
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of (- 2019)

12-18-2008

A Trust-based Secure Service Discovery (TSSD) Model for A Trust-based Secure Service Discovery (TSSD) Model for

Pervasive Computing Pervasive Computing

Sheikh Iqbal Ahamed
Marquette University, sheikh.ahamed@marquette.edu

Moushumi Sharmin
University of Illinois at Urbana-Champaign

Follow this and additional works at: https://epublications.marquette.edu/mscs_fac

 Part of the Computer Sciences Commons, Mathematics Commons, and the Statistics and Probability

Commons

Recommended Citation Recommended Citation
Ahamed, Sheikh Iqbal and Sharmin, Moushumi, "A Trust-based Secure Service Discovery (TSSD) Model for
Pervasive Computing" (2008). Mathematics, Statistics and Computer Science Faculty Research and
Publications. 307.
https://epublications.marquette.edu/mscs_fac/307

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213078361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu/
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs_fac?utm_source=epublications.marquette.edu%2Fmscs_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fmscs_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=epublications.marquette.edu%2Fmscs_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=epublications.marquette.edu%2Fmscs_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=epublications.marquette.edu%2Fmscs_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/mscs_fac/307?utm_source=epublications.marquette.edu%2Fmscs_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Computer Science Faculty Research and Publications/College of Arts and

Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The

published version may be accessed by following the link in the citation below.

Computer Communications, Vol. 31, No. 18 (December 18, 2008): 4281-4293. DOI. This article is ©

Elsevier and permission has been granted for this version to appear in e-Publications@Marquette.

Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere

without the express permission from Elsevier.

A Trust-based Secure Service Discovery (TSSD)
Model for Pervasive Computing

Sheikh I. Ahamed

Marquette University, 1313 W Wisconsin Avenue, Milwaukee, WI

Moushumi Sharmin
University of Illinois, Urbana-Champaign, IL

Abstract
To cope with the challenges posed by device capacity and capability, and also the nature of ad hoc networks, a

Service discovery model is needed that can resolve security and privacy issues with simple solutions. The use of

complex algorithms and powerful fixed infrastructure is infeasible due to the volatile nature of pervasive

environment and tiny pervasive devices. In this paper, we present a trust-based secure Service discovery model,

TSSD (trust-based secure service discovery) for a truly pervasive environment. Our model is a hybrid one that

allows both secure and non-secure discovery of services. This model allows Service discovery and sharing based

on mutual trust. The security model handles the communication and service sharing security issues. TSSD also

incorporates a trust mode for sharing Services with unknown devices.

https://doi.org/10.1016/j.comcom.2008.07.014
http://epublications.marquette.edu/

Keywords
MARKS, Secure service discovery, Pervasive computing

1. Introduction
Pervasive computing [1], [2], [3] has evolved over the last few years due to recent developments in portable

low-cost lightweight devices and the emergence of short range, and low-power wireless communication

networks. Pervasive computing environments focus on integrating computing and communications with the

surrounding physical environment of day to day lives for making computing and communication transparent to

the users. In a broad sense, pervasive computing includes four major areas: mobile computing, wireless

networks, embedded computing, and context-aware sensor networks [4]. The pervasive computing environment

is comprised of numerous devices that include PDAs, cell phones, smart phones, laptops, sensors, etc.

Nowadays, these devices are truly everywhere making Weiser’s vision a reality [5].

In a pervasive computing environment, there are different kinds of networks. On one end, there are smart

spaces, or intelligent environments that provide devices with complex computational support, while at the other

end there are networks without any such support. In between there are networks that take some kind of

support from fixed access points or central servers, but are not parts of a smart space.

Fig. 1 depicts two ad hoc networks in a pervasive computing environment. In Fig. 1(a), the tiny devices

communicate among themselves with the support of fixed, powerful devices. These devices act as servers or

proxies and handle complex computations on behalf of the tiny devices. In Fig. 1(b), an ad hoc network is

formed by mobile devices. There is no fixed infrastructure support. The devices communicate with each other

directly or via another mobile device, and are responsible for performing computations by themselves. Our

focus is infrastructure-less mobile computing.

Fig. 1. Different types of networks in pervasive computing environment. (a) Ad hoc network in pervasive

environment with powerful device support. (b) Ad hoc network in pervasive environment without powerful

device support.

Service discovery is an integral part of every system running in a pervasive computing environment [6]. This

process explores a device capable of offering a specific Service optimally. Despite the exponential growth of the

exploitation of handheld devices (e.g. PDAs, laptops, smart phones, etc.), these devices themselves are suffering

from a number of limitations [7], [8], which include but is not limited to, inadequate processing capability,

restricted battery life, limited memory space, slwepensive connections, frequent line disconnection, and

confined host bandwidth. Lack of fixed infrastructure support is a natural phenomenon in this environment,

which leads to the dependency on other devices for services. These devices interact with other devices in an ad

hoc manner. The nature of devices, communication pattern, and dependency on others in turn causes security

threats. Also, due to the ad hoc and ephemeral nature of the network, one can’t expect to get service from a

particular device for a long span of time. Moreover, multiple devices may concurrently request one specific

service. These aspects demand a scalable, efficient, quickly responsive, and dependable service discovery model.

The significance of security during service discovery in pervasive computing environments is an established

truth [9], [10], [11]. Privacy, security, and trust issues in service discovery in pervasive computing area are of

utmost importance [4]. Many users may be happy to share the services of their handheld devices, provided this

sharing will not cause any security threat to them. Thus, the service discovery process demands models that

ensure the privacy and security of the user. At the same time, it is also important to keep in mind that most of

the devices operating in this environment are service poor. These devices do not support large-scale

cryptographic protocols. The traditional security mechanism does not work in this environment, because the

devices are computationally poor and the notion of physical security is not applicable [12]. Adding complex

protocols will lower the performance of these devices so much that many embedded and mobile systems tend

to ignore privacy, security, and trust issues. These factors force us to think about what type of model we should

use. Is it logical to sacrifice total security? Or, is it absolutely necessary to impose a full-fledged security

structure on these devices similar to desktops and laptops? Is there any middle ground, that will protect these

devices without having a heavyweight security mechanism? Ensuring varying levels of security for various

services is another research challenge. Lack of availability of information about users is another primary concern

in designing a discovery model, which necessitates the introduction of risk assessment [13].

Existing service discovery models can be divided into three broad categories. First are the service discovery

models that do not address security issues [14], [15], [16], [17], [18]. Second, there are models that consider a

full-fledged security mechanism with the help of some fixed infrastructure support (powerful servers, proxies,

etc.) [19], [20], [21]. There are also models that support security with the assistance of additional hardware [22],

mutual authentication [23], and trust [24], [25]. These models either completely trust or completely distrust one

device. Each of these models has their own strength and weaknesses as they attempt to solve the problem using

different approaches.

In this paper, we present a trust-based secure Service discovery model, TSSD (trust-based secure service

discovery). Our model is designed for a truly pervasive environment, where we assume that the mobile devices

would be able to handle necessary computations and communications by themselves, without any fixed

infrastructure support. Our model is a hybrid, that allows both secure and non-secure discovery of services. This

model allows Service discovery and sharing based on mutual trust. However, for unknown devices building trust

relationships is complicated and sometimes impossible. To handle situations like this, we also include a risk

model. The security model handles the communication and service sharing security issues.

1.1. Contribution of this paper
The contributions of this paper are as follows:

1.1.1. Service based security mechanism
Different services need different levels of security. Security is not device specific, it is rather service specific. All

services in a device are categorized based on their security needs.

1.1.2. Context dependent mode of operation
Our model operates in both secure and non-secure mode, depending on the context. In trusted environments it

works in a different manner than in a distrusted environment. Group communication is facilitated in our model

as members of the same group can set high trust level values for one another and operate without calculating

trust and risk parameters each time they communicate. At the same time they can communicate with devices

outside the group with the full trust and security enabled mode.

1.1.3. Trust model
A modified PGP-based trust model is designed and implemented. This allows devices to build trust relationships

and share services without compromising their security and privacy.

1.1.4. Risk model
A risk assessment model is included that permits unknown devices to receive services that they need. Because

the service providers can estimate the potential risk of sharing a service, they can either accept or reject

requests efficiently. As most of the devices interacting in a pervasive ad-hoc network have no or very few

information about each other, our model works efficiently in this environment.

