299 research outputs found

    ETS (Efficient, Transparent, and Secured) Self-healing Service for Pervasive Computing Applications

    Get PDF
    To ensure smooth functioning of numerous handheld devices anywhere anytime, the importance of self-healing mechanism cannot be overlooked. Incorporation of efficient fault detection and recovery in device itself is the quest for long but there is no existing self-healing scheme for devices running in pervasive computing environments that can be claimed as the ultimate solution. Moreover, the highest degree of transparency, security and privacy attainability should also be maintained. ETS Self-healing service, an integral part of our developing middleware named MARKS (Middleware Adaptability for Resource discovery, Knowledge usability, and Self-healing), holds promise for offering all of those functionalities

    A Trust-based Secure Service Discovery (TSSD) Model for Pervasive Computing

    Get PDF
    To cope with the challenges posed by device capacity and capability, and also the nature of ad hoc networks, a Service discovery model is needed that can resolve security and privacy issues with simple solutions. The use of complex algorithms and powerful fixed infrastructure is infeasible due to the volatile nature of pervasive environment and tiny pervasive devices. In this paper, we present a trust-based secure Service discovery model, TSSD (trust-based secure service discovery) for a truly pervasive environment. Our model is a hybrid one that allows both secure and non-secure discovery of services. This model allows Service discovery and sharing based on mutual trust. The security model handles the communication and service sharing security issues. TSSD also incorporates a trust mode for sharing Services with unknown devices

    The challenges and opportunities of human-centred AI for trustworthy robots and autonomous systems

    Get PDF
    The trustworthiness of robots and autonomous systems (RAS) has taken a prominent position on the way towards full autonomy. This work is the first to systematically explore the key facets of human-centred AI for trustworthy RAS. We identified five key properties of a trustworthy RAS, i.e., RAS must be (i) safe in any uncertain and dynamic environment; (ii) secure, i.e., protect itself from cyber threats; (iii) healthy and fault-tolerant; (iv) trusted and easy to use to enable effective human-machine interaction (HMI); (v) compliant with the law and ethical expectations. While the applications of RAS have mainly focused on performance and productivity, not enough scientific attention has been paid to the risks posed by advanced AI in RAS. We analytically examine the challenges of implementing trustworthy RAS with respect to the five key properties and explore the role and roadmap of AI technologies in ensuring the trustworthiness of RAS in respect of safety, security, health, HMI, and ethics. A new acceptance model of RAS is provided as a framework for human-centric AI requirements and for implementing trustworthy RAS by design. This approach promotes human-level intelligence to augment human capabilities and focuses on contribution to humanity

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Data privacy threat modelling for autonomous systems: a survey from the GDPR’s perspective

    Get PDF
    Artificial Intelligence-based applications have been increasingly deployed in every field of life including smart homes, smart cities, healthcare services, and autonomous systems where personal data is collected across heterogeneous sources and processed using ”black-box” algorithms in opaque centralised servers. As a consequence, preserving the data privacy and security of these applications is of utmost importance. In this respect, a modelling technique for identifying potential data privacy threats and specifying countermeasures to mitigate the related vulnerabilities in such AI-based systems plays a significant role in preserving and securing personal data. Various threat modelling techniques have been proposed such as STRIDE, LINDDUN, and PASTA but none of them is sufficient to model the data privacy threats in autonomous systems. Furthermore, they are not designed to model compliance with data protection legislation like the EU/UK General Data Protection Regulation (GDPR), which is fundamental to protecting data owners' privacy as well as to preventing personal data from potential privacy-related attacks. In this article, we survey the existing threat modelling techniques for data privacy threats in autonomous systems and then analyse such techniques from the viewpoint of GDPR compliance. Following the analysis, We employ STRIDE and LINDDUN in autonomous cars, a specific use-case of autonomous systems, to scrutinise the challenges and gaps of the existing techniques when modelling data privacy threats. Prospective research directions for refining data privacy threats & GDPR-compliance modelling techniques for autonomous systems are also presented

