥) = (PunctI (C ))⊥.

Codes over subfield. In what follows we deal with codes over a finite extension Fqm of Fq.
For some codewords of these codes it is possible that all their components lie over the subfield
Fq. This leads to the following definition.

Definition 1.9. Let C ⊂ Fnqm be a code of length n over Fqm . The subfield subcode of C over
Fq, denoted C |Fq , is the subcode of all the codewords of C whose all entries lie in Fq, i.e.:

C |Fq := C ∩ Fnq .

Theorem 1.6. Let C be an [n, k, d] code over Fqm , then C |Fq is an [n, k′, d′] code over Fq with

k′ ≥ n−m(n− k) and d′ ≥ d.

Another construction permits to have a subcode of a code C ∈ Fqm defined over the subfield
Fq. This use the trace function as follows.

Definition 1.10. Let C ⊂ Fnqm be a code of length n over Fqm . The trace code of C over Fq is
the code defined by:

TrFqm/Fq(C ) :=
{

(TrFqm/Fq(c1), . . . ,TrFqm/Fq(cn)) | c = (c1, . . . , cn) ∈ C
}
.

Remark 2. When there is no ambiguity on the subfield Fq, we denote the trace code Tr(C ).

Theorem 1.7 (Delsarte Theorem [Del75]). Let C ⊂ Fnqm be a linear code, then:

(C ∩ Fnq )⊥ = TrFqm/Fq(C
⊥).
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1.2 Introduction to algebraic geometry

In this section, we introduce some definitions and properties about algebraic curves that will be
used in this thesis, we refer to [Mor93] and [Ful08]. This background will permit us to define
algebraic geometry (AG) codes and some properties of these codes. Details for this part can be
found in [TVN07] and [HvLP98]. For some technical results, we will also use the language of
function field theory, for more details see [Sti09].

Later on, we will denote F any field algebraically closed. We denote by An the n-dimensional
affine space over F.

1.2.1 Algebraic curves

In this section, we only treat projective curve and in order to give a definition for this object,
we need first to define the notion of projective space. The n-dimensional projective space over F,
denoted by Pn(F) or for short Pn, consists in all equivalence classes of (n + 1)-tuples, denoted
P := (x1 : · · · : xn+1), with xi ∈ F and not all zero, under the relation:

(x1 : · · · : xn+1) ≡ (y1 : · · · : yn+1) ⇐⇒ ∃λ ∈ F∗ s.t ∀i ∈ {1, . . . , n+ 1}, xi = λyi.

The equivalent classes P , described just above, are called points of the projective space Pn and
any (n + 1)-tuple defining a point P is called a set of homogeneous coordinates of P . There is
a natural embedding An ↪→ Pn given by (x1, . . . , xn) 7→ (x1 : · · · : xn : 1). The points of the
complementary set of An in Pn, that is the points of Pn such that xn+1 = 0, are called points
at infinity.

Definition 1.11. A polynomial F ∈ F[X1, . . . , Xn+1] is homogeneous of degree d if for any
(n+ 1)-tuple (x1, . . . , xn+1) ∈ Fn+1 and any scalar λ ∈ F∗, we have

F (λx1, λx2, . . . , λxn+1) = λdF (x1, . . . , xn+1).

The “evaluation” of a polynomial F ∈ F[X1, . . . , Xn+1] in a point P of Pn does not make
sense since it depends on the choice of the set of homogeneous coordinate defining P . However,
if the polynomial is homogeneous then its zero set is well-defined. Let S ⊆ F[X1, . . . , Xn+1] be
any set of homogeneous polynomials, we associate with S the following set, called the zero set
of S:

Z(S) := {P ∈ Pn | f(P ) = 0 for every f ∈ S}.
A subset Y ⊆ Pn is a projective algebraic set if there exists S ⊆ Fq[X1, . . . , Xn+1] of homogeneous
polynomials such that Y = Z(S). The set Y is called irreducible if Y is non-empty and cannot
be written as the union of two proper algebraic subset Y = Y1 ∪ Y2, such that Y1 * Y2 and
Y2 * Y1. A topology can be defined on projective algebraic sets as follows:

Definition 1.12 (Zariski topology). The Zariski topology on Pn is defined by taking the open
sets to be the complement of algebraic sets.

Definition 1.13. A projective variety is an irreducible closed subset of Pn. An open subset of
a projective variety is a quasi-projective variety.

Let Y be an algebraic set, the homogeneous ideal of Y is the ideal I(Y) generated by the set
{f ∈ F[X1, . . . , Xn+1] homogeneous polynomial s.t. f(P ) = 0, ∀P ∈ Y}.

Definition 1.14 (Coordinate ring). Let Y be an algebraic set, we define the coordinate ring of
Y to be Fq[Y] := Fq[X1, . . . , Xn+1]/I(Y).

Later on, a projective or a quasi-projective variety will be referred to as a variety. Let Y be a
variety and F,G ∈ F[X1, . . . , Xn+1] be homogeneous polynomials of same degree with G /∈ I(Y).
Then the fraction F

G ∈ F(X1, . . . , Xn+1) is called a rational function on Y. The elements F
G and

F ′

G′ define the same rational function if the polynomial FG′ − F ′G vanishes at all P ∈ Y.
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Definition 1.15. The function field F(Y) of a variety Y is the field of rational functions on Y
and the dimension of Y is the transcendence degree of F(Y) over F.

Then we can define what is a projective algebraic curve as follows.

Definition 1.16 (Projective curve). A projective curve over F, denoted X/F or for short X , is
defined as a variety of dimension one over the field F.

Example 1. In the affine plane over a finite field Fq, we consider the variety X defined by the
homogeneous polynomial Y 3−X3−Z3. Let x := X

Z and y := Y
Z , the function field F(X ) consists

of all elements of the form P
Q with P,Q ∈ Fq[x, y]. Since y satisfies y3 = x3 +1 the transcendence

degree of F(X ) over F is 1, that is the variety X is a curve.

As we see in Definition 1.15, we can associate to any curve X an object that we call function
field of X . The function fields will be studied in the following section. For now, we speak about a
notion that we use all the time in this thesis, the smoothness of a curve. The first definition holds
for projective plane curves, that is projective curve X ⊆ P2. This case is easier to understand
and actually for results presented in this thesis it is the only one that we consider.

Definition 1.17. Let X be a projective plane curve defined by the homogeneous polynomial
F ∈ F[X,Y, Z]. Let P be a point on X . Then P is said to be nonsingular if at least one of the
partial derivative ∂F

∂X ,
∂F
∂Y ,

∂F
∂Z is not zero at P . The curve X is called nonsingular or smooth if

all its points are nonsingular.

Example 2. Consider the plane curve X defined by the polynomial F (X,Y, Z) := Y 3−X3−Z3

over a finite field Fq. The partials derivatives are −3X2, 3Y 2 and −3Z2, so the curve is smooth
if the characteristic is not 3.

Definition 1.18. Let X be a projective curve and P be a point of this curve. Then a function
f ∈ F(X ) is called regular at the point P if it admits a representation f = F

G with G non zero
at P .

Definition 1.19 (Local ring of a point). Let P be a point on a projective curve X . The set of
regular functions at the point P from a ring, denoted OP , and called the local ring of P .

The terminology for the ring OP makes sense since it is a local ring, that is OP has a unique
maximal ideal. More precisely, we have the following proposition.

Proposition 1.8. The subset mP ⊆ OP consisting of functions f ∈ OP such that f(P ) = 0, is
the unique maximal ideal of OP .

Proof. The subset mP ⊆ OP is obviously an ideal, we show that it is maximal. Let N be an
ideal of OP such that mP ( N . We consider f ∈ N such that f /∈ mP and we write f = F

G . Since
f ∈ OP we have G(P ) 6= 0. Moreover f /∈ mP , then F (P ) 6= 0. That is the function G

F ∈ OP
and then 1 = G

F · f ∈ N. Hence N = OP and mP is maximal.
To complete the proof we notice that actually OP \mP = OP×, that is any invertible element

of OP . Then mP contains any proper ideal of OP .

Curve over finite field. In our application, we need to consider finite field Fq and not its
algebraic closure Fq. A way to define curve over finite field is the following.

A projective curve X/Fq over the finite field Fq is a projective curve X ⊆ Pn(Fq) such that
the homogeneous polynomials defining this curve have coefficients in Fq. The field of rational
functions on X with coefficients in Fq will be denoted as Fq(X ) and we say it is the function
field of X/Fq. Moreover, we denote by X (Fq) the set of points of X with coordinates lying in
Fq, such points are called rational points.
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Example 3. Consider the Klein curve K3 defined, over F4, by the homogeneous equation

X3Y + Y 3Z + Z3X = 0.

We denote the element of F4 as 0, 1, α, α+ 1, then we have

K3(F4) = {(0 : 0 : 1), (α : α+ 1 : 1), (α+ 1 : α : 1), (1 : 0 : 0), (0 : 1 : 0)} .

Example 4 (Hermitian curve). Let q = q2
0 and consider the curve H over Fq defined by the

equation
Y q0Z + Y Zq0 −Xq0+1 = 0.

This curve is called the Hermitian curve over the field Fq. The curve H has q3
0 +1 rational points

described by
H(Fq) =

{
Pα,β := (α : β : 1) | αq0+1 = βq0 + β

}
∪ P∞,

where P∞ := (0 : 1 : 0) ∈ P2.

Definition 1.20. A closed point P of a projective plane curve X , defined over Fq, is an orbit
under the Frobenius automorphism fq : (x : y : z) 7→ (xq : yq : zq). The degree of a closed point
is defined as the cardinality of the orbit.

1.2.2 Function fields

In this section, it is not necessary that the field F is algebraically closed. To avoid misunder-
standing we keep notation of previous section and in any of the following results and definitions,
F can be replaced by a finite field Fq. This algebraic point of view will be useful in Section 5
that is why here we give a small dictionary between projective curves and function fields in one
variable. If there is no mention, details about this section can be found in [Sti09]. First, let us
recall what is a function field in one variable.

Definition 1.21. An algebraic function field F/F in one variable over the field F is an extension
field F ⊆ F such that F is a finite algebraic extension of F(x), where x ∈ F is transcendental
over F.

By Definitions 1.15 and 1.16, we know that the field of rational functions F(X ) of a projective
curve is a function field in one variable. The converse is also true. This result can be found in
[TVN07] as follows and a proof is given in [Mor93].

Theorem 1.9 ([Mor93, Theorem 1.1]). Let F/F be a function field in one variable, then there ex-
ist a smooth irreducible projective curve X such that the field F(X ) is isomorphic (as an extension
of F) to F .

Definition 1.22. A valuation ring of the function field F/F is a ring O ⊆ F such that

(1) F ( O ( F

(2) for any x ∈ F , we have x ∈ O or x−1 ∈ O.

In Section 1.2.1 we defined the local ring OP of a point P ∈ X . It is a valuation ring of
the function field F(X ), that is why the notations are similar. Let us give some properties of
valuation rings.

Proposition 1.10. Let O be a valuation ring of a function field F/F.

(1) O is a local ring, i.e. O has a unique maximal ideal P = O\O×.

(2) Let x ∈ F , then x ∈ P ⇐⇒ x−1 /∈ O.
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(3) The maximal ideal P of O is a principal ideal.

Now we define the notion of place, which replaces that of points of a curve (or closed points
if we consider a curve over Fq) when we use the language of function field.

Definition 1.23. A place P of the function field F/F is the maximal ideal of some valuation
ring O of F . We denote by PF the set of all places of the function field F . Every element t such
that P = tO is called a local parameter for P .

By Proposition 1.10 (2), we know that the valuation ring O is uniquely determined by its
maximal ideal P . We can denote by OP = {x ∈ F | x−1 /∈ P} the valuation ring of the place P .

Remark 3. For the case where F is algebraically closed, let F = F(X ) for some smooth projective
curve X . There is a one-to-one correspondence between the set of places PF and the points of
X . Then the valuation ring of a place P ∈ PF coincides with the local ring of a point Q ∈ X .
That is why there is no ambiguity in the notation OP in this case.

By this correspondence and Proposition 1.10 (3), the maximal ideal mP , where P is a point
of a smooth curve X , is principal. As in Definition 1.23 we call a local parameter of the point
P , any element t ∈ F(X ) such that mP = tOP .

Proposition 1.11. If P = tOP , then any function x ∈ F has a unique representation of the
form x = tnu, with n ∈ Z and u ∈ O×P .

We consider x ∈ OP a function such that its unique representation is x = tnu, where t is a
local parameter of P . If n > 0 then we say that P is a zero of x, if n < 0 we say that P is a pole
of x. We denote vP (x) = n the valuation of x at P . For any place P , vP is a discrete valuation
of F/F, that is it satisfies the following properties.

(1) vP (x) =∞ ⇐⇒ x = 0.

(2) vP (xy) = vP (x) + vP (y) for all x, y ∈ F .

(3) vP (x+ y) ≥ min{vP (x), vP (y)} for all x, y ∈ F .

(4) There exists an element z ∈ F such that vP (z) = 1.

(5) vP (a) = 0 for all a ∈ F∗.

Note that the definition of vP depends only of the place P and not on the choice of the local
parameter. Indeed, if we consider t′ another local parameter of P , then we have t = t′w, with
w ∈ O×P . Hence x = (t′w)nu = t′n(wnu) and wnu ∈ O×P .

Proposition 1.12. Any non-zero function x of a function field F , has only finitely many zeros
and poles.

Definition 1.24. The field FP := OP /P is called the residue class field of P . Then the degree
of P is defined as deg(P ) := [FP : F]. A place of degree 1 is also called a rational place.

The degree of a place is always finite (see [Sti09, Proposition 1.1.15]).

Correspondence with curves over a finite field. In Remark 3, we talked about the one-
to-one correspondence between points and places in the case where the defining field F is alge-
braically closed. What happens now if we consider curve defined over a finite field Fq? Let X/Fq
be a projective curve defined over Fq and Fq(X ) its function field. In this case the places of Fq(X )
are in one-to-one correspondence with the closed points of X . This correspondence permits to
transfer notions from the language of curve to the language of function field (and reciprocally).
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Automorphisms and fixed field. Let F/Fq be a function field, we consider Aut(F ) the (field)
automorphism group of F . For a finite subgroup G ⊂ Aut(F ), we denote by F G the function field
consisting in all functions of F fixed by every element of G. Then the field extension F/F G is
Galois of degree |G|. Let X be a smooth projective curve associated to F . The curve associated
to F G is called the quotient curve of X by G and denoted by X/G.

Definition 1.25. Let F be a function field and G ⊆ Aut(F ). Let P ∈ PF and P ′ ∈ PFG be two
places.

(i) P is said to lie over P ′ if P ′ ⊆ P , and we write P |P ′.

(ii) The integer e(P |P ′) such that

vP (x) = e(P |P ′)vP ′(x), ∀x ∈ F

is called the ramification index of P over P ′. We say that P |P ′ is ramified if e(P |P ′) > 1
and unramified otherwise.

The following property will be useful in Section 5.

Proposition 1.13. Let F be a function field and σ ∈ Aut(F ). Let P ∈ PF and P ′ ∈ PF 〈σ〉 such
that P |P ′, then σ(P ) := {σ(z) | z ∈ P} is a place of F such that

σ(P )|P ′ and e(σ(P )|P ′) = e(P |P ′).

1.2.3 Divisors

In this section we choose to present the different notions in the geometric point of view, that is
we speak about curve and points rather than function field and places. As we saw in the previous
section all theses notions can be transferred in the algebraic language. Through this section X
denotes a smooth irreducible projective curve over a finite field Fq.

Definition 1.26 (Divisors). The divisor group of a projective curve X is defined as the free
abelian group which is generated by the closed points of X . This group is denoted by Div(X ).
A divisor G on X , is an element of Div(X ) and so has the following form

G =
∑
P∈X

nPP ,

where P are closed points of X and nP are integers all zero but finitely many. The support of G
is defined as

Supp(G) := {P ∈ X | nP 6= 0}.

For a place Q ∈ X and a divisor G =
∑
nPP , we define vQ(D) := nQ. If for all place

P ∈ Supp(G), we have vP (G) > 0 then G is called an effective divisor. Finally we define the
degree of G as

deg(G) :=
∑
P∈X

vP (G) deg(P ).

The group Div(X ) has a partial order defined as∑
P∈X

nPP ≥
∑
P∈X

mPP ⇐⇒ ∀P ∈ X , nP ≥ mP .

In particular, if G ∈ Div(X ) is an effective divisor we note G ≥ 0. Now consider a non-zero
function x ∈ Fq(X )∗, we assign to x the divisor

(x) :=
∑
P∈X

vP (x)P .
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This definition is consistent since, by Proposition 1.12, x has a finite number of zeros and poles
on X . Such divisors are called principal divisors and form a subgroup of Div(X ), denoted by
Princ(X ), since for x, y ∈ Fq(X)∗ we have (xy) = (x) + (y).

Example 5. Let f ∈ Fq[x] be a polynomial function and Z := {x1, . . . , xs} be the set of zero of
f . We denote mi the multiplicity of the zero xi for all i ∈ {1, . . . , s}. Then the divisor of f on
the projective line is

(f) :=

s∑
i=0

miPi + deg(f)P∞,

where Pi := (xi : 1) and P∞ is the unique pole of x on the projective line.

Definition 1.27. Two divisors G1, G2 ∈ Div(X ), are said to be linearly equivalent if G1−G2 ∈
Princ(X ), that is to say there exists a function x ∈ Fq(X )∗ such that G1 = G2 + (x). Then we
write G1 ∼ G2. This is an equivalence relation and the class group of X is

Cl(X ) := Div(X )/Princ(X ).

Proposition 1.14. The degree of a principal divisor is zero.

Let us denote by Div0(X ) the group of divisors of X of degree 0. By the previous proposition
Princ(X ) ⊆ Div0(X ) and then we define the group of divisor classes of degree 0 as Cl0(X ) :=
Div0(X )/Princ(X ). Moreover, Proposition 1.14 implies that all divisors in a same equivalent
class have the same degree.

Proposition 1.15 ([Mor93, Chap. 3]). For any integer r, the number of divisor classes in Cl(X )
of degree r is independent of r and is equal to the cardinality of Cl0(X ).

For the following result, we need to know what is the genus of a curve. We choose to give
this definition later when it will be possible (Definition 1.31). For now, we admit that the genus
is an invariant of the curve X and it is a non negative integer.

Theorem 1.16 ([TVN07, Proposition 3.1.23]). Let X be a projective curve defined over Fq. The
number of divisor classes in Cl0(X ), called the class number and denoted by h(X ), satisfies:

(
√
q − 1)2g ≤ h(X ) ≤ (

√
q + 1)2g,

where g is the genus of X .

The following consequence about the specific case of divisors on the projective line will be
useful in Section 5.

Corollary 1.17. Let P1 be the projective line and G1, G2 ∈ Div(P1), such that deg(G1) =
deg(G2). Then G1 ∼ G2.

The following definition will be useful to define algebraic geometry codes on a projective
curve X . Algebraic geometry (AG) codes are evaluation codes on a curve X , the vector space
which is evaluated is the following.

Definition 1.28. Let G be a divisor on X/Fq, we define L(G) the Riemann-Roch space of G
by:

L(G) := {f ∈ F(X ) | (f) ≥ −G} ∪ {0}.

L(G) is a vector space over Fq and its dimension over Fq is denoted by `(G) := dimFq L(G).

The computation of the dimension `(G) of a Riemann-Roch space L(G) is very important to
know the dimension of an AG code. For now, we cannot estimate exactly this dimension but we
provide the following bound.
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Lemma 1.18. For a projective curve X and a divisor G ∈ Div(X ), we have

`(G) ≤ max{0, deg(G) + 1}.

In particular, if deg(G) < 0 then `(G) = 0, that is L(G) = {0}.

Example 6. Consider the point at infinity P∞ on the projective line over Fq, and let k > 0 be
an integer. Then the Riemann-Roch space L(kP∞) =< 1, x, . . . , xk > has dimension k + 1 over
Fq.

Lemma 1.19. Let G1, G2 ∈ Div(X ) be two linearly equivalent divisors. By definition, there
exists h ∈ Fq(X ) such that G1 = G2 + (h). Now, consider the following Fq-linear map

L(G1) −→ L(G2)
f 7−→ hf

,

it defines an isomorphism between L(G1) and L(G2). Then for a divisor G the value of `(G)
depends only on its linear equivalence class.

1.2.4 Riemann-Roch Theorem

In this section we introduce some definitions and results in order to present the Riemann-Roch
theorem. This theorem gives an explicit expression of the dimension `(G) for any divisor G.
Before presenting this result we need to give the definition of differential forms on a curve and
some basic properties of these objects. In the following, X denotes a smooth projective plane
curve over Fq. For this part we refer to [HvLP98].

A derivation over Fq(X ) is an Fq-linear map D : Fq(X )→ Fq(X ), satisfying the Leibnitz rule
D(xy) = xD(y) + yD(x) for any function x, y ∈ Fq(X ). The set of derivations, that we denote
by Der(Fq(X )), is a vector space over the field Fq(X ).

Definition 1.29. A differential form, or differential, on X is an Fq(X )-linear map fromDer(Fq(X ))
to Fq(X ). The set of all differentials on X is denoted by Ω(X ).

In the following we consider the map

d :

{
Fq(X ) −→ Ω(X )
f 7−→ df

which associate to any function f a differential df : Der(X )→ Fq(X ) defined by df(D) = D(f)
for all D ∈ Der(X ).

Theorem 1.20. The dimension of Ω(X ) over Fq(X ) is 1. Moreover, for any point P and any
local parameter tP at P , the differential dtP is a basis of Ω(X ) over Fq(X ).

The previous theorem can be reformulated as follows. For every point P ∈ X and local
parameter tP , a differential ω ∈ Ω(X ) can be represented in a unique way as ω = fdtP , where
f ∈ Fq(X ). We cannot define the “value” ω(P ) of ω in P since it depends on the choice of the
local parameters tP . However, it is possible to define zeros and poles of a differential.

Definition 1.30. Let ω ∈ Ω(X ) be a differential and P ∈ X a point. We denote tP a local
parameter of P and we write ω = fdtP , with f ∈ Fq(X ). We say that P is a zero of ω (resp. a
pole of ω) if P is a zero of f (resp. a pole of f). Moreover we define the valuation of ω in P as
vP (ω) := vP (f).
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As in the case of valuations of rational functions, this definition does not depend on the choice
of the local parameter tP . Similarly to the case of principal divisors we can define the divisor of
a differential ω ∈ Ω(X ) \ {0} as

(ω) :=
∑
P∈X

vP (ω)P.

Such a divisor is called a canonical divisor. Let f ∈ Fq(X ) be a function and ω ∈ Ω(X ) a
differential, then (fω) = (f) + (ω). By Theorem 1.20, for any ω ∈ Fq(X ) we can write ω = fω′,
with f ∈ Fq(X ) and ω′ ∈ Ω(X ) \ {0}. Then we have the following proposition.

Proposition 1.21. Canonical divisors are linearly equivalent.

Definition 1.31. Let X be a projective curve, we define the genus of X by gX := `(W ), with
W a canonical divisor on X . If there is no ambiguity we only write g.

By Proposition 1.21 and Lemma 1.19, the genus does not depend on the choice of the canonical
divisor W . The genus of a curve X is crucial in the Riemann-Roch Theorem. This number is
not always easy to compute. Let us give a simple formula in the case where X is a smooth plane
curve, which is the case of interest in this thesis.

Proposition 1.22 (Plücker formula, [TVN07, Corollary 2.2.8]). Let X be a smooth projective
plane curve of degree r, then the genus is given by

g =
(r − 1)(r − 2)

2
·

Theorem 1.23 (Riemann-Roch Theorem). Let X be a smooth projective curve and W a canon-
ical divisor on this curve. For any divisor G ∈ Div(X ), we have

`(G) = deg(G) + 1− g + `(W −G),

with g the genus of the curve X .

We can deduce from the Riemann-Roch theorem that for a canonical divisor W , we have
deg(W ) = 2g− 2. A particular case of this theorem will be important for properties of AG code,
it is the following.

Corollary 1.24. If deg(G) > 2g − 2, then `(G) = deg(G) + 1− g.

1.3 AG codes: definition and properties

In this section, we define the algebraic geometry (AG) codes and their subfield subcode (SSAG).
We present two constructions for AG codes which are dual each other. If there is no mention,
details about this section can be found in [TVN07] or [Sti09].

1.3.1 Algebraic geometry codes

In the following, X will denote a smooth plane projective curve over Fqm . Let P = {P1, . . . , Pn}
be a set of n distinct rational points of X , ie: places of degree 1 of Fqm(X ). Let G be a divisor
such that deg(G) < n, and the support of G does not contain any place of P. We consider the
following map:

EvP : OP −→ Fnqm
f 7−→ (f(P1), . . . , f(Pn)).

Here OP denotes the subset of Fqm(X ) consisting of functions regular at any P ∈ P, i.e. OP =⋂
P∈P
OP .
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Definition 1.32. With the previous notations, the algebraic geometry (AG) code CL(X ,P, G)
is defined by:

CL(X ,P, G) := {EvP(f) | f ∈ L(G)}.

The set P will be called the support of the code CL(X ,P, G).

Theorem 1.25. The code C := CL(X ,P, G) is an [n, k, d] code over Fqm with:

k = `(G) ≥ deg(G)− g + 1 and d ≥ n− deg(G).

If in addition deg(G) > 2g − 2 then k = deg(G)− g + 1. The integer δ := n− deg(G) is called
the designed distance of the code C .

Let {f1, . . . , fk} be a basis of L(G), then the matrix

G :=

f1(P1) . . . f1(Pn)
...

...
fk(P1) . . . fk(Pn)

 (1.1)

is a generator matrix for the code CL(X ,P, G).

1.3.2 Duality

Another kind of algebraic geometry codes can be constructed from differential forms. Consider
a divisor G on X and the following space of differential forms

Ω(G) := {ω ∈ Ω(X ) | (ω) ≥ G} ∪ {0}.

The dimension of Ω(G) will be denoted i(G) and called the index of speciality of G.

Theorem 1.26 ([Sti09, Theorem 1.5.14]). Let g be a divisor on X and W = (ω) be a canonical
divisor. Then the following map

L(W −G) −→ Ω(G)
x 7−→ xω

is an isomorphism of Fqm(X )-vector spaces. Thus, the index of speciality of G satisfies

i(G) = `(G)− deg(G) + g − 1

with g the genus of the curve X .

Definition 1.33 (Residue). Let ω ∈ Ω(X ) be a differential, P be a point on X and tP a local
parameter at P . Let ω = fdtP for some f ∈ Fqm(X ). Expanding f into a Laurent power series
in tP , we have

f =

∞∑
i=−M

ait
i
P ,

with M ∈ Z. The residue of ω at P , denoted Resω(P ), is the coefficient a−1. It is independent
of the choice of tP .

Consider the set of rational points P defined as previously, we define the divisor DP :=
∑
P∈P

P

associated to the set P. Let G be a divisor on X with a support disjoint of P and such that
deg(G) > 2g − 2, we consider the following map

ResP :

{
Ω(X ) −→ Fqm
ω 7−→ (Resω(P1), . . . ,Resω(Pn))

.
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Definition 1.34. With the previous notations, the Ω-AG code CΩ(X ,P, G) is defined by:

CΩ(X ,P, G) := {Resω(P) | ω ∈ Ω(G−DP)}.

Theorem 1.27. The code CΩ(X ,P, G) is an [n, k, d] code over Fqm with:

k = i(G−DP) ≥ n− deg(G) + g − 1 and d ≥ deg(G)− 2g + 2.

If in addition deg(G) < n then k = n − deg(G) + g − 1. The integer δΩ := deg(G) − 2g + 2 is
called the designed distance of the code CΩ(X ,P, G).

There is an important relation between the code CL(X ,P, G) and the code CΩ(X ,P, G).

Theorem 1.28. The codes CL(X ,P, G) and CΩ(X ,P, G) are dual to each other, i.e.

CL(X ,P, G)⊥ = CΩ(X ,P, G).

A proof of this result can be found in [Sti09] and comes from the following formula.

Proposition 1.29 (Residue formula). For any differential form ω ∈ Ω(X ), we have∑
P∈X

Resω(P ) = 0.

As a consequence of Theorem 1.28, the matrix defined in (1.1) is a parity check matrix for
the code CΩ(X ,P, G). The next result show that an Ω-AG code CΩ(X ,P, G) can be represented
as a code CL(X ,P, H), for some divisor H. This result will be very useful in Section 5.3 for the
example of codes on cyclic cover of P1. Before stating it, we need an intermediary result which
is the following.

Lemma 1.30. Let P := {P1, . . . , Pn} be a set of distinct rational points of X . There exists a
differential ω ∈ Ω(X ) such that

vPi = −1 and Resω(Pi) = 1,

for all i ∈ {1, . . . , n}.

Theorem 1.31. Let P := {P1, . . . , Pn} be a set of distinct rational points of X , and G be a
divisor with support disjoint from P. Let ω ∈ Ω(X ) be a differential such that vPi = −1 and
Resω(Pi) = 1, for all i ∈ {1, . . . , n}. We denote by W := (ω). Then

CΩ(X ,P, G) = CL(X ,P,W +DP −G).

1.3.3 Subfield subcodes of AG codes

We keep the notation of the previous section, in particular X is a smooth plane curve over Fqm .

Definition 1.35. With the notation of Definition 1.32, we define the subfield subcode of CL(X ,P, G)
over Fq, denoted by SSAGq(X ,P, G), as follows

SSAGq(X ,P, G) := CL(X ,P, G) ∩ Fnq .

For these codes there is an obvious bound on the dimension which is

dimFq(SSAGq(X ,P, G)) ≤ dimFqm (CL(X ,P, G)).

This comes from the fact that a basis of CL(X ,P, G) ∩ Fnq over Fq is also linearly independent
over Fqm . In order to introduce a lower bound on the dimension, we recall the following result.
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Let us denotes Tr(C ) the trace code, over Fq, of an AG code C (see Definition 1.10), by Delsarte
Theorem (Theorem 1.7) we have

SSAGq(X ,P, G)⊥ = Tr(CL(X ,P, G)⊥)

Moreover, we know that dimFq(Tr(CL(X ,P, G)⊥)) ≤ mdimFq(CL(X ,P, G)⊥), where m denotes
the extension degree of Fqm over Fq. This permits to have the following bound

dimFq(SSAGq(X ,P, G)) ≥ n−m dimFq(CL(X ,P, G)⊥)

with n the length of the code. Moreover, since SSAGq(X ,P, G) ⊆ CL(X ,P, G), we have the
following bound for the minimum distance

dmin(SSAGq(X ,P, G)) ≥ dmin(CL(X ,P, G)).

This lead to the following proposition.

Proposition 1.32. Let SSAGq(X ,P, G) be a subfield subcode as in Definition 1.35, then it is
an [n, k, d] code over Fq, with

k ≥ n−m(n− `(G)) and d ≥ n− deg(G).

The integer δ := n− deg(G) is called the designed distance of the code SSAGq(X ,P, G).

1.3.4 The particular case of AG codes on the projective line

In this section, we speak about AG codes, and their subfield subcodes, defined on the projective
line. This case is known as Generalized Reed Solomon(GRS) code for AG codes and alternant
codes for the subfield subcode of AG codes. First let us give some precisions about the projective
line.

Let P1 be the projective line over the field Fqm , then its function field is Fqm(P1) = Fqm(x)
where x is transcendental over Fqm . This function space is called the rational function field over
Fqm . The unique pole of the function x is called the point at infinity of P1, it is denoted P∞.
Other points of the projective line comes from the embedding A1 ↪→ P1, that is there are points
with homogeneous coordinates of the form (α : 1), with α ∈ Fqm . We denote these points by Pα.
Actually there are no other rational points of P1 than the points Pα, α ∈ Fqm , and P∞. That is
we have the following proposition.

Proposition 1.33. The rational points of P1 over Fqm are in one-to-one correspondence with
Fqm ∪∞, where ∞ is a notation for P∞.

The generalized Reed Solomon codes. Now, let P ⊆ P1 be a set of distinct rational points
and G be a divisor on P1 with support disjoint of P. Then, we can define an AG code C over
P1 as in Definition 1.32:

C := CL(P1,P, G).