1.1.5. A simple and lightweight message passing
We have minimized the overhead of encrypting messages each time a device requests or provides services. We

examined different security policies and tried to find one that possesses secure communication without overly

burdening the system.

1.1.6. Classification of service discovery
This paper also presents a good survey of service discovery. It has also put the service discovery into four

categories along with the state of art.

The outline of this paper is as follows: Motivations behind designing the system are presented in Section 2 which

is followed by characteristics of our model in Section 3. Section 4 contains the current state of the art. An

overview of our proposed approach is illustrated in Section 5. The details of the models have been described in

Section 6 Trust model, 7 Risk and security model. The evaluation of our proposed model is presented in

Section 8. Our future research direction and concluding remarks are described in Section 9.

2. Motivation
With the increased use of handheld and wearable devices, the pervasive computing area is stronger and more

powerful than ever. Despite the physical constraint of devices running in such environment, most of the facilities

that service-rich devices enjoy are incorporated in these devices. Devices depend on each other for Services

because they do not have the luxury of containing all needed services due to physical constraints. Thus there is a

need for a service sharing and discovery mechanism. Next, we consider some scenarios to show the importance

and applicability of a simple service discovery model.

2.1. Scenario 1
To enjoy music, while on a bus ride, David needs any music playing software that is not available in his smart

phone. David thinks that any of the passengers can have this software and decides to request all neighboring

devices for the software.

2.2. Scenario 2
A group of marine biology students are collecting data from Lake Michigan. Their supervisor has provided a

common formatted file for storing collected data. One of the students forgot to bring that file. He decides to

request it from other students within the same group.

2.3. Scenario 3
Bob, a graduate student is going to attend a conference on ubiquitous applications. Due to heavy traffic he was

late and when he reached the conference center, the presentation had already started. The presentation slides

were interesting and the presenter was referring to some slides that he missed. Bob requests the slides from the

presenter.

2.4. Scenario 4
Alice is visiting a botanical garden with her kids. It is 4:45 p.m. and suddenly she remembers that 5:00 p.m. is the

deadline to pay her electricity bill. In her PDA she has her account numbers and all the necessary information,

but her PDA has no Internet connection. She decides to send a request to nearby devices for a service that

allows her to pay the bill.

The above scenarios present situations where service discovery and sharing are needed. But, these scenarios

evoke the question of whether all services need the same level of security? Do all of these circumstances require

the use of trust model or encrypted message communication?

The first scenario represents a situation in every day life. Depending on the preference of the device owners, the

music playing software can be classified as a low or a moderate security service.

The second scenario presents a situation where each member has information about every other member. The

access rights and trustworthiness is already known. The only question that arises is whether the requested

service is available in the network or not?

In the third scenario, verification of Bob’s identity is needed. If Bob is a registered conference attendee or there

are other conference attendees who know Bob, then the presenter can provide the slides to him without much

concern. Trust calculation is needed in this case.

The fourth scenario is a critical one, as the payment requires transfer of confidential information such as an

account number and a debit/credit card number. Both Alice and the service provider need a secure

communication mechanism. Also the presence of risk assessment is needed, as both the requester and provider

have no prior information about one another.

A service discovery model can solve the issues arising from the above situations. We also notice that the needed

security level is service-specific rather than device specific. This necessitates a service discovery model that can

act in different ways depending on the security need of the related service. Most of the service discovery models

proposed so far are not adaptive. Either they impose the same secure communication level for all services,

which hampers the performance of tiny devices, or they totally ignore the security issues.

3. Characteristics
The required characteristics of a successful Service discovery model is summarized below:

Adaptive. The trust value and security level should change depending on the service itself, the service provider,

and the service requester. The model should be able to work with and without security calculation, based on the

situation.

Trust reliant. The model should consider trust relationships among devices. Where no prior information is

available, mutual recommendation can be used as a tool for calculating trust. If no recommendation information

is available, risk assessment can be used.

Infrastructure less. No infrastructure support (powerful servers, proxies, etc.) should be required. If the focus is

on truly pervasive environments, then the model should work independently without any external support. This

is important because in this environment infrastructure support is not always available.

Lightweight. The model should be lightweight in terms of executable file size.

Service oriented. As different services demand different levels of security, Service discovery models should be

service oriented rather than device specific.

Non-degradable performance. The model should not put much overhead on the performance of the device.

Energy efficient. Service discovery models should be energy efficient. It should not require much battery power

for computation or communication purposes.

4. Related work
Service discovery is a fundamental component of systems running in a pervasive computing environment. There

are many schemes that attempt to solve this problem from various standpoints. Some products or protocols

address the security and privacy issues of service discovery while others concentrate on providing the whole list

of Services in a timely manner. A detailed survey on service discovery models and their classification can be

found in [31]. In this paper, we categorize Service discovery models based on security and privacy features:

A. Service discovery models without security.

B. Secure service discovery models.

1. Infrastructure-based.

2. Infrastructure-less.

3. Smart environment based.

4. Hardware oriented.

Section 4.1 describes some service discovery models that do not address security issues and

Section 4.2 discusses some models that offer a secure service discovery mechanism.

4.1. Service discovery models without security
The models that do not address security issues are Bluetooth, DEAPspace, International Naming System, etc.

These models are some of the initial Service discovery models, which concentrate mainly on efficient Service

lookup.

Bluetooth [32], [33] adopts a query-based approach. Device information, services, and the characteristics of the

services are queried and connections between two or more bluetooth devices are established. This facilitates

user selection, scope-awareness, and both unicast and broadcast communication. It also returns all matched

Service information. However, Bluetooth does not provide effective security in Service sharing issue and fault-

tolerant features.

DEAPspace [14] follows announcements for its Service discovery mechanism. Like Bluetooth, it also allows user

selection. However, it doesn’t take context information into consideration during Service discovery. Here, all the

devices in an ad hoc network periodically broadcast the list of all known services (their own services and the

services of other devices that they know). When a new device joins the network, it can get a picture of the

existing services from these messages. As every device knows about the available Services, they generate a

Service request query whenever necessary. The algorithm used for DEAPspace service discovery is very simple.

However, this approach is not desirable because it uses bandwidth and also increases power consumption. Also,

security and privacy issues are ignored.

International Naming System (INS) [16] supports both the query and announcement approach. It also supports

unicast, anycast, and broadcast methods. It offers the best-matchService information and also provides facilities

for limited support of context information. It assumes that every device will request a central name resolver for

the type of services it requires, and the resolver will reply with the best matched device address. In a truly

pervasive environment, the presence of a central resolver is not common. Even if a resolver is present, which

stores all the Service information centrally, the entire system is vulnerable to single-point-failure.

4.2. Secure service discovery models
Most of the service discovery models designed now-a-days fall into this category. There are some models that

include full fledged security mechanisms, while others rely on simple algorithms for limited security. This

category can be sub divided into infrastructure based, infrastructure less, hardware based, and smart space

oriented security mechanisms. In the following subsections we discuss each of these categories.

4.2.1. Infrastructure-based security
Secure service discovery service (SSDS) [19] concentrates mostly on security issues for communication purposes.

It not only supports unicast, multicast, and broadcast communication, but it also provides facility for scope-

awareness. Both query and announcement systems are supported. It allows capability based access control

where pre-specified agents are allowed to discover services. SSDS follows the client-service-server model. To

make the discovery process secure, all information passed between clients and servers, and servers and services

are encrypted. This puts a lot of overhead on the mobile devices. In this approach, a single copy of the Service

information is stored and accessed, which makes the system vulnerable to single point failure.

Jini [34] is based on Java and its main focus is on the enterprise level. Jini’s architecture creates a federation to

offer and share services. Devices join the federation to get required services. This requires prior knowledge

about devices. They also do not consider separate security features because, devices have assigned access

privileges.

Kazuhiro Minami et al. proposed a secure context-sensitive authorization scheme (CSAS) [35]. This is a proof-

based decentralized system. This system distributes the proofs in different devices and eliminates the need of a

central server. To authorize access, it uses previously stored information about the device user and checks its

validity. This type of information is often impossible to collect for users in an ad hoc network.

Splendor [20] is a secure, private, and location-aware service discovery protocol. This approach considers

environmental variables. Depending on the environment, a client-service model or client-service-directory

model is used. Proxies are used to offload computational work on mobile services. Mobile services authenticate

with proxies and proxies handle registration. In these situations, proxies are considered to be trusted servers.