    Security attacks and solutions on SDN control plane: A survey

    Get PDF
    Sommario Software Defined Networks (SDN) è un modello di rete programmabile aperto promosso da ONF , che è stato un fattore chiave per le recenti tendenze tecnologiche. SDN esplora la separazione dei dati e del piano di controllo . Diversamente dai concetti passati, SDN introduce l’idea di separazione del piano di controllo (decisioni di instradamento e traffico) e piano dati (decisioni di inoltro basate sul piano di controllo) che sfida l’integrazione verticale raggiunta dalle reti tradizionali, in cui dispositivi di rete come router e switch accumulano entrambe le funzioni. SDN presenta alcuni vantaggi come la gestione centralizzata e la possibilità di essere programmato su richiesta. Oltre a questi vantaggi, SDN presenta ancora vulnerabilità di sicurezza e, tra queste,le più letali prendono di mira il piano di controllo. Come i controllers che risiedono sul piano di con- trollo gestiscono l’infrastruttura e i dispositivi di rete sottostanti (es. router/switch), anche qualsiasi insicurezza, minacce, malware o problemi durante lo svolgimento delle attività da parte del controller, possono causare interruzioni dell’intera rete. In particolare, per la sua posizione centralizzata, il con- troller SDN è visto come un punto di fallimento. Di conseguenza, qualsiasi attacco o vulnerabilità che prende di mira il piano di controllo o il controller è considerato fatale al punto da sconvolgere l’intera rete. In questa tesi, le minacce alla sicurezza e gli attacchi mirati al piano di controllo (SDN) sono identificati e classificati in diversi gruppi in base a come causano l’impatto sul piano di controllo. Per ottenere risultati, è stata condotta un’ampia ricerca bibliografica attraverso uno studio appro- fondito degli articoli di ricerca esistenti che discutono di una serie di attacchi e delle relative soluzioni per il piano di controllo SDN. Principalmente, come soluzioni intese a rilevare, mitigare o proteggere il (SDN) sono stati presi in considerazione le potenziali minacce gli attachi al piano di controllo. Sulla base di questo compito, gli articoli selezionati sono stati classificati rispetto al loro impatto potenziale sul piano di controllo (SDN) come diretti e indiretti. Ove applicabile, è stato fornito un confronto tra le soluzioni che affrontano lo stesso attacco. Inoltre, sono stati presentati i vantaggi e gli svantaggi delle soluzioni che affrontano diversi attacchi . Infine, una discussione sui risultati e sui esitti ottenuti durante questo processo di indagine e sono stati affrontatti suggerimenti di lavoro futuri estratti du- rante il processo di revisione. Parole chiave : SDN, Sicurezza, Piano di controllo, Denial of Service, Attacchi alla topologiaAbstract Software Defined Networks (SDN) is an open programmable network model promoted by ONF that has been a key-enabler of recent technology trends. SDN explores the separation of data and control plane. Different from the past concepts, SDN introduces the idea of separation of the control plane (routing and traffic decisions) and data plane (forwarding decisions based on the control plane) that challenges the vertical integration achieved by the traditional networks, in which network devices such as router and switches accumulate both functions. SDN presents some advantages such as centralized management and the ability to be programmed on demand. Apart from these benefits, SDN still presents security vulnerabilities and among them, the most lethal ones are targeting the control plane. As the controllers residing on the control plane manages the underlying networking infrastructure and devices (i.e., routers/switches), any security threat, malware, or issues during the carrying out of activities by the controller can lead to disruption of the entire network. In particular, due to its centralized position, the (SDN) controller is seen as a single point of failure. As a result, any attack or vulnerability targeting the control plane or controller is considered fatal to the point of disrupting the whole network. In this thesis, the security threats and attacks targeting the (SDN) control plane are identified and categorized into different groups by considering how they cause an impact to the control plane. To obtain results, extensive literature research has been carried out by performing an in-depth study of the existing research articles that discusses an array of attacks and their corresponding solutions for the (SDN) control plane. Mainly, the solutions intended to detect, mitigate, or protect the (SDN) control plane against potential threats and attacks have been considered. On basis of this task, the potential articles selected were categorized with respect to their impact to the (SDN) control plane as direct and indirect. Where applicable a comparison of the solutions addressing the same attack has been provided. Moreover, the advantages and disadvantages of the solutions addressing the respective attacks are presented. Finally, a discussion regarding the findings and results obtained during this su- veying process and future work suggestions extracted during the review process have been discussed. Keywords: SDN, Security, Control Plane, Denial of Service, Topology Attacks, Openflo