We call these codes rational AG codes. In the following we assume that Pi = (xi : 1) for all
i ∈ {1, . . . , n}. In order to make a correspondence with the classical definition of GRS codes, we
construct a generator matrix of C . By Proposition 1.17, we know that G ∼ deg(G)P∞, that is
G+ (h) = deg(G)P∞, for some h ∈ Fqm(x). Moreover, for any s ∈ N, we have

L(sP∞) = 〈xi | i ∈ 0, . . . , s〉,

then we can write
L(G) = 〈hxi | i ∈ 0, . . . , s〉.
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Let us denote by k = deg(G)+1, x := (x(P1), . . . , x(Pn)) = (x1, . . . , xn) and y := (h(P1), . . . , h(Pn)),
then the matrix

Vr(x,y) :=


y1 . . . yn
y1x1 . . . ynxn
y1x

2
1 . . . ynx

2
n

...
...

y1x
k−1
1 . . . ynx

k−1
n

 (1.2)

is a generator matrix of the code C .

Definition 1.36 (Generalized Reed Solomon code). Let x := (x1, . . . , xn) ∈ Fnqm be an n-tuple
of distinct elements, y := (y1, . . . , yn) ∈ (F∗qm)n be an n-tuple of non-zero elements, and k be a
positive integer. The Generalized Reed Solomon (GRS) code of dimension k, is defined as follows

GRSk(x,y) := { (y1f(x1), . . . , ynf(xn)) | f ∈ Fqm [z]<k} .

The vector x is called the support and y a multiplier of the code GRSk(x,y). The matrix
(1.2) is also a generator matrix for this code and it is an [n, k] code. This leads that any rational
AG code is a GRS code.

Actually the converse is also true. Let C := GRSk(x,y) be a GRS code as defined just
above. Consider the function field Fqm(x), denote by Pi the zeros of x − xi for i ∈ {1, . . . , n},
and keep P∞ for the pole of x. We set P := (P1, . . . , Pn). Now, we can choose h ∈ Fqm [x] such
that

h(Pi) = yi for i ∈ {1, . . . , n} and deg(h) < n.

This is possible by the Lagrange interpolation method. We set G := (k − 1)P∞ + (h) and then
we have

GRSk(x,y) = CL(P1,P, G).

By Theorems 1.28 and 1.31, we know that the dual of an AG code is also an AG code. In
the case of GRS codes, that is rational AG codes, this result can be reformulated as follows.

Notation 1. Let x ⊆ Fnqm be a vector with distinct entries, we define the locator polynomial
πx ∈ Fqm [x] as

πx(x) :=

n−1∏
i=0

(x− xi).

Proposition 1.34. Let x,y ∈ Fnqm be a support and a multiplier of length n and k ≤ n. Then

GRSk(x,y)⊥ = GRSn−k(x,y⊥),

where

y⊥ :=

(
1

π′x(x1)y1
, . . . ,

1

π′x(xn)yn

)
,

and π′x denotes the derivative of the polynomial πx.

The alternant codes. Finally let us give the definition of alternant codes.

Definition 1.37 (Alternant code). Let x ∈ Fnqm be a support and y ∈ (F∗qm)n be a multiplier,
then the alternant code over Fq is defined as follows

Ar,q(x,y) := GRSr(x,y)⊥ ∩ Fnq .

The integer r is referred as the degree of the code Ar,q(x,y).
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By Proposition 1.34, the alternant codes are subfield subcode of GRS codes, and then are
subfield subcode of rational AG codes. In the following, we use the notation

Ar,q(P, G) := CL(P1,P, G)⊥ ∩ Fnq

when we want to use the representation of an alternant code Ar,q(x,y) as an SSAG code.

Proposition 1.35. The code Ar,q(x,y), of length n, has a dimension

k ≥ n−mr.

We conclude this subsection on alternant codes by a definition which is useful in Chapter 4.

Definition 1.38. An alternant code Ar,q(x,y) is said to be fully non degenerate if it satisfies
the two following conditions.

(i) A generator matrix of Ar,q(x,y) has no zero column.

(ii) Ar,q(x,y) 6= Ar+1,q(x,y).

Most of the time, an alternant code is fully non degenerate.

The Goppa codes. A special case of alternant codes is often used, it is the Goppa codes.
Later on, the notation P (x) for any polynomial P and any vector x means that we apply the
polynomial P on each entry of x.

Definition 1.39 (Classical Goppa codes). Let x ∈ Fnqm be a vector with pairwise distinct entries
and Γ ∈ Fqm [z] be a polynomial such that Γ(xi) 6= 0 for all i ∈ {0, . . . , n− 1}. The Goppa code
Gq (x,Γ) associated to Γ and supported by x is defined as

Gq (x,Γ) := Ar,q(x,Γ(x)−1),

with r := deg Γ. We call Γ the Goppa polynomial and m the extension degree of the Goppa code.

1.3.5 Decoding AG codes

In order to use AG codes in a cryptographic context we need to know efficient decoding algorithms
for these codes. Several algorithms are known, the survey of Høhold and Pellikaan [HP95]
describes some of them. For arbitrary AG codes CL(X ,P, G), there exists an algorithm, called
the basic algorithm [SV90, JLJ+89], which corrects up to b δ−g−1

2 c errors, where δ is the designed
distance of the code and g is the genus of the curve X . This algorithm works in O(n3) operations
in the field Fqm , with n the length of the code. In [SV90] the authors presented another algorithm,
the modified algorithm, which is an improvement of the basic algorithm. For AG codes on plane
curves, the modified algorithm can correct up to b δ−1

2 −
g
4c errors in O(n3) operations in the

field Fqm . The basic and modified algorithms do not correct up to the designed distance, this
problem can be avoided by using another algorithm more specific.

In the case of “one-point” codes, i.e. codes constructed from a divisor with one point, on
regular planes curves, Feng and Rao proposed, in [FR93] an algorithm which corrects b δFR−1

2 c
errors in O(n3) operations on the base field, and where δFR is the Feng-Rao distance which
verifies δFR ≥ δ. Sakata et al. [SJM+95] improve the complexity of the previous algorithm and
gave a decoding algorithm which correct up to b δ−1

2 c errors in complexity O(n
7
3 ) operations in

the base field.
The previous case can be too restrictive for some cryptographic applications. There are

other algorithms for specific curves and any divisors. For instance, in [Pel89] Pellikaan gives an
algorithm for codes on maximal curves which can correct b δ−1

2 c errors in O(n4). This case is
useful in Section 5 where we use codes on Hermitian curve which are maximal curves.
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In the case of codes over the projective line, that is GRS and alternant codes, there exists
also a specific decoding algorithm: the Berlekamp Welch algorithm (see [Bla08, Chap.3,§12] for
details). This algorithm decodes up to d−1

2 errors in O(n3) operation in the base field, with d the
minimum distance and n the length of the code. Actually there exists a more efficient algorithm
with use Extended Euclid algorithm and works in O(n2) (see [MS86] for more details).





Chapter 2

Code-based cryptography

2.1 McEliece encryption scheme

The encryption scheme of McEliece, presented in [McE78], is the first cryptosystem based on
error correcting codes. The idea of the McEliece cryptosystem is to use a family F of structured
codes for which we know an efficient decoding algorithm. Then the public key will be a random
looking generator matrix of a code in F and the trapdoor will be the decoding algorithm for the
chosen code. More precisely the McEliece scheme can presented as follows.

The McEliece scheme

• Key generation :
Input: The parameters n, k, t ∈ N and a finite field Fq.

1. Choose a family F of linear codes over Fq with an efficient decoding algorithm D.
2. Pick any [n, k] code C ∈ F over Fq, correcting t errors. Let G be a random looking

generator matrix of C and DC be a decoding algorithm associated to C and correcting
t errors.

Output : The public key (G, t) and the private key DC .

• Encryption :
Input: A message m ∈ Fnq .

1. Pick a random vector e ∈ Fnq of weight t.

2. Compute y := mG + e.

Output : The cypher text y.

• Decryption :
Input: A cypher text y = c + e, with c ∈ C and wH(e) ≤ t.

1. Compute c = DC (y).

2. Deduce m, from the knowledge of c = mG and G, by Gaussian elimination.

Output : The plaintext m.

Before speaking about the security, we precise what does performing an attack against the
McEliece scheme mean. We define two kinds of attack against this scheme: message recovery
attacks and key recovery attacks. Message recovery attacks consist in recovering the plaintext m
from the knowledge of the cypher text y and the public key (G, t). Once the attack is performed
we know the message m but we do not know the private key DC . If we want to recover several

37
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messages, the cost will be the cost of the attack on each cypher text. The second kind of attacks,
that is the key recovery attacks, consists in recovering an efficient decoding algorithm DC for
the code C from the knowledge of a generator matrix G. When we speak about an efficient
decoding algorithm we mean that this algorithm works in polynomial time in the parameters n
and k of the code. Once the attack is performed, the cost of recovering any message is the cost
of the decoding algorithm DC .

In both cases, we say that there exists an attack if there exists an algorithm, which recover
the message or the key, in polynomial time in n and k or which can be performed in less than
280 binary operations.

The security of the scheme depends on the choice of the family F and on the hardness of the
syndrome decoding problem (see Section 2.2, Problem 1). The syndrome decoding (SD) problem
is independent from the choice of F and is related to the security of the message. That is to say,
the problem to recover the message m from the cypher text y and the public key G reduces to
solve an instance of the SD problem. We will see in details this problem in the following section.
The choice of the family F influences the security of the private key. Indeed, for some family
F of linear codes there exists an algorithm, working in polynomial time in parameters n and k,
which permits to recover a decoder DC from a generator matrix G of a code C . We speak more
precisely of the choice of F in Section 2.3.

2.2 Information Set Decoding (ISD)

The difficult problem to which refers most of the time code-based cryptosystems is the syndrome
decoding problem. It is the case for the McEliece cryptosystem. This problem can be defined as
follows.

Problem 1 ((Search) Syndrome Decoding Problem). Let H be a parity check matrix of a random
[n, k] code C over Fq. Let t be an integer and s ∈ Fn−kq be a uniformly random vector, then the
Syndrome Decoding Problem is to find a vector e ∈ Fn of weight wH(e) ≤ t such that He> = s.

The decisional version of this problem was proved NP-complete by Berlekamp, McEliece and
van Tilbørd in [BMvT78]. Moreover, this problem is directly related to the decoding problem
for a random linear code. Consider a random linear code C over Fq, a parity check matrix H
for this code, and denote by t the correction capability of C . Let y := c + e be a vector of
Fnq , with c ∈ C and e ∈ Fnq an error vector with wH(e) ≤ t. We want to decode the vector y,
that is to recover c ∈ C , without knowing a specific decoding algorithm. From the knowledge
of the matrix H we can compute the vector s := Hy>. The vector s is called a syndrome. This
syndrome depends only on the error vector e. Indeed, we have

s := Hy> = Hc>︸︷︷︸
=0

+He> = He>.

If we are able to solve the SD problem for the parameters H, s and t, that is to recover e, then
we are able to decode c = y − e.

In order to choose parameters for the McEliece scheme we need to have an estimation of
the cost of solving the SD problem. To solve the SD problem, the naive approach consists in
performing a brute force search on errors vectors with weight t. The method does not provide
a good approximation of the real cost of an attack on the message. Indeed, there exists more
efficient algorithm to solve this problem. Of course the complexity of these algorithms is not
polynomial in the parameters. Except the brute force approach, all algorithms to solve the SD
problem are ameliorations of the attack by information set decoding (ISD), introduced by Prange
in [Pra62]. This idea is to find a set of positions of the noisy vector which are without errors
and such that the sub-matrix of the generator matrix associated to these positions is invertible.
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Improvements of this first algorithm exist [Ste88, Dum91, MMT11, BJMM12]. We do not details
here any algorithms, some of these methods are well explained in the paper of Peters [Pet10].
Moreover Peters provides a software to compute the best work factor of an ISD attack. To find
parameters resistant to ISD algorithms, we use an improve version of this software proposed in
[CT16a], called CaWoF (for Caculate Work Factor), which tests all the most efficient variants
of the ISD algorithm ([Ste88, Dum91, MMT11, BJMM12]).

2.3 Key recovery problem

The complexity of a key recovery attack is more complicated to provide in the general case since
it depends on the choice of the family F . As we saw previously, a key recovery attack consists in
recovering a decoding algorithm for a code C knowing only a generator matrix of C . Actually
the decoder recovery problem for a given family of linear codes reduces to an other problem
which is what follows. Consider a family F of linear codes over Fq and G a n × k matrix over
Fq. The problem consists in finding the structure of the code C ∈ F defined by G, that is
the secret elements which permit to construct an efficient decoding algorithm for the code C .
Depending on the choice of F , this problem can be easy to solve. For instance if the chosen
family is not large enough, a brute force attack can solve the decoder recovery problem in less
than 280 binary operations. The historical choice made by McEliece in [McE78] was the family
of classical Goppa codes (see Definition 1.39) with parameters [1024, 524, 101]. For now, we do
not know a efficient algorithm to solve the decoder recovery problem for the family of Goppa
codes. That is, for cryptographic parameters, from a generator matrix of a Goppa code we are
not able to recover the support and the Goppa polynomial defining the code. That is why we
assume that this family is secure for the McEliece scheme and in code-based cryptography in
general. The main problem is that the size of keys is large. Since 1978, several families have been
proposed for the McEliece scheme, in order to reduce the key size. However, for some proposals
the code recovery problem is not so hard. It is the case for Generalized Reed Solomon (GRS)
codes (Definition 1.36), since Sildelnikov and Shestakov provide, in [SS92], an algorithm which
recovers in polynomial time in the parameters of the code the GRS code from a given generator
matrix. For AG codes on a curve with genus ≥ 1, there exists two kind of attack. In [FM08],
Faure and Minder presented an attack against AG codes over curve of genus ≤ 2. They can
recover the AG code chosen from its generator matrix. This attack cannot be extend to curve
with high genus due to the complexity which is exponential in the genus. In 2014, Couvreur,
Márquez-Corbella and Pellikaan presented an attack against AG codes over curve with higher
genus [CMCP14]. They do not solve the code recovery problem but solve directly the decoder
recovery problem in building a decoder for the chosen AG code from only a generator matrix.

In this thesis, the principal interest for us is the case of alternant codes and subfield subcode
of AG (SSAG) codes. For the key security of these two cases the following fact is important.

Fact 1. Let SSAGq(X ,P, G) be an AG code and assume that the curve X is known. It is
possible to have a polynomial time decoding algorithm, from the knowledge of the support P
and the divisor G.

That is to say, the security of a SSAG code depends on the knowledge of its support an
divisor. In this thesis, when we speak about the secret elements of an SSAG code we mean the
support and the divisor of this code. In the particular case of alternant codes this also means
the support as a vector and the multiplier.
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2.4 Algebraic cryptanalysis of McEliece schemes using alternant
codes

In this section, we present a general framework of attack, called algebraic attack, against the
private key of a McEliece scheme using rational SSAG codes, that is alternant codes. In 2010,
Faugère, Otmani, Perret and Tillich proposed in [FOPT10] a new approach to study the key
security of McEliece schemes using alternant codes. They prove that the secret elements, that is
the support and the multiplier of the private key, satisfy a system of polynomial equations. This
approach is also well described in the Portzamparc’s thesis [dP15]. We explain here, how this
polynomial system is built.

Let C := Ar,q(x,y) be an alternant code over Fq, with a support x and a multiplier y of
length n defined over Fqm . From the knowledge of x and y it is possible to decode the code C .
That is the security of the private key reduces to the knowledge of the pair (x,y). Let us explain
how to build a polynomial system whose solutions are x and y.

As we saw in Section 1.3.4, alternant codes are defined as subfield subcode of the dual of a
GRS code, that is C = GRSr(x,y)⊥ ∩ Fnq . Moreover the following matrix

Vr(x,y) =


y1 . . . yn
y1x1 . . . ynxn
...

...
y1x

r−1
1 . . . ynx

r−1
n


is a generator matrix for the code GRSr(x,y). Then, for any codeword c ∈ C , we have

Vr(x,y) · c> = 0.

We say that Vr(x,y) is a parity check matrix for the code C , but we warn the reader that the
entries of Vr(x,y) are in Fqm while the code C is defined over Fq. Let G be a generator matrix
of the code C , then Vr(x,y)G> = 0. Let us introduce 2n formal variables X := (X1, . . . , Xn)
and Y := Y1, . . . , Yn corresponding to the support x and the multiplier y. To find the vectors x
and y we need to solve the system Vr(X,Y)G> = 0, that is:

Y1 . . . Yn
Y1X1 . . . YnXn

...
...

Y1X
r−1
1 . . . YnX

r−1
n

G> = 0.

This system is bi-homogeneous in the variables X and Y. That is to say, any equation of this
system is a bi-homogeneous polynomial f ∈ Fqm [X1, . . . , Xn, Y1, . . . , Yn] of bi-degree (s, 1), for
some s ∈ {0, . . . , r− 1}, i.e. f(αX, βY) = αsβf(X,Y) for any (α, β) ∈ F2

qm . It is easy to notice
that the system becomes linear if we fix the variables X. In the case where we fix the variables
Y the system is not directly linear. However, the fact that the system is defined over the finite
field Fqm permits us to extract a linear system by considering the equations of degree s = pu in
X, with u ∈ {0, . . . , logp(r − 1)}.

Solving the system. To solve polynomial systems over finite fields, a method consists to use
Gröbner bases, for more details about this method see for instance [Bar04]. The complexity
analysis of solve a polynomial system is based, in general, on this method. However, to provide
a complexity analysis of algebraic attacks against alternant codes is more complicated. The
complexity is difficult to estimate for many reasons:

• The choice of the algebraic modelling, i.e. the polynomial system we have to solve by
Gröbner bases methods is not unique. We will suggest here some modelling which have
been proposed in the literature but cannot assert that they are the only possible modellings;
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• The choice of the monomial ordering has no influence on the theoretical complexity in the
worst case, but may have a significant influence on practical complexities.

• Theoretical results on the complexity of Gröbner bases suppose the polynomial system
to be semi–regular (see [BFS04, Bar04] for theoretical complexity of computing Gröbner
bases) which is not true for the algebraic systems to follow.
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In this chapter, we present a structure analysis of quasi-cyclic alternant codes. This permits
to show that it is possible to reduce the key-recovery problem on the original quasi-cyclic code
to the same problem on a smaller code derived from the public key. This smaller code is the
invariant code and turns out to be also an alternant code. It is the first result we show. In a
second time we prove that it is possible to recover the secret elements of a QC alternant code
from the knowledge of the secret elements of its invariant code. This means that the key security
of compact McEliece scheme based on alternant codes with some induced permutation reduces
to the key security of the invariant code, which has smaller parameters. These two results have
been presented at Workshop on Coding and Cryptography (WCC) in September 2017 and can
be found in the paper “On the security of Some Compact Keys for McEliece Scheme” [Bar17].

In despite of the hight structure of QC alternant codes, we proposed a scheme using these
codes. Indeed, we can notice that key-recovery is generally more expensive than message recovery.
With a good choice of parameters it is still possible to construct quasi-cyclic codes with high

43
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complexity of key recovery attack on the invariant code. Then in the context of the recent call
of the National Institute for Standards and Technology (NIST) for post quantum cryptography,
we proposed a key encapsulation scheme based on QC binary Goppa codes which belongs in the
family of QC alternant codes [BBB+17b]. This proposal, called BIG QUAKE, is a collaboration
with Magali Bardet, Olivier Blazy, Rodolfo Canto-Torres, Alain Couvreur, Philippe Gaborit,
Ayoub Otmani, Nicolas Sendrier, and Jean-Pierre Tillich, and is also available on the NIST’s
web site.

3.1 Quasi-cyclic alternant codes

3.1.1 Quasi-cyclic codes

In what follows F denotes a finite field and ` denotes a positive integer.

Definition 3.1. Let ` be a positive integer and σ : F` → F` be the cyclic shift map:

σ` :
F` −→ F`

(x0, x1, . . . , x`−1) 7−→ (x`−1, x0, x1, . . . , x`−2)

Now, let n be an integer divisible by `, we define the `–th quasi–cyclic shift σ as the map obtained
by applying σ` block-wise:

σ :
Fn −→ Fn(

b1

∣∣ . . . ∣∣ bn
`

)
7−→

(
σ`(b1)

∣∣ . . . ∣∣ σ` (bn
`

)) ,

where b1,b2, . . . ,bn
`
denote blocks of length `.

This notion is illustrated by Figure 3.1.

Figure 3.1: Illustration of the quasi–cyclic shift

Definition 3.2. A code C ⊆ Fn is said to be `–quasi–cyclic (`–QC) if the code is stable by the
quasi–cyclic shift map σ. We say that ` is the order of quasi–cyclicity of the code.

Such codes are used in cryptography, and it is the main point in this thesis, to reduce the key
size of the McEliece scheme. To do this, we want to use generator matrix of quasi-cyclic codes
which admits a compact representation. Let us introduce such a matrix.

Definition 3.3. Let M be a matrix. The matrix is said to be `–block–circulant if it splits into
`× ` circulant blocks, i.e.

M =

 . . . Mi . . .

 with Mi :=


a0 a1 · · · a`−1

a`−1 a0 · · · a`−2
...

. . . . . .
...

a1 · · · a`−1 a0


This kind of matrix can be represented by the set of the first row of each block of size `. That

is, we can reconstruct an `–block–circulant matrix M of k rows, from the knowledge of its rows
with index 1, `+ 1, . . . , k − `+ 1.
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Remark 4. A code C which has a `–block–circulant generator matrix is an `-QC code. Now,
for a given `-QC code C , with dimension k, it is not sure that it admits a `–block–circulant
generator matrix. However there exists an `–block–circulant matrix G, with k′ ≥ k rows, which
generates the code C .

In in order to reduce optimally the size of the public key in McEliece scheme, we want to
consider codes which satisfy the following condition.

Condition 1. The [n, k] `–QC code C admits a generator matrix (or a parity check matrix) of
the form

G =
(

Ik | M
)

where Ik is the k× k identity matrix and M is an `–block–circulant matrix. We say that C is a
systematic quasi-cyclic code.

Remark 5. To satisfy the previous condition, the dimension k of the `–QC code should be a
multiple of `. Each time we will use this condition, we will ensure that it holds.

Definition 3.4. Given a matrix G as in Condition 1, we define ρ(G) as the matrix obtained
from M by extracting only the first row of each block. That is, ρ(G) is obtained by stacking
rows of M with indexes 1, `+ 1, 2`+ 1, . . . , (n− k)− `+ 1. Hence, we have the following ratio:

NumberOfRows(G) = `×NumberOfRows(ρ(G)).

For the analysis of some attacks against QC codes and hence for the security analysis of these
codes, we need to introduce the notions of invariant code and folded code. We detail further the
structure of these particular subcodes in the case where C is an algebraic code (see Sections 3.2
and 5.2).

Definition 3.5 (Folding map). Let n be a positive integer such that ` divides n and σ ∈ Sn be
a the `–th quasi–cyclic shift. The folding map on F is the following map:

ϕ` : Fn −→ F
n
`

(x1, . . . , xn) 7−→
(
`−1∑
i=0

xσi(1),
`−1∑
i=0

xσi(`+1), . . . ,
`−1∑
i=0

xσi(n−`+1)

)
.

Equivalently, ϕ` := PunctI`
(
id +σ + · · ·+ σ`−1

)
, where I` := {1, . . . , n}\{1, `+1, . . . , n−`+1}.

Definition 3.6 (Folded code). Let C ⊆ Fn be a `–QC code, then the folded code is ϕ`(C ) ⊆ F
n
` .

Definition 3.7 (Invariant code). Let C ⊆ Fn be a `–QC code, then the invariant code is defined
by

C σ := {c ∈ C | σ(c) = c} .

This code has repeated entries, then we use another code: the punctured invariant code which is
defined by

C
σ

:= PunctI` (C σ) ,

where I` := {1, . . . , n}\{1, ` + 1, . . . , n − ` + 1}. Let σC be the `-QC shift σ restricted to the
code C , we can write C

σ
= PunctI` (ker(σC − id)).

Later on, we speak about invariant code for both the invariant code and the punctured
invariant code, but the notation remain different.

The folded code and the invariant codes are not equal in the general case but we have the
following lemma.



46 CHAPTER 3. MCELIECE SCHEME USING QUASI-CYCLIC ALTERNANT CODES

Lemma 3.1. Let ` be a positive integer and C be a `-QC code, then we have

ϕ`(C ) ⊆ C
σ
.

Moreover, if char(F) - ` then ϕ`(C ) = C σ.

Proof. Let ϕC := idC +σC + · · · + σ`−1
C where σC and idC are the maps σ and id restricted to

C , then we have:
ϕ`(C ) = Im(ϕC ) ⊆ ker(σC − idC ).

This proves the first statement.
Now, we assume that char(F) - `. We will show that dim(ϕ`(C )) = dim(ker(σC − idC )). By the
rank–nullity theorem we know that

dim(Im(ϕC )) = dim(C )− dim(ker(ϕC )). (3.1)

Moreover, σ`C − idC = (idC +σC + · · ·+ σ`−1
C )(σC − idC ). Since p - `, we have:

gcd(

`−1∑
i=0

Xi, X − 1) = 1.

Hence, C = ker(ϕC )⊕ ker(σC − idC ) and

dim(ker(σC − idC )) = dim(C )− dim(ker(ϕC )). (3.2)

Therefore from (3.1) and (3.2), ker(σC − idC ) = Im(ϕC ) and ϕ`(C ) = C σ.

Throughout this thesis, we talk about subfield subcodes of algebraic codes. The following
remark about invariant codes will be very useful for these algebraic codes.

Remark 6. We notice that the invariant operation commutes with the subfield subcode operation.
Indeed, if C is a linear code over Fqm , stable under a permutation σ then:

(C ∩ Fnq )σ = {c ∈ C | c ∈ Fnq and σ(c) = c} = C σ ∩ Fnq .

3.1.2 Induced permutations of alternant codes

In what follows, q denotes a power of a prime p and m refers to the extension degree of the finite
field Fqm . In this section we explain how we can construct an alternant code, defined over Fq,
stable under a prescribed permutation of the support {1, . . . , n}, where n denotes the length of
the code. Since alternant codes are subfield subcodes of GRS codes, we first study GRS code
with permutations.

GRS code with permutations. In [Dür87], Dür determines the automorphism group of GRS
codes. She shows that, for appropriate dimension, the whole permutation group is induced by
the action of the projective linear group on the support of the code. The same property has been
shown by Stichtenoth [Sti90], with the representation of GRS codes as AG codes. More precisely,
for appropriate parameters, every permutation of CL(P1,P, G) is induced by a projective linear
transformation. First of all, we recall the definition of the projective linear group PGL2(Fqm).
Then we recall the main definitions and theorems of [Sti90].

The projective linear group PGL2(Fqm) is the automorphism group of the projective line P1

defined by

PGL2(Fqm) :=

{
P1 −→ P1

(x : y) 7−→ (ax+ by : cx+ dy)

∣∣∣{a, b, c, d ∈ Fqm ,
ad− bc 6= 0

}
.
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The elements of PGL2(Fqm) have also a matrix representation, i.e.

∀σ ∈ PGL2(Fqm), we write σ :=

(
a b
c d

)
, with ad− bc 6= 0. (3.3)

Where the elements a, b, c and d are defined up to a multiplication by a non-zero scalar. That is
to say:

PGL2(Fqm) ' GL2(Fqm)/

{(
α 0
0 α

)
, α ∈ F∗qm

}
·

Definition 3.8. Let P ⊆ P1 be a set of n distinct points on the projective line. Let G and
G′ be divisors of P1. Then we denote G ∼P G′ if there exists f ∈ Fqm(P1), f 6= 0, such that
G−G′ = (f) and f(P ) = 1, for all P ∈ P.

This is an equivalence relation and we have the following result.

Lemma 3.2 ([Sti90, Lemma 2.1]). Let P ⊆ P1 and G,G′ be two divisors on P1 such that
Supp(G) ∩ P = ∅ and Supp(G′) ∩ P = ∅. If G ∼P G′ then CL(P1,P, G) = CL(P1,P, G′).

The following definition and theorem give all the possible permutations for AG codes on the
projective line.

Theorem 3.3 ([Sti90, Theorem 3.1]). Let C = CL(P1,P, G) ⊆ Fnqm be an AG code with divisor
G such that 1 ≤ deg(G) ≤ n− 3. Then

Perm(C ) = {σ ∈ Aut(P1) | σ(P) = P and σ(G) ∼P G}

.

Now, to construct GRS codes with permutations is very easy. Let σ ∈ PGL2(Fqm) be an
automorphism acting on the support P ⊆ P1 and the divisor G ∈ Div(P1), then σ induces a
permutation on the code C := CL(P1,P, G). The induced permutation σ̃ ∈ Sn is defined by

σ̃ : C −→ C
(f(P1), . . . , f(Pn)) 7−→ (f(σ(P1)), . . . , f(σ(Pn)))·

The case of alternant code. Since alternant codes are subfield subcodes of GRS codes, they
inherit the permutation group of corresponding GRS codes. More precisely we have the following
property.

Lemma 3.4. Let C := Ar,q(P, G) be an alternant code over Fq and σ ∈ Perm(CL(P1,P, G)),
then σ ∈ Perm(C ).

Proof. By definition C = CL(P1,P, G)⊥ ∩ Fnq and by Proposition 1.2, we know that σ ∈
Perm(CL(P1,P, G)⊥). Let c := (c1, . . . , cn) ∈ C , then σ(c) ∈ CL(P1,P, G)⊥, since C is a sub-
code of CL(P1,P, G)⊥. For all i ∈ {1, . . . , n}, cσ(i) ∈ Fq, hence σ(c) ∈ C and σ ∈ Perm(C ).

This permits us to construct alternant codes with permutation. Unlike the case of GRS codes,
there is no equivalence between the permutations of alternant codes and action of PGL2(Fqm) on
the support and the divisor. In [Ber00b, Ber00a], Berger composes the action of PGL2(Fqm) with
the Frobenius automorphism to construct alternant codes stable under a permutation induced
by the action of an element of the projective semi- linear group PΓL2(Fqm) on the support and
the divisor. This group is defined as

PΓL2(Fqm) :=

{
P1 −→ P1

(x : y) 7−→ (axq
i

+ byq
i

: cxq
i

+ dyq
i
)

∣∣∣{a, b, c, d ∈ Fqm ,
ad− bc 6= 0

, and 0 ≤ i < m

}
.
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Let fq : x 7→ xq be the Frobenius automorphism of Fqm over Fq and ρ ∈ PΓL2(Fqm), then we
can write ρ = σ ◦ fiq, for some i ∈ {0, . . . ,m − 1} and σ ∈ PGL2(Fqm). Using this composition,
Berger construct GRS codes stable under a permutation induced by an element ρ ∈ PΓL2(Fqm).
Then the subfield subcode a such a GRS code is also stable by a permutation induced by an
element ρ ∈ PΓL2(Fqm). This case is more complicated than the action of PGL2(Fqm) and we
do not treat it in this thesis.

3.1.3 A construction of QC alternant codes

Now we have all the properties required to construct some alternant codes invariant under a
permutation. We only consider the action of PGL2(Fqm), the action of PΓL2(Fqm) will not be
treated.

Let σ ∈ PGL2(Fqm) be an automorphism and ` be its order. For a point P ∈ P1, we denote
Orbσ(P ) := {σi(P ) | i ∈ {1, . . . , ` − 1}}, it is the orbit of P under the action of σ. Let n be a
positive integer divisible by `. We define the support:

P :=

n/`∐
i=1

Orbσ(Pi), (3.4)

where the points Pi ∈ P1(Fqm) are pairwise distinct with trivial stabilizer subgroup. Then we
define the divisor:

G :=
s∑
i=1

ti
∑

Q∈Orbσ(Qi)

Q, (3.5)

with Qi closed points of P1 (see Definition 1.20), s ∈ N, ti ∈ Z for i ∈ {1, . . . , s} and

deg(G) =

s∑
i=1

ti`deg(Qi).

As we saw in Section 3.1.2, the automorphism σ of P1 induces a permutation of CL(P1,P, G).
For short, we denote by σ both the automorphism of P1 and the induced permutation. Then,
by Lemma 3.4, σ is also a permutation of Ar,q(P, G) := CL(P1,P, G)⊥ ∩ Fnq .