However, if no trusted server is available in an environment, who will handle this registration process? This

model depends heavily on proxies that, compared to mobile devices, are considered powerful machines. But,

what will happen if the particular mobile environment is lacking any such powerful device or that device does

not want to communicate with other devices? What does happen? Splendor emphasizes security and privacy

issues in Service discovery. It also supports location-awareness, and uses a combination of public key and

symmetric key for security purposes. A client-service-directory-proxy based model is used for service discovery,

which can be burdensome for devices like PDAs and smart phones. It also does not provide efficient support for

directory faults. Its security model is based on mutual authentication. In our approach we use a combination of

mutual authentication and a trust model that follows from this approach. This trust model will help devices in

the authentication and communication processes.

Progressive exposure [21], [36] is a secure service discovery approach. It addresses privacy issues using a mutual

matching technique. Progressive exposure addresses security and fairness by not exposing too much

information. In each round of message exchange between communicating parties, it tries to find whether any

mismatch occurs. In case of a mismatch, the communication stops. It uses one-time code words and a hash-

based message authentication code. It considers the presence of one user and one service provider, but it does

not address situations in which many users and many service providers are present. Nor does it address what

happens when a service provider leaves the ad hoc network, which is a very common scenario in a pervasive

computing environment. When the service provider leaves the network, the user has to start from the beginning

with the provider lookup and authentication phase. How the user knows about who is providing what services

and keeps track of these are not addressed. From a security perspective this model presents a symmetric

encryption key based approach that can be computationally costly if the service provider leaves the network

soon after the communication is established. It provides privacy for service information, requests, domain

identity, user credentials etc., and is based on client-service-directory model. Like Splendor it does not provide

facility for fault tolerance.

4.2.2. Infrastructure less security
Patrick Brezillion et al. present a context-based security model (CSM) in [37]. They discuss the need for adaptive

security based on the particular situation. In our approach we also used the concept of adaptive security but the

mode of security depends not only on the surrounding environment (date, time, etc.) but also the preference of

the user. Our policy file chooses the appropriate security model based on user preference.

Roshan K. Thomas et al. [38] present the challenges and research issues for secure pervasive computing. They

express the need for a dynamic trust model as the pervasive computing environment poses new kinds of

security challenges due to its diverse nature. They present a socio-technical view. We completely agree with

their idea that to address security problems in this environment, we have to think of a model that provides

adequate security yet also considers the service limitations of an ad hoc network and the devices operating in it.

SPDP [24] is a secure service discovery protocol based on PTM [39], [40] model. This model addresses the ad hoc

networking issues of mobility and Service constraints. The need for a centralized server is abolished here by

means of a user agent and service agent. Each device acts as its own certificate authority. For a service request,

this model uses broadcast messaging. The requesting device updates its cache after getting a reply from the

devices (if any reply). It then stores the device identities that it believes trustworthy. The devices’ user agents

continually listen for messages, which in turn means continual energy consumption. Also, the service request

reply message requires fields such as how long the device will stay in the network; these are the kind of

messages that some users may not wish to share. Another drawback is there are no categories for services

according to security needs, yet they do define trust and its properties. This model uses a simple approach for

service discovery and our model is inspired by their model. In our approach we follow a trust model that has

properties derived from this model.

Narendar Sarkar et al. in [41] proposes an attribute vector calculus (AVCM) based approach for modeling trust.

Their model describes both identity based trust and context based trust, and is one of the first models that

discusses the importance of trust in a ubiquitous environment. Their model is a very simple one and does not

address complex situations where assigning trust is not sufficient for ensuring security.

4.2.3. Smart space dependent security
Universal plug and play (UPnP) [15] defines protocols for communicating between UPnP control points and

devices. The architecture is based on six phases of interaction. Control points handle discovery, description, and

control phases, while addressing, eventing, and presentation are done by devices. It uses protocols like DHCP

(dynamic host configuration protocol), ARP (address resolution protocol), and DNS (domain name service) for

addressing purposes. Multicast messaging is used for device discovery. To make the model secure, it uses

firewalls, medium access control layer encryption, and physical access control. This model is particularly suited

for home, office or similar environments. It requires information about devices that will form the network,

which is impossible to get in a pervasive network.

Anand Tripathi et al. in their context-based secure service access (CSRA) [42] paper present policies for service

access. They concentrate on creating an environmental model that will provide transparent and secure support

for services that a user needs. The main difference between our approach and theirs is that they require

infrastructure for providing such services while our goal is to make the entire discovery process free from any

infrastructure. To ensure secure access, they combine the users’ specified policy, Service/service manager

specified policy, and collaborative activity specified policy. Our approach is different in the sense that the entire

security enforcement is dependent on the user and the service manager to cope with the limited computing

power and space of tiny mobile devices.

Basu et al. presents a trust-based architecture (TRAC) for increasing security and user confidence in pervasive

computing systems [43]. They use trust and role based access control for ensuring security and privacy. However

their model is aimed at an intelligent environment (IE) only. This policy-based model allows users to define

policies for themselves and thus gives users control to define their own security level. This model works in an IE

because each user is known beforehand However, in a truly pervasive environment it is not possible to have

prior information about every user and thus, this model is not applicable.

4.2.4. Hardware supported security
Heiko Kopp et al. provide a security architecture for service-based mobile environments (SME) [22]. Their central

idea is to provide security with the help of hardware support. They consider different mobility levels that a

device may go through and tries to provide hardware support for maintaining security. Though we also consider

different levels of security, based on context and user preference, our main focus is providing a lightweight

software solution.

In [44] Siani Pearson proposes a hardware-centered approach (HCA) for securing privacy. This mechanism works

with the software system to maintain the owners privacy. The main drawback of this system is that it will not

work on existing mobile and handheld devices.

A comparison table of the secure service discovery models discussed above is presented in Table 1.

Table 1. Comparison of secure service discovery models

Model Adaptive Infrastructure support

needed

Lightweight Service

oriented

Trust

aware

Privacy

aware

Context

aware

Smart space

needed

SSDS [19] No Yes No No N/A N/A N/A No

UPnP [15] No N/A No No Yes Yes Yes Limited

SPDP [24] No No Yes No Yes N/A No No

Progressive

exposure [21], [36]

No Yes No No No Yes Limited No

Splendor [20] No Yes No No Yes Yes N/A No

Jini [34] No N/A No No N/A Yes N/A Limited

CSAS [35] No No Yes No N/A N/A Yes No

CSM [37] Yes No Yes No N/A N/A Yes No

AVCM [41] Limited No Yes No Yes Yes Yes No

CSRA [42] No Yes No No N/A N/A Yes Yes

TRAC [43] No N/A No No Yes Yes N/A Yes

SME [22] Yes N/A N/A Yes N/A Yes No N/A

HCA [44] No N/A Yes No No Yes No N/A

TSSD Yes No Yes Yes Yes Yes Limited No

5. Overview
To address the challenges presented in the motivation section and to attain the characteristics described, we

propose a secure Service discovery model, TSSD. The TSSD model contains a discovery model and a trust, risk,

and security management unit. The TSSD model consists of SAFE-RD (secure, adaptive, fault tolerant, and

efficient service discovery) and SSRD (simple and secure service discovery) sub units. The SAFE-RD contains the

device discovery unit and the Service discovery agent while the SSRD unit contains the trust, risk, and security

unit. We describe the details of the SAFE-RD model in Section 5.1. The description of the SSRD unit is presented

in Section 5.2. The architectural detail of TSSD is described in Section 5.3.

5.1. SAFE-RD model
SAFE-RD is the discovery unit of TSSD. After getting requests from devices through an application object, the

discovery agent will pass it to the SSRD unit for processing. Subsequently, the processed request will reach the

requesting device in the reverse direction. The SAFE-RD unit is responsible for cluster formation, Service lookup,

and Service matching.

Devices residing in close proximity form clusters. Each cluster is considered a Tree, where devices are the nodes

of the tree. Nearby clusters form a Forest. The Service manager of a device is responsible for Service lookup. To

search a Service, a device, investigates its own cluster through Service manager, which is treated as the root of

the tree. Fig. 2 represents one such tree structure, corresponding to any cluster where RM denotes the Service

manager. It also reflects its “Proximity Awareness” feature, which means the RM prefers local Services first.