    Routing and Security in Mobile Ad Hoc Networks

    Get PDF
    A Mobile Ad hoc Network (MANET) consists of a set of nodes which can form a network among themselves. MANETs have applications in areas such as military, disaster rescue operations, monitoring animal habitats, etc. where establishing fixed communication infrastructure is not feasible. Routing protocols designed for MANETs can be broadly classified as position-based (geographic), topology-based and hybrid. Geographic routing uses location information of nodes to route messages. Topology-based routing uses network state information for route discovery and maintenance. Hybrid routing protocols use features in both position-based and topology-based approaches. Position-based routing protocols route packets towards the destination using greedy forwarding (i.e., an intermediate node forwards packets to a neighbor that is closer to the destination than itself). If a node has no neighbor that is closer to the destination than itself, greedy forwarding fails. In this case, we say there is void. Different position-based routing protocols use different methods for dealing with voids. Topology-based routing protocols can be classified into on-demand (reactive) routing protocols and proactive routing protocols. Generally, on-demand routing protocols establish routes when needed by flooding route requests throughout the entire network, which is not a scalable approach. Reactive routing protocols try to maintain routes between every pair of nodes by periodically exchanging messages with each other which is not a scalable approach also. This thesis addresses some of these issues and makes the following contribution. First, we present a position-based routing protocol called Greedy Routing Protocol with Backtracking (GRB) which uses a simple backtracking technique to route around voids, unlike existing position-based routing protocols which construct planarized graph of the local network to route around voids. We compare the performance of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR) protocol and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as well as the Dynamic Source Routing (DSR) protocol. Performance evaluation shows that our protocol has less control overhead than those of DSR, AODV, and GPSR. Performance evaluation also shows that our protocol has a higher packet-delivery ratio, lower end-to-end delay, and less hop count, on average, compared to AODV, DSR and GPSR. We then present an on-demand routing protocol called ``Hybrid On-demand Greedy Routing Protocol with Backtracking for Mobile Ad-Hoc Networks which uses greedy approach for route discovery. This prevents flooding route requests, unlike the existing on-demand routing protocols. This approach also helps in finding routes that have lower hop counts than AODV and DSR. Our performance evaluation confirms that our protocol performs better than AODV and DSR, on average, with respect to hop count, packet-delivery ratio and control overhead. In MANETs, all nodes need to cooperate to establish routes. Establishing secure and valid routes in the presence of adversaries is a challenge in MANETs. Some of the well-known source routing protocols presented in the literature (e.g., Ariadne and endairA) which claim to establish secure routes are susceptible to hidden channel attacks. We address this issue and present a secure routing protocol called SAriadne, based on sanitizable signatures. We show that our protocol detects and prevents hidden channel attacks

    Intrusion Prevention and Detection in Wireless Sensor Networks

    Full text link
    The broadcast nature of the transmission medium in wireless sensor networks makes information more vulnerable than in wired applications. In this dissertation we first propose a distributed, deterministic key management protocol designed to satisfy authentication and confidentiality, without the need of a key distribution center. Next we propose Scatter, a secure code authentication scheme for efficient reprogramming sensor networks. Scatter avoids the use of Elliptic Key Cryptography and manages to surpass all previous attempts for secure code dissemination in terms of energy consumption and time efficiency. Next we introduce the problem of intrusion detection in sensor networks. We define the problem formally based on a generic system model and we prove a necessary and sufficient condition for successful detection of the attacker. Finally we present the architecture and implementation of an intrusion detection system which is based on a distributed architecture and it is lightweight enough to run on the nodes

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design
    • …
    corecore