3.2 Structural analysis of the invariant code

In this section, we show that the invariant code of a QC alternant code is also an alternant
code. As we noticed in Remark 6, the invariant operation commutes with the subfield subcode
operation. This means that to analyse the structure of invariant code of alternant codes it suffices
to look at invariant code of GRS codes, i.e. AG codes on the projective line.

Lemma 3.5. Let C := CL(P1,P, G) and σ ∈ Perm(C ). If c = EvP(f) ∈ C is such that
σ(c) = c, then f is σ-invariant, i.e. f ◦ σ = f .

Proof. Let c = (f(P1), . . . , f(Pn)) such that σ(c) = c, then:

∀i ∈ {1, . . . , n}, f(Pσ(i)) = f(Pi)⇔ ∀i ∈ {1, . . . , n}, f ◦ σ(Pi) = f(Pi)

⇔ ∀i ∈ {1, . . . , n}, (f ◦ σ − f)(Pi) = 0.

Since σ(G) = G, f ◦σ ∈ L(G), and then (f ◦σ− f) ∈ L(G). Hence if (f ◦σ− f) was non-zero, it
should have at most deg(G) < n zeros on P1, which is a contradiction. Therefore (f ◦σ−f) ≡ 0
and f is σ-invariant.
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Later on, to simplify the proofs we assume that G is constructed from single rational point
Q, that is G = t

∑
R∈Orbσ(Q)

R. The result remains true in the general case. We denote:

σj(Pi) := (αi`+j : βi`+j), for i ∈ {0, . . . , n` − 1}, j ∈ {0, . . . , `− 1}
σj(Q) := (γj : δj), for j ∈ {0, . . . , `− 1}. (3.6)

Lemma 3.6. Let G = t
∑

R∈Orbσ(Q)

R, then we have:

L(G) =

{
F (X,Y )

`−1∏
j=0

(δjX − γjY )t

∣∣∣∣∣ F ∈ Fqm [X,Y ] homogeneous polynomial of degree t`.

}

In the following, we study the action of an automorphism σ ∈ PGL2(Fqm) on a Riemann-Roch
space L(G) as described just above. The goal of this part is to show the following result.

Theorem 3.7. Let CL(P1,P, G) ⊆ Fnqm be an AG code of length n and dimension k, and
σ ∈ PGL2(Fqm) of order ` acting on it, with `|n. Let P and G as in (3.4) and (3.5). Then the
invariant code CL(P1,P, G)

σ
is an AG code of length n/` and dimension bk/`c.

The most important result in our security analysis of a scheme using QC alternant codes is
the following consequence. This result comes from Theorem 3.7 and Remark 6.

Corollary 3.8. Let Ar,q(P, G) := CL(P1,P, G)∩ Fnq be an alternant code of length n and order
r, and σ ∈ PGL2(Fqm) of order ` acting on it, with `|n. Let P and G as in (3.4) and (3.5).
Then the invariant code Abr/`c,q(P, G)

σ
is an alternant code of length n/` and order br/`c.

In order to prove Theorem 3.7, we consider σ ∈ PGL2(Fqm) with ` = ord(σ) and we define
the support P and the divisor G as in (3.4) and (3.5). Moreover we keep the notation (3.6).

To the automorphism σ ∈ PGL2(Fqm), we associate a matrix M ∈ GL2(Fqm) as in (3.3).
Later on, the notation M ∼ N , with M,N ∈ PGL2(Fqm), means there exists P ∈ PGL2(Fqm)
such that M = PNP−1. Three cases are possibles, depending on the eigenvalues of the matrix
M :

1. M ∼
(
a 0
0 1

)
, with a ∈ Fqm (case diagonalizable in Fqm),

2. M ∼
(

1 b
0 1

)
, with b ∈ Fqm (case trigonalizable in Fqm),

3. M ∼
(
α 0
0 αq

m

)
, with α ∈ Fq2m (case diagonalizable in Fq2m).

The following lemma shows that the study of GRS codes invariant under an induced permutation
σ ∈ PGL2(Fqm) can be reduced to the study of the three cases: (1), (2) and (3).

Lemma 3.9. Let C := CL(P1,P, G) be an AG code such that σ(C ) = C and ρ ∈ PGL2(Fqm).
Then σ′ := ρ ◦ σ ◦ ρ−1 induces the same permutation on C as σ.

Proof. We first prove that:

CL(P1, ρ−1(P), ρ−1(G)) = CL(P1,P, G).

Let c = (f(P1), . . . , f(Pn)) be a codeword of CL(P1,P, G). Then, we have

c = (f ◦ ρ ◦ ρ−1(P1), . . . , f ◦ ρ ◦ ρ−1(Pn)).



50 CHAPTER 3. MCELIECE SCHEME USING QUASI-CYCLIC ALTERNANT CODES

As f ∈ L(G), the function h = f ◦ ρ ∈ L(ρ−1(G)). Hence, c ∈ {Evρ−1(P)(h) | h ∈ L(ρ−1(G))} =
CL(P1, ρ−1(P), ρ−1(G)).
Now, for all c = (f(P1), . . . , f(Pn)) ∈ C , we have:

σ′(c) = (f ◦ ρ ◦ σ ◦ ρ−1(P1), . . . , f ◦ ρ ◦ σ ◦ ρ−1(Pn))

= (h ◦ σ(ρ−1(P1)), . . . , h ◦ σ(ρ−1(Pn)))

with h = f ◦ρ ∈ L(ρ−1(G)). Since CL(P1, ρ−1(P), ρ−1(G)) = CL(P1,P, G), σ′ induces the same
permutation of the code C as σ.

3.2.1 Case σ diagonalizable over Fqm

In this section, we consider σ := ρ◦σd ◦ρ−1 with σd ∈ PGL2(Fqm) diagonal and ρ ∈ PGL2(Fqm).
W.l.o.g and by Lemma 3.9, one can assume that:

σ : P1 → P1

(x : y) 7→ (ax : y),
(3.7)

with a ∈ F∗qm . As we saw in Lemma 3.5, the codewords of an AG code fixed by the automor-
phism σ acting on it, is directly related to the functions invariant by σ. Moreover, Lemma 3.6
describes the Riemann-Roch spaces associated to a divisor globally stable by an automorphism
of PGL2(Fqm). Functions of the Riemann-Roch space are fractions of homogeneous polynomi-
als. The following proposition gives us the structure of homogeneous polynomials fixed by the
diagonal automorphism σ (3.7).

Proposition 3.10. Let F ∈ Fqm [X,Y ] be a homogeneous polynomial of degree t`, and a ∈ Fqm of
order `. If F (aX, Y ) = F (X,Y ), then F (X,Y ) = R(X`, Y `), with R ∈ Fqm [X,Y ] a homogeneous
polynomial of degree t.

A proof is given in [FOP+16a, Prop 4]. Here, we present a simpler proof.

Proof. The homogeneous polynomial F can be written as:

F (X,Y ) =
∑
i+j=t`

fijX
iY j ,

with fij ∈ Fqm . Since F (aX, Y ) = F (X,Y ), we have:∑
i+j=t`

fijX
iY j =

∑
i+j=t`

fija
iXiY j ·

Hence fij = aifij ,∀i, j ∈ N such that i + j = t`. As the order of a is `, we have ai 6= 1,∀i ∈ N
such that ` - i. Therefore fij = 0,∀i ∈ N such that ` - i. So F (X,Y ) = R(X`, Y `), with
R ∈ Fqm [X,Y ] an homogeneous polynomial of degree t.

Thanks to the previous proposition we are able to prove Theorem 3.7 in the case where σ is
diagonal. This is the following proposition.

Proposition 3.11. Let C := CL(P1,P, G) be an AG code as in Theorem 3.7, with σ as in (3.7).
Let P̃i = (α`i : β`i ) and G̃ = tQ̃, where either Q̃ = ((−1)`−1a

`(`−1)
2 (γ0δ0 )` : 1) or Q̃ = P∞. Then

C
σ

= CL(P1, P̃, G̃), which is a GRS code.

Proof. Let c := EvP(f) ∈ C such that σ(c) = c, we denote c` := PunctI` (c), with the set
I` ⊆ {1, . . . , n} defined as in Definition 3.7. The codeword c` is in the invariant code C

σ and
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by definition c` = PunctI` (EvP(f)). By Lemma 3.5, f ∈ L(G) is fixed by σ, i.e. f(aX, Y ) =
f(X,Y ). Then, by Lemma 3.6, we have

f(aX, Y ) = f(X,Y )⇐⇒ F (aX, Y )(
`−1∏
j=0

(aδjX − γjY )

)t =
F (X,Y )(

`−1∏
j=0

(δjX − γjY )

)t (3.8)

with F ∈ Fqm [X,Y ] a homogeneous polynomial of degree t`. Since the support of G is stable
under the action of σ, we can write

`−1∏
j=0

(aδjX − γjY ) =
`−1∏
j=0

(aδjX − aγjY )

= a`
`−1∏
j=0

(δjX − γjY )

=
`−1∏
j=0

(δjX − γjY )·

Hence, the right side of (3.8) becomes F (aX, Y ) = F (X,Y ). By Proposition 3.10, we know that
F (X,Y ) = R(X`, Y `) with R ∈ Fqm [X,Y ] an homogeneous polynomial of degree t. As we see

just above, the product
`−1∏
j=0

(δjX − γjY ) is also invariant. Again Proposition 3.10 gives:

`−1∏
j=0

(δjX − γjY ) =
( `−1∏
j=0

δj
)
X` + (−1)`

( `−1∏
j=0

γj
)
Y `·

Therefore:

f(X,Y ) =
R(X`, Y `)(( `−1∏

j=0
δj
)
X` − (−1)`−1

( `−1∏
j=0

γj
)
Y `
)t · (3.9)

For all i ∈ {1, . . . , n` }, we have f(Pi) = f̃(P̃i), with

f̃(X,Y ) :=
R(X,Y )(( `−1∏

j=0
δj
)
X − (−1)`−1

( `−1∏
j=0

γj
)
Y
)t and P̃i := (α`i : β`i ). (3.10)

We denote δ̃ =
( `−1∏
j=0

δj
)
and γ̃ = (−1)`−1

( `−1∏
j=0

γj
)
. Let G̃ := tQ̃ be a divisor with Q̃ := (γ̃ : δ̃),

by Lemma 3.6, we have:

L(G̃) :=

{
R(X,Y )(
δ̃X − γ̃Y

)t
∣∣∣∣∣ R ∈ Fqm [X,Y ] homogeneous polynomial of degree t

}
∪ {0}·

Hence the codeword c` ∈ CL(P1, P̃, G̃).
If Q̃ 6= P∞, then ∀j, δj 6= 0 and we can write:

Q̃ =
(
(−1)`−1

`−1∏
j=0

γj
δj

: 1
)
.
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Moreover we have:
`−1∏
j=0

γj
δj

=

`−1∏
j=0

aj
γ0

δ0
=
( `−1∏
j=0

aj
)
(
γ0

δ0
)` = a

`(`−1)
2 (

γ0

δ0
)`.

We notice that
`−1∏
j=0

γj
δj

= (γ0δ0 )`, if ` is odd.

Conversely, let c` := EvP̃(f̃) ∈ CL(P1, P̃, G̃) be a codeword with f̃ as in (3.10). We define
f := f̃(X`, Y `) ∈ L(G), then c = EvP(f) ∈ C . The function f is invariant by σ, then σ(c) = c
and c` ∈ C

σ.

3.2.2 Case σ trigonalizable over Fqm

Here, we consider the case (2) where σ is trigonalizable in Fqm . As in the previous section we
only have to treat the case where σ is upper triangular. W.l.o.g and by Lemme 3.9, one can
assume that:

σ : P1 → P1

(x : y) 7→ (x+ by : y)
(3.11)

with b ∈ F∗qm . In this case, we have ` = ord(σ) = p. As previously we need to know the structure
of the homogeneous polynomials of Fqm [X,Y ] fixed by the automorphism σ.

Proposition 3.12 ([FOP+16a, Prop 4]). Let F ∈ Fqm [X,Y ] be a polynomial of degree deg(F ) ≤
tp and b ∈ F∗q. If F (X + bY, Y ) = F (X,Y ), then F (X,Y ) = R(Xp − bp−1XY p−1, Y p), with p
the characteristic of Fqm and R ∈ Fqm [X,Y ] an homogeneous polynomial of degree deg(R) ≤ t.

The case of Theorem 3.7 with an automorphism σ upper triangular is treated in the following
proposition.

Proposition 3.13. Let C := CL(P1,P, G) be an AG code as in Theorem 3.7, with σ as in
(3.11). Let P̃i = (αpi − bp−1αiβ

p−1
i : βpi ) and G̃ = tQ̃, where either Q̃ = (( γ0

δ0
)p − bp−1 γ0

δ0
: 1) or

Q̃ = P∞. Then C
σ

= CL(P1, P̃, G̃), which is a GRS code.

The proof of this proposition is similar to the proof of Proposition 3.11.

Proof. Let c = EvP(f) ∈ C such that σ(c) = c, we denote c` := PunctI` (c), with the set
I` ⊆ {1, . . . , n} defined as in Definition 3.7. The codeword c` is in the invariant code C

σ and by
definition c` = PunctI` (EvP(f)). By Lemma 3.5, f is fixed by σ, i.e. f(X + bY, Y ) = f(X,Y ).
Then, by Lemma 3.6, we have:

f(X + bY, Y ) = f(X,Y )⇐⇒ F (X + bY, Y )( p−1∏
j=0

(
δj(X + bY )− γjY

))t =
F (X,Y )( p−1∏

j=0

(
δjX − γjY

))t , (3.12)

with F ∈ Fq[X,Y ] an homogeneous polynomial of degree tp. Since the support of G is globally
stable under the action of σ, we have

p−1∏
j=0

(δj(X + bY )− γjY ) =

p−1∏
j=0

(δjX − (γj − bδj)Y )

=

p∏
j=1

(δj−1X − γj−1Y )

=

p−1∏
j=0

(δjX − γjY ).
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Hence, the right side of (3.12) becomes F (X + bY, Y ) = F (X,Y ). By Proposition 3.12, we have
F (X,Y ) = R(Xp− bp−1XY p−1, Y p), with R ∈ Fqm [X,Y ] an homogeneous polynomial of degree

deg(R) ≤ t. The product
p−1∏
j=0

(δjX − γjY ) is also invariant by σ, by Proposition 3.12, we have

p−1∏
j=0

(δjX − γjY ) =
( p−1∏
j=0

δj
)(
Xp − bp−1XY p−1, Y p

)
+
(
(−1)p

p−1∏
j=0

γj
)
Y p·

Hence:

f(X,Y ) =
R(Xp − bp−1XY p−1, Y p)(( p−1∏

j=0
δj
)(
Xp − bp−1XY p−1

)
−
(
(−1)p−1

p−1∏
j=0

γj
)
Y p
)t ·

The arguments to conclude this proof are the same as in Proposition 5.4. Moreover, if
Q̃ 6= P∞, then for all j, δj 6= 0 and we can write:

Q̃ =
( p−1∏
j=0

γj
δj

: 1
)
.

We have:
p−1∏
j=0

γj
δj

=

p−1∏
j=0

(
γ0

δ0
+ jb) = (

γ0

δ0
)p − bp−1γ0

δ0
·

3.2.3 Case σ diagonalizable in Fq2m\Fqm

In this section we consider the case (3), that is σ := ρ ◦ σd ◦ ρ−1 with σd diagonal in GL2(Fq2m)
and ρ ∈ PGL2(Fq2m). Here we cannot apply directly Lemma 3.9 since the code C is defined over
Fqm and ρ acts on P1(Fq2m). To overcome this difficulty, we want to extend the code C , defined
on Fqm , to the field Fq2m . Then we consider the code C ⊗ Fq2m := 〈C 〉Fq2m .

C ⊗ Fq2m
Invσ // (C ⊗ Fq2m)

σ

C
Invσ //?�

Subfield Subcode

OO

C
σ?
�
Subfield Subcode

OO

Let us denote LF(G) the Riemann-Roch space included in the function field F(x). Then we
have C ⊗ Fq2m = {EvP(f)|f ∈ LFq2m (G)}. Since P ⊆ P1(Fqm) in particular P ⊆ P1(Fq2m)

and we have C ⊗ Fq2m = CL(P1
Fq2m

,P, G). Now it is possible to apply Lemma 3.9 to C ⊗ Fq2m .

Then the invariant code C ⊗ Fq2m
σ equals the invariant code (C ⊗Fq2m)σd . By Section 3.2.1, we

know that the code (C ⊗ Fq2m)
σd is a GRS code. Now we have to show that C

σ is also a GRS
code. First we know that, by definition, C ⊗Fq2m has a basis in Fnqm . Then the following lemma
permits us to show that the code (C ⊗ Fq2m)

σ
also has a basis in Fnqm .

Lemma 3.14. The characteristic p of Fqm does not divide the order ` of σ.

Proof. The automorphism σ is defined as σ := ρ ◦ σd ◦ ρ−1 with σd : (x : y) 7→ (αx : αq
m
y)

diagonal in GL2(Fq2m), that is α ∈ Fq2m , and ρ ∈ PGL2(Fq2m). Then the order ` of σ is the
order of α and we have ` | (q2m − 1). Since q = ps, for some s ∈ N∗, we have ` | (ps2m − 1) and
so p - `.

With the previous lemma, and by Lemma 3.1, we have ϕ`(C ⊗ Fq2m) = (C ⊗ Fq2m)
σ
. Since

the application ϕ` is Fq-linear, the code (C ⊗ Fq2m)
σ
has a basis in Fnqm . Therefore, the subfield

subcode on Fqm of the GRS code (C ⊗ Fq2m)
σd is a GRS code. That is C

σ is a GRS code.
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3.3 Security reduction to the key security of the invariant code

In this section, we show that the key security of a QC alternant codes, as described in Section
3.1.3, reduces to the key security of its invariant code. We consider an automorphism σ ∈
PGL2(Fqm), and an alternant code

Ar,q(P, G) := CL(P1,P, G)⊥ ∩ Fnq

which is stable under the action of σ. In particular, the support P and the divisor G are defined
as (3.4) and (3.5). From the knowledge of a generator matrix of Ar,q(P, G) and the induced
permutation σ, it is possible to compute the invariant code Ar,q(P, G)

σ
. By Section 3.2 and

Corollary 3.8, we know that this invariant code is an alternant code Ar,q(P̃, G̃), for some support
and divisor, with smaller parameters. We will show that thanks to the knowledge of P̃ and G̃
we are able to recover P and G. We already know that there is a link between the form of P̃
and G̃ of the invariant code and the form of P and G of the original alternant code. This link is
described by Propositions 3.11 and 3.13 of the previous section.

Here we assume that the support P̃ and the divisor G̃ of the invariant code Ar,q(P, G)
σ

are known. Later on, we denote by P̃ :=
{

(α̃i : β̃i) | i ∈ {1, . . . , n` }
}
. Moreover we assume

that G is constructed from the orbit of one rational point Q, this permits to simplify the proofs
and algorithms but the result remains true for the general case. The following notation for the
support P and the divisor G of the public code, will be used. We denote

P :=
{

(αi,j : 1) | i ∈ {1, . . . , n` }, j ∈ {0, . . . , `− 1}
}

G := t
`−1∑
j=0

σj(Q)
(3.13)

with σj(Q) := (γj : δj), for all j ∈ {0, . . . , `− 1}.

3.3.1 Recover the divisor and guess the support

As previously, we study three cases: σ is diagonalizable over Fqm (1), σ is trigonalizable (2), or
σ is diagonalizable over Fq2m (3). In this section, we treat the two first cases, the third case is
more particular and it will be treated in Section 3.3.3. The order ` of σ is known, hence we know
the form of σ.

Case σ diagonalizable over Fqm. In this case, we recall that the form is:

σ : P1 → P1

(x : y) 7→ (ax : y),

with a ∈ F×qm , a primitive `-th root of unity. There exist only ϕ(`) < n possibilities for a, where
ϕ is the Euler’s phi function, hence we are able to test all the possibilities in a reasonable time.
W.l.o.g, we assume for now that we know the element a. The first step is to recover G from G̃.

Keeping the notation (3.13), by Proposition 3.11, we know that

G̃ = tQ̃, with Q̃ :=

{(
(−1)`−1a

`(`−1)
2 (γ0δ0 )` : 1

)
or P∞.

Since we know a, we can recover the support of G thanks to the support Q̃ of G̃.
Remark 7. In the case where Q̃ 6= P∞, for all i ∈ {0, . . . , `− 1}, we have

Q̃ =
(
(−1)`−1(ai)

`(`−1)
2 (

γi
δi

)` : 1
)
.

We denote µ` := {σi(a) | i ∈ {0, . . . , ` − 1}} and then from every a ∈ µ` we are able to recover
the support of G. The set µ` is exactly the set of the `-th roots of the unity.
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Algorithm 1 describes the computation of the divisor G from the knowledge of G̃. The cost
of this algorithm will be negligible compared to the cost of the support recovering (see Algorithm
3). The main step of this Algorithm 1 is to find the root of a polynomial p(X) := a

`(`−1)
2 X`− γ̃ ∈

Fqm [X] and this can be done with Berlekamp algorithm.

Algorithm 1: Recover the divisor in the case σ diagonalizable in Fqm

Input : The divisor G̃ of the invariant code Ar,q(P, G)
σ
.

Output: Return the support G
1 a← a primitive `-th root of Fqm
2 if Q̃ 6= P∞ then // G̃ = t ∗ Q̃, with Q̃ = (γ̃ : 1)

3 Γ← roots(a
`(`−1)

2 X` − γ̃) // a ∈ µ`

4 G← t
∑
γ∈Γ

(γ : 1)

5 else
6 G = t`P∞

7 return G.

The second step is to recover a support P ′ such as Ar,q(P ′, G) = Ar,q(P, G). By Proposition
3.11, we know that a point P := (x : y) in P satisfies:{

x` − α̃i = 0

y` − β̃i = 0,
(3.14)

for some i ∈ {1, . . . , n` } such that (α̃i : β̃i) = P̃i. Since we know P̃, we are able to recover all
elements of P but as an unordered set. We choose one solution (αi, βi) of (3.14) for each
i ∈ {1, . . . , n` } and we choose a ∈ µ`, then the set:

P ′ :=
{(
aj
αi
βi

: 1
) ∣∣ j ∈ {0, . . . , `− 1}, i ∈ {1, . . . , n

`
}
}

(3.15)

is a support such as Ar,q(P ′, G) is a permutation of the code Ar,q(P, G). For each choice of a
set of solutions S := {(αi, βi) | i ∈ {1, . . . , n` }} and each choice of a ∈ µ`, we have a different
support P ′. In Section 3.3.2 we give an algorithm to find a good choice for S and a and hence
the permutation between Ar,q(P ′, G) and Ar,q(P, G).

Case σ trigonalisable over Fqm. In the case where σ is trigonalisable, it is more complicated
to know exactly σ. In this case we know that σ has the following form:

σ : P1 → P1

(x : y) 7→ (x+ by : y),

with b ∈ F×qm . Here, the order of σ is ` = p := Char(Fqm) and the first step is to recover b.

Lemma 3.15. b is a root of the polynomial:

Pb := gcd
({

ResX(Xp − Y p−1X − α̃i, Xqm −X) | i ∈ {1, . . . , n
`
}
}
, Y qm − Y

)
,

where ResX(P,Q) denotes the resultant of the two polynomials P and Q with respect to X.

Proof. We recall that we use notation (3.13). By Proposition 3.13, b is a root of the polynomial
αpi,j − Y p−1αi,j − α̃i ∈ Fqm [Y ] for all i ∈ {1, . . . , np} and j ∈ {0, . . . , p− 1}. As αi,j ∈ F×qm for all
i, j and polynomials Xp−Y p−1X − α̃i are monic in the variable X, we can also write that b is a
root of the polynomial ResX(Xp − Y p−1X − α̃i, Xqm −X) ∈ Fqm [Y ] for all i ∈ {1, . . . , np}.
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All the elements of the orbit of b under the action of σ are roots of the polynomial Pb defined
in Lemma 3.15, i.e.: the set of roots of Pb contains B := {b, 2b, . . . , (` − 1)b}. In practice, and
according to computer aided experiments, the degree of the polynomial Pb is ` and the set B
is exactly the set of its roots. Then there exist only ` < n possibilities for b, so we are able to
test all the possibilities in a reasonable time. As in §3.3.1, we assume for now that we know the
element b.

Now we are able to recover the divisor G from G̃. By Proposition 3.13, we know that

G̃ = tQ̃, where Q̃ =

{(
( γ0
δ0

)p − bp−1 γ0
δ0

: 1
)

or P∞.

Since we know b, we can recover the support of G thanks to the support Q̃ of G̃.

Algorithm 2: Recover the divisor in the case σ trigonalizable over Fqm

Input : The divisor G̃ of the invariant code Ar,q(P, G)
σ
.

Output: G and the set B of possible values of b.
1 /* Recover B := {b, 2b, . . . , (p− 1)b} */ // P̃ = {(α̃i : β̃i) | i ∈ {1, . . . , n` }}
2 Pb ← gcd

(
{ResX(Xp − Y p−1X − α̃i, Xqm −X) | i ∈ {1, . . . , np}}, Y

qm − Y
)

3 B ← roots(Pb)
4 /* Recover G from G̃ */

5 if Q̃ 6= P∞ then // G̃ = t ∗ Q̃, with Q̃ = (γ̃ : 1)

6 Γ← roots(Xp − bp−1X − γ̃) // b ∈ B
7 G← t

∑
γ∈Γ

(γ : 1)

8 else
9 G = tP∞

10 return G,B

Proposition 3.16. Algorithm 2 finds the set B and the divisor G in O(nqm(qm+p)ω) operations
in Fqm , where ω is the exponent of the linear algebra.

Proof. We only prove the cost of the algorithm, its correctness is a consequence of Lemma 3.15
and Proposition 3.13.

The resultant in the variable X of two polynomials in Fqm [X,Y ], is the determinant of a
matrix with entries in Fqm [Y ]. It can be computed with an "evaluation-interpolation" method,
which reduces to compute determinants of scalar matrices and one interpolation. Here the degree
of the resultant that we must compute is at most qm(p− 1), so we must compute qm(p− 1) + 1
determinants with scalar coefficients. The only polynomial to evaluate here is Y (p−1), which
can be done by fast exponentiation, so the cost of the evaluation is O(qm(p − 1) log2(p − 1))
operations in Fqm . Computing determinants costs O((qm + p)ω(qm(p − 1))) operations in Fqm ,
where ω is the exponent of the cost of linear algebra. Then the interpolation costs (qm)2(p− 1)2

operations in Fqm , using Lagrange interpolation, but this is negligible compared to the cost of
the previous determinants.
With Euclid Algorithm we can compute the gcd of two polynomials in Fqm [Y ] of degree at most
qm(p − 1) in O

(
q2mp2

)
operations in Fqm . We compute at most n

p resultants and gcd’s, so the
cost of the first step is O(nqm(qm + p)ω) operations in Fqm .

The second step is negligible behind the first step, the computation of the roots of the
polynomial Xp − bp−1X − γ̃ can be done with Berlekamp algorithm.

The third step is to recover a support P ′ such as Ar,q(P ′, G) = Ar,q(P, G) . By Proposition
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3.13, we know that a point P = (x : y) in P satisfies:{
xp − bp−1x− α̃i = 0

yp − β̃i = 0

for i ∈ {1, . . . , n` }, such that (α̃i : β̃i) = P̃i. Since we know P̃, we are able to recover all
elements of P but as an unordered set. Hence we know a support P ′ such that Ar,q(P ′, G) is
a permutation of the code Ar,q(P, G).

3.3.2 Recover the permutation

At this point, the problem is to recover the permutation between Ar,q(P ′, G) and Ar,q(P, G).
Let G be a generator matrix of the code Ar,q(P, G), and H′ be a parity check matrix of the code
Ar,q(P ′, G). The permutation between Ar,q(P, G) and Ar,q(P ′, G) is represented by matrix Π
such that

G ·Π ·H′> = 0. (3.16)

If we had no assumption on the permutation between P ′ and P, to find the permutation Π
we must resolve a linear system with n2 unknowns, while (3.16) is a system of k(n − k) linear
equations which is not enough to find an unique solution.

Now, we assume that we made the good choice for a ∈ µ` (or b ∈ B) in the previous section.
Then the permutation matrix Π has the following form:

Π =



∑̀
i=1

x1,iJ
i (0)

(0)
∑̀
i=1

xn
`
,iJ

i


where J :=


0 0 1

1 0

0

0 0 1 0

 · (3.17)

J is an ` × ` matrix, and xj,i ∈ {0, 1} are unknowns, for j ∈ {1, . . . , n` } and i ∈ {1, . . . , `}.
With this form, the linear system (3.16) has n unknowns. If we assume that k ≤ n − 1

n , then
n ≤ (n − k)k. In this case, we can hope to find a unique solution for Π. In all our computer
aided experiments we got a unique solution for Π. When the choice for a ∈ µ` (or b ∈ B) is
wrong, then there was no solution for the system in all our experiments.

We present an algorithm to recover the permutation matrix Π and so the good choice for
a ∈ µ` (or b ∈ B). The algorithm is only written for the first case, where σ is diagonalizable over
Fqm , but the other one is similar.

Proposition 3.17. Let C := Ar,q(P, G) be a QC alternant code stable under a permutation σ.
We denote n its length, k its dimension, and ` the order of σ. Then Algorithm 3 finds a support
P ′ such that Ar,q(P ′, G) = C in O(`n2(n− k)k) operations in Fqm .

Proof. We only prove the cost of the algorithm. We must to resolve a linear system of (n− k)k
equations with n unknowns, this is possible in O(n2(n − k)k) operations in Fqm . This step is
repeated at most ` times so the cost is in O(`n2(n− k)k) operations in Fqm .

In order to give practical running times for this part of the attack, we implemented Algorithm
3 in Magma [BCP97]. The platform used in the experiments is a 2.27GHz Intel R© Xeon R©

Processor E5520. For each set of parameters, we give the average time obtained after 10 tests.
In the following table we use notation:

• m : extension degree of the field of definition of the support and divisor over Fq

• n : length of the quasi–cyclic code
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Algorithm 3: Recover the support
Input : A generator matrix G of a quasi-cyclic alternant code, the divisor G, and the

support P̃ of the invariant code.
Output: ∅ if no solution is found. Else, P ′ such that Ar,q(P ′, G) = Ar,q(P, G)

1 for i ∈ {1, . . . , n` } do
2 αi ← roots(x` − α̃i)[1] // cf (3.15)
3 βi ← roots(y` − β̃i)[1]

4 for a ∈ µ` do
5 /* Guess P ′ */
6 P ′ ← {(aj αiβi : 1) | j ∈ {0 . . . `− 1}, i ∈ {1 . . . n` }}
7 C ← Ar,q(P ′, G)
8 if C = Ar,q(P, G) then
9 return TRUE, P ′

10 else
11 H← ParityCheckMatrix(C )
12 S ← solve(G ·Π ·H> = 0, with Π a permutation matrix of the form (3.17))
13 if dim(S) = 1 then
14 return (π(P ′)) // with π ∈ Sn associated to Π

15 return ∅

• k : dimension of the quasi–cyclic code

• ` : order of quasi–cyclicity of the code

• wISD denotes the logarithm of the work factor for message recovery attacks. It is computed
using CaWoF library [CT16a].

q m n k ` wISD Algorithm 3
2 12 3600 2825 3 129 1659 s (≈ 27 min)
2 12 3500 2665 5 130 2572 s (≈ 42 min)
2 12 3510 2579 13 132 8848 s (≈ 2h27)

Table 3.1: Average time for Algorithm 3 with σ diagonalizable in Fqm

3.3.3 Case σ diagonalizable in Fq2m\Fqm

In this case, we recall that σ = ρ ◦ σd ◦ ρ−1 with ρ ∈ GL2(Fq2m) and:

σd : P1 → P1

(x : y) 7→ (αx : αq
m
y),

where α ∈ Fq2m is an `-th root of unity. As σd is diagonal in Fq2m , we can recover a support P ′
and a divisor G′ in Fq2m , using the same method as in Sections 3.3.1 and 3.3.2.