Unavailability of such a Service will lead to exploration of the other clusters of the forest.

Fig. 2. Tree data structure.

The service manager, for service lookup, will use a match all technique. This allows a device to know all the

potential Service providers. However, for service selection, the SAFE-RD communicates with the SSRD unit. The

best provider is selected in terms of availability and trustworthiness. To maintain both QoS and scalability, SAFE-

RD also stores information about the next best match.

5.2. SSRD model
The SSRD unit handles security related issues and consists of trust management, risk assessment, and security

management sub units. The SSRD unit is directly linked to the Service discovery agent. The functionalities of all

these units are maintained and controlled by the Service manager. All these units provide users with privacy and

security without explicit user interaction. The model requires initial user input to set security levels for different

services provided by the device. After this point, it needs user permission only in case of a highly secure service

sharing time. This is necessary to maintain users’ privacy. In this paper, we describe the features of our trust

model, our risk assessment model, and our security model.

The trust management unit is responsible for maintaining the trust relationship with other devices. This unit

calculates trust values for all devices and also updates the trust values depending on the behavior of the service

provider or requester. It maintains a list of service-specific and average trust values and communicates with the

risk assessment and security management unit whenever necessary.

For secure discovery and communication among devices, we are using a trust model influenced by PGP (Pretty

Good Privacy) [45]. However, Direct PGP is not used since it requires huge computation. We are considering not

only average trust but also service specific trust that will make the model more robust. For trust calculation, we

are considering previous interaction information and also recommendation from other neighboring devices.

Lack of historical information is a natural phenomenon in a truly pervasive environment. Even if there is no

information available, we still want to receive and provide services. To handle situations like this, we are

proposing a risk assessment model that allows us to share Services without compromising the security of the

device.

The security management unit selects the mode of communication (broadcast, multicast or unicast) depending

on situation and security needs for a specific service. It also facilitates secure sharing of services. This mode is

selected depending on the predefined functions and does not require explicit user intervention each time a

service is requested. The security model also determines the mode of communication. It works with the trust

management unit to request service and to provide service as securely as possible without compromising the

performance of the device. Fig. 3 shows the conceptual diagram of the SSRD model.

Fig. 3. Conceptual diagram of TSSD model.

5.3. TSSD architecture
TSSD is the Service discovery unit of MARKS (middleware adaptability for service discovery, knowledge usability,

and self-healing) [26]. MARKS supports the core and supplementary services like Knowledge Usability [27],

device discovery, Self-healing [28], PerAd service [29], etc. Fig. 4 presents MARKS architecture with TSSD unit.

Fig. 4. MARKS architecture.

The architecture of the TSSD unit is presented in Fig. 5.

Fig. 5. Service discovery unit.

The TSSD unit consists of SAFE-RD and SSRD unit. The SAFE-RD unit consists of the device discovery unit, service

discovery agent, and the SSRD unit contains trust management, risk assessment, and security management sub

units.

The details of the SAFE-RD model and the MARKS architecture have been published in [46 and 26], respectively.

Some preliminary results of SSRD are in [46], [57]. We have discussed only trust-based service discovery

in [46] and risk based trust is introduced in [57]. In this paper, we present the details of trust, risk and privacy

issues of service discovery for pervasive computing environment.

In this section, we have presented the overview of our TSSD model, Sections 6 Trust model, 7 Risk and security

model contain the details of the trust, risk, and security model included in TSSD.

6. Trust model
Trust model plays important role in trust-based Service sharing decisions along with managing the trust

relationships with other neighbors. We chose a set of services for testing the applicability of our model. The

sample services include date and time service, music software, unzipped software, language translation

software, etc.

6.1. Trust model properties
By trust we mean the level of confidence that a device has in another device. In this model, we are using both

average trust level and service specific trust levels. Average trust levels are used when a device does not have

any prior trust relationship with a particular device. The terms trust level and trust value denote the same thing

in our paper.

The highest value of trust is 1.0 (complete trust) in our model, while the lowest is 0.0 (complete distrust). For

each service, each new device is initially assigned a trust value of 0.5. We chose 0.5 because we believe that if

no information about a device is available there is no reason to trust it or distrust it. This initial assignment does

not threaten other devices as this value changes with the devices behavior and context. A device reserves the

right to trust or distrust any device regardless of its trust level. 𝜏(𝐴, 𝐵, 1) means device 𝐴 trusts

device 𝐵 completely for all services while 𝜏(𝐴𝑠, 𝐵, 𝑧) defines the trust level from 𝐴 to 𝐵 for service s (𝐴 owns

this service and 𝐵 is requesting it), which depends on the value of z 0.0 ← 𝑧 ← 1.0. 𝑜(𝑠, 𝐴) means 𝐴 is the

owner of service/device s.

1. Reflexive: Each device trusts itself completely.

∀𝐴𝜏(𝐴,𝐴,1).

2. Mutual trust: If a person 𝑋 has multiple devices (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛), all those devices have complete

trust on each other.

∀𝑠1,𝑠2(o(𝑠1,𝑋) ∧ o(𝑠2,𝑋)) ⇒ 𝜏(𝑠1,𝑠2,1).

3. Partially transitive: If 𝐴 trusts 𝐵 and 𝐵 trusts 𝐶, then 𝐴 trusts 𝐶. But, the trust level

between 𝐴 and 𝐶 may differ.

𝜏(𝐴,𝐵,1) ∧ 𝜏(𝐵,𝐶,1) ⇒ 𝜏(𝐴,𝐶,𝑥),

𝜏(𝐴,𝐵,𝑥) ∧ 𝜏(𝐵,𝐶,𝑦) ⇒ 𝜏(𝐴,𝐶,𝑧),

𝑧 = 𝜓(𝑥,𝑦),

0.0 ← 𝑥,𝑦,𝑧 ← 1.0.

.

The first equation depicts the complete trust relationship between device 𝐴 and 𝐵 and device 𝐵 and 𝐶. Based on

the rule of transitivity, 𝐴 trusts 𝐶 but with a value 𝑥. This is in accordance with the fact that

if 𝐴 trusts 𝐵 completely and 𝐵 trusts 𝐶 completely then it does not mean that 𝐴 has to trust 𝐶 completely. The

second equation depicts a scenario where 𝐴 trusts 𝐵 with a value 𝑥 and 𝐵 trusts 𝐶 with a value 𝑦. Using this

trust relationship, we can calculate a trust value 𝑧 between 𝐴 and 𝐶. Now the value of 𝑧 is the minimum of

(0.5, 𝑥 ∗ 𝑦). This value of 𝑧 is chosen this way as it simplifies the trust value computation and in situations

where trust relationship is building for the first time, it is better not to assign a higher trust level value.

4. Service dependent: For a particular service, 𝐴 may trust 𝐵 completely, while for another service it may

not. The level of trust may vary depending on the associated security level of a particular service.

5. Context awareness: The level of trust depends on the context. It is a value at an instant of time.

Examples of context are: time, location, and communication load of network, etc.

6.2. Hybrid model
It is obvious that not all services residing in a device need the same level of security. A device owner may offer

weather service to anyone, but may offer Internet services to a limited group of people. This means there must

be a security level value with each service. This allows the service manager to decide which services can be

shared with whom, without explicit user input.

To reduce the computation load of our target devices, we categorize services based on their need for security.

The service manager of each device is responsible for maintaining a list of services that the device owns and

wishes to share. This list (Shown in Table 2) contains not only the service name but also a numerical value that

denotes the security level of the associated service.

Table 2. Service list with associated security level

Service name Security level (1–10) User permission (yes/no)

Date/Time 1 No

Weather 1 No

WordPad 2 No

Chat software 4 No

Unzip SW 7 No

Language translation service 8 No

Internet 9 Yes

Address book 10 Yes

Initially the user assigns these security levels. Values from 0 to 4 indicate that these services do not require

secure communication with service requester and can be shared with almost any device even devices with a

lesser trust value. Values from 5 to 7 means these services require secure communication and can be shared

with devices having trust value 0.5 or higher. But services with security level 8 and higher means that these are

highly sensitive services and can be shared only with highly trusted devices having a trust value ⩾ 0.8. We have

assigned the security level values by considering the number of services that require these different levels of

security. This assignment is not rigid and can be changed by the user without any complex procedure. If a

requested service has a security level greater than 8, the user will be asked whether he wants to share it or not.