Now we want to recover a support P and a divisor G in Fqm . We consider πα := X + aX + b
the minimal polynomial of α, with a, b ∈ Fqm . Then:

Mσd =

(
α 0
0 αq

m

)
∼
(

0 −b
1 −a

)
= Mσ′
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and there exist ρ′ ∈ GL2(Fq2m) such that σd = ρ′◦σ′◦ρ′−1, where σ′ is the element of PGL2(Fqm)
associated to Mσ′ . By Lemma 3.9, we can assume that σ = σ′, then we want to recover ρ′.
Thanks to Section 3.3.2, we know α and it is easy to compute a and b. To recover ρ′ it suffices to
diagonalize the matrix Mσ′ . From ρ′ and a support P ′ and a divisor G′ in Fq2m , we can recover
a support P = ρ′−1(P ′) and a divisor G = ρ′−1(G′) in Fqm .

3.4 Proposition of a scheme: BIG QUAKE

In this section, we propose a key encapsulation scheme based on binary quasi-cyclic classical
Goppa codes. To do this, we propose a public key encryption scheme (PKE) which is converted
into a key encapsulation mechanism (KEM) using a generic transformation described in [HHK17].
This transformation permits us to get an IND–CCA2 security, for more details see the NIST
submission [BBB+17b]. The PKE used is a Niederreiter-like scheme based on binary QC classical
Goppa codes, it is described in Section 3.4.2. Throughout this part, we use classical notation of
alternant codes (see Section 1.3.4), in particular the support is a vector of F2m

n and we speak
about multiplier rather than divisor to describe the code.

3.4.1 Quasi-cyclic classical Goppa codes

The Goppa codes are defined in Definition 1.39. In the proposed scheme we use binary Goppa
codes, that is the base field will be the finite field F2. In [Ber00b, Ber00a] Berger described several
manners to construct `-QC binary classical Goppa codes. Here we use the following manner:

• Let ` be a prime dividing 2m − 1. Let ζ` be a primitive `–th root of unity;

• Let n, t be positive integers divisible by ` and set r := t
` ;

• The support x = (x0, . . . , xn−1) is a vector of elements of F2m whose entries are pairwise
distinct. It splits into n

` blocks of length ` of the form (xi`, xi`+1, . . . , x(i+1)`−1) such that
for any j ∈ {1, . . . , `− 1}, xi`+j = ζj`xi`. That is, the support is a disjoint union of orbits
under the action of the cyclic group generated by ζ`. From now on, such blocks are referred
to as ζ–orbits.

• The Goppa polynomial Γ(z) is chosen as Γ(z) = g(z`) for some monic polynomial g ∈ F2m [z]
of degree r = t

` such that g(z`) is irreducible.

Then, the binary Goppa code G2 (x,Γ) is `-QC.

Remark 8. The construction described above is similar to the description in Section 3.1.3. We
saw in Section 1.3.4 that to the support x ∈ Fnqm and multiplier Γ(x)−1 we can associate a
support P ∈ PP1 and a divisor G such that G2 (x,Γ) = Ar,2(P, G). Moreover, let σξ : x 7→ ξx
be an automorphism of PGL2(Fqm). Then the support P is a disjoint union of orbits under the
automorphism σξ and G has a support which is also an union of orbits under the automorphism
σξ. That is the support P and the divisor G have the form described in Section 3.1.3.

3.4.2 The public key encryption scheme (PKE)

In the Key Encapsulation Mechanism (KEM) proposed in the following section we use a public
key encryption scheme. This encryption scheme is a Niederreiter-like scheme but avoids the
computation of a bijection between words of fixed length and constant weight words. In this
scheme we use a hash function, denoted Hash. In practice we use SHA3 but it can be replaced
by any secure hash function. Moreover, we assume that this hash function returns a vector in
Fs2 where s is a parameter of the scheme to determine.
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Key generation We consider the `–QC binary Goppa code

Cpub := G2 (x,Γ)

of length n and dimension k with ` dividing n, k and satisfying Condition 1. Let Hpub be a
systematic parity–check matrix for this code:

Hpub = (In−k | M) (3.18)

where M is an `–blocks–circulant matrix (see Definition 3.3). The matrix M is determined by
the set of first rows of each block of length `. Then Hpub is entirely determined by ρ(Hpub)
(Definition 3.4).

• Public key: The matrix ρ(Hpub) and the integer t.

• Private key: The support x and the Goppa polynomial Γ(z) = g(z`).

Encryption A plaint text m ∈ Fs2, with s a parameter of the scheme, is encrypted as the pair

c := (m⊕ Hash(e), Hpub · e>)

where e is a uniformly random word of weight t in Fn2 .

Decryption Denote by (c1, c2) the received pair. Using the private key, one can compute
e ∈ Fn2 as the word of weight ≤ t such that c2 = Hpub · e>. Then, it is easy to compute the
message m := c1 ⊕ Hash(e).

3.4.3 Description of the Key Encapsulation Mechanism (KEM)

Context Two participants, Alice and Bob, want to share a common session secret key K.
The KEM has three parts. The first part is the key generation computed by Bob. This part
is the same as for the PKE described in the above section. Then Bob publishes his public
key (ρ(Hpub), t). His private key is denoted as the pair (x, g(z`)). The second part is the
encapsulation mechanism. This part is done by Alice who computes a session key K, encrypts it
with Bob’s public key and sends, the cyphertext to Bob. Finally the last part is the decapsulation
mechanism. Bob decrypts the message sent by Alice and makes a verification. If the verification
is correct then he can compute the session key K.

Before to describe the encapsulation and decapsulation mechanisms, we introduce two objects.

• Let s be a positive integer, it denotes the number of bits of security. That is, s = 128 (resp.
192, resp. 256) for a 128 (resp. 192, resp. 256) bits security proposal.

• Let F : Fs2 → {x ∈ Fn2 | wH(x) = t} be a function taking a binary vector of length s as
input and returning a word of weight t. This function permits to de–randomize the PKE,
which is needed for the KEM. The construction of this function is detailed just after the
KEM.

Encapsulation. Alice generates a random m ∈ Fs2 and converts it into a word e := F(m) of
weight t. Then, Alice sends

c := (m⊕ Hash(e), Hpub · e>, Hash(m))

to Bob. The session key is defined as:

K := Hash(m, c).
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Decapsulation. We denote c = (c1, c2, c3) the received tuple. Using his private key, Bob can
find e′ of weight ≤ t such that c2 = Hpub · e′>. Then Bob computes

m′ := c1 ⊕ Hash(e′) and e′′ = F(m′).

If e′′ 6= e′ or Hash(m′) 6= c3 then the algorithm aborts. Else, Bob can compute the session key,
that is:

K = Hash(m′, c).

The function F . This function takes a vector of Fs2 as input and returns a word of length
n and weight t. The function depends on the choice of the hash function Hash. In practice we
chose SHA3.

The construction of the constant weight word, is performed in constant time using an algo-
rithm close to Knuth shuffle algorithm [Knu97] which generates a uniformly random permutation
of the set {0, . . . , n − 1}. Here, the randomness is replaced by calls of the hash function Hash.
The algorithm of evaluation of F is detailed in Algorithm 4.

Algorithm 4: The function F : construction of a word of weight t
Input : A binary vector m, integers n, t
Output: A word of weight t in Fn2

1 u← (0, 1, 2, . . . , n− 2, n− 1);
2 b←m;
3 for i from 0 to t− 1 do
4 j ← Hash(b) mod (n− i− 1);
5 Swap entries ui and ui+j in u;
6 b← Hash(b);
7 end
8 e ← vector with 1’s at positions u0, . . . , ut−1 and 0’s elsewhere;
9 return e

Further details about line 4 If the hash function Hash outputs 256 or 512 bit strings, this
must be converted into a big integer and then reduced modulo (n− i− 1). To do this we use the
following approach.

Step 1. First, we truncate Hash(b) to a string of r bytes, where r is larger than the byte size
of n. In our proposal, n < 214, hence taking r = 3 is reasonable and is the choice we
made in practice.

Step 2. Then we convert this r–bytes string to an integer A:

(a) If A > 28r − (28r mod n− i− 1) then go to Step 1 (this should be done to assert
a uniformity of the drawn integers in {0, . . . , n− i− 2});

(b) else set j = A mod (n− i− 1).

3.4.4 Key recovery attacks and countermeasures

In Section 3.3, it has been proved that the key security of quasi-cyclic alternant codes reduces
to that of the invariant code. Moreover, Corollary 3.8 shows that the invariant code of a QC
alternant code is also an alternant code. In the case of binary quasi-cyclic Goppa code we have
the following result.
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Theorem 3.18 ([FOP+16a]). Let G2

(
x, g(z`)

)
be a binary `–QC–Goppa code, and σ the per-

mutation acting on it. Then,

G2 (x, g(z`))
σ

= G2

(
PunctI`

(
x`
)
, g(z)

)
where

x` := (x`0, x
`
1, . . . , x

`
n−1)

and the set I` is defined in Definition 3.7.

The above theorem can be also viewed as a consequence of Corollary 3.8. This result is very
important to evaluate the key security of the PKE scheme described in Section 3.4.2 and so
the key security of the proposed KEM. Indeed, since the invariant code can be constructed in
polynomial time from the public key, anybody can compute it. Moreover, this invariant code
has a specific structure that is a structure of binary classical Goppa codes. In this section we
investigate the different known attacks against binary Goppa code. In order to have a secure
scheme we choose parameters of the QC Goppa code so that attacks against the invariant code
cost at least 2s binary operations, where s is the security parameters (see Section 3.4.3).

Exhaustive search on Goppa polynomial and support. Here we detail the exhaustive
search on the invariant code G2

(
PunctI`

(
x`
)
, g(z)

)
. A brute force attack could consist in enu-

merating all the possible polynomials g(z) and then guess the support x̃ := PunctI`
(
x`
)
. If we

guessed the good support as a non-ordered set, it is possible to get the good permutation using
Sendrier’s Support Splitting Algorithm (SSA in short, [Sen00]). If it fails, then try with another
support until the good ordering of the support is obtained thanks to SSA. The algorithm for the
brute force search on the invariant code can described as follows.

• Perform brute force search among monic irreducible polynomials g(z) of degree r;

• Guess the support x̃ = PunctI`
(
x`0, x

`
1, . . . , x

`
n−1

)
. Note that the elements of the support

set are `–th power. Hence there exists only 2m−1
` such powers and we need to guess a good

subset of length n
` among them.

• Perform SSA to check whether the support set is the good one and, if it is, get the permu-
tation and hence the ordered support;

In order to provide a lower bound of the cost of the brute force search described just above,
we estimate the maximum number of guesses of polynomials we need to perform. Indeed, to
perform the brute force we need to estimate the number of all possible pairs (x̃, g).

To estimate the number of possible polynomial for the invariant code, we need to count the
number of monic polynomials g(z) ∈ F2m [z] of degree r such that g(z`) is irreducible. Before this
particular case, we recall the well-known formula for the number of monic irreducible polynomials
of degree r over F2m , denoted mr(2

m):

mr(2
m) =

1

r

∑
d|r

µ
(r
d

)
2md,

where µ denotes the Möbius function defined by

µ(r) :=


1 if r = 1

(−1)a if r = p1 . . . pa, with pi distinct
0 otherwise (r is not squarre free).

For the polynomials of interest here, we have the following lemma.
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Lemma 3.19. Let sr(2m) := #{g(z) ∈ F2m [z] | deg(g) = r and g(z`) is irreducible}, then

sr(2
m) ≥

(
1− 1

`

)
mr(2

m).

Proof. First we notice that, if g(z`) is irreducible, then g is also irreducible. Now we consider a
polynomial g ∈ F2m [z] such that g(z`) is reducible. We suppose that g(z`) =

∏
hi(z), with hi

irreducible polynomials over F2m .
Let ξ be a `-th root of unity in F2m and consider the finite group of order ` spanned by the

map

σζ :
F2m [z] −→ F2m [z]
z 7−→ ζz

.

The group 〈σζ〉 acts on polynomials as f(z) 7→ f(ζz) and so fixes the polynomial g(z`). Hence
the polynomials hi of its irreducible decomposition form orbits under the action of σξ and these
orbits have size ` since ` is prime. Moreover, there is only one orbit otherwise the polynomial g
cannot be irreducible. Thus the polynomial g(z`) as the following form:

g(z`) =
`−1∏
i=0

h(ζiz) (3.19)

for some irreducible polynomial h. The number of polynomials of the form (3.19) is bounded
below by mr(2

m)/`. This leads to

sr(2
m) ≥

(
1− 1

`

)
mr(2

m).

Consequently, the number of public keys is bounded below by

#public keys ≥ #support×
(

1− 1

`

)
mr(2

m).

We estimate the number of possible supports in estimating the number of possible orbits of size
` in Fqm , that is

#support =

( qm−1
`
n
`

)
,

where n denotes the length of the code and ` the order of quasi-cyclicity. Finally, we have the
following bound

#public keys ≥
( qm−1

`
n
`

)(
1− 1

`

)
mr(2

m). (3.20)

Algebraic attacks. As we saw in Section 2.4, the point of such an attack is to recover the
support and the multiplier of an alternant code. In the case of our proposal, the codes used
are binary Goppa codes which belongs in the family of alternant codes. Moreover, the codes
used are quasi-cyclic and by Corollary 3.8 we know that the invariant code of a QC alternant is
also an alternant code. By Section 3.3, we know that the key security of an QC alternant code
reduces to the key security of its invariant code. Then, in the context of algebraic attacks, the
key security depends on the cost of algebraic attack against the invariant code.
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Distinguisher for high rate Goppa codes. In [FGO+10], it is proved that high rate Goppa
codes are distinguishable from random ones in polynomial time. To assert the security of the
system, the public Goppa code and the invariant code should be indistinguishable from random
ones. Hence, the parameters of the code should be chosen in order to be out of the reach of this
distinguisher.

The following statement rephrases the results of [FGO+10] in a simpler manner.

Proposition 3.20. Consider an irreducible binary Goppa code of length n, extension degree m,
associated to an irreducible polynomial of degree r. Then the Goppa code is distinguishable in
polynomial time from a random code of the same length and dimension as soon as

n > max
2≤s≤r

ms

2
(s(m− 2e− 1) + 2e + 2) ,

where e = dlog2 se+ 1.

3.4.5 Message recovery attacks and countermeasure

In Section 2.2, we spoke about known generic decoding algorithms which are different variants
of the ISD algorithm. These algorithms are described in [Pet10]. In order provide parameters
resistant to ISD and their variants we test all the most efficient generic decoding algorithms with
the software CaWoF [CT16a].

Moreover, there exists a message recovery attack using the `–quasi-cyclicity of the code and
in particular the folding operation. This attack is a work in progress, due to J.P. Tillich (see
[BBB+17b, Section 4.2.2]). The parameters are chosen in order to avoid this attack.

3.4.6 Suggested parameters

In this section, we propose some parameters for various security levels. We start with informal
discussions about the order of quasi-cyclicity ` and the extension degree m which explain in
which range we choose our parameters. We first investigate the choice of `.

Choice of the quasi-cyclicity order ` The key size depends on the quasi-cyclic order `. A
large ` permits to have a small public key compared to non quasi-cyclic AG codes. The choice
of ` can also influence the security of the scheme. As we saw in Section 3.2, the security of the
public code reduces to the security of the invariant code. We recall that it is always possible
to build the invariant code from the knowledge of a generator matrix Gpub (or a parity check
matrix Hpub) of the public code and the permutation σ. Here we want to chose ` such that it is
not possible to construct another intermediary code. We have two criteria to avoid this.

(i) ` should be prime. If there exists s|`, then the permutation σs acts on the `-QC code
Cpub. That is Cpub is also a s-quasi-cyclic code and we can construct the invariant code
Cpub

σs . The permutation σs ∈ Sn acts on the support and the multiplier and so, by
Corollary 3.8, the code Cpub

σs is an alternant code. Thus for any divisor of `, it is possible
to construct an intermediary code which is a alternant code smaller than the public code.
We do not know if it is easier to attack the public key with the knowledge of several invariant
codes. However each intermediary code may provide information about the support and
the divisor. We want to give the less information as possible, hence we require ` to be
prime.

(ii) ` should be such that 2 is an (` − 1)-th primitive root of 1, which leads that the
polynomial 1 + z + · · · + z`−1 is irreducible in F2[z]. Here we describe another way to
construct intermediary codes. There exists another code which can be constructed from
the knowledge of the public code Cpub and the permutation σ, it is the “folded” code. We
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recall that this folded code, introduced in [FOP+16a], is the image of the public code Cpub
by the map id +σ+ · · ·+σ`−1 (see Definition 3.6). Now, if the polynomial 1+z+ · · ·+z`−1

is reducible over F2, then it is possible to construct an intermediary subcode of Cpub by
computing the image of Cpub by the map P (σ), where P is a divisor of 1+z+ · · ·+z`−1. As
in the previous case, the folded code has a special structure related to the support and the
multiplier of Cpub (see [FOP+16a]). Again, we cannot prove that the knowledge of several
folded subcodes leads to an attack on Cpub, but we guess that it could be helpful for an
attacker.

Remark 9. Among the odd prime numbers below 20, the ones satisfies condition (ii) are

` ∈ {3, 5, 11, 13, 19}.

For these choices of the order, then the only subcode that we can compute is the invariant code.

Remark 10. At several places in the discussion above we suggest that having some data could
“help an attacker”. We emphasize that these arguments are only precautions, we actually do
not know how to use such data for cryptanalysis. In particular, the second condition is more a
precaution than a necessary condition for the security.

Choice of the field extension m To provide a binary Goppa code, we need to choose a finite
extension F2m of F2. The following discussion about the choice of m is informal, that is to say
we do not clarify what we mean by large or small.

(i) A large m provides codes which are “far from” generalized Reed–Solomon codes. Hence,
when m is large Goppa codes have less structure. Note that q–ary Goppa codes with m = 2
have been broken by a polynomial-time distinguishing and filtration attack in [COT17] and
that rather efficient algebraic attacks for small m (m = 2 or 3) over non prime q–ary fields
exist [FPdP14]. This encourages to avoid too low values of m. In addition, m should be
large enough to have a large enough code length.

(ii) On the other hand m should not be too large since it has a negative influence on the rate
of the code. That is to say, for a fixed error correcting capacity t an a fixed code length n,
the dimension is n−mt, hence the rate is 1−m t

n .

(iii) Finally, to get `–quasi–cyclic codes, ` should divide 2m − 1 and ` should not be too large
to prevent algebraic attacks as [FOPT10, FOP+16b, FOP+16a]. Thus, 2m− 1 should have
small factors.

In practice. In this proposal we suggest that a good trade-off between (i) and (ii) would be
m ∈ {12, . . . , 18}. This choice leads to the following decompositions of 2m − 1.

• F212 : 212 − 1 = 32 · 5 · 7 · 13.

• F213 : 213 − 1 is prime.

• F214 : 214 − 1 = 3 · 43 · 127.

• F215 : 215 − 1 = 7 · 31 · 151.

• F216 : 216 − 1 = 3 · 5 · 17 · 257.

• F217 : 217 − 1 is prime.

• F218 : 218 − 1 = 33 · 7 · 19 · 73.
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We can immediately exclude m = 13 and 17. To prevent algebraic attacks, we prefer avoiding
`’s larger than 20 and, as explained above and since we look only for ` satisfies condition (ii),
the proposal will focus on

• 3, 5 and 13–quasi–cyclic Goppa codes with m = 12,

• 3–quasi–cyclic Goppa codes with m = 14,

• 5–quasi–cyclic Goppa codes with m = 16 ,

• 19–quasi–cyclic Goppa codes with m = 18.

Parameters. In the following tables we use notation

• m : extension degree of the field of definition of the support and Goppa polynomial over
F2;

• n length of the quasi–cyclic code;

• k dimension of the quasi–cyclic code;

• ` denotes the order of quasi–cyclicity of the code;

• r denotes the degree of g(z);

• t denotes error–correcting capacity, which is nothing but the degree of g(z`);

• wmsg denotes the logarithm of the work factor for message recovery attacks. It is computed
using CaWoF library;

• Keys is a lower bound for the logarithm of the number of possible keys (see (3.20));

• Max Dreg denotes the maximal degree of regularity that such a system could have in order
that the size of the Macaulay matrix does not exceed 2128 bits under the assumption that
Gaussian elimination’s cost on n× n matrices is Ω(n2).

m n k ` Size r t = r` wmsg Keys Max
(bytes) (deg g(z`)) Dreg

12 3600 2664 3 103896 26 78 129 1027 8
12 3500 2480 5 63240 17 85 130 684 9
12 3510 2418 13 25389 7 91 132 263 11

Table 3.2: Suggested parameters for security 128

m n k ` Size r t = r` wmsg Keys Max
(bytes) (deg g(z`)) Dreg

14 6000 4236 3 311346 42 126 193 5751 11
16 7000 5080 5 243840 24 120 195 6798 12
18 7410 4674 19 84132 8 152 195 2696 16

Table 3.3: Suggested parameters for security 192
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m n k ` Size r t = r` wmsg Keys Max
bytes (deg g(z`)) Dreg

14 9000 7110 3 559913 45 135 257 6039 14
16 9000 6120 5 440640 36 180 260 8129 15
18 10070 6650 19 149625 10 190 263 3412 20

Table 3.4: Suggested parameters for security 256
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The result of this chapter is described in the paper An efficient structural attack on NIST
submission DAGS, written with Alain Couvreur [BC18].

The purpose of this chapter is to detail a key recovery attack against a McEliece–like encryp-
tion scheme using quasi–dyadic (QD) alternant codes with extension degree 2. In particular, this
attack can be applied to the NIST submission DAGS [BBB+17a]. Indeed, the proposal DAGS
suggests to use a McEliece encryption scheme based on QD generalised Strivastava codes which
form a subfamily of QD alternant codes. We describe their proposal in a first part.

To perform the attack, we exploit two properties of the proposed scheme DAGS: the large
automorphism group and the small size of the extension degree. The first one permits us to
compute explicitly a subcode of the public code, referred to as D . Actually, this code D is a
subcode of the invariant code. The second one, permits us to construct, from the code D , a
small code, referred to as the norm trace code, with a structure close to GRS structure. From
this small code, the secret key can easily be recovered. The key step of the attack consists in
computing the conductor of D into the public code to build the norm-trace code. We introduce
this central operation in Section 4.2.4.

69
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4.1 Presentation of the NIST submission: DAGS

Among the schemes recently submitted to NIST, the submission DAGS [BBB+17a] uses as a
primitive a McEliece encryption scheme based on QD generalised Srivastava codes. It is well-
known that generalised Srivastava codes form a subclass of alternant codes [MS86, Chapter 12].
Therefore, this proposal lies in the scope of the attack presented in what follows. The authors
of the proposal DAGS chose to present quasi-dyadic (QD) generalised Strivastava codes, here
we speak about QD alternant codes. First we recall how to construct QD alternant codes. The
construction of such a code is also well described in Portzamparc’s thesis [dP15, Chapter 5].

Quasi-dyadic alternant codes. Quasi-dyadic (QD) codes are codes over a field of character-
istic 2 with an automorphism group G isomorphic to (Z/2Z)γ , for some γ ∈ N∗. Such a code has
length n = 2γn0 and we call a block of positions, 2γ consecutive positions such that the group G
act on it.

Example 7. The matrix

G :=


1 0 | 0 0 1 0 | 0 1
0 1 | 0 0 0 1 | 1 0
− − + − − − − + − −
0 0 | 1 0 0 1 | 1 0
0 0 | 0 1 1 0 | 0 1


defined a QD linear code over F2 , with an automorphism group G isomorphic to (Z/2Z)4. This
code has 2 blocks of positions of length 4: {1, . . . , 4} and {5, . . . , 8}.

Similarly to the construction of QC alternant codes in Section 3.1.3, to construct QD alternant
code we chose a support and a multiplier such that a group G acting on it. In the following we
denote Fqm an extension of Fq where q = 2t is a power of 2.

Let G ⊂ Fqm be an additive subgroup with γ generators, i.e. G is an F2–vector subspace of
Fqm of dimension γ with an F2–basis a1, . . . , aγ . Clearly, as an additive group, G is isomorphic to
(Z/2Z)γ . The group G acts on Fqm by translation: for any a ∈ G, we denote by τa the translation

τa :
Fqm −→ Fqm
x 7−→ x+ a

.

In order to construct a support stable under the group G, we fix an ordering in G. Using the
basis a1, . . . , aγ , we represent any element a = u1a1 + · · ·+ uγaγ ∈ G as a γ-tuple (u1, . . . , uγ) ∈
(Z/2Z)γ . Then we sort them by lexicographic order.

Example 8. If γ = 3 and G := 〈a1, a2, a3〉, then we have

0 < a1 < a2 < a1 + a2 < a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3.

Now we can define a support for a QD alternant code. Let x ∈ Fnqm be a support which splits
into n0 blocks of 2γ elements of Fqm . Each block is an orbit under the action of G by translation
on Fqm sorted using the previously described ordering. We say that x is a QD support.

Example 9. If γ = 2 and G := 〈a1, a2〉, then a QD support x is of the form,

x = (t1, t1 + a1, t1 + a2, t1 + a1 + a2, . . . ,
. . . , tn0 , tn0 + a1, tn0 + a2, tn0 + a1 + a2),

(4.1)

where the ti’s are chosen to have disjoint orbits under the action of G by translation on Fqm .
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The chose of a multiplier y is easier, it suffices to chose a vector in (F∗qm)n which also splits
into n0 blocks of length 2γ whose entries are equal on a same block. Such a multiplier y has the
form

y = (y1, . . . , y1︸ ︷︷ ︸
2γ times

, . . . , yn0 , . . . , yn0),

where all the yi are non-zero

Proposition 4.1. For any positive integer r, the alternant code Ar,q(x,y) is quasi–dyadic.

Proof. See for instance [dP15, Chapter 5].

Parameters proposed in DAGS submission. The proposed parameters in [BBB+17a] are
listed in Table 4.1.

Name q m n n0 k k0 γ r0

DAGS_1 25 2 832 52 416 26 4 13

DAGS_3 26 2 1216 38 512 16 5 11

DAGS_5 26 2 2112 33 704 11 6 11

Table 4.1: Parameters proposed in DAGS.

Let us remind what parameters q,m, n, n0, k, k0, γ, r0 stand for:

• q denotes the size of the base field of the alternant code;

• m denotes the extension degree. Hence the GRS code above the alternant code is defined
over Fqm ;

• n denotes the length of the QD alternant code;

• n0 denotes the length of the invariant subcode, i.e. Ar,q(x,y)
G
, where G denotes the

permutation group.

• k denotes the dimension of the QD alternant code;

• k0 denotes the dimension of the invariant code;

• γ denotes the number of generators of G, i.e. G ' (Z/2Z)γ ;

• r0 denotes the degree of the invariant code, which is alternant according to Corollary 3.8.

Remark 11. The indexes 1, 3 and 5 in the parameters names, in Table 4.1, correspond to security
levels according to NIST’s call. Level 1, corresponds to 128 bits security with a classical computer,
Level 3 to 192 bits security and Level 5 to 256 bits security.

Invariant code of QD code. It turns out the invariant code (see Definition 3.7) of a QD
alternant code is an alternant code too. Actually the proof of this result is similar to the quasi-
cyclic case in Section 3.2.2. First we need to to recall some basic notions of additive polynomials.

Definition 4.1. An additive polynomial P ∈ Fqm [z] is a polynomial whose monomials are all of
the form z2i for i ≥ 0. Such a polynomial satisfies P (a+ b) = P (a) + P (b) for any a, b ∈ Fqm .

Proposition 4.2 ([Gos96, Proposition 1.3.5]). Let G ⊂ Fq2 be an additive group of cardinality
2γ. There exists a unique additive polynomial ψG ∈ Fqm [z] which is monic of degree 2γ and
vanishes at any element of G.
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Notation 2. From now on, given an additive subgroup G ⊆ Fqm , we always denote by ψG the
unique monic additive polynomial of degree |G| in Fqm [z] which vanishes on G.

Then the result about invariant code of QD alternant codes is given by the following theorem.

Theorem 4.3. Let C = Ar,q(x,y) be a QD–alternant code with permutation group G of order
2γ. Set r′ =

⌊
r

2γ

⌋
. Then,

C
G

= Ar′,q(x̃, ỹ),

where {
x̃ := PunctIγ (ψG(x))

ỹ := PunctIγ (y)

with Iγ := {1, . . . , n} \ {1, 2γ + 1, . . . , n− 2γ + 1}.

4.2 Schur products and conductors

The component-wise product of two vectors u,v ∈ Fnq , also called the Schur product u ? v, is
defined as:

u ? v := (u1v1, . . . , unvn).

The i-th power u ? · · · ? u will be denoted by ui. More generally, given a polynomial P ∈ Fq[z]
we define P (u) as the vector (P (u1), . . . , P (un)). In particular, the norm and trace from Fq2 to
Fq can be viewed as polynomials and applied component by component to vectors in Fq2 . Given
u ∈ Fnq2 , we denote by Tr(u) and N(u) the vectors obtained by applying respectively the trace
and the norm map :

Tr(u) := (u1 + uq1, . . . , un + uqn)

N(u) := (uq+1
1 , . . . , uq+1

n ).

The unit vector of the algebra Fnq with operations + and ? is the all-ones vector (1, . . . , 1),
denoted by 1.

4.2.1 Schur products of codes

The Schur product of two codes A and B ⊆ Fnq is defined as

A ?B := 〈a ? b | a ∈ A , b ∈ B〉Fq .

In particular, A denotes the square code of a code A : A 2 := A ?A .

The case of GRS codes. Since GRS codes have more structure that alternant codes, it seems
more convenient to study first the GRS codes. The behaviour of GRS codes with respect to the
Schur product is very different from that of random codes. Indeed the following theorem shows
that the set of GRS codes of fixed support is stable by Schur product.

Theorem 4.4 ([CGG+14, Proposition 6]). Let x ∈ Fnqm be a support and y,y′ ∈ Fnqm be multi-
pliers. Let k, k′ be two positive integers, then

GRSk(x,y) ?GRSk′(x,y′) = GRSk+k′−1(x,y ? y′).
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4.2.2 Conductors

In this section, we define the conductor of two codes. This operation is central in the attack on
the scheme DAGS.

Definition 4.2. Let C and D be two codes of length n over Fq. The conductor of D into C is
defined as the largest code Z ⊆ Fnq such that D ?Z ⊆ C . That is:

Cond(D ,C ) := {u ∈ Fnq | u ?D ⊆ C }.

Let us give an explicit formula to compute the conductor. The following proposition will be
very useful in the main step of the attack.

Proposition 4.5 ([CMCP17, COT17]). Let D ,C ⊆ Fnq be two codes, then

Cond(D ,C ) =
(
D ? C⊥

)⊥
.

Remark 12. We notice that the conductor of a code C1 into a code C2 can be computed from
the knowledge of a generator matrix for each code.

As in §4.2.1, before discussing behaviour of alternant codes, we provide a result about GRS
codes.

Proposition 4.6. Let x,y ∈ Fnqm be a support and a multiplier. Let k ≤ k′ be two integers less
than n. Then,

Cond(GRSk(x,y),GRSk′(x,y)) = RSk′−k+1(x).

Proof. From Proposition 4.5, the dual of the above conductor is a Schur product between to
GRS codes. Then, by Proposition 1.34 and Theorem 4.4, we have

Cond(GRSk(x,y),GRSk′(x,y))⊥ = GRSk(x,y) ?GRSn−k′(x,y⊥)

= GRSn−k′+k−1(x,y ? y⊥).

Note that

y ? y⊥ =

(
1

π′x(x)(x1)
, . . . ,

1

π′x(x)(xn)

)
.

Then, using again Proposition 1.34, we get

Cond(GRSk(x,y),GRSk′(x,y)) = GRSk′−k+1(x, (y ? y⊥)
⊥

) = RSk′−k+1(x).