After getting service request, the Service manager consults the service list table first. If the security level is

below 5, it shares the service with the requester (having trust value > 0.2). If the security level is between 5 and

7, it consults the trust value and depending on that value decides whether to provide the service or not. For

services having security level > 7, it consults trust model and depending on trust value pre-approves or rejects

the request. In case of pre-approval, it prompts to the user whether he wants to provide the service or not. This

hybrid model is shown using algorithm PermitService.

For services with security level < 5, no trust calculation or secure communication is needed. But for services

with higher security levels, at first trust is calculated and then secure communication is established between the

provider and the requester. This lessens both the computation cost and the communication overhead. This in

turn saves battery power and adheres to service providers’ privacy.

If service request comes from a device for which there is no prior information and the recommendation data are

also unavailable, then the trust management unit communicates to the risk assessment unit for risk calculation.

Based on the feedback of the risk assessment unit, the trust unit calculates a trust value.

Procedure PermitService (𝑠𝑅
𝑃)

𝑃, 𝑅 = Service Provider & Requester

𝑠𝑅
𝑃 = Service Requested by 𝑅 to 𝑃

sSL = Security level of 𝑠𝑅
𝑃, 1 ← 𝑠𝑆𝐿 ← 10

ts = Trust Value of 𝑠𝑅
𝑃 from 𝑃 to 𝑅, 0.0 ← 𝑡𝑠 ← 1.0

𝑇𝑅
𝑃 = Trust Value from P to R for all services

SP = All services available at P

L1. if not (𝑠𝑅
𝑃 ∈ 𝑆𝑃) then return “No such service”

L2. if not (𝑡𝑠 ∈ 𝑇𝑅
𝑃) then Determine ts by (1)

L3. if ts > 0.2 then

L4. if sSL ← 4 then provide 𝑠𝑅
𝑃 to R; return

L5. else return “not permitted”

L6. if ts ⩾ 0.5 then

L7. if sSL ← 7 then provide 𝑠𝑅
𝑃 to R; return

L8. else return “not permitted”

L9. if ts ⩾ 0.8 then

L10. take input from the user and act accordingly

end procedure

6.3. Trust model
The motivation behind having a trust model is that we do not want to provide services to malicious devices but

at the same time we also do not want to decline requests from legitimate devices. Our trust model is designed

to associate each device with a trust value based on past behavior with the requesting device. Also when we

calculate a trust value for an unknown device, we consider a PGP [45] based trust model. PGP is based on

mutual certification of the validity of the keys. In this model, a user can obtain a key by building chain of trust

starting from people they know. In this model “Global Trust Register” acts as a complementary introducer. In

our model we took this concept and modified it to fit the ad hoc nature of the network and limited processing

power of the devices.

In our model, the service manager of each device contains a list of nearby devices, which discloses their

presence along with an associated trust value. Table 3 contains this list.

Table 3. Service-trust list

Service 1 Service 2 … Service n

Device 1 0.6 0.8 … 0.75

Device 2

0.4 … …

⋮ ⋮ ⋮ ⋮ ⋮
Device m 0.3 0.3 … 0.9

6.3.1. Trust value calculation
Eq. (1) is used for the calculation of trust value for devices that interacted with this device earlier. As the service

manager of this device has information about the behavior of these devices, whenever a service request comes

from any of these devices, it checks in the service-trust list whether there is any corresponding value for that

particular service or not. It calculates the average trust value using (1) and assigns this value in the

corresponding table position. Depending on this newly calculated value, it decides whether to accept the

request or not.

(1)

𝜏(𝑆𝑃,𝐴) = (∑𝑆𝑖 ∗

𝑛

𝑖=1

𝜏(𝑆𝑃𝑖,𝐴,𝑥)) /∑𝑆𝑖

𝑛

𝑖=1

.

Here, SP is the service provider, τ(SP, A) the average trust value of device A for device SP, Si the security level

of ith service, τ(SPi, A, x) the trust value of A for ith service and n is the number of services that links SP and

device A.

Eq. (2) is used by the service manager to calculate the trust value for any new device. If the new device requests

a service, the service providing device generates a multicast message to all devices that it has involvement and

asks for their recommendation about this device.

(2)

𝜏(𝑆𝑃,𝐷new) = (∑𝜏(𝑆𝑃,𝑖)

𝑛

𝑖=1

× 𝜏(𝑖,𝐷new)) /𝑛

Here, SP is the service provider, Dnew the new device requesting service, τ(SP, Dnew) the average trust value

of Dnew for device SP, τ(i, Dnew) the average trust value of device i for Dnew and n is the number of devices that are

link with both SP and Dnew.

The above model allows a device to get services from a provider never before interacted with, and build a trust

relationship gradually. If the service provider fails to get any recommendations from the devices, it

communicates with the risk assessment unit for risk analysis. Based on the feedback from the risk unit if any

device of the network does not have any information about the new device, then 0.5 is assigned as initial trust

value. This value is chosen carefully to allow this device to get services that do not require high security and

build a trust relationship with other devices. Another feature of our trust model is that the trust value is service

specific. It is dynamic and changes depending on the behavior of the device. Devices with lower average trust

value can request and get services that do not threaten the security of the service provider while at the same

time are restricted from getting highly secure services.

6.3.2. Trust value modification
A human-like trust relationship is desirable in a pervasive computing environment, but it is impossible to impose

robust security among devices in this environment. In human societies, trust relationships are built on mutually

agreed upon behavior and recommendations. Unknown persons get an opportunity to become familiar with the

recommendations of others and can enhance their trust level by displaying good behavior. Misbehavior also

plays a role in determining trustworthiness of a person. We wanted to design a model that is similar to the

human trust relationship model. However, the difficulty in doing so is determining what behaviors are rewarded

and what are not acceptable. It is difficult to judge. In a smart space, when the users are known and have access

rights associated with Services, we can calculate the degree of positive or negative behavior by observing

whether or not they are trying to access non-permitted devices, or whether they are dominating the use of a

Service and causing problems for others. However, in a truly pervasive environment, where the entities do not

have any associated privilege level or are totally unknown, finding criteria that increases or decreases the level

of trust of a device is extremely difficult. For simplicity we divided behaviors into three broad categories – good

or rewarding behavior (this increases the average trust value), neutral behavior (which does not have any effect

on the average trust value), and negative behavior (decreases the trust value). To evaluate these behaviors

numerically, we have stored the average service time (this includes request time + service offer time)in the risk

table. Whenever a device requests a service and is offered that service, the total time required to complete the

service request is recorded and compared with an average time. Here, τ is used to update the trust values

between devices. This value is introduced to mimic the trust building relationship in human networks in a simple

manner. The average trust level value is updated using (3), (4), (5).

(3)

𝜃𝑖 = (𝜎𝑎 − 𝜎𝑟)/𝜎𝑎,

(4)

𝜏(𝑆𝑃,𝐷) = 𝜏(𝑆𝑃,𝐷) + 𝜃𝑖,

(5)

𝜏 =
∑ 𝜃𝑖 ∗ 𝜔𝑖𝑛
𝑖=1

𝑛
± 𝑐.

Here, 𝜃𝑖 is the modification value for service i, τ(SP, D) the trust value of device D for service SP, τ(D) the average

trust value of device D, ωi the 0.1∗ security level of service i, n the number of services relating to provider and

requester, σr the required time for a successful request completion, σa the average service time and c is the

random behavioral parameter.

In (5), 𝑐 is included to reflect behaviors such as sending too many requests in a small amount of time, repeatedly

sending a request that has already been rejected, and so on. c is generated from a uniform random number

generator [58] using parameters like number of requests (𝜇), number of accepts (𝛼), number of rejects (𝛽),

number of same request (𝜔), etc. If c > 0.5, then we add in (5), otherwise we deduct c. The c value is calculated

using (6).

(6)

𝑐 = (𝛼/(𝜇 + 𝛽)) − −(𝜔/𝜇).

Our trust model is privacy aware because the device asks the user in case of responding to a higher security level

service request. Even if the trust or risk model indicates that it is safe to share a service; the user can deny any

request. The model is designed in a way that it does not prompt the user for permission for every service

sharing. However, when the security level of a particular service is above a threshold value, it asks for user

permission. Thus, it maintains transparency of operation and protects users’ privacy. Some preliminary results of

this model are available in [47].

7. Risk and security model
Risk assessment and security enforcement are important steps of TSSD. The risk assessment unit and security

management unit are part of the SSRD unit. Section 7.1 discusses the risk model, Section 7.2 contains the

security model, and the message-processing model that we use in TSSD is described in Section 7.3.

7.1. Risk model
A risk model is essential during the sharing services in a pervasive environment. Risk evaluation becomes

significant when a service request comes from an unknown device or when there is not enough

recommendation information. When a service request arrives, we calculate the trust value of the requesting

device (if the providing device has information about the requester or by collecting recommendation from other

devices). Then based on the security level of the requested service, we accept or deny the request. When the

requester is unknown to all the neighboring devices (a very common scenario in pervasive computing), the

device is assigned an initial trust value of 0.5 which would allow it to receive lower security-intensive services

and build a trust relationship with others. However, if that device requires a higher security level service, it is

denied. To address this issue, we have added the risk assessment along with our trust and security model.

The risk model that we are currently using is a lightweight one. Each device has a risk evaluator. This evaluator

stores information about high security services and calculates the risk value when a request comes for one of

these services. Each time a service request arrives along with an accepted or rejected event, it updates the risk

value associated with that service. It collects information about the service that includes number of accepts (𝛾),

total number of requests (𝜙), average trust values of the devices who request this service, service time (𝜎), etc.

To calculate, the risk factor (7) is used:

(7)

𝜌 =
1

(𝛾 𝜙⁄)
× 𝜏.

Here, 𝜌 is the risk factor, 𝛾 the number of accepts, 𝜙 the number of request and 𝜏 is the average trust value for

this service.

The range of the risk factor, 𝜌 is 0 ← 𝜌 ← 1.0. This is a weighted average with respect to average trust value. A

value of 0.5 indicates around 50% acceptance rate for this particular service. If the risk factor value is high (>

0.5), then the request is rejected. In the case of a low risk factor, the service is provided. Based on this value, the

device assigns a risk factor with the service. As this information is collected every time a service is requested or

shared, a historical database is created for services of a particular device. Each device has its own database that

allows it to decide the risk factor for its services. This allows a device to decide whether to accept a request or

not when there is little or no information available about a requester. Table 4 shows some sample data stored in

a device.

Table 4. Risk value table

Id Number of request
(ϕ)

Number of accept
(γ)

Average trust value
(τ)

Average service time (σ) in
ms

5 3 1 0.75 21

9 7 6 0.6 15

13 17 13 0.83 40

Each time a service request is made, the risk value table is updated to include the modified number of requests,

number of accepts, average trust value of devices for which the request is accepted, and average service time to

offer. The updated data is used to calculate the risk factor for sharing a service with unknown devices. We are

currently using statistical distributions to find out optimal percentage rate and trust value pair that lowers the

risk of service sharing. The average service time is compared with the service-sharing time to evaluate the

behavior of the requesting device. This value is used for dynamic modification of trust value. In Section 6.3 the

details of trust value modification is presented.

7.2. Security model
There are four major aspects of security-confidentiality, integrity, availability, and authentication. In our model,

we focus on these issues from a pervasive environment viewpoint. Each of these security issues has been widely

studied and many standard solutions exist for each (e.g. confidentiality [49], [50], integrity [50], [51], [52],

availability [53] and authentication [45], [54], [55]). Each of these security solutions has pros and cons, but the

most crucial thing is that there is no solution designed with the limited computational power of mobile devices

in mind. The ad hoc nature of the network also restricts us from using these systems in their original form.

Therefore, we have proposed a trust model, influenced by PGP (pretty good privacy), for authentication

purposes and to handle security issues. The MWT (maximum waiting time) concept [48] is used to attain

availability. To maintain the privacy rights of the users, the device owners reserve the right to disclose

availability time to others. Users can choose either the message formats that include availability time or do not

include availability time. Depending on the environment of the user, any of the messages can be used. For

integrity and confidentiality, we are using a signature based [45] hybrid model composed of both public key and

symmetric key.

In Section 6, we have described our trust model that handles authentication issues. We are using a digital

signature based security mechanism for integrity purposes, instead of MAC [51] or HMAC [52]. Once the trust

relationship is established, for those services that do not require a high level of security, the provider offers the

service without using any public key or symmetric key operations. This saves not only computation time but also

battery power, which is a major concern for these tiny devices [9]. But for critical services (services that require

high level of security), we are using a model composed of digital signatures and public key operations. In reality,

a small number of services require this level of security. So the added computation for using a public key is not a

burden.

7.3. Message processing model
For requesting a service, devices use one of the following message formats:

Service_Request (device_id, service_name)

Service_Request (device_id, service_name, MWT)

Service_Request (device_id, service_name, MWT, Requesters_Signed_Key)

Here, MWT is the maximum time a requester can wait to share/receive a service. MWT is added to cope with

the ad hoc nature of devices operating in a pervasive computing environment. If the device owner chooses not

to disclose the availability information, the first format is used. The second message is sent, if the requested

service has a low security level. Otherwise, the third message is sent. Depending on the device, the security level

of the service, and the relationship with other devices in the ad hoc network, this request is sent by using a

broadcast, multicast or unicast method.

1. If the device is new or no information is available about where this service can be found, and the

security level of the specific service is not high, it will broadcast the Service_Request message.

2. If no information is available about where this service can be found, and the security level of the specific

service is high, it will multicast the Service_Request message to devices that it already communicated

with and has an established trust relationship.

3. If the device has prior information about the service (from where it can be shared), it will send a

multicast or unicast message depending on the security level associated with the service.

The service provider sends any of the above two messages depending on the security level of the requested

service. The provider always uses unicast for this reply.

Service_Reply (device_id, service_name)

Service_Reply (device_id, service_name, Providers_Signed_Key)

Before sending a Service_Reply message with the signed_key, the provider sends Request_for_Trust_Value

messages to devices that have a trust relationship with it. This message is sent using a multicast method.

Request_for_Trust_Value (requesting_device_id, providers_id)

Reply_for_Trust_Value (repliers_id, trust value, Repliers_signed_key)

The Reply_for_Trust_Value message is always sent as a unicast message. Because most of the service requests

do not have a high level of associated security, there is little overhead for sending and verifying a signed key.

This is also critical for services with high associated security levels.

The result of the TSSD model [56] is presented in the 30th Annual International Computer Software and

Applications Conference (COMPSAC 2006).

8. Evaluation
We have evaluated the performance and usability of the TSSD model by implementing prototype, designing

applications, and using simulation tools. We have designed applications that use the TSSD model for device

discovery and Service sharing. To estimate the overhead of using this model, we have measured the battery

power consumption.

In Section 8.1, we present some screen shots taken from applications that use TSSD as a core service.

Section 8.2 discusses the performance evaluation of our model.

8.1. Prototype implementation
We have implemented a prototype of our proposed model in the service discovery unit of MARKS. We have

used a test bed consisting of a set of Dell Axim X30 pocket PCs (Processor type is Intel@PXA270, speed is

624 MHz). The underlying OS is WinCE and the implementation language is C# on. NET Compact framework. This

prototype is also compatible to laptops, desktops, and smart phones. As the underlying wireless protocol, we

have used the mobile ad hoc mode of IEEE 802.11b. Some screenshots of application using the Service discovery

service are shown in Fig. 6.

Fig. 6. Application that uses TSSD. (a) Available services. (b) Neighboring devices. (c) Successful service request.

(d) Request denied.

8.2. Performance measurement
Our service discovery model is lightweight. To evaluate the performance of our model we have used battery

power as a performance metric. We have constructed a test bed of seven PDAs, which are wirelessly connected

in ad hoc mode. At first, we have measured the power without running our prototype. Later we have done the

same thing after executing the prototype. Fig. 7 shows the remaining battery power for seven PDAs before and

after running TSSD model. It shows that the battery power consumption is nominal for TSSD. The 𝑋 axis denotes

time in minutes and the Y axis denotes remaining battery power.

Fig. 7. Power consumption by TSSD.

To collect data for comparisons, we generated random service requests from seven devices. We measured the

time required for service discovery and sharing using our model and without using our model (normal case). The

services are chosen from Table 2. A portion of the collected data is shown in Table 5 (second column).