In Proposition 4.6, we notice that the conductor of two GRS codes with same support x
and multiplier y does not depend on y. This point is important since the cryptanalysis of
a Reed-Solomon code is easier than that of a GRS code. Moreover, if we can extract x then
we know that recovering y from the knowledge of a generator matrix of the public code can be
done with linear algebra. The crucial step in our attack is to provide a “good” conductor, that
is a conductor with a simple structure from which one can extract the support x. In the case
of GRS codes, it is easy to provide such a conductor from the knowledge of a GRS subcode
of codimension 1 in the public code. Indeed, by Proposition 4.6, the computed conductor will
always be a Reed-Solomon code. Let us give an illustrative example which is inspired of [COT17].
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Illustrative example with GRS codes. Let x,y be a support and a multiplier in Fnq2 . The
pair (x,y) is secret. Let k < n be a positive integer, we consider the code C := GRSk(x,y). A
generator matrix of C is public. Now we assume that we also know a generator matrix of the
code C−1 := GRSk−1(x,y). By Proposition 4.6, we have:

Cond(GRSk−1(x,y),GRSk(x,y)) = RS2(x)

= 〈1,x〉Fq2 .

Then from Cond(C−1,C ) it is easy to recover a support x′ and a multiplier y′ such that C =
GRSk(x′,y′) (see Section 4.4.3 for more details). However there is no reason to be able to
compute a generator matrix of the code GRSk−1(x,y). In [COT17], the authors propose to use
another subcode of C of codimension 1. In our case, the first difficulty comes from the fact that
we have subfield subcodes of GRS codes. We will see in the following section that it is more
difficult to provide information on the support x with conductor of alternant codes. However,
the quasi-dyadic structure permits us to construct a subcode whose the conductor into the public
code has a structure revealing the support x.

4.2.3 The case of alternant codes

Since an alternant code is a subfield subcode of a GRS code, we hope that the behaviour of
conductor of alternant codes is similar to the case of GRS codes. Unfortunately when dealing
with alternant codes, proving equalities becomes difficult. We can at least prove an attenuated
form of Proposition 4.6.

Theorem 4.7. Let x,y ∈ Fnq2 be a support and a multiplier. Let r′ ≥ r be two positive integers.
Then,

RSr′−r+1(x) ∩ Fnq ⊆ Cond(Ar′,q(x,y),Ar,q(x,y)).

Proof. Consider the Schur product(
RSr′−r+1(x) ∩ Fnq

)
?Ar′,q(x,y)

=
(
RSr′−r+1(x) ∩ Fnq

)
? (GRSn−r′(x,y⊥) ∩ Fnq )

⊆ (RSr′−r+1(x) ?GRSn−r′(x,y⊥)) ∩ Fnq .

Next, using Theorem 4.4,(
RSr′−r+1(x) ∩ Fnq

)
?Ar′,q(x,y) ⊆ GRSn−r(x,y⊥) ∩ Fnq

⊆ Ar,q(x,y).

The last inclusion is a direct consequence of Proposition 1.34 and Definition 1.37.

Remark 13. We cannot extends directly the result of Proposition 4.6 to alternant codes. However,
it turns out that equality frequently holds in Theorem 4.7.

On the other hand, if the degree r′ of the subcode Ar′,q(x,y) is not large enough then the
code RSr′−r+1(x) ∩ Fnq can be trivial. This is illustrate by the following example.

Illustrative example with alternant codes. As in the context of the example of §4.2.2, we
assume that we know the subcode Ar+1,q(x,y) of Ar,q(x,y). Then, by Theorem 4.7

Cond(Ar+1,q(x,y),Ar,q(x,y)) ⊇ RS2(x) ∩ Fnq .

Now assume that the equality holds, then

Cond(Ar+1,q(x,y),Ar,q(x,y)) = RS2(x) ∩ Fnq .
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However, if the vector x has one entry in Fq2\Fq then the code RS2(x) ∩ Fnq provides no infor-
mation about the support x. Indeed this code is trivial, that is RS2(x) ∩ Fnq = 〈1〉Fq . To avoid
this case, we need to consider an alternant of much larger codimension in Ar,q(x,y), ie: with a
higher degree.

4.2.4 The norm-trace code

The strategy of the attack consists in recovering a particular code which does not depend on the
multiplier y in order to obtain a code which is easier to study. This code will be determined
by the computation of a conductor of a subcode Ar′,q(x,y) into Ar,q(x,y). By Theorem 4.7, a
good candidate for this particular code is a subfiled subcode of a Reed-Solomon code. At this
point, the main problem is to find a small enough subfiled subcode of a Reed-Solomon code
which is not trivial. Once this is done, we extract information about x. Let us now investigate
further the structure of the code RSk(x) ∩ Fnq , for an integer k < n. Since the subfield subcode
operation keeps only words with all components in Fq, we know that if the dimension of the RS
code is high enough then Tr(x) will be in the code RSk(x) ∩ Fnq . More precisely, if k ≥ q + 1
then Tr(x) ∈ RSk(x) ∩ Fnq and so the code is not trivial.

Actually the code that we recover is generated by the trace and the norm of the support vector
x. We call this code the norm-trace code and it is defined as follows. Later on, we consider a
Fq-basis of Fq2 denoted by (1, α), where α ∈ Fq2 is such that Tr(α) = 1.

Definition 4.3 (Norm trace code). Let x ∈ Fnq2 be a support. The norm–trace code NT (x) ⊆ Fnq
is defined as

NT (x) := 〈1,Tr(x),Tr(αx),N(x)〉Fq .

Under the assumption that x is full, we can prove that the norm-trace code has a structure of
subfield subcode of Reed-Solomon code. In the general case we have only the following lemma.

Lemma 4.8. Let x ∈ Fnq2 be a support. Then, for any k > q + 1, we have

NT (x) ⊆ RSk(x) ∩ Fnq .

Proof. Since k > q + 1, Tr(x) = x + xq, Tr(αx) and N(x) = xq+1 are codewords of RSk(x).

Remark 14. We observed experimentally that for 2q + 1 > k > q + 1 the above inclusion is in
general an equality.

The link with conductors of alternant codes The purpose of the attack is to provide
information on the support x from only the computation of a conductor. If we know a subcode
Ar′,q(x,y) of Ar,q(x,y), such that q < r′ − r, then by Theorem 4.7 and Lemma 4.8 we have:

NT (x) ⊆ Cond(Ar′,q(x,y),Ar,q(x,y)).

Moreover, experimentally (see Remark 13 and 14), we have almost every time

NT (x) = Cond(Ar′,q(x,y),Ar,q(x,y)). (4.2)

The most difficult part remains to find a code Ar′,q(x,y) with q < r′ − r. However, the quasi-
dyadic structure of the public code permits us to construct a subcode D ⊆ Ar′,q(x,y) with
q < r′ − r. That is why, we will use the following heuristic which extends (4.2). This heuristic
is discussed just after the wording.

Heuristic 4.9. Let x,y ∈ Fnq2 be a support and a multiplier, and r′ ≥ r be two positive integers
such that q < r′ − r < 2q. Suppose that n ≥ 4q. Let D be a subcode of Ar′,q(x,y) such that
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(i) dim D · dim Ar,q(x,y)⊥ ≥ n;

(ii) D 6⊂ Ar′+1,q(x,y);

(iii) a generator matrix of D has no zero column.

Then, with high probability we have

Cond(D ,Ar,q(x,y)) = RSr′−r(x) ∩ Fnq

This heuristic extends the result of Theorem 4.7. Let us give some explanations about this
heuristic. From Proposition 4.5,

Cond(D ,Ar,q(x,y)) =
(
D ?Ar,q(x,y)⊥

)⊥
.

Next, from Delsarte theorem (Theorem 1.7), we have

Ar,q(x,y)⊥ = TrFq2/Fq(GRSr(x,y)).

Since D is a code over Fq and by the Fq–linearity of the trace map, we get

D ?Ar,q(x,y)⊥ = TrFq2/Fq (D ?GRSr(x,y)) .

Now, we use the fact that D is contained in Ar′,q(x,y) and hence is a subset of a GRS code.
Namely,

D ⊂ GRSn−r′(x,y⊥), where y⊥ =

(
1

π′x(x1)y1
, . . . ,

1

π′x(xn)yn

)
.

Therefore, thanks to Theorem 4.4, we get

D ?Ar,q(x,y)⊥ ⊆ TrFq2/Fq

(
GRSn−r′+r−1(x,y ? y⊥)

)
. (4.3)

Here, let us note that D ?Ar,q(x,y)⊥ is spanned by dim D · dim Ar,x(y,)⊥ generators which are
obtained by computing the Schur products of elements of a basis of D by elements of a basis
of Ar,q(x,y)⊥. By (i), the number of such generators exceeds n. For this reason, it is very
reasonable to hope that this Schur product will fill in the target code and hence that actually,

D ?Ar,q(x,y)⊥ = TrFq2/Fq

(
GRSn−r′+r−1(x,y ? y⊥)

)
.

Next, we have

y ? y⊥ =

(
1

π′x(x1)
, . . . ,

1

π′x(xn)

)
.

Therefore, using Proposition 1.34, we conclude that(
D ?Ar,q(x,y)⊥

)⊥
= RSr′−r+1(x) ∩ Fnq .

Remark 15. Assumption (ii) permits to avoid the situation where the conductor could be the
subfield subcode of a larger Reed–Solomon code. Assumption (iii) permits to avoid the presence
of words of weight 1 in the conductor that would not be elements of a Reed-Solomon code.
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4.3 Using the QD structure to compute a conductor

The purpose of the attack is to find a subcode D of Ar,q(x,y) such that Heuristic 4.9 is satisfied.
The knowledge of a such code D , permits us to recover the support x. We recall that, we need
a gap of codimension of more than q to catch the norm-trace code. In the general case, there
is no reason to be able to compute subcodes of such a large codimension. In the present case,
it is possible to compute some subcode with the good codimension from invariant codes. By
Theorem 4.3, we already know that the invariant code of a QD alternant code has a particular
structure. The following statement, which is crucial for our attack, completes the result of this
theorem.

Theorem 4.10. Let x,y ∈ Fq2 be a support and a multipier, and s be an integer of the form
s = 2γs0. Let As,q(x,y) be a QD alternant code stable by the action of a group G, where |G| = 2γ.
Suppose that As,q(x,y)

G
is fully non degenerate (see Definition 1.38). Then,

(a) As,q(x,y)G ⊆ As+|G|−1,q(x,y);

(b) As,q(x,y)G 6⊆ As+|G|,q(x,y).

Proof. We know that:

As,q(x,y) =

{(
1

yiπ′x(xi)
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s

}
∩ Fnq .

This code is obtained by evaluation of polynomials of degree up to

n− s− 1 = (2γ(n0 − s0)− 1).

Next, from Theorem 4.3 and Proposition 4.2, the invariant codewords of As,q(x,y) come from
evaluations of polynomials of the form h◦ψG . Such polynomials have a degree which is a multiple
of degψG = 2γ and hence their degree cannot exceed 2γ(n0 − s0 − 1). Thus, they should lie in
Fq2 [z]≤n−s−|G| = Fq2 [z]<n−s−|G|+1. This leads to

As,q(x,y)G ⊆

{(
1

yiπ′x(xi)
f(xi)

)
i=1,...,n

∣∣∣∣∣ f ∈ Fq2 [z]<n−s−|G|+1

}
∩ Fnq

⊆ As+|G|−1,q(x,y).

To prove (b), note that the assumption on As0,q(x,y)G asserts the existence of f ∈ Fq2 [z]<n0−s0
such that deg f = n0 − s0 − 1 and f(ψG(x)) ∈ Fnq . Thus, f(ψG(x)) ∈ Fnq and deg(f ◦ ψG) = n−
s− |G|. Therefore f(ψ(x)) ∈ As,q(x,y)G and As,q(x,y)G contains an element of As+|G|−1,q(x,y)
which is not in As+|G|,q(x,y).

This result shows that the invariant code is contained in a smaller alternant code, i.e. a
subfield subcode of a code corresponding to the evaluation of polynomials of lower degree. State-
ment (b) is useful to constrain the dimension of the conductor Cond(As,q(x,y)G ,Ar,q(x,y)).
This is avoid to have a code larger than RSs+|G|−r(x) ∩ Fnq , which is the expected code under
the assumptions of Heuristic 4.9.

Remark 16. In the case where q < |G|, which never holds in DAGS suggested parameters, we have
a particularly simple manner to compute NT (x). In such a situation, replacing possibly G by
a subgroup, one can suppose that |G| = 2q. Then, according to Theorem 4.10 and Heuristic 4.9,
we have

Cond(Ar,q(x,y)G ,Ar,q(x,y)) = RS|G|−1(x) ∩ Fnq
By Remark 14, we get the norm-trace code.
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From now on q ≥ |G|, let us give the definition of the code D that we will look for.

Definition 4.4. Suppose that |G| ≤ q. We define the code D as

D := Ar+q,q(x,y)G .

Assuming that Ar+q,q(x,y)
G
is fully non degenerate, by Theorem 4.10, the code D satisfies

the assumptions of Heuristic 4.9. Hence, under Heuristics 4.9, we have

Cond(D ,Ar,q(x,y)) = RSq+|G|−1(x) ∩ Fnq .

However, when starting the attack, the code D is unknown. The following property will be
useful to find D .

Proposition 4.11. The code D has codimension ≤ 2q
|G| in Ar,q(x,y)G.

Proof. Using Theorem 4.3, we know that D has the same dimension as Ar0+ q
|G| ,q

(x̃, ỹ), for some

x̃ and ỹ. This code has dimension ≥ n0− 2(r0 + q
|G|). Since dim Ar,q(x,y)G = k0 = n0− 2r0, we

get the result.

Remark 17. Actually the codimension equals 2q
|G| almost all the time.

4.4 Description of the attack

We recall that the extension degree is always m = 2 and we set q := 2` for some positive integer
`. The public code is a QD alternant code defined by:

Cpub := Ar,q(x,y).

The permutation group acting on Cpub is G with cardinality |G| = 2γ . The code has length
n = n02γ , dimension k and is defined over a field Fq. The degree r of the alternant code is also a
multiple of |G| = 2γ and hence is of the form r = r02γ . We suppose from now on that the lower
bound on the dimension k given by Proposition 1.35 is reached. Namely that k = n− 2r. This
always holds in the parameters proposed in [BBB+17a]. We finally set k0 = k

2γ . In summary, we
have the following notation:

n = n02γ , k = k02γ , r = r02γ . (4.4)

We can describe the attack in three steps, as follows:

(1) Compute (Cpub)G ;

(2) Guess the subcode D of (Cpub)G of codimension 2q
|G| such that

Cond(D ,Cpub) = RSq+|G|−1(x) ∩ Fnq ;

(3) Determine x from NT (x) and then y from x.

The first step can be done with the computation of the kernel of a map (see Definition 3.7).
The second one is the most expensive part. A first way to guess D and than compute NT (x)
consists in performing exhaustive search on subcodes of codimension 2q

|G| of Cpub
G . We give the

complexity of this approach and then we present two manners to reduce the cost of brute force
search. A second approach consists in getting both D and NT (x) by solving a polynomial
system using Gröbner bases. For this approach, we did not succeed to get a relevant estimate of
the complexity. However, its practical implementation permits to break the instances of DAGS_1
and DAGS_5 in few minutes but not DAGS_3. We give details in §4.5.2. Finally, the last step is
easy and actually is negligible compared to the second one (see §4.5.1).
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4.4.1 Brute force search on D

To perform a brute search on D consists in enumerating all the subspaces X ⊆ (Cpub)G of
codimension 2q

|G| until we find one such that Cond(X ,Cpub) is not trivial, that is its dimension
is not 1. In general, if Cond(X ,Cpub) is not trivial its dimension is 4. Indeed, for an arbitrary
X the conductor will have no particular structure and we can suppose that it is generated by
1, so its dimension is 1. In contrast, for X = D the conductor will be RSq+|G|−1(x)∩ Fnq which
typically has dimension 4 by Remark 14. The number of subspaces to test is in general much
too large to make the search practical. Indeed we need to enumerate O

(
q

2q
|G| (k0−

2q
|G| )
)
subspaces.

In the DAGS case, this number is out of reach. However, it is possible to reduce the cost of the
brute force. The two manners presented here are very similar in terms of complexity.

Picking random subcodes of codimension 2. Here we use Heuristic 4.9 with a random
subcode D0 of D of smaller dimension. For any parameter proposed in DAGS, the code Cpub

⊥ has
rate lager that 1

2 . Therefore, it suffices to take a random subcode D0 of dimension 2, to satisfies
the assumption (i) of Heuristic 4.9. Then, with a high probability, we have Cond(D0,Cpub) =
NT (x). We do not know the code D so we cannot directly pick random subcodes of D . We
know that D ⊆ Cpub

G and then we can pick two independent vectors c, c′ in Cpub
G and compute

the conductor Cond(〈c, c′〉,Cpub). If the conductor has dimension 4, we can assume that we
found the code NT (x), else we try again with another pair c, c′. The probability that c, c′ ∈ D

equals q−
4q
|G| . Therefore, one may have found NT (x) after O(q

4q
|G| ) computations of conductors.

Shortening codes. Another way consists in performing the brute force on a shortened code.
For that we replace the public code and the unknown code D by one of their shortenings. In
order to keep the quasi-dyadic structure we choose a set I of a := a02γ positions which is a
union of blocks (see Section 4.1). The integer a must be chosen such that the shortening of
D has dimension 2. Actually, it suffices to chose a such that the dimension of the invariant
code ShortI(Cpub)G is 2 + 2q

|G| . To determine ShortI(D), we can enumerate any subspace X ⊆
ShortI(Cpub)G of dimension 2 and compute Cond(X , ShortI(Cpub)). In general, we get the
trivial code spanned by the all–one codeword 1. If the conductor has dimension 4 it is highly
likely that we found ShortI(D). In this case the conductor will be PunctI

(
RSq+|G|−1(x)

)
=

PunctI (NT (x)) = NT (xI). We need to enumerate O(q
4q
|G| ) subspaces.

Complexity of a single operation of the brute force search. In each iteration we compute
the conductor Cond(X ,Cpub) and this consists in computing the code (X ? Cpub

⊥)
⊥. Since

our attack consists in computing such conductors for various X ’s, one can compute a generator
matrix of Cpub

⊥ once for good. Hence, one can suppose a generator matrix for Cpub
⊥ is known.

Then, the calculation of a generator matrix of X ? Cpub
⊥ is reduced to the computation of the

Schur product of two codes. We use the following lemma.

Lemma 4.12. Let A ,B be two codes on Fqm of length n and respective dimensions ka, kb. The
computation of A ?B can be performed in

nkakb + nkakb min(n, kakb)

operations in Fqm . Moreover if kakb ≥ n, then the costs of A ?B can be done in less than 2n3

operations in Fqm .

Proof. To compute the Schur product A ?B we can proceed as follows.

1. Take bases a1, . . . ,aka and b1, . . . ,bkb of A and B respectively and construct a matrix
M whose rows are all the possible products ai ? bj , for 1 ≤ i ≤ ka and 1 ≤ j ≤ kb. This
matrix has kakb rows and n columns.
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2. Perform Gaussian elimination to get a reduced echelon form of M.

The cost of the computation of a reduced echelon form of a s×n matrix is nsmin(n, s) operations
in the base field. The cost of the computation of the matrix M is the cost of kakb Schur products
of vectors, i.e. nkakb operations in the base field. This leads to an overall calculation of the
Schur product equal to

nkakb + nkakb min(n, kakb)

operations in the base field. When kakb ≥ n, the cost of the Schur product can be reduced using
a probabilistic shortcut described in [CMCP17]. It consists in computing an n × n submatrix
of M by choosing some random subset of products ai ? bj . This permits to reduce the cost
of computing a generator matrix in row echelon form of A ? B to 2n3 operations in the base
field.

The calculation of a generator matrix of X ? Cpub
⊥ costs at most 2n3 operations. Next,

note that for most of the iterations, there is no need to deduce a generator matrix in reduced
echelon form of (X ? Cpub

⊥)
⊥, since it suffices to evaluate the dimension of X ? Cpub

⊥, which
is immediate from the generator matrix in reduced echelon form. If the dimension of the code is
not the expected one, namely n− dimD 6= n− 4, then we skip to the next iteration. Hence, the
overall cost of a single iteration of the brute force search is bounded above by 2n3 operations in
Fq.

Complexity of finding RSq+|G|−1(x). To summarise, the cost of the brute force search on D
can be bounded from above by

2n3q
4q
|G| operations in Fq.

Since, n = Θ(q2), we get a complexity in O(n
3+ 2q
|G| ) operations in Fq for the computation of

NT (x).

4.4.2 How to recover D and NT (x) by solving a system?

An alternative to recover D and NT (x) consists in solving a polynomial system. The main idea
is to use Proposition 4.5. Since NT (x) ⊆ Cond(D ,Cpub) and Cond(D ,Cpub) = (D ? Cpub

⊥)
⊥,

we have
∀c ∈ NT (x), GD?Cpub

⊥ · c> = 0, (4.5)

where GD?Cpub
⊥ denotes a generator matrix of D?Cpub

⊥. The above identity provides the system
we wish to solve. The first step is to provide a formal generator matrix of D . Later on we set
c := 2q

|G| and for an integer t we denote by It the t × t identity matrix. Let Ginv be a generator
matrix of Cpub

G , we introduce (k0 − c)k0 formal variables U1,1, . . . , U1,c, . . . , Uk0−c,1, . . . , Uk0−c,c
and define

G(Ui,j) :=


∣∣ U11 · · · U1,c

Ik0−c

∣∣∣∣ ...
...∣∣ Uk0−c,1 · · · Uk0−c,c

 ·Ginv.

There exist a generator matrix Ginv and some values u1,1, . . . , uk0−c,c ∈ Fq, such that G(ui,j)
is a generator matrix of D . Almost all choices of Ginv suit. We notice that the entries of the
matrix G(Ui,j) are polynomials of Fq[U1,1, . . . , Uk0−c,c] of degree 1.

Now we have to construct a generator matrix of the Schur product D ? Cpub
⊥. Let H be a

parity-check matrix of the public code Cpub. We can obtain a formal matrix of the Schur product
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in generating all possible Schur products between one row of G(Ui,j) and one row of H. We
define

R(Ui,j) :=
(
g ? h

)
g∈Rows(G(Ui,j)), h∈Rows(H)

·

There exists a specialisation u1,1, . . . , uk0−c,c ∈ Fq of the variables Ui,j such that R(ui,j) is a
generator matrix of D ? Cpub

⊥. We notice that the entries of R(Ui,j) are still polynomials of
Fq[U1,1, . . . , Uk0−c,c] of degree 1.

Let us introduce a second set of variables X1, . . . , Xn which corresponds to the entries of
codewords c ∈ NT (x). By (4.5), the system we have to solve is

R(Ui,j) ·

X1
...
Xn

 = 0. (4.6)

This system is made of polynomials of degree 2. For any such polynomial, the degree in each
variable U1,1, . . . , Uk0−c,c and X1, . . . , Xn is at most to 1. Furthermore, we notice that every
quadratic monomial is of the form Ui,jXs, for some i, j, s. This kind of system is called a system
of bi-degree (1, 1) in the sets of variables Ui,j and Xs.

Using the QD structure of the support. We recall that the norm-trace code NT (x)
has dimension 4 over Fq and is spanned by 1,Tr(x),Tr(αx) and N(x). We want to use the
quasi-dyadic structure to reduce the number of variables. However the quasi-dyadic structure is
compatible with the trace map but not with the norm. Actually we not need to have all the code
NT (x) to recover x, it sufficient to know Tr(x) and Tr(αx). The addition of structure that we
describe here permits us to reduce also the number of solutions of (4.6), i.e. the solutions are
only generated by Tr(x) and Tr(αx).

Since the code is QD, the vector x is a union of orbits under the action of the additive
group G. We notice that the trace map, viewed as a polynomial, is an additive polynomial (see
Definition 4.1) and in particular for any a ∈ G, Tr(z + a) = Tr(z) + Tr(a), for all z ∈ Fqm . Let
us introduce the vector aG := (0, a1, a2, a1 + a2, . . . ,

∑γ
i=1 ai) whose entries are the elements of

G sorted with the lexicographic order. We can write x = t + a, with

t := (t1, . . . , t1︸ ︷︷ ︸
2γ times

, t2, . . . , tn0 , . . . , tn0) and a := (aG ,aG , . . . ,aG︸ ︷︷ ︸
n0 times

).

By the additive property of the trace map, we have Tr(x) = Tr(t) + Tr(a). One can introduce
formal variables A1, . . . , Aγ corresponding to the trace of the generator of G and formal vari-
ables T1, . . . , Tn0 corresponding to the trace of the element t1, . . . , tn0 . Then, one can replace
(X1, . . . , Xn) by

(T1, T1 +A1, . . . , T1 +A1 + · · ·+Aγ , T2, T2 +A1, . . . ). (4.7)

We have now n0 + γ unknowns for the second set of variables instead of n02γ .

Reducing to the case x1 = 0 and x2 = 1. Without loss of generality we can assume that the
first entries of x are 0 and 1 respectively. This fact comes from the 2-transitivity of the affine
group over Fqm and the following lemma.

Lemma 4.13. Let x,y ∈ Fnqm be a support and a multiplier, and r be an integer. Let a, b ∈ Fqm ,
such that a 6= 0 and let ϕ(z) := az + b. We have Ar,q(ϕ(x),y) = Ar,q(x,y).

Proof. By definition of alternant code, it suffices to prove thatGRSr(ϕ(x),y)⊥ = GRSr(x,y)⊥.
We only prove thatGRSr(x,y)⊥ ⊆ GRSr(ϕ(x),y)⊥, the other inclusion is obtained by equality
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of the dimensions. Let c be a codeword of GRSr(x,y)⊥. To prove that c ∈ GRSr(ϕ(x),y)⊥, we
have to show that for any polynomial P ∈ Fqm [z]<r we have c ·(y?P (ϕ(x))) = 0. We notice that
P (az+ b) can be written as a polynomial Q(z) of same degree than P , whose coefficients depend
on a and b. Then c·(y?P (ϕ(x))) = c·(y?Q(x)) = 0, since deg(Q) < r and c ∈ GRSr(x,y)⊥.

If the first entry x1 of x equals to 0, then Tr(t1) = Tr(x1) = 0 and we can replace in (4.7) the
variable T1 by 0. In the same way, if x2 equals to 1, then Tr(a1) = 0 and we can replace A1 by
0. However, to recover x, it is important to have Tr(x) and Tr(αx). Since Tr(αa1) = Tr(α) = 1,
if we want to recover Tr(αx) we have to replace A1 by 1 and not by 0. Actually, we solve two
systems: one with A1 = 0 and one with A1 = 1.

Using shortened codes. Similarly to the approach of §4.4.1, one can shorten the codes so
that D has only dimension 2, which reduces the number of variables Uij to 2c and also reduces
the length of the support we seek and hence reduces the number of the variables Ti.

Name q n0 k0 γ c Number of variables Uij Number of variables Xi

DAGS_1 25 52 26 4 4 8 34

DAGS_3 26 38 16 5 4 8 31

DAGS_5 26 33 11 6 2 4 30

Table 4.2: Number of variables of the polynomial system after reduction

The number of variables of the polynomial system depends of the ratio q
|G| and the parameters

n0, k0 and γ.

4.4.3 Finishing the attack

When the previous step of the attack is over, then, we know at least NT (x) or NT (xI) for
some set I of positions. Thus, there remains to be able to

(1) recover x from NT (x) or xI from NT (xI);

(2) recover y from x or yI from xI ;

(3) recover x,y from the knowledge of xI ,yI .

Recovering x from NT (x). It is not difficult to prove that the same code after base field
extension satisfies

NT (x)⊗ Fq2 = 〈1,x,x?q,x?(q+1)〉.

Because of the 2–transitivity of the affine group on Fq2 , without loss of generality, one can
suppose that the first entry of x is 0 and the second one is 1, as we see in §4.4.2. Therefore, after
shortening NT (x)⊗ Fq2 we get a code that we call S , which is of the form

S := Short{1}(NT (x)⊗ Fq2) = 〈x,xq,xq+1〉Fq2 .

Next, a simple calculation shows that

S ∩S 2 = 〈xq+1〉.

Since, the second entry of x has been set to 1, we can deduce the value of xq+1.
Now, finding x is easy: enumerate the affine subspace of NT (x)⊗ Fq2 of vectors whose first

entry is 0 and second entry is 1 (or equivalently, the affine subspace of vectors of S whose first
entry equals 1). For any such vector c, compute cq+1. If cq+1 = xq+1, then c equals either x or
xq. Taking x or xq has no importance, due to the following lemma.
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Lemma 4.14. Let x,y ∈ Fnq2 be a support and a multiplier, then

Ar,q(x,y) = Ar,q(x
q,yq).

Proof. Let c be a codeword of Ar,q(x,y), then c ∈ GRSn−r(x,y) and c = (y1f(x1), . . . , ynf(xn))
for some f ∈ Fq2 [z]<n−r. Since c ∈ Fnq for all i ∈ {1, . . . , n}, we have

yif(xi) = (yif(xi))
q

= yqi (
n−k−1∑
j=0

fjx
j
i )
q

= yqi (
n−k−1∑
j=0

f qj (xqi )
j).

Let us denote f (q) the polynomial
n−k−1∑
j=0

f qj z
j ∈ Fq2 [z]<n−r. Then c = (yq1f

(q)(xq1), . . . , yqnf (q)(xqn))

and c ∈ GRSn−r(xq,yq) ∩ Fnq = Ar,q(x
q,yq). We just proved that Ar,q(x,y) ⊆ Ar,q(x

q,yq).
The reciprocal inclusion is obtained by the following result

Ar,xq(y
q,⊆)Ar,q(x

q2 ,yq
2
) = Ar,q(x,y).

Thus, without loss of generality, one can suppose x has been found. We summarise this
section in Algorithm 5

Algorithm 5: Recovering x from NT (x)

Input : The code NT (x).
Output: The support x

1 S ← Short{1}(NT (x)⊗ Fq2)

2 s
$← (S ∩S 2)\{0}

3 xq+1 ← s
(−1)
1 · s

4 for u ∈ S do
5 if N(u) = xq+1 then
6 return u

(−1)
1 · u

Remark 18. If we have recovered T (x) = 〈Tr(x),Tr(αx)〉Fq (see §4.4.2), we do not need to
shorten the code. Indeed

T (x)⊗ Fq2 = 〈x,xq〉Fq2
and then we have directly (T (x)⊗ Fq2)2 ∩ (NT (x)⊗ Fq2) = 〈xq+1〉.

Proposition 4.15. Algorithm 5, return x (or xq) in O(n4) operations in Fq2.

Proof. The correctness of the algorithm is already proved by the discussion above. We only prove
the complexity of the algorithm.

Since the code S has dimension 3 � n, the computation of S 2 costs O(n2) operations in
Fq2 . The computation of S 2 ∩S boils down to linear algebra and then costs O(n3) operations
in Fq2 .

The enumeration of elements in S can be performed in O(q6) = O(n3) operations in Fq2 .
Indeed, the code S has dimension 3 over Fq2 and then has q6 elements. Assuming that the
Frobenius z 7→ zq can be computed in constant time in Fq2 , the cost of the computation of the
norm of a vector is in O(n) operation in Fq2 .

Hence the algorithm can be performed in O(n4) operations in Fq2 .
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Recovering y from x. This is very classical calculation. The public code Cpub is alternant,
and hence is well–known to have a parity–check matrix defined over Fq2 of the form

Hpub(x,y) =


y1 · · · yn
x1y1 · · · xnyn
...

...
xr−1

1 y1 · · · xr−1
n yn

 .

Denote by Gpub a generator matrix of Cpub. Then, since the xi are known, then the yi can be
computed by solving the linear system

Hpub(x,Y) ·G>pub = 0,

where Y is the formal vector (Y1, . . . , Yn). This step boils down to linear algebra and hence can
be done in O(n3) operations in Fq2 .

Recovering x,y from xI ,yI . After a suitable reordering of the indexes, one can suppose
that I = {s, s+ 1, . . . , n}. Hence, the entries x1, . . . , xs−1 of x and y1, . . . , ys−1 are known. Let
us explain how to compute xs, ys. Set I ′ := I \ {s}. Thus, let G(I ′) be a generator matrix of
Ar,q(xI′ ,yI′), which is nothing by ShortI′(Cpub). Using the notation of the previous section, we
have 

y1 · · · ys
x1y1 · · · xsys
...

...
xr−1

1 y1 · · · xr−1
s ys

 ·G(I ′) = 0.

In the above identity, all the xi and yi are known but not xs, ys. The entry ys can be found by
solving the linear system (

y1, · · · , ys−1, Y
)
·G(I ′) = 0.

Then, xs can be deduced by solving the linear system(
x1y1, · · · , xs−1ys−1, Xys

)
·G(I ′) = 0.

By this manner, we can iteratively recover the entries xs+1, . . . , xn and ys+1, . . . , yn. The only
constraint is that I should be small enough so that ShortI(Cpub) is nonzero. But this always
holds true for the choices of I we made in the previous sections. For each iteration, one equation
suffices to find the solution and hence the cost of one iteration is bounded by O(n2) operations
in Fq2 . Thus, the final cost of this step is bounded by O(n3) operations in Fq2 .

4.5 Algorithm, work factor and implementation

In this section, we describe the complete algorithm for each version of the attack that we pro-
posed. For the first version, we give also the complexity of the attack and the estimate work
factor for the DAGS proposal. For the second version, we are not able to provide a complexity
analysis. However we give the result of practical experiments.

4.5.1 The first variant of the attack

Let us summarise the first version of the attack in the following algorithm.
For the complexity analysis, we make the approximation that operations in Fq can be done

in constant time. Indeed, the base fields of the public keys of DAGS proposal are F32 and F64.
For such a field, it is reasonable to store a multiplication and inversion table.
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Algorithm 6: First version of the attack
Input : A generator matrix Gpub of Cpub and the action of G on Cpub.
Output: The support x and the multiplier y

1 Cinv ← Cpub
G

2 NT ← {0}
3 while dim(NT ) 6= 4 do

4 c, c′
$← Cinv

5 NT ← Cond(〈c, c′〉,Cpub)

6 x← Recover_x(NT ) // see Algorithm 5

7 Mx ←


1 · · · 1
x1 · · · xn
...

...
xr−1

1 · · · xr−1
n


8 y← Solve(Mx ·Y ·G>pub = 0)
9 return x,y

The first step can be performed by the computation of a kernel, then the complexity of line
1 is in O(n3) operations in Fq. As we see in Section 4.4.1, the complexity of the computation of

NT (x) is in O(n
3+ 2q
|G| ) operations in Fq. Next, the Algorithm 5 recover x in O(n4) operations

in Fq2 and compute y from the knowledge of x is performed in O(n3) operations in Fq2 . As a
conclusion, the first and the third parts of the attack are negligible compared to the computation
of NT (x). Hence, we have an approximate work factor of the form

2n3q
4q
|G| operations in Fq.

Therefore, we list in Table 4.3 some approximate work factors for DAGS. The second column
recalls the security levels claimed in [BBB+17a] for the best possible attack. The last column
gives the approximate work factors for the first variant of our attack.

Name Claimed security level Work factor of our attack

DAGS_1 128 bits ≈ 270

DAGS_3 192 bits ≈ 280

DAGS_5 256 bits ≈ 258

Table 4.3: Work factors of the first variant of the attack

4.5.2 The second variant of the attack

Since the first variant of the attack had too significant costs to be tested on our machines, we
only tested the second variant based on solving a polynomial system. All the tests have been
done using Magma [BCP97] on an Intel R© Xeon 2.27 GHz.

We have not been able to break DAGS_3 keys using this variant of the attack, on the other
hand about 100 tests have been performed for DAGS_1 and DAGS_5. The average running time of
the attack for DAGS_1 keys is about 19 minutes and for DAGS_5 keys is about 35 seconds.
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Name Claimed security level Average time
DAGS_1 128 bits 19 mn
DAGS_5 256 bits < 1 mn

Table 4.4: Average times for the second variant of the attack.
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5.1 Construction of quasi-cyclic SSAG codes

Let q be a power of prime p and m be a positive integer which refers to the extension degree of
the field Fqm . Let X be an arbitrary curve defined over a finite field Fqm and Aut(X ) be its field
automorphism group. Let 〈σ〉 be a cyclic subgroup of Aut(X ) and ` := ord(σ) its order. For
any place P ∈ PX we denote by Orbσ(P ) :=

{
σi(P ) | i ∈ {0, . . . , `− 1}

}
the orbit of P under

the automorphism σ.
Let n0 ∈ N∗, we define the support:

P :=

n0∐
i=1

Orbσ(Ri), (5.1)

where Ri ∈ PX are places of degree 1, pairwise distinct with trivial stabiliser subgroup under
the action of σ. Moreover we choose the Ri’s such that Orbσ(Ri) 6= Orbσ(Rj) for all i 6= j. The
length of the support P is n := `n0.

Let s ∈ N∗, we define the divisor:

G :=

s∑
i=1

ti
∑

Q∈Orbσ(Qi)

Q, (5.2)

87
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where Qi ∈ PX are places, possibly of degree bigger than 1 and ti ∈ Z for i ∈ {1, . . . , s}. The
degree of the divisor G is

deg(G) =

s∑
i=1

ti · deg(Qi) · |Orbσ(Qi)|.

Then the code CL(X ,P, G) is an `-quasi-cyclic code on the curve X (see Definition 3.2). Indeed
the group 〈σ〉 ⊆ Aut(X ) induces a permutation σ̃ ∈ Sn on the code C defined by:

σ̃ : CL(X ,P, G) −→ CL(X ,P, G)
(f(P1), . . . , f(Pn)) 7−→ (f(σ(P1)), . . . , f(σ(Pn)))·

The permutation σ̃ is cyclic on each orbit of size ` of the support P. Since the code C :=
SSAGq(X ,P, G) is the subcode of CL(X ,P, G) defined by CL(X ,P, G)∩ Fnq , the permutation σ̃
acts also on it. Then the code SSAGq(X ,P, G) is a quasi-cyclic code over Fq.

5.2 Structure of the invariant code

We recall that the invariant code of a code stable under a permutation σ is the set of codewords
fixed by σ (see Definition 3.7). In this section, we show that the invariant code of a QC SSAG
code C is also an SSAG code with smaller parameters. Depending on the assumptions on the
public elements, this result leads to the reduction of the key security of a quasi-cyclic SSAG
code to the key security of its invariant code. This result is very important for the security of
a McEliece scheme using QC SSAG codes. Indeed, since the invariant code can be constructed
from the public key, anybody can compute it. That is why, we discuss also known attacks against
this invariant code and countermeasures which can be used.

Invariant of SSAG codes. As in Section 3.2, we begin by studying the case of QC AG codes
before talking about SSAG codes. We recall that, by Lemma 3.5, the invariant codewords of an
AG code C correspond to the invariant functions of L(G), where G is the divisor of C . Then
we have to look at subspaces of the function field which are fixed by an automorphism. The
following proposition gives a description, in terms of Riemann-Roch spaces, of the fixed space
L(G)σ, where σ is an automorphism acting on G.

Proposition 5.1. Let F be a function field and G be a divisor of F invariant by an automorphism
σ ∈ Aut(F ). Then L(G)σ = L(G̃) with G̃ ∈ Div(F σ).

Proof. We denote Supp(G) =
s∐
i=1

Orbσ(Qi), where Qi is a place of F for all i ∈ {1, . . . , s}, i.e.:

G =
s∑
i=1

ki
∑

R∈Orbσ(Qi)

R,

for some ki ∈ Z. Let g ∈ L(G) ⊆ F be a function such that g ◦ σ = g, i.e.: g ∈ L(G)σ ⊆ F σ.
We can define its valuation vQ′(g) at any place Q′ ∈ PFσ , and its valuation vQ(g) at any place
Q ∈ F . Let Q be such that Q|Q′, we know that:

e(Q|Q′)vQ′(g) = vQ(g) (5.3)

where e(Q|Q′) is the ramification index of Q over Q′.
For each i ∈ {1, . . . , s} we consider the place Q′i ∈ PFσ such that Qi|Q′i. Then, for all

R ∈ Orbσ(Qi), we have R|Q′i and e(R|Q′i) = e(Qi|Q′i). Since g ∈ L(G), we know that the
principal divisor over F , (g)F , satisfies:

(g)F ≥ −
s∑
i=1

ki
∑

R∈Orb(Qi)

R.
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By (5.3), the divisor (g)Fσ over F σ satisfies:

(g)Fσ ≥ −
s∑
i=1

ki
e(Qi|Q′i)

Q′i·

We define G̃ := −
∑s

i=1

⌊
ki

e(Qi|Q′i)

⌋
Q′i which is a divisor on the function field F σ and then g ∈

L(G̃) ⊆ F σ. Hence L(G)σ ⊂ L(G̃).
Let g ∈ F σ such that g ∈ L(G̃), with G̃ defined as previously. By the equation (5.3), we have:

(g)F ≥ −
s∑
i=1

e(Qi|Q′i)
⌊ ki
e(Qi|Q′i)

⌋ ∑
R∈Orb(Qi)

R.

Thus we have g ∈ L(G)σ.

As a direct consequence of Proposition 5.1, we have the following result on the QC AG codes
(as described in Section 5.1).

Theorem 5.2. Let X be an algebraic curve and G be a divisor of X invariant by an automorphism
σ ∈ Aut(X ). Let P be a set of n distinct places of X , of degree 1, such that σ(P) = P. Then
the invariant code CL(X ,P, G)σ is the AG code CL(X/〈σ〉, P̃, G̃), for some P̃ ⊆ X/〈σ〉 and
G̃ ∈ Div(X/〈σ〉).

Proof. It is a consequence of Lemma 3.5 and Proposition 5.1 applied on the function field F of
X .

The result about the invariant code of QC SSAG codes is given in the following corollary and
comes from the fact that the invariant operation commutes with the subfield subcode operation
(see Remark 6).

Corollary 5.3. With the notation of Theorem 5.2, let SSAGq(X ,P, G) be a subfield subcode
of an AG code and σ acting on it. Then the invariant code SSAGq(X ,P, G)σ is the code
SSAGq(X/〈σ〉, P̃, G̃) for some P̃ ⊂ X/〈σ〉 and G̃ ∈ Div(X/〈σ〉).

Key security reduction of QC SSAG codes. We consider a C is a QC SSAG code, stable
under a permutation σ, and we assume that we know a generator matrix Gpub of C . The
invariant code of C can be constructed from the knowledge of Gpub and this can be done in
polynomial time in the parameters of C . It means that the generator matrix of the invariant
code must be considered as a public data. As we show just above, the code C σ has a structure
of SSAG code. Now we wonder if the knowledge of secret elements of C σ permits to recover the
secret elements of C , i.e. the support and the divisor. If it is possible in polynomial time, we
say that the key security of C reduces to the key security of C σ.

We can consider two models. In the first one, the curve used to construct C is unknown,
we only know the family of curves used in the scheme. In this case the key security depends on
the chosen family. It must be chosen carefully to provide no information on the code C . For
instance, the family of cyclic covers of the projective line is not a good choice. First in this case,
the invariant code is an SSAG code on the projective line. Moreover, we show in Section 5.3
that, in the case of Kummer extensions it is possible to recover the support and the divisor of
C from the knowledge of the support and the divisor of the invariant code. For this example,
the key security of C reduces to the key security of C σ. The case of Artin-Schreier extensions
is similar, indeed it is also a cyclic cover of the projective line and the invariant code provide
information on the x-coordinate of the support of the original code. However it is possible to
choose other families of curves and avoid the described attack in Section 5.3.
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In the second one, the curve X and the automorphism σ are known. In this case we have
directly the reduction of the key security of C to the key security of C σ. Indeed the quotient
curve X/〈σ〉 is known and the invariant code C σ is an SSAG code on X/〈σ〉. Then from a
place P on X/〈σ〉 it is clear that we can recover the orbit Orbσ(P ) on the curve X . Hence the
knowledge of the support and the divisor of the invariant code leads to the knowledge of the
support and the divisor of C . We will detail this for the proposed scheme in Section 5.4. Here
the security of the scheme depends on the quotient curve X/〈σ〉 and on the possibles attacks
against the invariant code.

5.3 QC codes from a cyclic cover of the projective line

In this section, we discuss the key security of quasi-cyclic codes from cyclic covers of the projective
line. In particular we show that, for Kummer extensions, the key security of a code Cpub reduces
to the key security of its invariant code. We present first the construction of QC codes from
Kummer extensions of Fqm(x). Then, from the knowledge of the support P̃ and the divisor G̃ of
the invariant code, we give an algorithm to recover the support P and the divisor G of the code
Cpub.

5.3.1 Description of a public key for the McEliece scheme

Cyclic cover of the projective line. Let ` > 1 be an integer relatively prime to the charac-
teristic p of Fqm , and f ∈ Fqm [X] a square free polynomial. We consider the algebraic function
field F := Fqm(x, y) with

y` = f(x), (5.4)

and we denote by X the irreducible smooth curve associated to F . We denote by P∞ ∈ PF a
common pole of x and y. The extension F/Fqm(x) is cyclic of degree ` and the automorphisms of
F/Fqm(x) are given by σ : y 7→ ξy, where ξ ∈ Fqm is an `-th root of unity, i.e.: Aut(F ) =< σ >.
More precisely, it is a Kummer extension.

Quasi-cyclic AG codes. Let n ∈ N∗, we consider a support P :=
n/∐̀
i=1

Orbσ(Ri), as in (5.1)

and a divisor

G :=
s∑
i=1

ki
∑

Q∈Orbσ(Qi)

Q,

as in (5.2). We suppose that Supp(G) ∩ P = ∅ and deg(G) < n. Moreover, we assume that
`|vQ(G) for any ramified place Q ∈ Supp(G). We define the public code as

Cpub := SSAGq(X ,P, G).

Hypothesis for the McEliece scheme. We want to use the code Cpub as a public key for
the McEliece scheme (see Section 2.1). We propose to make the following hypothesis.

• The family of curve is known but not the curve X itself, that is we know that the equation
of X has the form (5.4) but we do not know the polynomial f .

• The support P and the divisor G are unknown.

• The automorphism σ is known, that is we know the `-th root of unity ξ. Actually is not
really necessary to know σ to attack the McEliece scheme using a QC code over X as Cpub.

• A generator matrix Gpub of Cpub is known then we know also a generator matrix of Cpub
σ.
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5.3.2 A key recovery attack

Invariant code on the projective line. From the knowledge of a generator matrix Gpub of
Cpub we are able to compute a generator matrix Ginv of the invariant code Cpub

σ. Moreover, by
Corollary 5.3, we have

Cpub
σ := SSAGq(P

1, P̃, G̃),

with P̃ ⊆ P1 and G̃ ∈ Div(P1). More precisely, with the previous notation,

P̃ :=
{
P ′ ∈ P1 | ∃P ∈ P such that P |P ′

}
and G̃ :=

s∑
i=1

⌊ ki
e(Qi|Q′i)

⌋
Q′i,

where for all i ∈ {1, . . . , s}, Qi|Q′i. Here the invariant code Cpub
σ is a special case of AG code

since it is a subfield subcode of GRS code. As the dual of a GRS code is a GRS code (Proposition
1.34), the code Cpub

σ is in fact an alternant code as defined in Definition 1.37. We recall that
it is easy to pass from a description of Cpub

σ as an SSAG code over P1 to a description as a
classical alternant code (see Section 1.3.4). Let us denote Cpub

σ = Ar,q(x,y), with x a support
related to P̃ and y a multiplier related to G̃. If we recover the vectors x and y then we recover
the support P̃ and the divisor G.

We saw in Section 2.4 that it is possible to construct a polynomial system to recover the
support and the multiplier of an alternant code. However, the cost of solving such a system is
hard to estimate. Here we assume that the code Cpub

σ is small enough to compute a solution
and recover x and y with less than 280 binary operations. Then from now we assume that the
support P̃ and the divisor G̃ of Cpub

σ are known.

Recovering Cpub from Cpub
σ. Now we show that it is possible to recover P and G from the

knowledge of P̃ and G̃. This means that the security of the code Cpub reduces to that of the
invariant code Cpub

σ.
From now on, we denote by xi := x(Ri), for all i ∈ {1, . . . , n` }. If we know P̃, we know xi for

all i ∈ {1, . . . , n` }. The approach to recover yi := y(Pi) for all i ∈ {1, . . . , n} consists in solving
a linear system. By definition, we have SSAGq(X ,P, G) ⊆ CL(X ,P, G) hence CL(X ,P, G)⊥ ⊆
SSAGq(X ,P, G)⊥. We know that

CL(X ,P, G)⊥ =

Resω(P1) 0
. . .

0 Resω(Pn)

 · CL(X ,P,W −GP +G),

with ω a differential such that vP (ω) = −1, for all P ∈ P, W := (ω) and GP :=
∑
P∈P

P . Then

for all g ∈ L(W −GP +G),

Gpub ·

Resω(P1) 0
. . .

0 Resω(Pn)

 · EvP(g)> = 0 (5.5)

where Gpub denotes a generator matrix of Cpub. We set zi := Resω(Pi) for all i ∈ {1, . . . , n}.
If we know a good basis of L(W −GP +G), the above identity provides a linear system whose
products ziyi’s are solution. The first step is to find a simple basis of L(G) and after that we
can provide a simple basis of L(W −GP +G).

Proposition 5.4. With the previous notation, if for any ramified place Q ∈ Supp(G), `|vQ(G),
then there exists a function h ∈ F such that G = (h) + deg(G)P∞.
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Proof. Let S := {Qi | i ∈ {1, . . . , s} } ⊆ PF be a set of representatives of orbits in the support
G. For each Qi ∈ S, we consider Q′i ∈ PP1 such that Qi|Q′i. By Proposition 1.17 we have
Q′i ∼ deg(Q′i)P

′
∞, where P ′∞ ∈ PP1 is the unique pole of x. We denote by hi ∈ Fqm(x) ⊆ F the

function such that:
Q′i = (hi)Fσ + deg(Q′i)P

′
∞.

For all Q|Q′i and R|Q′i, we notice that e(Q|Q′i) = e(R|Q′i), so later on we denote by e(Q′i) :=
e(Q|Q′i) for all Q|Q′i. Moreover there is only one place lying over P ′∞, it is P∞ ∈ PF and
e(P∞|P ′∞) = `. By (5.3) we have:

e(Q′i)
∑
Q|Q′i

Q = (hi)F + `deg(Q′i)P∞.

F/Fqm(x) is a Kummer extension and F is defined by (5.4), so we know that (see [Sti09])

e(Q′i) =
`

gcd(`, vQ′i(f))
.

Since f is a square free polynomial, for Q′i 6= P∞ we have

e(Q′i) =

{
` if Q′i is a zero of f
1 else.

If e(Q′i) = 1, then: ∑
Q∈Orbσ(Qi)

Q =
∑
Q|Q′i

Q = (hi)F + `deg(Q′i)P∞,

with Qi|Q′i.
If e(Q′i) = `, then Orbσ(Qi) = {Qi}. We denote by p ∈ Fqm(x) the irreducible factor over Fqm
of f such that p(Q′i) = 0. Then we have (p)Fσ = Q′i − deg(Q′i)P

′
∞ and, by (5.3)

`Qi = (p)F + `deg(Q′i)P∞.

Since we assume that `|vR(G) for all ramified places R ∈ Supp(G), we have

vQi(G)Qi ∼ vQi(G)P∞.

Hence there exists h ∈ F such that G = (h)F + deg(G)P∞.

In the previous proof we notice that h =
∏
i
hi
∏
j
pj with hi, pj ∈ Fqm(x) then in the following

we denote by hx ∈ Fqm(x) the rational function corresponding to h ∈ Fqm(x, y). By the previous
proposition, we have:

L(G) :=
〈
hx(x)xiyj | i ≥ 0, j ≥ 0, and `i+ deg(f)j ≤ deg(G)

〉
.

We recall that we want to have a simple basis for L(W + GP − G). It suffices to chose a
differential ω such that W +GP −G ∼ tP∞, for some integer t.

Lemma 5.5. There exits a differential ω such that

L(W +GP −G) :=
〈
hx(x)xiyj

∣∣∣ i ≥ 0, j ≥ 0, and `i+ deg(f)j ≤ 2g − 2 + n− deg(G)
〉
,

where W := (ω).
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Proof. Let ω be the following differential

ω :=
y

f(x)
n/∏̀
i=1

(x− xi)
dx,

then W = (2g−2 +n)P∞−
n∑
i=1

Pi. Hence W +GP −G = (hx) + (2g−2 +n−deg(G))P∞. Then

we have the result.

Since we know a simple basis of L(W +GP −G), now we are able to construct a polynomial
system corresponding to the equation (5.5). We introduce 2n formal variables Y1, . . . , Yn and
Z1, . . . , Zn which correspond to y(P ) and Resω(P ), for P ∈ P. Let X and Mh be n×n diagonal
matrices with entries respectively x(P ) and h(P ), for P ∈ P, then the system we have to solve,
in Fqm , is: 

Gpub ·Mh

Gpub ·Mh ·X
...

Gpub ·Mh ·Xλ

 ·
Z1Y1

...
Z1Yn

 = 0

with λ =
⌊

2g−2+n−deg(G)−deg(f)
`

⌋
. Since the vector (yi)i = (y(P ))P∈P has a specific structure,

that is it has a geometric progression, we are able to add some equations. We consider the
following bloc matrix:

E(ξ) :=


B(ξ) 0 0

0

0

0 0 B(ξ)

 , where B(ξ) :=



1 −ξ 0 0

0

0

0 −ξ

−ξ 0 0 1


Then the vector (yi)i is also solution of the system:

E(ξ) ·

Y1
...
Yn

 = 0

We can also show that the vector (zi)i = (Resω(P ))P∈P has the same geometric progression.
Indeed for all Pi ∈ P, we have

Resω(Pi) :=
yi

f(xi)
∏
j 6=i

(xi − xj)
,

then Resω(σ(Pi)) = ξResω(Pi). Moreover we want to solve a linear system, so we set Ui := ZiYi,
for all i ∈ {1, . . . , n}. The linear system we have to solve is

E(ξ2)
Gpub ·Mh

Gpub ·Mh ·X
...

Gpub ·Mh ·Xλ

 ·
U1

...
Un

 = 0, (5.6)
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where λ :=
⌊

2g−2+n−deg(G)−deg(f)
`

⌋
. This system is over-constrained but we know that there

exists at least one nonzero solution , i.e. the elements ziyi’s. Since the system is over-constrained,
actually it is very reasonable to hope this system has a unique solution. In all our computer
experiments, for cryptographic parameters, we never found more than one solution.

Once we have found the vector (ziyi)i, we need to separate (zi)i from (yi)i. This can be done
easily in the following manner.

• First we find the vector (ziy
2
i )i, by solving the same kind of linear system than (5.6). The

linear system to solve is obtained by replacing E(ξ2) by E(ξ3) and the maximum power λ
by λ′ :=

⌊
2g−2+n−deg(G)−2 deg(f)

`

⌋
, i.e.:

E(ξ3)
Gpub ·Mh

Gpub ·Mh ·X
...

Gpub ·Mh ·Xλ′

 ·
U1

...
Un

 = 0. (5.7)

• Then we compute the vector (yi)i = (ziy
2
i )i?(ziyi)

−1
i , where ? denotes the component-wises

product.

To conclude this section, we have found all the places Pi, since we know x(Pi) and y(Pi) for
all i ∈ {1, . . . , n}. We found also G = (h) + deg(G)P∞, and then we know the secret elements
of the code Cpub. We can recover these elements in polynomial time from the knowledge of P̃
and G̃, that is the security of Cpub reduces to the security of Cpub

σ. Let us give an algorithm

to summarise this section. In this algorithm, the step “ a $← A” means that the element a is
randomly chosen in A.

Algorithm 7: Recover the code Cpub from the invariant code

Input : A generator matrice Gpub of Cpub, the support P̃ and the divisor G̃ of the
invariant code Cpub

σ

Output: The equation of X , the support P and the divisor G such that
Cpub = SSAGq(X ,P, G)

1 x← (x(P̃1), . . . , x(P̃1)︸ ︷︷ ︸
` times

, x(P̃2), . . . , x(P̃n
`
))

2 From G̃ compute h ∈ Fqm(x) st. G̃ = (h) + deg(G̃)P∞
3 ξ ← an `-th primitive root of unity
4 for i = 1 to `− 1 do
5 S ← Solve(System (5.6))
6 if dim(S) = 1 then

7 s
$← S \ {0}

8 S′ ← Solve(System (5.7))

9 s′
$← S′{0}

10 y← s′ ? s−1

11 f ←Interpolation(x,y`) // Then X is defined by y` = f(x)

12 P := {(xi, yi) | i ∈ {1, . . . , n}}
13 Recover G from the knowledge of G̃ and X
14 return X ,P, G

Actually, if the quotient curve is P1, then the security of the scheme with QC code on a
curve of genus > 0 will be the same as the scheme with QC classical Goppa codes. For the same
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security there no more advantages to use codes on such algebraic curves than classical Goppa
codes.

5.4 The McEliece scheme with QC Hermitian codes

We recall that q denotes a power of a prime p and m refers to the extension degree of a field Fqm .
To define the Hermitian function field we need a quadratic extension, hence we set qm = p2s,
with p a prime number. To avoid misunderstanding with the field Fq, where the SSAG code is
defined, we introduced another field Fq0 with q0 := ps.

5.4.1 The proposed scheme

The Hermitian function field will be defined on Fqm = Fq20 , by H := Fq20 (x, y) with

yq0 + y = xq0+1. (5.8)

The number of rational places of H is N(H) = q3
0 + 1. We denote by P∞ ∈ PH the unique

common pole of x and y, it will be named the place at infinity. The automorphism group of
the Hermitian function field A := Aut(H) has order |A| = q3

0(q2
0 − 1)(q3

0 + 1) (see for instance
[Sti09]). We construct a QC SSAG code Cpub on the Hermitian function field H in the manner
of Section 5.1. In the following, we consider an automorphism σ ∈ A of order ` ∈ N∗. The choice
of ` and σ will be detailed later. In what follows we fix the notation.

• ` denotes a prime divisor of q2
0−1, such that q generates the cyclic group Z/`Z× of nonzero

elements in Z/`Z. We will explain this point in §3.4.6.

• σ ∈ A denotes an automorphism of H, of order `.

• n denotes a positive integer n < N(H) which refers to the length of a code. It should be
an integer multiple of `.

• P ⊆ PH denotes the support of the QC code. It has length n and splits into n
` blocks of

length ` such that each block is an orbit under the action of σ (see Section 5.1).

• G denotes a divisor on H invariant by σ, as defined in 5.1.

Key generation We consider the QC code

Cpub := SSAGq(H,P, G) (5.9)

on the Hermitian curve H, with length n and dimension k. Let t be the correction capability of
the code and Gpub be a quasi-cyclic systematic generator matrix for Cpub, i.e.

Gpub =
(
Ik
∣∣ M

)
with Ik is the k× k identity matrix and M a `-blocks-circulant matrix (see Definition 3.3). The
matrix Gpub can be determined by the following set:

ρ(Gpub) := {Mi | i ∈ {1, `+ 1, 2`+ 1, . . . , (n− k)− `+ 1}},

where Mi is the i-th row of the matrix M.

• Public key: the set ρ(Gpub) and the integer t.

• Private key: the support P and the divisor G.
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Encryption A plain text m ∈ Fkq is encrypted by

y = mGpub + e

where G is the public generator matrix and e ∈ Fnq is a vector of Hamming weight ≤ t.

Decryption Using a decoding algorithm for Hermitian codes (see Section 1.3.5) to find the
codeword c = (y − e) ∈ Cpub. From c we can recover the message m.

Remark 19. Using a systematic generator matrix for the public key can seem unsecured. Actually
the McEliece scheme is not use in this form and there exist several semantically secure conversions
(see [BS08, KI02]). Moreover publishing a systematic generator matrix provides the same security
against structural attacks as a random matrix.

5.4.2 Key security reduction to the key security of the invariant code.

Before choosing parameters for the QC code, we recall the hypothesis of the scheme. By Corollary
5.3, we know that the invariant code of a QC SSAG code on the Hermitian curve, will be an
SSAG code on a quotient curve H/〈σ〉, where σ is the automorphism acting on the support and
the divisor of Cpub. In the case of the proposed scheme, the function field H is known, then
recover Cpub from Cpub

σ is easier than in Section 5.3. We made the following hypothesis for the
scheme.

(i) The curve H and the automorphism σ ∈ Aut(H) are known.

(ii) The support P and the divisor G are secret.

(iii) A generator matrix Gpub of Cpub is public, then a generator matrix Ginv of Cpub
σ is also

known.

Actually, these are the same hypothesis than McEliece scheme using classical Goppa codes.
The first hypothesis permits us to say that the fixed field Hσ is also known. Then when we

know a place P ∈ Hσ, we are able to find any place R ∈ H such that R|P . Then, recovering the
divisor G from G̃ will be immediate. For the support, we can recover a set of places P ′ ⊆ H from
P̃ ⊆ Hσ, but after that we need to order the set P ′ to recover P. This can be done by using the
Support Splitting Algorithm (SSA in short, see [Sen00]). Then we have the following result.

Lemma 5.6. Under the assumption (i), the key security of the QC code Cpub := SSAGq(H,P, G)
reduces to the key security of Cpub

σ.

5.4.3 Model of attacks against the invariant code

In the case where the fixed field is rational, we saw in Section 5.3 and Section 2.4 that is possible
to construct an algebraic system to recover the secret elements of Cpub

σ from a generator matrix
Ginv. Then, in this case, the key security of a QC SSAG code on the Hermitian curve is the same
than a QC alternant code. That is to say, the key security reduces to solve a bilinear system
whose unknowns are the coordinates of points on the projective line. It is possible to propose a
scheme whose key security depends on solving this kind of system, as we did it in Section 3.4.
However, there is no advantage for the key security to use another SSAG code than alternant
code in this context.

The main reason which permits us to construct this algebraic system is that there is only
one class of divisors on P1. Moreover, we know a simple basis for the Riemann-Roch space
associated to a multiple of the point at infinity. Hence, we can compute easily a basis for any
Riemann-Roch space on the projective line. In the following section, we consider the case where
the quotient curve is not rational.



5.4. THE MCELIECE SCHEME WITH QC HERMITIAN CODES 97

Exhaustive search on the quotient curve

As previously, we assume that the automorphism σ is known, hence the fixed field Hσ is also
known. A brute force attack on the invariant code consists in the two following steps.

(i) Enumerating all the possible divisor classes of a given degree on Hσ;

(ii) Guess the divisor in the class;

(iii) Then guess the support of the invariant code.

We first speak about the third step and for this we assume that a divisor G̃ was found. Later
on, the invariant code of the Cpub will be SSAGq(Hσ, P̃, G̃) = CL(Hσ, P̃, G̃) ∩ Fnq .

Recovering the support of the invariant code

To recover the support there are two ways to proceed. The first way consist in performing an
exhaustive search on sets S ⊆ Hσ of length n0 := n

` , then get the good permutation using SSA
algorithm [Sen00].

The second way is to solve a polynomial system. Let us explain how to construct a system
whose solutions are places of the support P̃. Here we assume that we guessed a divisor G′ such
that CL(Hσ, P̃, G′) = CL(Hσ, P̃, G̃)⊥. Since we know the fixed field Hσ, we can assume that we
are able to compute the Riemann-Roch space L(G′) ⊆ Fqm(Hσ). Then we have

∀f ∈ L(G′), (f(P̃1), . . . , f(P̃n0)) ·G>inv = 0,

where Ginv denotes a generator matrix of the invariant code. Later on, we denote L(G′) =
〈f1, . . . , fr〉Fqm . Let us introduce 2n0 formal variables X1, . . . , Xn0 and Y1, . . . , Yn0 corresponding
to the evaluations in x and y at the places of P̃. The system we have to solve is

f1(X1, Y1) · · · f1(Xn0 , Yn0)
f2(X1, Y1) · · · f2(Xn0 , Yn0)

...
...

fr(X1, Y1) · · · fr(Xn0 , Yn0)

 ·G>inv = 0.

We cannot provide a complexity analysis of solving this system for several reasons. First, in the
general case, we cannot estimate the form of the rational function fi and actually the choice of the
system we have to solve is not unique. On the other hand, even if the system is polynomial, the
complexity of solving this kind of system with Gröbner bases, depends on the form of polynomials
and this is difficult to forecast.

Enumeration of divisors

Let us estimate the number of divisors we have to enumerate. First, we notice that, if we fix the
support, two different divisors can produce the same code. Then it is not necessary to enumerate
all divisors of Hσ. Actually, we can define an equivalence relation on the set of codes of same
length and dimension, which permits us to reduce the number of divisors to enumerate.