Table 5. Comparison of service time

Service name Time (s)
Normal Trust Trust, risk, security

DateTime 0.1 0.105 0.105

WAV (148 KB) 0.7 0.72 0.75

Chat SW (262 KB) 0.9 0.925 0.975

Unzip SW (323 KB) 1.0 1.03 1.07

Address book (810 KB) 1.8 1.91 1.91

Dictionary (5.94 MB) 17.2 17.25 17.25

Music SW (7.96 MB) 23.6 23.66 23.66

Acrobat Reader (13.5 MB) 40 40.05 40.05

Here, we see that for normal services (e.g. DateTime, Chat & Music playing SW, etc.), encryption and user

intervention is not needed. To calculate the trust value, it needs less than 60 ms. On the contrary, for the

delicate address book sharing, both user intervention and encryption are needed. The encryption and trust

calculation take only 110 ms, which is negligible.

We have collected data of our model using only the trust model and using trust, risk, and security model. We

have compared both sets of data to estimate the overhead of using the risk and the security models. Table

5 (column 3) also lists this service time comparison.

Services with lower security levels do not experience any response time change since the services’ risk model is

never used. From our experiment we have found the services that require higher response time also are not

affected since the risk evaluation time is negligible compared to overall service response time. From the results,

it is proven that the additional calculation for risk features do not result in significant computation overhead.

9. Conclusion and future work
We have proposed the design of a service discovery model, TSSD. To facilitate service lookup and efficient

information dissemination; the concept of a service manager has been introduced. To maintain the privacy of

users and their willingness to share services, trust, risk, and security models have been implemented. Efficiency

is obtained by adopting combinations of secure and non-secure modes of operation for service provider

selection and service lookup, respectively.

We have implemented TSSD as a part of MARKS, dependable middleware designed for devices running on a

pervasive computing environment. We have also implemented applications that will use the algorithms

presented here. The suitability of the service discovery protocol has been evaluated using simulations [30] and

designed applications. We have also studied the performance improvement of MARKS after incorporating the

service discovery unit.

Our aim was to provide a security model that would work in everyday situations without compromising the

performance of the device. We have designed a simple but efficient model that takes care of security related

issues without causing much battery power consumption. Our model is a hybrid one in a sense that it operates

both in secure and non-secure mode depending on the level of security needs for the service. By implementing a

hybrid mode of operation, we have minimized the overhead of encrypting messages each time a device requests

or provides services. However, when there is no prior information available, building a trust relationship is

difficult. To address situations like this, we have also added a risk model that analyzes the risk of sharing a

particular service and takes appropriate action. The vulnerability issues against several types of attack scenarios

have been put as out of scope for this paper. This issue has been discussed in details along with solution in our

previous paper [59].

Currently, our risk model uses historical data to calculate the risk factor. Inclusion of risk parameters is a new

concept for ad-hoc mobile devices. This model can be made more robust using different distributions for finding

out the threshold value for risk parameters that minimizes the risk of service sharing. The addition of

appropriate risk parameters will make this model tremendously useful. Our existing model works for single-hop

Service discovery and sharing. This model can be extended to facilitate multi-hop discovery and service sharing.

Features like dynamic service integration can be included. Service integration may replace failed services or plug

in more services depending on the situation without starting the entire process over. By considering the devices

as cells, “Cellular automata” [57] concepts can be employed to adopt this feature. We will also work of privacy

inference and preservation in future.

Acknowledgements
The authors appreciate the help of Steve Sass and Karl Stamm to improve the readability of the paper. We also

thank Shameem Ahmed for implementing part of the test bed. We also appreciate the comments of Md.

Munirul Haque. We also appreciate his help for formatting the paper.

References
[1] M. Weiser. Some computer science problems in ubiquitous computing. Communications of the

ACM, 36 (7) (1993), pp. 75-84

[2] Pervasive Computing definition. Available

from: <http://www.parliament.vic.gov.au/sarc/EDemocracy/Final_Report/Glossary.htm>.

[3] Pervasive Computing framework. Available

from: <http://framework.v2.nl/archive/archive/node/text/default.xslt/nodenr-156647>.

[4] P. Robinson, H. Vogt, W. Wagealla, Some research challenges in pervasive computing, in: Post Workshop at

the Second International Conference on Pervasive Computing, April 18–23, 2004, Vienna, Austria, pp. 1–

16.

[5] M. Weiser. The computer for the twenty-first century. Scientific American (1991), pp. 94-104

[6] T. Kindberg, A. Fox, System software for ubiquitous computing, IEEE Pervasive Computing (Jan–Mar) (2002)

70–81. Available from: <http://www.champignon.net/TimKindberg/kindberg-fox-ieeepvc.pdf>.

[7] M. Satyanarayanan, Fundamental challenges in mobile computing, in: Fifteenth ACM Symposium on

Principles of Distributed Computing, Philadelphia, PA, USA, May 1996, pp. 1–7.

[8] R. Want, T. Pering, System challenges for ubiquitous & pervasive computing, in: 27th International

Conference on Software Engineering (ICSE 2005), St. Louis, MO, USA, May 15–21, pp. 9–14.

[9] F. Stajano. Security for Ubiquitous Computing. Wiley, New York (2002) pp. 110–111

[10] F. Stajano, R. Anderson. The resurrecting duckling: security issues for ubiquitous computing.

Computer, 35 (4) (2002), pp. 22-26 Part Supplement

[11] K. Matsumiya, S. Tamaru, G. Suzuki, J. Nakazawa, K. Takashio, H. Tokuda, Improving security for ubiquitous

campus applications, in: Symposium on Applications and the Internet Workshops (SAINT 2004), January

2004, pp. 417–422.

[12] L. Kagal, T. Finin, A. Joshi. Moving from security to distributed trust in ubiquitous computing

environments. IEEE Computer (December) (2001)

[13] Y. Chen, C.D. Jensen, E. Gray, V. Cahill, J. Seigneur, A general risk assessment of security in pervasive

computing. Available from: <https://www.cs.tcd.ie/publications/tech-reports/reports.03/TCD-CS-2003-

45.pdf>.

[14] M. Nidd. Service discovery in DEAPspace. IEEE Personal Communications (2001), pp. 39-45

[15] B.A. Miller, T. Nixon, C. Tai, M.D. Wood. Home networking with universal plug and play. IEEE

Communications Magazine, 39 (12) (2001), pp. 104-109

[16] W. Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, The design and implementation of an intentional naming

system, in: 17th ACM Symposium on Operating Systems Principles (SOSP’99), Kiawah Island, Scotland,

1999, pp. 186–201. Availablr

from: <http://citeseer.ist.psu.edu/cache/papers/cs/13731/http:zSzzSzwww.cs.cmu.eduzSzPeoplezSzbu

mbazSzfiling_cabinetzSz.zSzpaperszSzsosp99zSzadjie-winoto.pdf/adjie-winoto99design.pdf>.

[17] M. Balazinska, H. Balakrishnan, D. Karger, INS/Twine: A scalable peer-to-peer architecture for intentional

discovery, in: International Conference on Pervasive Computing, Zurich, Switzerland, August 26–28,

2002, pp. 195–210.

[18] Microsoft Corporation, Universal Plug and Play Device Architecture, Version 1.0, Microsoft Co., 2000.

[19] S. Czerwinski, B.Y. Zhao, T. Hodes, A. Joseph, R. Katz, An architecture for a secure service discovery service,

in: Fifth Annual. International Conference on Mobile Computing and Networks (MobiCom’99), Seattle,

WA, 1999, pp. 24–35. Available

from: <http://www.win.tue.nl/johanl/educ/2Q341/Papers/BerkeleySDS.pdf#search=‘An%20Architectur

e%20for%20a%20Secure%20Service%20Discovery%20Ser vice'>.

[20] F. Zhu, M. Mutka, L. Ni, Splendor: a secure, private, and location-aware service discovery protocol

supporting mobile. services, in: Pervasive Computing and Communications, 2003 (PerCom 2003),

Proceedings of the First IEEE International Conference, 23–26 March 2003, pp. 235–242. Available

from: <http://www.angoya.net/lni/papers/MyPapers/ZhMN03a.pdf>.

[21] F. Zhu, M. Mutka, L. Ni, PrudentExposure: a private and user-centric service discovery protocol, in:

Proceedings of the 2004, IEEE Annual Conference on Pervasive Computing and Communications

(PerCom 2004), March 2004, pp. 329–340. Available from: <http://www.cse.msu.edu/zhufeng

prudent.pdf>.