Definition 5.1. Let C1,C2 ⊆ Fnq be two codes, we say that C1 and C2 are diagonal equivalent,
and we denote C1 ∼diag C2, if there exist λ1, . . . , λn, n non zero elements of Fq, such that

C1 = {(λ1c1, . . . , λncn) | (c1, . . . , cn) ∈ C2}.

Remark 20. When C1 = {(λ1c1, . . . , λncn) | (c1, . . . , cn) ∈ C2} for some non zero vector (λ1, . . . , λn),
we note C1 = (λ1, . . . , λn) ? C2.
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The diagonal equivalence between two codes C1 and C2 can be computed by solving a linear
system. Let GC1 and HC2 be respectively a generator matrix of C1 and a parity check matrix of
C2. Let Z1, . . . , Zn be n formal variables, then we have to solve the following system

GC1 ·

Z1 0
. . .

0 Zn

 ·HC2
> = 0. (5.10)

Hence we have an easy way to know if two codes are diagonal equivalent, it suffices to solve
the system (5.10). If there exist a nonzero solution, then the two codesC1 and C2 are diagonal
equivalent.

The case of AG codes. In the case of AG codes, the following result shows that the diagonal
equivalence class of a code depends only on the equivalent class of its divisor.

Theorem 5.7 ([MP93, Corollary 4.15]). If P is a set of n > 2g − 2 rational places of X ,
where g is the genus of an algebraic curve X , and G and H are two divisors of the same degree
2g − 1 < t < n− 1, then:

CL(X ,P, G) ∼diag CL(X ,P, H)⇔ G ∼ H.

Let AGr(X ,P) be the set of algebraic geometry codes on an algebraic curve X over Fqm ,
defined by the support P and a divisor of degree r. Then we have the following result.

Corollary 5.8. Let X be an smooth algebraic curve over Fqm and g its genus. Let P ⊆ X (Fqm)
be a support of length n > 2g + 2, and r ∈ N such that 2g − 1 < r < n− 1. Then

#(AGr(X ,P)/ ∼diag) = h(X ),

where h(X ) is number of divisor classes.

Proof. This result is the consequence of Theorem 5.7 and Proposition 1.15.

This estimation is sufficient if we want to perform a brute force search on AG codes. We
assume that we know a generator matrix of an AG code C := CL(X ,P, G). We could proceed
as follows.

• Perform a brute force search among divisor classes of degree r, then guess a divisor G′.

• Guess the support P ′ and solve the system (5.10) to check whether the code CL(X ,P ′, G′)
is diagonal equivalent to the code C .

• If the system (5.10) has a solution, then we found a divisor G′, a support P ′ and a vector
(λ1, . . . , λn) ∈ (F∗qm)n such that the code C is (λ1, . . . , λn) ? CL(X ,P ′, G′).

The case of SSAG codes. For subfield subcodes of AG codes, the estimate of the cost of
the brute force search is more complicated. Indeed Theorem 5.7 cannot be applied on subfield
subcodes. We can use the following result to have a first estimate of the number of SSAG codes.

Proposition 5.9 ([MP93, Corollary 7.4]). If n > 2g + 2 and 2g − 1 < r < n, then

#AGr(X ,P) = (qm − 1)n−1h(X ).
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Let SSAGq,r(X ,P) be the set of subfield subcodes on Fq of AG codes on an algebraic curve
X , defined by the support P and a divisor of degree r. With the previous proposition, it is clear
that

#SSAGq,r(X ,P) ≤ #AGr(X ,P) = (qm − 1)n−1h(X ).

Actually, we can decrease a little the previous bound with the following remark.

Remark 21. If C1 = (λ1, . . . , λn) ? C2, with C1,C2 ⊆ Fnqm and λ1, . . . , λn ∈ F∗q , then

C1 ∩ Fnq = C2 ∩ Fnq .

This leads to the upper bound

#SSAGq,r(X ,P) ≤ (qm − 1)n−1

(q − 1)n−1
h(X ).

Brute force algorithm. In Algorithm 8, Clr(X ) denotes the group of divisor classes of degree
r (see Definition 1.27). For all divisor G ∈ Div(X ) of degree r, we denote [G] its class in Clr(X ).

Algorithm 8: Brute force on SSAG
Input : A generator matrix G of an SSAG code C and an integer r which the degree of

the divisor
Output: The support P and the divisor G such that C = SSAGq(X ,P, G)

1 S ← {P ∈ X | P of degree 1} // The order of S is fixed
2 for [G] ∈ Clr(X ) do
3 C ′ ← SSAG(X , S,G) // G will be a representative of [G]

4 for [v] ∈ Fnqm/Fnq do
5 /* v will be a representative of [v] */
6 for I ⊆ {1, . . . , N(X )− 1} with |I| = n do
7 C ′I ← PunctI(C ′)
8 π ← SSA(v ? C ′I ,C ) // SSA return a permutation π or ‘?’
9 if π ∈ Sn then

10 SI ← {Pi ∈ S | i ∈ I}
11 return π(SI), G and v

The complexity of Algorithm 8 is at least the cost of the exhaustive search on G and v. Then
we estimate that the cost of the brute force search to find the code C is at least

((qm − 1)n−1 − (q − 1)n−1)h(X ) operations over Fq.

By Theorem 1.16 we know that

(
√
qm − 1)2g ≤ h(X ) ≤ (

√
qm + 1)2g.

Then we can write that h(X ) ∈ O(qmg) and the cost of the enumeration of divisor classes [G] in
Clr(X ) and vectors in Fqm \ Fq is in O(qm(n−1)+mg).

The case of QC Hermitian codes. In the previous discussion we treat the general case
of SSAG codes. Here the case of interest is the invariant code of some QC SSAG codes over
the Hermitian curve. That is, we want to estimate the cost of an exhaustive search on SSAG
codes over a fixed field Hσ for some σ ∈ A. As we said previously, we only treat the cost of
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the enumeration of equivalent divisors in Clr(Hσ), where r is a parameter of the scheme. If Fq
denotes the base field of the SSAG code, in §5.4.3 we estimate this cost to be

O(qm(n−1)+mg) operations in Fq,

where g denotes the genus of Hσ, m the extension degree of the SSAG code and n its length.
We can make an observation about this estimation. It depends on the choice of the automor-

phism σ, since it depends on the genus of Hσ. In the following section we talk about the choice
of σ and in particular we give the genus of Hσ for our choice of σ.

5.4.4 The choice of the automorphism σ.

The choice of the automorphism σ is important, as we just explain in the previous section, the
structure of the fixed field Hσ can be useful to attack the scheme. In a first time we describe the
group where σ will be chosen. In a second part, we discuss the influence of σ in the complexity
of attacks against the invariant code which are explained in Section 5.2.

We denote by A(P∞) the subgroup consisting in all automorphisms σ ∈ A such that σ(P∞) =
P∞. An element of A(P∞) acts as follows:{

σ(x) = ax+ b,

σ(y) = aq0+1y + abq0x+ c,
(5.11)

with a ∈ F∗
q20
, b ∈ Fq20 and bq0+1 = cq0 + c (see [GSX00]). It has order |A(P∞)| = q3

0(q2
0 − 1).

In the following, we identify an automorphism σ ∈ A(P∞) with a triple [a, b, c]. The order of σ
depends only on the order of a and on the choice of c.

Lemma 5.10 ([GSX00, Lemma 4.1]). Let σ := [a, b, c] ∈ A(P∞) with a 6= 1. Then we have

(i) If ord(a) is not a divisor of q0 + 1, then ord(σ) = ord(a).

(ii) If ord(a) divides q0 + 1 then

ord(σ) =

{
ord(a) if c = abq0+1

a−1

p · ord(a) otherwise.

Let a ∈ F∗q2 be an element of order ` > 2 with `|(q2
0 − 1) and b ∈ Fq20 . If ` divides q0 + 1, we

chose c = abq0+1

a−1 , else we chose randomly c over the roots of zq0 + z − bq0+1. We consider the
automorphism σ := [a, b, c], by the previous lemma it has order `.

Complexity of exhaustive search on divisors of Hσ. The quotient curves of the Hermitian
curve have been studied in [GSX00] and the authors provide a formula to compute the genus of
the fixed field Hσ. Let us recall this result.

Proposition 5.11. Let σ := [a, b, c] ∈ A(P∞) be an automorphism of order ` > 2, such that `
is prime. Then we have

(i) If ` divides (q0 − 1), then g(Hσ) = (q0−1)q0
2` ·

(ii) If ` divides (q0 + 1) and c = abq0+1

a−1 , then g(Hσ) = (q0−1)(q0−(`−1))
2` ·

Proof. It is a particular case of [GSX00, Theorem 4.4].
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We notice that to avoid the case g(Hσ) = 0, ` should be strictly less than q0 + 1. We will see
other conditions on ` in Section 5.4.5. With the previous proposition we can estimate the class
number h(Hσ). As a consequence of Proposition 5.11 and Theorem 1.16, we have the following
result.

Corollary 5.12. Let σ := [a, b, c] ∈ A(P∞) be an automorphism of order ` > 2, such that ` is
prime. Then we have

(i) If ` divides (q0 − 1), then h(Hσ) = Θ
(
q
q20
`

0

)
.

(ii) If ` divides (q0 + 1) and c = abq0+1

a−1 , then h(Hσ) = Θ
(
q
q0(q0−`)

`
0

)
.

The number of divisor classes h(Hσ) is a lower bound for the cost of Algorithm 8. Actually,
in most of parameters which we propose in Section 5.4.5, this number is large enough to reach
a complexity larger that 2128 operations in the field Fq. This number depends on the field Fq0
and on the order of quasi-cyclicity `. The choice of these two parameters will be discussed in the
following section.

5.4.5 Suggested parameters.

The last thing to do is to choose the quasi-cyclicity order `, the field Fq and the extension degree
m. These choices are related between them and to the parameters of the public code. The
discussion about the order of quasi-cyclicity was already done in §3.4.6. The choice for ` remains
the same for condition (i). For the second condition we have to replace the number 2 be q. That
is we have the two following conditions.

(i) ` should be prime.

(ii) ` should be such that q is an (` − 1)-th primitive root of 1, which leads that the
polynomial 1 + z + · · ·+ z`−1 is irreducible in Fq[z].

Remark 22. If p - ` then the folded code equals to the invariant code (see Lemma 3.1). In the
following, we always have p - `. Hence, if we choose ` which satisfies (i) and (ii), then the only
subcode that an attacker can construct, by the manners described previously, is the invariant
code Cpub

σ.

Choice of the field Fq and extension degree m. To provide SSAG codes over Fq, defined
on a Hermitian function field, we have to choose a finite extension Fqm of Fq. Let us discuss the
choice of q and m.

• First we can notice that q and m must be chosen such that qm is a square. Indeed the
Hermitian function field must be defined on a quadratic extension Fq20 . In the following,
the choice of q0, which is related to q and m, will also be discussed.

• m should be not too large since it has a negative influence on the dimension of the code.
Indeed, for a fixed length n and a fixed divisor G, the lower bound on the dimension is
n−m(n− `(G)). This leads to a negative influence of m on the rate of the code.

• We can make the same remark for q0, about the negative influence on the dimension. If
we look at the lower bound on the dimension we have

k ≥ n−m(n− `(G)) = n−m(n− deg(G) + g − 1),

with g := q0(q0−1)
2 . Then q0 should not be too large as m.



102CHAPTER 5. SHORTMCELIECE KEYS FROMCODES ON CURVESWITH POSITIVE GENUS

• On the other hand, the choice q = q0 and m = 2, which could be a good choice with respect
to the two previous points, is not encouraged. Let us give some informal arguments about
this. The smaller the extension degree m, the closer the structure of the SSAG code to
that of the AG code. We recall that the AG codes have been broken in polynomial time in
[CMCP17], and that for codes on the projective line, some Goppa codes with m = 2 have
also be broken in polynomial time [COT17]. We actually do not know if the same attacks
are possible on SSAG codes on the Hermitian function field. We made the choice to give
some parameters with m = 2, because it provides the best key sizes. However, we warn
the reader that it could be the weakest keys.

Parameters. We recall the notation that will be used in the following table.

• q is a power of a prime. The SSAG code is defined on Fq.

• m is the extension degree of the field of definition of the support and divisor over Fq.

• q0 is a prime power such that q2
0 = qm. The Hermitian function field is defined on Fq20 .

• ` is the order of quasi-cyclicity of the SSAG code, satisfying (i) and (ii).

• n is the length of the SSAG code, divisible by `.

• k is the dimension of the SSAG code.

• wISD is the work factor for message recovery. It is computed using CaWoF library
[CT16a].

m q q0 n k ` Key size wISD g(Hσ) h(Hσ)
(bytes)

8 2 24 4083 2307 3 170718 128 40 ≈ 2326

8 2 24 4085 2315 5 102438 129 24 ≈ 2196

4 22 24 3000 1245 3 182416 128 40 ≈ 2326

4 22 24 3000 1250 5 109687 129 24 ≈ 2196

3 32 33 2996 1337 7 158434 129 39 ≈ 2374

Table 5.1: Suggested parameters for security 128, with m > 2

In the following table, we have q0 = q, since m = 2. For some parameters, h(Hσ) < 2128, so
we precise the number of different SSAG codes over Fq, with the same support P ⊆ H and the
degree of the divisor equals to r. As in Section 5.4.3, we denote this number #SSAGq,r(H,P).

m q n k ` Key size wISD g(Hσ) h(Hσ) #SSAGq,r(H,P)
(bytes)

2 11 900 513 3 33088 129 15 ≈ 2107 ≈ 26316

2 11 1200 740 5 34040 128 11 ≈ 278 ≈ 28360

2 13 1299 735 3 69090 131 26 ≈ 2197 ≈ 29793

2 13 994 539 7 17517 130 6 ≈ 245 ≈ 27386

Table 5.2: Suggested parameters for security 128, with m = 2
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Appendix A

Two-Point Codes for the Generalised
GK curve

We improve previously known lower bounds for the minimum distance of certain two-point
AG codes constructed using a Generalized Giulietti–Korchmaros curve (GGK). Castellanos
and Tizziotti recently described such bounds for two-point codes coming from the Giulietti–
Korchmaros curve (GK). Our results completely cover and in many cases improve on their results,
using different techniques, while also supporting any GGK curve. Our method builds on the or-
der bound for AG codes: to enable this, we study certain Weierstrass semigroups. This allows
an efficient algorithm for computing our improved bounds. We find several new improvements
upon the MinT minimum distance tables.

A.1 Introduction

Algebraic geometry (AG) codes are a class of linear codes constructed from algebraic curves
defined over a finite field. This class continues to provide examples of good codes when consid-
ering their basic parameters: the length n, the dimension k, and the minimum distance d. If
the algebraic curve used to construct the code has genus g, the minimum distance d satisfies the
inequality d ≥ n− k + 1− g. This bound, a consequence of the Goppa bound, implies that the
minimum distance of an AG code can be designed. It is well known that the Goppa bound is
not necessarily tight, and there are various results and techniques which can be used to improve
upon it in specific cases. Such a result has been given in [Mat01, Thm. 2.1], where the Goppa
bound is improved by one. Another approach to give lower bounds on the minimum distance of
AG codes is described in [HvLP98] and the references therein. This type of lower bound is often
called the order bound ; various refinements and generalizations have been given, for example in
[Bee07, DKP11].

To obtain good AG codes, the choice of the algebraic curve in the construction plays a
key role. A very good class of curves are the so-called maximal curves, i.e., algebraic curves
defined over a finite field having as many rational points as allowed by the Hasse–Weil bound.
More precisely, a maximal curve of genus g defined over a finite field Fq with q elements, has
q+1+2

√
qg Fq-rational points, i.e., points defined over Fq; this only makes sense if the cardinality

q is a square number. An important example of a maximal curve is the Hermitian curve, but
recently other maximal curves have been described [GK09, GGS10], often called the generalized
Giulietti–Korchmáros (GK) curves. In this article we continue the study of two-point AG codes
coming from the generalized GK curves that was initiated in [CT16b]. However, rather than
using the improvement upon the Goppa bound from [Mat01], we use the order bound as given in
[Bee07]. As a matter of fact, we also show that the order bound from [Bee07] implies Theorem
2.1 in [Mat01]. Thus, we will automatically recover all the results in [CT16b], but on various
occasions we obtain better bounds for the minimum distance than the ones reported in [CT16b].
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We will also paraphrase the order bound from [Bee07] and explain how we have computed it. A
key object in this computation is a two-point generalization of a Weierstrass semigroup given in
[BT06], and therefore some time will be used to describe this semigroup explicitly in the case of
certain pairs of points on the generalized GK curve.

After finishing this work, we were made aware of the contemporaneous work [HY17]. In
[HY17] multi-point codes and their duals from the generalized GK function field are constructed
and investigated. Proposition A.15 is different from, but akin to [HY17, Thm. 2] and similar
proof techniques were used. The techniques used in [HY17] to analyse the code parameters are
very different from ours and more related to the ones used in [CT16b]. Our main tools, the
explicit computation of the map τ0,∞ in Corollary A.11 and the resulting algorithm to compute
the order bound, were not employed in [HY17]. Our improvements on the MinT code tables are
not present in [HY17].

A.2 Preliminaries

Though later we will only consider the generalized GK curves, we will in this section consider
any algebraic curve χ defined over a finite field Fq. The field of functions on χ, or briefly the
function field of χ, will be denoted by Fq(χ), while the genus of χ is denoted by g(χ). Rather
than using the language of curves, we will formulate the theory using the language of function
fields; see [Sti09] for more details. In particular, we will speak about places of Fq(χ) rather than
points of χ. For any place Q of Fq(χ), we denote by vQ the valuation map at the place Q. The
valuation vQ : Fq(χ) \ {0} → Z sends a nonzero function f to its order of vanishing at Q. If
vQ(f) < 0, one also says that f has a pole of order −vQ(f) at Q.

A divisor of Fq(χ) is a finite formal sum
∑

i niQi of places Qi of Fq(χ), where the ni’s are
integers in Z. The support of a divisor

∑
i niQi is the (finite) set of places {Qi | ni 6= 0}. Finally,

we call two divisors disjoint if they have disjoint supports. To any nonzero function f ∈ Fq(χ)
one can associate two divisors (f) and (f)∞ known as the divisor of f and the divisor of poles
of f respectively, given by:

(f) :=
∑
Q

vQ(f)Q and (f)∞ :=
∑

Q;vQ(f)<0

−vQ(f)Q.

If all the coefficients ni in a divisor G =
∑

i niQi are nonnegative, we call G an effective divisor;
notation G ≥ 0.

We now recall some notations for AG codes; we again refer to [Sti09] for a more comprehensive
exposition. Let P = {P1, . . . , Pn} be a set of n distinct rational places of Fq(χ), i.e., places of
degree 1, and define the divisorD = P1+· · ·+Pn. Further letG be a divisor such that deg(G) < n
and G does not contain any place of P. We consider the following map:

EvP : Fq(χ)P −→ Fn
f 7−→ (f(P1), . . . , f(Pn)).

Here Fq(χ)P denotes the subset of Fq(χ) consisting of functions not having a pole at any P ∈ P.
Then we define the AG code CL(D,G) by CL(D,G) := {EvP(f) | f ∈ L(G)}. Here L(G)
denotes the Riemann–Roch space L(G) := {f ∈ Fq(χ) \ {0} | (f) + G ≥ 0} ∪ {0}. It is well
known that the minimum distance d of CL(D,G) (resp. CL(D,G)⊥) satisfies the Goppa bound
d ≥ n− deg(G) (resp. d ≥ deg(G)− 2g(χ) + 2).

Here, we will make use of another lower bound for the minimum distance of CL(D,G)⊥,
obtained in [Bee07]. We will use the notions of G-gaps and G-non-gaps at a place Q, which were
for example also used in [GKL93].
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Definition A.1. Let Q be a rational place and G be a rational divisor of Fq(χ). We define
L(G+∞Q) :=

⋃
i∈Z L(G+ iQ) and

H(Q;G) := {−vQ(f) | f ∈ L(G+∞Q) \ {0}}.

We call H(Q;G) the set of G-non-gaps at Q. The set

Γ(Q;G) := Z≥vQ(G)−deg(G) \H(Q;G)

is called the set of G-gaps at Q.

Note that if G = 0 we obtainH(Q; 0) = H(Q), the Weierstrass semigroup ofQ, and Γ(Q; 0) =
Γ(Q), the set of gaps at Q. Further, note that if i ∈ H(Q;F1) and j ∈ H(Q;F2), then i + j ∈
H(Q;F1 + F2). Finally, observe that the theorem of Riemann–Roch implies that the number of
G-gaps at Q coincides with the genus of χ, that is, |Γ(Q;G)| = g(χ).

Remark 23. If i < −deg(G) then deg(G + iQ) < 0 and L(G + iQ) = {0}. So in the previous
definition we can write L(G +∞Q) =

⋃
i≥− deg(G) L(G+ iQ). Further, note that for any a ∈ Z

we have L(G + aQ + ∞Q) = L(G + ∞Q) and hence H(Q;G + aQ) = H(Q;G) as well as
Γ(Q;G+ aQ) = Γ(Q;G).

Definition A.2. Let Q be a rational place and let F1, F2 be two divisors of χ. As in [Bee07]
we define

N(Q;F1, F2) := {(i, j) ∈ H(Q;F1)×H(Q;F2) | i+ j = vQ(G) + 1},
ν(Q;F1, F2) := |N(Q;F1, F2)|.

Proposition A.1. [Bee07, Prop. 4] Let D = P1 + · · ·+Pn be a divisor that is a sum of n distinct
rational places of Fq(χ), Q be a rational place not occurring in D, and F1, F2 be two divisors
disjoint from D. Suppose that CL(D,F1 + F2) 6= CL(D,F1 + F2 + Q). Then, for any codeword
c ∈ CL(D,F1 + F2)⊥ \ CL(D,F1 + F2 +Q)⊥, we have

wH(c) ≥ ν(Q;F1, F2).

In particular, the minimum distance d(F1 + F2) of CL(D,F1 + F2)⊥ satisfies

d(F1 + F2) ≥ min{ν(Q;F1, F2), d(F1 + F2 +Q)},

where d(F1 + F2 +Q) denotes the minimum distance of CL(D,F1 + F2 +Q)⊥.

To arrive at a lower bound for the minimum distance of CL(D,G)⊥, one applies this proposi-
tion in a recursive manner. More precisely, one constructs a sequence Q(1), . . . , Q(N) of not neces-
sarily distinct rational places, none occurring in D, such that CL(D,G+Q(1) + · · ·+Q(N))⊥ = 0.
Such a sequence exists, since the theorem of Riemann–Roch implies that CL(D,G+Q(1) + · · ·+
Q(N)) = Fnq as soon as N ≥ 2g(χ)− 1 +n− deg(G). Then, the code CL(D,G)⊥ has for example
minimum distance at least min ν(Q(i);G + Q(1) + · · · + Q(i−1), 0), where the minimum is taken
over all i satisfying 1 ≤ i ≤ N and CL(D,G+Q(1) + · · ·+Q(i−1)) 6= CL(D,G+Q(1) + · · ·+Q(i)).

The well known Goppa bound is a direct consequence of Proposition A.1 as shown in [Bee07,
Lem. 9]. We will need the following slightly more general version of [Bee07, Lem. 9].

Lemma A.2. Let D = P1 + · · · + Pn be a sum of distinct rational places, let Q be a rational
place not occurring in D, and let F1, F2 be two divisors disjoint from D. Then ν(Q;F1, F2) ≥
deg(F1 + F2)− 2g + 2.
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Proof. Define the formal Laurent series

pQ;F1(t) :=
∑

i∈H(Q;F1)

ti and pQ;F2(t) :=
∑

i∈H(Q;F2)

ti.

Then ν(Q;F1, F2) is the coefficient of tvQ(F1+F2)+1 in the Laurent series pQ;F1(t) · pQ;F2(t). The
lemma follows by analyzing this product carefully. First we introduce

qQ;F1(t) :=
∑

i∈Γ(Q;F1)

ti and qQ;F2(t) :=
∑

i∈Γ(Q;F2)

ti.

Then

pQ;F1(t) + qQ;F1(t) =
tvQ(F1)−deg(F1)

1− t
and pQ;F2(t) + qQ;F2(t) =

tvQ(F2)−deg(F2)

1− t
,

implying that

pQ;F1(t) · pQ;F2(t) = tvQ(F1+F2)−deg(F1+F2)

(
1

(1− t)2
− 2g(χ)

1− t

+
g(χ)− t−vQ(F2)+deg(F2)qQ;F2(t)

1− t
+
g(χ)− t−vQ(F1)+deg(F1)qQ;F1(t)

1− t

)
+ qQ;F1(t) · qQ;F2(t).

Since both t−vQ(F1)+deg(F1)qQ;F1(t) and t−vQ(F2)+deg(F2)qQ;F2(t) are a sum of g(χ) distinct non-
negative powers of t, the last three Laurent series in the above expression are in fact finite Laurent
series with nonnegative coefficients. Hence the coefficient of tvQ(F1+F2)+1 in pQ;F1(t) · pQ;F2(t) is
bounded from below by the corresponding coefficient in

tvQ(F1+F2)−deg(F1+F2)
(
1/(1− t)2 − 2g(χ)/(1− t)

)
,

which is deg(F1 + F2)− 2g(χ) + 2.

In this paper, we are interested in a lower bound on the minimum distance for two-point
AG codes. We will typically apply Proposition A.1 to the special setting where F1 = 0 and
F2 = G = a1Q1 + a2Q2, with Q1, Q2 two rational places of Fq(χ). Hence we want to compute
ν(Q;G) := ν(Q; 0, G) where G = a1Q1 + a2Q2. Furthermore, we will only consider the case
where Q ∈ {Q1, Q2}. In order to compute the number ν(Q;G), we need to know the Weierstrass
semigroup H(Q) and the set H(Q;G) of G-non-gaps at Q. A very practical object in this setting
is a two-point generalization of the Weierstrass semigroup and a map between two Weierstrass
semigroups considered in [BT06]:

Definition A.3. Let Q1, Q2 be two distinct rational places of Fq(χ). We define R(Q1, Q2) :=
{f ∈ Fq(χ) | Supp((f)∞) ⊆ {Q1, Q2}}, the ring of functions on χ that are regular outside the
points Q1 and Q2. The two-point Weierstrass semigroup of Q1 and Q2 is then defined as:

H(Q1, Q2) := {(n1, n2) ∈ Z2 | ∃f ∈ R(Q1, Q2) \ {0}, vQi(f) = −ni, i ∈ {1, 2}}.

Further we define the following map:

τQ1,Q2 : Z −→ Z
i 7−→ min{j | (i, j) ∈ H(Q1, Q2)}.

Remark 24. Note that H(Q1, Q2) ⊆ {(i, j) ∈ Z2 | i + j ≥ 0}, since L(iQ1 + jQ2) = {0} if
i + j < 0. In particular, we have for any i ∈ Z that τQ1,Q2(i) ≥ −i. Moreover, the theorem of
Riemann–Roch implies that τQ1,Q2(a1) ≤ 2g(χ)− a1.
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Proposition A.3. [BT06, Prop. 14] Let Q1, Q2 be two distinct rational places of Fq(χ). The
map τQ1,Q2 is bijective and τ−1

Q1,Q2
= τQ2,Q1.

By the definitions of τQ1,Q2 and H(Q1, Q2), for all i ∈ Z there exists a function f
(i)
Q1,Q2

∈
R(Q1, Q2) such that vQ1(f

(i)
Q1,Q2

) = −i and vQ2(f
(i)
Q1,Q2

) = −τQ1,Q2(i). Since τQ1,Q2 is a bijection,

the functions f (i)
Q1,Q2

have distinct pole orders at Q1 as well as Q2.

Theorem A.4. Let Q1, Q2 be two distinct rational places of χ and a1, a2 ∈ Z≥0. The Riemann–
Roch space L(a1Q1 + a2Q2) has dimension |{i ≤ a1 | τQ1,Q2(i) ≤ a2}| and basis

{f (i)
Q1,Q2

| i ≤ a1 and τQ1,Q2(i) ≤ a2}.

Proof. Consider the filtration of F-vector spaces:

L(a1Q1+a2Q2) ⊇ L((a1−1)Q1+a2Q2) ⊇ · · · ⊇ L(−a2Q1+a2Q2) ⊇ L(−(a2+1)Q1+a2Q2) = {0}.

For −a2 ≤ i ≤ a1, the strict inequality `(iQ1 + a2Q2) > `((i − 1)Q1 + a2Q2) holds if and only
if there exists a function f ∈ Fq(χ) such that (f)∞ = iQ1 + jQ2 with j ≤ a2. Such a function
exists if and only if τQ1,Q2(i) ≤ a2. Hence, `(a1Q1 + a2Q2) = |{−a2 ≤ i ≤ a1 | τQ1,Q2(i) ≤ a2}|.
Since τQ1,Q2(i) ≥ −i, we see that `(a1Q1 + a2Q2) = |{i ≤ a1 | τQ1,Q2(i) ≤ a2}| as was claimed.

A basis for L(a1Q1 + a2Q2) can be directly derived from the above, since the set

{f (i)
Q1,Q2

| i ≤ a1 and τQ1,Q2(i) ≤ a2}

is a subset of L(a1Q1 +a2Q2) consisting of `(a1Q1 +a2Q2) linearly independent functions. Note
that the linear independence follows from the fact the functions have mutually distinct pole
orders at Q1.

A direct corollary is an explicit description of the (a1Q1 + a2Q2)-gaps and non-gaps at Q1.

Corollary A.5. Let G = a1Q1 + a2Q2. Then the set of G-non-gaps at Q1 is given by

{a ∈ Z | τQ1,Q2(a) ≤ a2}

and the set of G-non-gaps at Q2 is given by

{b ∈ Z | τ−1
Q1,Q2

(b) ≤ a1}.

Proof. The first part follows directly from the previous theorem by considering basis of L(aQ1 +
a2Q2) for a tending to infinity. Reversing the roles of Q1 and Q2, the second part follows.

This corollary implies that for G = a1Q1 + a2Q2, it is not hard to compute the G-gaps at
either Q1 or Q2 once the bijection τQ1,Q2 can be computed efficiently. We show in an example
that this does occur in a particular case. Moreover, in the next section we will give a very explicit
description of τQ1,Q2 for a family of function fields and pairs of rational points Q1 and Q2.

Example 10. The Hermitian curveH is the curve defined over Fq2 by the equation xq+x = yq+1.
The corresponding function field Fq2(H) is called the Hermitian function field. For any two
distinct rational places Q1 and Q2 of Fq2(H), the map τQ1,Q2 satisfies τQ1,Q2(i) = −iq for
q ≤ i ≤ 0. Since furthermore τQ1,Q2(i+ q + 1) = τQ1,Q2(i)− (q + 1) for any i ∈ Z, this describes
τQ1,Q2 completely. See [BT06] for more details. This example also appears as a special case in
the next section.
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A.3 The generalized Giulietti–Korchmáros function field

Let e ≥ 1 be an odd integer. We consider the generalized Giulietti–Korchmáros (GK) curve χe,
also known as the Garcia–Güneri–Stichtenoth curve [GGS10]. It is defined over the finite field
Fq2e by the equations

xq + x = yq+1 and z
qe+1
q+1 = yq

2 − y.

This is a maximal curve when considered over the finite field Fq2e . Indeed, its genus and number
of rational points are

g(χe) := (q − 1)(qe+1 + qe − q2)/2,

Ne := q2e+2 − qe+3 + qe+2 + 1.

As before, we will use the language of function fields and denote the corresponding function
field Fq2e(χe) as the generalized GK function field. For e = 1 one simply obtains the Hermitian
function field Fq2(H), while for e = 3, one obtains what is known as the Giulietti–Korchmáros
function field [GK09].