[22] H. Kopp, U. Lucke, D. Tavangarian, Security architecture for service-based mobile environment, in: Third

IEEE International Conference on Pervasive Computing and Communications Workshops

(PERCOMW’05),Washington, DC, USA, March 2005, pp. 199–203.

[23] F. Zhu, M. Mutka, L. Ni, Expose or not? A progressive exposure approach for service discovery in pervasive

computing environments, in: Third IEEE International Conference on Pervasive Computing and

Communications (PerCom 2005), March 2005, pp. 225–234.

[24] F. Almenarez, C. Campo, SPDP: a secure service discovery protocol for ad-hoc networks, in: 9th Open

European Summer School and IFIP Workshop on Next Generation Networks (EUNICE 2003), Hungary,

September 2003.

[25] R. He, J. Niu, M. Yuan, J. Hu, A novel cloud-based trust model for pervasive computing, in: The Fourth

International Conference on Computer and Information Technology (CIT’04), September 2004, pp. 693–

700.

[26] M. Sharmin, S. Ahmed, S.I. Ahamed, MARKS (middleware adaptability for discovery, knowledge usability,

and self Healing) in pervasive computing environments, in: Third International Conference on

Information Technology: New Generations, NV, USA, April 2006, pp. 306–313.

[27]

S. Ahmed, M. Sharmin, S.I. Ahamed, Knowledge usability and its characteristics for pervasive computing, in: The

2005 International Conference on Pervasive Systems and Computing (PSC-05), Las Vegas, USA, June

2005, pp. 206–209.

[28] S. Ahmed, M. Sharmin, S.I. Ahamed. ETS (efficient, transparent, and secured) self-healing service for

pervasive computing applications. International Journal of Network Security, 4 (3) (2007), pp. 271-281

[29] S. Ahmed, M. Sharmin, S.I. Ahamed, PerAd-Service: a middleware service for pervasive advertisement in M-

Business, in: 29th International Computer Software and Applications Conference, Edinburgh, Scotland,

July 2005, pp. 17–18.

[30] OMNeT++ Community Site. Available from: <http://www.omnetpp.org/>.

[31] F. Zhu, M. Mutka, L. Ni, Classification of service discovery in pervasive computing environments, MSU-CSE-

02-24, MSU, 2002, pp. 1–17.

[32] Specification of the Bluetooth System – Core, Bluetooth SIG, Version 1.1, February 22, 2001. Available

from: <http://www.bluetooth.org/docs/Bluetooth_V11_Core_22Feb01.pdf>.

[33] Bluetooth Special Interest Group, SDP Specification.

[34] Jini™ Technology Core Platform Specification, Sun Microsystems, Version 1.2, December 2001. Available

feom: <http://wwws.sun.com/software/jini/specs>.

[35] K. Minami, D. Kotz, Secure context-sensitive authorization, in: Third International Conference on Pervasive

Computing and Communications Workshops (PerCom 2005), Hawaii, March 2005, pp. 257–268.

[36] F. Zhu, M.W. Mutka, L.M. Ni. A private, secure, and user-centric information exposure model for service

discovery protocols. IEEE Transactions on Mobile Computing, 5 (4) (2006), pp. 418-429

[37] P. Brezillon, G.K. Mostefaoui, Context-based security policies: a new modeling approach, in: Second IEEE

International Conference on Pervasive Computing and Communications Workshops, FL, 2004, pp. 154–

158.

[38] R.K. Thomas, R. Sandhu, Models, protocols, and architectures for secure pervasive computing: challenges

and research directions, in: Second IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom 2004), FL, 2004, pp. 164–168.

[39] F. Almenarez, A. Marin, C. Campo, C. Garcia, PTM: a pervasive trust management model for dynamic open

environments, Pervasive Security, Privacy, and Trust (PSPT 2004), MA, 2004. Available

from: <http://jerry.c-lab.de/ubisec/publications/PSPT04_PTM.pdf>, accessed May 2006.

[40] F. Almenarez, A. Marin, D. Dyaz, J. Sanchez, Developing a model for trust management in pervasive devices,

in: Fourth Annual IEEE International Conference on Pervasive Computing and Communications

Workshops (PERCOMW’06), 2006, pp. 267–271.

[41] N. Shankar, W. Arbaugh, On trust for ubiquitous computing, in: Workshop on Security in Ubiquitous

Computing (UBICOMP 2002), Gteborg, Sweden.

[42] A. Tripathi, T. Ahmed, D. Kulkarni, R. Kumar, K. Kashiramka, Context-based secure access in pervasive

computing environments, in: Second IEEE Annual Conference on Pervasive Computing and

Communications Workshops, vol. 00, FL, USA, 2004, pp. 159.

[43] J. Basu, V. Callaghan, Towards a trust based approach to security and user confidence in pervasive

computing systems, in: The IEE International Workshop, Intelligent Environments 2005 (IE05), UK, June

2005. Available from: <http://cswww.essex.ac.uk/Research/iieg/papers/Jisnu%20Basu%20IE05.pdf>,

accessed May 2006.

[44] S. Pearson, How trusted computers can enhance privacy preserving mobile applications, in: Proceedings of

the Sixth International IEEE Symposium on a World of Wireless Mobile and Multimedia Networks

(WoWMoM’05), Taormina, June 2005, pp. 609–613.

[45] P.R. Zimmermann. PGP Source Code and Internals. MIT Press, Cambridge, MA (1995)

[46] M. Sharmin, S. Ahmed, S.I. Ahamed, SAFE-RD (secure, adaptive, fault tolerant, and efficient service

discovery) in pervasive computing environments, in: IEEE international Conference on Information

Technology (ITCC 2005), Las Vegas, USA, April 2005, pp. 271–276.

[47] M. Sharmin, S. Ahmed, S.I. Ahamed, An adaptive lightweight trust reliant secure service discovery for

pervasive computing environments, in: Fourth Annual IEEE International Conference on Pervasive

Computer and Communications (PerCom 2006), Pisa, Italy, March 2006, pp. 258–263.

[48] Available from: <http://islab.oregonstate.edu/koc/ece478/project/dos1.pdf>.

[49] W. Diffie, M.E. Hellman. New directions in cryptography. IEEE Transaction on Information Theory, IT-

22 (6) (1976), pp. 644-654

[50] R.L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures and public key crypto

systems. Communications of the ACM, 21 (2) (1978), pp. 120-126

[51] MAC (Message Authentication Code). Available

from: <http://www.rsasecurity.com/rsalabs/node.asp?id=2177>.

[52] H. Krawczyk, M. Bellare, R. Canetti, HMAC: keyed-hashing for message authentication, RFC 2104, IETF, Feb

1997.

[53] V.D. Gligor, A note on the denial-of-service-problem, in: IEEE Symposium on Security and Privacy (SSP’83),

Oakland, CA, USA, April 1983, pp. 139–149.

[54] L. Lamport. Password authentication with insecure communication. Communications of the

ACM, 24 (11) (1981), pp. 770-772

[55] N.M. Haller, The S/Key TM one-time password system, in: ISOC Symposium on Network and Distributed

System Security, San Diego, CA, USA, February 1994, pp. 151–158.

[56] M. Sharmin, S. Ahmed, S.I. Ahamed, SSRD+: a privacy-aware trust and security model for discovery in

pervasive computing environment, in: Proceedings of the 30th Annual InternationalComputerSoftware

and Applications Conference (COMPSAC 2006), Chicago, September 17–21, 2006, pp. 67–70.

[57] Available from: <http://en.wikipedia.org/wiki/Cellular_automata>.

[58] Pierre L’Ecuyer, Unifor random number generators: a review. Available from: <http://www.informs-

cs.org/wsc97papers/0127.PDF>.

[59] M. Haque, S.I. Ahamed, Haifeng Li, K.M. Asif. An authentication based lightweight device discovery (ALDD)

model for pervasive computing. Proceedings of the 31st Annual International Computer Software and

Applications Conference (COMPSAC 2007), IEEE CS Press, Beijing, China (2007) pp. 57–64

	A Trust-based Secure Service Discovery (TSSD) Model for Pervasive Computing
	Recommended Citation

	tmp.1615307767.pdf.JUGH0