The function x ∈ Fq2e(χe) has exactly one zero and one pole, which we will denote by Q0 and
Q∞ respectively. The functions y and z also have a pole at Q∞ only. For a given rational place
P of Fq2e(χe) different from Q∞, we call (x(P ), y(P ), z(P )) ∈ F3

q2e the coordinates of P . For the
function field Fq2e(χe), rational places are uniquely determined by their coordinates. A place
with coordinates (a, b, c) ∈ F3

q2e will be denoted by P(a,b,c). In particular, we have Q0 = P(0,0,0).
With these notations, we can express the divisors of x, y and z as follows:

(x) = (qe + 1)(Q0 −Q∞),

(y) =
∑
a∈Fq

aq+a=0

qe + 1

q + 1
P(a,0,0) − q

qe + 1

q + 1
Q∞,

(z) =
∑

(a,b)∈Fq2
aq+a=bq+1

P(a,b,0) − q3Q∞.

In each summation, the point P(0,0,0) = Q0 occurs. For future reference we also note that for
k ∈ Z and ` ≥ 0,m ≥ 0 we have

(xky`zm) =

(
k(qe + 1) + `

qe + 1

q + 1
+m

)
Q0 −

(
k(qe + 1) + `q

qe + 1

q + 1
+mq3

)
Q∞ + E, (A.1)

with E an effective divisor with support disjoint from {Q0, Q∞}. The above information is enough
to determine that H(Q∞), the Weierstrass semigroup of Q∞, is generated by q3, q q

e+1
q+1 and qe+1.

Theorem A.6 ([GÖS13], Cor.3.5). We have H(Q∞) =

〈
q3, q

qe + 1

q + 1
, qe + 1

〉
.

A direct consequence of this theorem is a description of Γ(Q∞), the set of gaps of H(Q∞).

Corollary A.7. The set Γ(Q∞) of gaps of H(Q∞) is given by{
k(qe + 1) + `q

qe + 1

q + 1
+mq3 |

0 ≤ ` ≤ q, 0 ≤ m <
qe + 1

q + 1
, k < 0, k(qe + 1) + `q

qe + 1

q + 1
+mq3 ≥ 0

}
.



A.3. THE GENERALIZED GIULIETTI–KORCHMÁROS FUNCTION FIELD 119

Proof. Any integer can uniquely be written in the form k(qe + 1) + `q q
e+1
q+1 +mq3, with k, ` and

m integers satisfying 0 ≤ ` ≤ q, 0 ≤ m < qe+1
q+1 . To be an element of H(Q∞) the additional

requirement is simply that k ≥ 0. Since Γ(Q∞) = N \H(Q∞), the corollary follows.

We now give a further consequence of Theorem A.6: a complete description of the ring of
functions that are regular outsideQ∞; that is to say, the functions having no poles except possibly
at Q∞. The next result follows directly from the similar statement in [GÖS13, Prop. 3.4].

Corollary A.8. The ring R(Q∞) of functions in Fq2e(χe) regular outside Q∞ is given by
Fq2e [x, y, z].

For the AG codes that we wish to study, we in fact need to understand a larger ring of
functions, allowing functions that may have a pole in Q∞ as well as Q0. An explicit description
of this ring is given in the following corollary.

Corollary A.9. The ring R(Q0, Q∞) of functions in Fq2e(χe) regular outside {Q0, Q∞} is given
by Fq2e [x, x−1, y, z].

Proof. It is clear from Eq. (A.1) that any function in Fq2e [x, x−1, y, z] is regular outside {Q0, Q∞}.
Conversely, if a function f has no pole outside {Q0, Q∞}, then for a suitably chosen exponent
k, the function xkf has no pole outside Q∞. Hence xkf ∈ R(Q∞). Corollary A.8 implies that
f ∈ Fq2e [x, x−1, y, z].

Corollary A.9 implies that the ringR(Q0, Q∞) has a natural module structure over Fq2e [x, x−1].
When viewed as such a module, R(Q0, Q∞) is free of rank qe + 1 with basis y`zm where
0 ≤ ` < q + 1 and 0 ≤ m < qe+1

q+1 . For e = 1, the above theorem and the mentioned con-
sequences are well known. For e = 3, these results are contained in [GK09, Duu11].

We now turn to the study of the two-point Weierstrass semigroup H(Q0, Q∞). We will
determine this semigroup completely. Equation (A.1) will be used to describe the functions
f

(i)
Q0,Q∞

, resp. the bijection τQ0,Q∞ . For convenience, we will use the more compact notation

f
(i)
0,∞, resp. τ0,∞. Similarly we write τ−1

0,∞ = τ∞,0.

Theorem A.10. Let i ∈ Z and write i = −k(qe + 1) − ` q
e+1
q+1 − m for a triple (k, `,m) ∈ Z3

satisfying 0 ≤ ` < q + 1 and 0 ≤ m < qe+1
q+1 . Then f

(i)
0,∞ = xky`zm.

Proof. By definition of f (i)
0,∞ we have−vQ0(fi) = i and vQ∞(fi) = τ0,∞(i). Suppose f (i)

0,∞ cannot be

chosen as a monomial in x−1, x, y and z. Since by Corollary A.9 we have f (i)
0,∞ ∈ Fq2e [x, x−1, y, z]

we can write

f
(i)
0,∞ =

M∑
α=−N

q∑
β=0

qe−q
q+1∑
γ=0

aαβγx
αyβzγ ,

for integers N,M and constants ak`m ∈ Fq2e . Note that the pole orders at Q0 of each of the
occurring monomials xαyβzγ are distinct. Since −vQ0(f

(i)
0,∞) = i, this implies that there exists a

uniquely determined triple (k, `,m) such that ak`m 6= 0 and i = −k(qe + 1) − ` q
e+1
q+1 −m, while

for all other monomials xαyβzγ occurring in f (i)
0,∞ we have

−α(qe + 1)− β q
e + 1

q + 1
− γ < i.

Likewise, the pole orders at Q∞ of all of the occurring monomials xαyβzγ are distinct. Since
−vQ∞(f

(i)
0,∞) = τ0,∞(i) there exists a uniquely determined triple (k′, `′,m′) such that ak′`′m′ 6= 0
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and τ0,∞(i) = k′(qe + 1) + `′q q
e+1
q+1 + m′q3, while for all other monomials xαyβzγ occurring in

f
(i)
0,∞ we have

α(qe + 1) + βq
qe + 1

q + 1
+ γq3 < τ0,∞(i).

If (k, `,m) 6= (k′, `′,m′), the monomial xky`zm would have pole order i in Q0, but pole order
strictly less than τ0,∞(i) in Q∞, which gives a contradiction by the definition of τ0,∞. Hence we
may take f (i)

0,∞ = xky`zm.

Corollary A.11. Let i ∈ Z, and let (k, `,m) ∈ Z3 be the unique triple such that 0 ≤ ` < q + 1,
0 ≤ m < qe+1

q+1 and i = −k(qe + 1)− ` q
e+1
q+1 −m. Then

τ0,∞(i) = k(qe + 1) + `q
qe + 1

q + 1
+mq3.

Proof. For a given i ∈ Z, the proof of Theorem A.10 implies that f (i)
0,∞ = xky`zm for a uniquely

determined triple (k, `,m) ∈ Z3 such that−i = k(qe+1)+` q
e+1
q+1 +m, 0 ≤ ` ≤ q and 0 ≤ m < qe+1

q+1 .

Hence τ0,∞(i) = −vQ∞(fi) = k(qe + 1) + `q q
e+1
q+1 +mq3 as claimed.

It is interesting to see what can be said about the Weierstrass semigroups H(Q0) and H(Q∞)
using the above tools. First of all, it should be noted that for e = 1 and e = 3, it is well known
that H(Q0) = H(Q∞). The reason is that there exists an automorphism interchanging Q0 to
Q∞. For e > 3, the place Q∞ is fixed by any automorphism of χe and in fact H(Q0) and H(Q∞)
were shown to be distinct in [GÖS13]. However, for any e ≥ 1 the points of the form P(a,b,0)

fall within the same orbit under the action of the subgroup of the automorphism group of χe
consisting of automorphisms fixing Q∞. This means that later on in the article, one can always
exchange the point Q0 with any point of the form P(a,b,0).

It is easy to describe the set Γ(Q0), but it should first be noted that the precise structure
of H(Q0) (and hence of Γ(Q0)) has already been determined in [BMZ18]. For the sake of
completeness and since our description of Γ(Q0) is rather compact, we give the following corollary.

Corollary A.12. The set Γ(Q0) of gaps of the Weierstrass semigroup H(Q0) of the point Q0

on χe is given by{
−k(qe + 1)− `q

e + 1

q + 1
−m |

0 ≤ ` ≤ q, 0 ≤ m <
qe + 1

q + 1
, k < 0, k(qe + 1) + `q

qe + 1

q + 1
+mq3 ≥ 0

}
.

Proof. We denote by Γ(Q∞) (resp. Γ(Q0)) the set of gaps of Q∞ (resp. Q0). It is well known
that τ∞,0 gives rise to a bijection from Γ(Q∞) to Γ(Q0). Since by Corollary A.7 we have

Γ(Q∞) =

{
k(qe + 1) + `q

qe + 1

q + 1
+mq3 |

0 ≤ ` ≤ q, 0 ≤ m <
qe + 1

q + 1
, k < 0, k(qe + 1) + `q

qe + 1

q + 1
+mq3 ≥ 0

}
,

Corollary A.11 implies that Γ(Q0) is as stated.
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A.4 Two-point AG codes on the generalized GK curve.

Since the curves χe are maximal, they are good candidates to be used for the construction of
error-correcting codes. Let the divisor D be the sum of all the rational points of χe different
from Q0 and Q∞. If the support of a divisor G consists of one rational point not in supp(D),
the code CL(D,G) is called a one-point AG code. Similarly, if G = a1Q0 + a2Q∞, the code
CL(D,G) is called a two-point code. By slight abuse of notation, the dual of a one-point code
(resp. two-point code) are sometimes also called one-point (resp. two-point) codes, but we will
only use the terminology for the codes CL(D,G). The main reason we do this is that for any
divisor G with supp(G) ∩ supp(D) = ∅, there exists a divisor H with supp(H) ∩ supp(D) = ∅
such that CL(D,G)⊥ = CL(D,H), but even if the support of G is small, the support of H might
be large. Therefore, in our sense of the word, CL(D,G)⊥ = CL(D,H) may not be a one-point
or two-point code, even if CL(D,G) is.

Duals of one-point codes with defining divisor of the form aQ∞ or aQ0 on the generalized GK
curves were investigated in [FG10, BMZ18]. As we will see below, their analysis of the parameters
of these codes has direct implications for the study of the one-point codes CL(D+Q0, aQ∞) and
CL(D + Q0, aQ0) themselves. Duals of two-point AG codes on the GK curve (i.e. e = 3) have
been studied in [CT16b]. As we will see, their analysis can be refined significantly, yielding more
excellent AG codes. Furthermore, the case e > 3 will be considered.

The theorem used in [CT16b] (which comes from [Mat01, Thm. 2.1]) allows one to improve
the Goppa bound by one for the minimum distance of a nontrivial code defined on an algebraic
curve χ of the form CL(D, (a1 + b1 − 1)Q1 + (a2 + b2 − 1)Q2), where Q1 and Q2 are rational
points not in supp(D). Here, the four nonnegative integers a1, a2, b1, b2 should satisfy

1. a1 ≥ 1,

2. L((a1 − 1)Q1 + a2Q2) = L(a1Q1 + a2Q2),

3. (b1, b2 − 1− t) ∈ Γ(Q1;Q2) for all t satisfying 0 ≤ t ≤ min{b2 − 1, 2g − 1− a1 − a2}.

In the next theorem we show that the order bound in the same situation improves upon the
Goppa bound by at least one as well. Therefore, our results will automatically include all results
in [CT16b] as a special case. First note that L((a1−1)Q1+a2Q2) = L(a1Q1+a2Q2) is equivalent
to saying that τQ1,Q2(a1) > a2 by Theorem A.4. Further the condition that (b1, b2 − 1 − t) ∈
Γ(Q1;Q2) for all t satisfying 0 ≤ t ≤ min{b2− 1, 2g− 1− a1− a2} is equivalent to the statement
that τQ1,Q2(b1) ≥ b2 or τQ1,Q2(b1) < b2−1−min{b2−1, 2g−1−a1−a2}.With these reformulations
in mind, we now show that Proposition A.1 implies [Mat01, Thm. 2.1].

Theorem A.13. Let a1, a2, b1, b2 be nonnegative integers and write G := (a1 + b1−1)Q1 +(a2 +
b2 − 1)Q2. Further suppose that τQ1,Q2(a1) > a2.

1. If τQ1,Q2(b1) ≥ b2, then ν(Q1; (b2 − 1)Q2, a2Q2) > deg(G)− 2g(χ) + 2.

2. If τQ1,Q2(b1) < b2− 1−min{b2− 1, 2g−a1−a2}, then ν(Q2; b1Q1, (a1− 1)Q1) > deg(G)−
2g(χ) + 2.

In particular, in either case the minimum distance of the code CL(D,G)⊥ is at least deg(G) −
2g + 3.

Proof. If τQ1,Q2(b1) ≥ b2, then a1 ∈ Γ(Q1; a2Q2) and b1 ∈ Γ(Q1; (b2−1)Q2). Combining Remark
23 with (the proof of) Lemma A.2 we see that ν(Q1; (a1 − 1)Q1 + a2Q2, b1Q1 + (b2 − 1)Q2) >
deg(G)− 2g(χ) + 2. Indeed, the term qQ1,(a1−1)Q1+a2Q2

(t)qQ1,b1Q1+(b2−1)Q2
(t) will contribute to

the coefficient of tvQ(G)+1 with at least 1. From Proposition A.1 and the Goppa bound applied
to CL(D,G+Q1)⊥, we see that CL(D,G) has minimum distance at least deg(G)− 2g + 3.
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If τQ1,Q2(b1) < b2 and min{b2 − 1, 2g − 1− a1 − a2} = b2 − 1, then we have (b1, b2 − 1− t) ∈
Γ(Q1;Q2) by assumption for all t satisfying 0 ≤ t ≤ b2 − 1. This implies that τQ1,Q2(b1) < 0.
However, since τQ1,Q2(0) = 0 and b1 ≥ 0, we see that (b1, 0) ∈ H(Q1, Q2), giving a contradiction.
This situation can therefore not occur.

If τQ1,Q2(b1) < b2 and min{b2 − 1, 2g − 1 − a1 − a2} = 2g − 1 − a1 − a2, then similarly as
before we have τ(b1) < b2 − 2g + a1 + a2. This implies that b2 − 1 − t ∈ Γ(Q2; b1Q1) for all t
satisfying 0 ≤ t ≤ 2g − 1− a1 − a2. On the other hand, we have τQ1,Q2(a1) ∈ Γ(Q2; (a1 − 1)Q1).
Now using Remark 24, note that

b2 − 2g − a1 − a2 ≤ a2 + b2 − τQ1,Q2(a1) ≤ b2 − 1.

Hence a2 + b2 − τQ1,Q2(a1) ∈ Γ(Q2; b1Q1). The term qQ2,(a1−1)Q1+a2Q2
(t)qQ2,b1Q1+(b2−1)Q2

(t)

will then contribute to the coefficient of tvQ(G)+1 with at least 1. Hence ν(Q2; (a1 − 1)Q1 +
a2Q2, b1Q1 + (b2 − 1)Q2) > deg(G)− 2g(χ) + 2. Proposition A.1 and the Goppa bound applied
to CL(D,G+Q2)⊥, imply that CL(D,G)⊥ has minimum distance at least deg(G)− 2g+ 3.

With the above theorem in place, we could in principle start to compute our lower bound
on the minimum distance of the duals of two-point codes. Before doing that, we show in the
remainder of this section that duals of two-point codes on the generalized GK curve are closely
related to two-point codes. This means that our bounds not only can be applied to the duals
of two-point codes, but to two-point codes themselves as well. In order to do this, we need to
understand the structure of the rational point of χe. The structure of these points is described
explicitly in [ABQ09, GÖS13]. Since e is odd, we write e = 2t+ 1 for some nonnegative integer
t. Apart from Q∞, all rational points are of the form P(a,b,c). There are q3 rational places of the
form P(a,b,0) and q3(qe + 1)(qe−1 − 1) of the form P(a,b,c) with c 6= 0. Both for c = 0 and c 6= 0,
the place P(a,b,c) is unramified in the degree q3 extension Fq2e(χe)/Fq2e(z) by [ABQ09, GÖS13].
This means that there are exactly (qe + 1)(qe−1 − 1) possible nonzero values of c ∈ Fq2e giving
rise to q3 rational places of Fq2e(χe) if the form P(a,b,c). By [ABQ09] these values of c are exactly
the roots of the polynomial

f := 1 +
t−1∑
i=0

z
qe+1
q+1 (q2i+2−1+qe−q) +

t−1∑
i=0

z
qe+1
q+1 (q(q2i+2−1)).

Denoting, as before, by D the divisor which is the sum of all rational points distinct from Q0

and Q∞, this implies that

(zf) = Q0 +D − q3(q2e−1 − qe + qe−1)Q∞. (A.2)

This expression is very useful to determine whether or not two two-point codes are equal. This
comes in very handy, when computing the order bound using Proposition A.1, since one should
only apply this proposition if the codes CL(D,G + Q) and CL(D,G) are distinct. We give a
criterion in the following lemma.

Lemma A.14. Let χe be the generalized GK curve over Fq2e and let the divisor D be the sum
of all its rational places different from Q0 and Q∞. Further let G = a1Q0 + a2Q∞ and Q ∈
{Q0, Q∞}. Then

dim(CL(D,G)) = dim(L(G))− dim(L(G+Q0 − q3(q2e−1 − qe + qe−1)Q∞)).

Furthermore CL(D,G+Q) = CL(D,G) if and only if

dim(L(G+Q))− dim(L(G+Q+Q0 − q3(q2e−1 − qe + qe−1)Q∞)) =

dim(L(G))− dim(L(G+Q0 − q3(q2e−1 − qe + qe−1)Q∞)).
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Proof. First, note that dim(CL(D,G)) = dim(L(G))− dim(L(G−D)). Since dim(L(G−D)) =
dim(L(G − D + (zf))), the first part of the lemma follows from Eq. (A.2). Now applying this
formula to compute the dimension of dim(CL(D,G+Q)), the lemma follows.

Since we know the map τ0,∞ explicitly, it is very easy to check the above criterion using
Theorem A.4.

The function zf from equation (A.2) is also useful when identifying dual two-point codes and
two-point codes. The standard way to identify the dual of an AG code CL(D,G)⊥ with a code
of the form CL(D,H) is to identify a differential on the curve with simple poles in all evaluation
points and residues in these points equal to 1. Equation (A.2) implies that the differential
ω := 1

fzdz has simple poles and nonzero residue in all rational points of the form P(a,b,c). More
precisely, using the defining equations of the curve χe and equation (A.2), we obtain that

(ω) = −Q0 −D + (q2e+2 − qe+3 + 2qe+2 − qe + q2 − 1)Q∞. (A.3)

Since the differential ω has simple poles in all the points in D, its residues at those points will all
be nonzero. However, it turns out that in general these residues are not all 1. Nonetheless, we
can identify an explicit relation between the class of codes CL(D,G) and CL(D,G)⊥. Two codes
C1 and C2 are called equivalent up to column multipliers, which we denote by C1

∼= C2, if there
exist nonzero elements a1, . . . , an such that the map φ : Fqe → Fqe defined by φ(v1, . . . , vn) =
(a1v1, . . . , anvn) satisfies φ(C1) = C2. Note that the basic parameters of such codes C1 and C2,
such as the minimum distance, are the same.

Proposition A.15. Let χe be the generalized GK curve over Fq2e and let the divisor D be the
sum of all its rational places different from Q0 and Q∞. Further let G = a1Q0 + a2Q∞. Then
CL(D,G)⊥ ∼= CL(D,H), where

H = −(a1 + 1)Q0 + (q2e+2 − qe+3 + 2qe+2 − qe + q2 − 1− a2)Q∞.

Proof. Let h := (zf)′ be the derivative of zf with respect to the variable z. Then the differential
η = hω = (zf)′/(zf)dz has simple poles in all the rational points P(a,b,c) of χe. Moreover, in
each of those points, the residue of η is equal to 1. Therefore the standard theory of AG codes
implies that CL(D,G)⊥ = CL(D,H ′), with H ′ = D − G + (η) = D − G + (h) + (ω). Since zf
has simple roots only, its derivative h is nonzero in Q0 and the points in D. Hence the codes
CL(D,H ′) ∼= CL(D,H), with H = D −G+ (ω). Explicitly, the column multipliers are given by
(h(P ))P∈supp(D). Using Eq. (A.3), the lemma follows.

This proposition implies that the class of two-point codes CL(D, a1Q0 +a2Q∞) on the gener-
alized GK curve is essentially the same as the class of codes of the form CL(D, a1Q0 + a2Q∞)⊥.
In particular, the bounds on the minimum distance of codes of the form CL(D, a1Q0 + a2Q∞)⊥

will imply bounds for the minimum distance of codes of the form CL(D, a1Q0 + a2Q∞). Note
that the above proof shows that CL(D,G)⊥ = CL(D,H ′), where

H ′ = −(a1 + 1)Q0 + (q2e+2 − qe+3 + 2qe+2 − qe + q2 − 1− a2)Q∞ + ((zf)′).

However, for our purposes this is less useful, since the divisor of (zf)′ may contains other points
of χe. Therefore CL(D,H ′) is in general not a two-point code, even if CL(D,G) is.

Using the same differential ω as above, we obtain the following corollary for one-point AG
codes on the generalized GK curve.

Corollary A.16. Let χe be the generalized GK curve over Fq2e and let the divisor D be the sum of
all its rational places different from Q0 and Q∞. Further let G = aQ∞. Then CL(D+Q0, G)⊥ ∼=
CL(D +Q0, H), where

H = (q2e+2 − qe+3 + 2qe+2 − qe + q2 − 1− a)Q∞.
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A.5 Computation of the order bound and results

Now that all the theoretical tools are in place, all that is left is to give the lower bounds that we
obtain using the above theory as well as state the improvements on the MinT tables [Min]. We
would also like to explain briefly how we computed these bounds. The given algorithm works
for any of the generalized GK curves χe. We have already seen that the explicit description of
the bijection τ0,∞ in Corollary A.11, implies that for G = a1Q0 + a2Q∞ and Q ∈ {Q0, Q∞}, it
is computationally easy to determine:

1. The dimension of L(G), see Theorem A.4.

2. The dimension of CL(D,G) (and hence of CL(D,G)⊥), see Lemma A.14.

3. The sets H(Q;G) (and hence the value of ν(Q;G)), see Corollary A.5.

What is left is to describe how to find the best recursive use of Proposition A.1. We do this
efficiently by using a dynamic programming approach, in the form of a backtracking algorithm
which starts with large degree divisors, where the order bound coincides with the Goppa bound
and is easy to compute, and then backtracks to smaller degree divisors. A pseudo-code description
is given in Algorithm 9. For q = 2 and e = 3 our results supplement and improve those in [CT16b],
as indicated in Table A.1.
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Algorithm 9: OrderBoundTable
Input : parameters q and e.
Output: array containing the order bound for CL(D, aQ0 + bQ∞)⊥, for a, b ∈ Z≥0 whose

sum a+ b is at most ∆, a bound beyond which the order bound and the Goppa
bound coincide.

1 ge := (q − 1)(qe+1 + qe − q2)/2 // genus of χe

2 Ne := q2e+2 − qe+3 + qe+2 + 1 // number of rational points
3 ∆ := Ne + 2ge // if larger degree, order bound coincides with Goppa bound
4 orderBound := two-dimensional array of size (∆ + 1)× (∆ + 1)
5 for a from ∆ to 0 do
6 orderBound[a,∆− a] = ∆− 2ge + 2 // Goppa bound for degree ∆

7 for δ from ∆− 1 to 0 do
8 // backtrack: iterate on decreasing degree δ = a+ b

9 for a from 0 to δ do
10 b := δ − a
11 /* Walk on the horizontal edge */

U := {Weierstrass semigroup at Q0} ∩ {0, . . . , δ + 1}
12 V := {bQ∞-non-gaps at Q0} ∩ {−b, . . . , a+ 1}
13 U := {a+ 1− u, u ∈ U}
14 w := cardinality of U ∩ V
15 if w 6= 0 and dim(CL(D, aQ0 + bQ∞)) 6= dim(CL(D, (a+ 1)Q0 + bQ∞)) then
16 hbound := min(w, orderBound[a+ 1, b])

17 else
18 hbound := orderBound[a+ 1, b]

19 /* Walk on the vertical edge */
U := {Weierstrass semigroup at Q∞} ∩ {0, . . . , δ + 1}

20 V := {aQ0-non-gaps at Q∞} ∩ {−a, . . . , b+ 1}
21 U := {b+ 1− u, u ∈ U}
22 w := cardinality of U ∩ V
23 if w 6= 0 and dim(CL(D, aQ0 + bQ∞)) 6= dim(CL(D, aQ0 + (b+ 1)Q∞)) then
24 vbound := min(w, orderBound[a, b+ 1])

25 else
26 vbound := orderBound[a, b+ 1]

27 /* Combine the obtained bounds */
28 orderBound[a, b] := max(hbound, vbound)
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n k (a1, a2) d2P d1P n k (a1, a2) d2P d1P

223 222 (0, 0) 2 2 223 203 (22, 7) 13 12
223 221 (6, 0) 2 2 223 202 (22, 8) 13 12
223 220 (8, 0) 2 2 223 201 (31, 0) 14 14
223 219 (11, 0) 3 3 223 200 (28, 4) 15 14
223 218 (13, 0) 3 3 223 199 (28, 5) 16 15
223 217 (14, 0) 3 3 223 198 (28, 6) 17 16
223 216 (8, 7) 4 3 223 197 (28, 7) 18 17
223 215 (16, 0) 4 4 223 196 (28, 8) 19 18
223 214 (17, 0) 5 5 223 195 (37, 0) 20 20
223 213 (19, 0) 6 6 223 10 (215, 7) 205 204
223 212 (20, 0) 6 6 223 9 (216, 7) 206 206
223 211 (21, 0) 6 6 223 8 (217, 7) 207 206
223 210 (22, 0) 6 6 223 7 (218, 7) 208 207
223 209 (19, 4) 8 6 223 6 (219, 7) 209 208
223 208 (19, 5) 9 6 223 5 (220, 7) 211 209
223 207 (19, 6) 9 7 223 4 (222, 7) 214 212
223 206 (19, 7) 10 8 223 3 (231, 0) 215 215
223 205 (19, 8) 11 9 223 2 (226, 6) 217 214
223 204 (28, 0) 12 12 223 1 (228, 6) 223 220

Table A.1: Table A.1 gives for q = 2, e = 3, n = 223 and fixed k a value of (a1, a2) for which
the estimate d2P for the minimum distance of the code CL(D, a1Q0 + a2Q∞)⊥ is largest. It is
compared to the corresponding estimate d1P for the minimum distance of a code of the same
length and dimension of the form CL(D, a1Q0)⊥ or CL(D, a2Q∞)⊥. The four entries in boldface
indicate new improvements on the MinT tables. In [CT16b] it was already shown that the entries
for k ∈ {198, 199} improve the MinT [Min] table, which is why we have not put those two values
in boldface.





Titre :Étude de la sécurité de certaines clés compactes pour le schéma de McEliece utilisant des codes
géométriques

Mots clés : cryptographie à clé publique, codes correcteurs d’erreurs, géométrie algébrique

Résumé : En 1978, McEliece introduit un schéma
de chiffrement à clé publique issu de la théorie des codes
correcteurs d’erreurs. L’idée du schéma de McEliece
est d’utiliser un code correcteur dont la structure est
masquée, rendant le décodage de ce code difficile pour
toute personne ne connaissant pas cette structure. Le
principal défaut de ce schéma est la taille de la clé
publique. Dans ce contexte, on se propose d’étudier
l’utilisation de codes dont on connaît une représentation
compacte, en particulier le cas de codes quais-cyclique
ou quasi-dyadique.

Les deux familles de codes qui nous intéressent
dans cette thèse sont: la famille des codes alternants
et celle des sous–codes sur un sous–corps de codes
géométriques. En faisant agir un automorphisme σ
sur le support et le multiplier des codes alternants, on
sait qu’il est possible de construire des codes alternants
quasi-cycliques. On se propose alors d’estimer la sécu-
rité de tels codes à l’aide du code invariant. Ce sous–
code du code public est constitué des mots du code

strictement invariant par l’automorphisme σ. On mon-
tre ici que la sécurité des codes alternants quasi-cyclique
se réduit à la sécurité du code invariant. Cela est aussi
valable pour les sous–codes sur un sous–corps de codes
géométriques quasi-cycliques. Ce résultat nous permet
de proposer une analyse de la sécurité de codes quasi-
cycliques construit sur la courbe Hermitienne. En util-
isant cette analyse nous proposons des clés compactes
pour la schéma de McEliece utilisant des sous-codes sur
un sous-corps de codes géométriques construits sur la
courbe Hermitienne.

Le cas des codes alternants quasi-dyadiques est
aussi en partie étudié. En utilisant le code invariant,
ainsi que le produit de Schur et le conducteur de deux
codes, nous avons pu mettre en évidence une attaque
sur le schéma de McEliece utilisant des codes alternants
quasi-dyadique de degré 2. Cette attaque s’applique no-
tamment au schéma proposé dans la soumission DAGS,
proposé dans le contexte de l’appel du NIST pour la
cryptographie post-quantique.

Title: On the security of short McEliece keys from algebraic and algebraic geometry codes with auto-
morphisms

Keywords: public-key cryptography, code-based cryptography, algebraic geometry codes

Abstract: In 1978, McEliece introduce a new pub-
lic key encryption scheme coming from errors correct-
ing codes theory. The idea is to use an error correcting
code whose structure would be hidden, making it im-
possible to decode a message for anyone who do not
know a specific decoding algorithm for the chosen code.
The McEliece scheme has some advantages, encryption
and decryption are very fast and it is a good candidate
for public-key cryptography in the context of quantum
computer. The main constraint is that the public key
is too large compared to other actual public-key cryp-
tosystems. In this context, we propose to study the
using of some quasi-cyclic or quasi-dyadic codes.

In this thesis, the two families of interest are: the
family of alternant codes and the family of subfield
subcode of algebraic geometry codes. We can con-
struct quasi-cyclic alternant codes using an automor-
phism which acts on the support and the multiplier of
the code. In order to estimate the securtiy of these QC
codes we study the invariant code. This invariant code

is a smaller code derived from the public key. Actually
the invariant code is exactly the subcode of codewords
fixed by the automorphism σ. We show that it is possi-
ble to reduce the key-recovery problem on the original
quasi-cyclic code to the same problem on the invari-
ant code. This is also true in the case of QC algebraic
geometry codes. This result permits us to propose a
security analysis of QC codes coming from the Hermi-
tian curve. Moreover, we propose compact key for the
McEliece scheme using subfield subcode of AG codes on
the Hermitian curve.

The case of quasi-dyadic alternant code is also stud-
ied. Using the invariant code, with the Schur product
and the conductor of two codes, we show weaknesses
on the scheme using QD alternant codes with extension
degree 2. In the case of the submission DAGS, proposed
in the context of NIST competition, an attack exploit-
ing these weakness permits to recover the secret key in
few minutes for some proposed parameters.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Introduction
	Résumé
	Algebraic geometry codes
	Coding theory
	Introduction to algebraic geometry
	AG codes: definition and properties

	Code-based cryptography
	McEliece encryption scheme
	Information Set Decoding (ISD)
	Key recovery problem
	Algebraic cryptanalysis of McEliece schemes using alternant codes

	McEliece scheme using quasi-cyclic alternant codes
	Quasi-cyclic alternant codes
	Structural analysis of the invariant code
	Security reduction to the key security of the invariant code
	Proposition of a scheme: BIG QUAKE

	A structural attack on a scheme using quasi-dyadic alternant codes
	Presentation of the NIST submission: DAGS
	Schur products and conductors
	Using the QD structure to compute a conductor
	Description of the attack
	Algorithm, work factor and implementation

	Short McEliece keys from codes on curves with positive genus
	Construction of quasi-cyclic SSAG codes
	Structure of the invariant code
	QC codes from a cyclic cover of the projective line
	The McEliece scheme with QC Hermitian codes

	Bibliography
	List of Notations
	List of Algorithms
	List of Tables
	Two-Point Codes for the Generalised GK curve
	Introduction
	Preliminaries
	The generalized Giulietti–Korchmáros function field
	Two-point AG codes on the generalized GK curve.
	Computation of the order bound and results



