87,806 research outputs found

    Flavor Singlet Axial Coupling of the Proton - An Updated Analysis

    Get PDF
    We present a combined analysis of SESAM and TxL data for the flavor singlet axial coupling G_A^1 of the proton, which is very helpful to stabilize the disconnected signals at small quark masses. From connected and disconnected contributions we use the tadpole improved renormalization constant Z_A and obtain G_A^1=0.21(12).Comment: 3 pages, contribution to LATTICE99 (matrix elements

    Study of photon detection efficiency and position resolution of BESIII electromagnetic calorimeter

    Full text link
    We study the photon detection efficiency and position resolution of the electromagnetic calorimeter (EMC) of the BESIII experiment. The control sample of the initial-state-radiation (ISR) process of e+eγμ+μe^+e^-\rightarrow \gamma \mu^+\mu^- is used at J/ψJ/\psi and ψ(3770)\psi(3770) resonances for the EMC calibration and photon detection efficiency study. Photon detection efficiency is defined as the predicted photon, obtained by performing a kinematic fit with two muon tracks, matched with real photons in the EMC. The spatial resolution of the EMC is defined as the separation in polar (θ\theta) and azimuthal (ϕ\phi) angles between charged track and associated cluster centroid on the front face of the EMC crystals.Comment: 5 page

    Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    Get PDF
    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface

    Disentangling the EMC Effect

    Full text link
    The deep inelastic scattering cross section for scattering from bound nucleons differs from that of free nucleons.This phenomena, first discovered 30 years ago, is known as the EMC effect and is still not fully understood. Recent analysis of world data showed that the strength of the EMC effect is linearly correlated with the relative amount of Two-Nucleon Short Range Correlated pairs (2N-SRC) in nuclei. The latter are pairs of nucleons whose wave functions overlap, giving them large relative momentum and low center of mass momentum, where high and low is relative to the Fermi momentum of the nucleus. The observed correlation indicates that the EMC effect, like 2N-SRC pairs, is related to high momentum nucleons in the nucleus. This paper reviews previous studies of the EMC-SRC correlation and studies its robustness. It also presents a planned experiment aimed at studying the origin of this EMC-SRC correlation.Comment: 8 pages, 3 figures. Proceedings of plenary talk at CIPANP 201

    Investigations on electromagnetic noises and interactions in electronic architectures : a tutorial case on a mobile system

    Get PDF
    Electromagnetic interactions become critic in embedded and smart electronic structures. The increase of electronic performances confined in a finite volume or support for mobile applications defines new electromagnetic environment and compatibility configurations (EMC). With canonical demonstrators developed for tutorials and EMC experiences, this paper present basic principles and experimental techniques to investigate and control these severe interferences. Some issues are reviewed to present actual and future scientific challenges for EMC at electronic circuit level

    EMC and Polarized EMC Effects in Nuclei

    Get PDF
    We determine nuclear structure functions and quark distributions for 7^7Li, 11^{11}B, 15^{15}N and 27^{27}Al. For the nucleon bound state we solve the covariant quark-diquark equations in a confining Nambu--Jona-Lasinio model, which yields excellent results for the free nucleon structure functions. The nucleus is described using a relativistic shell model, including mean scalar and vector fields that couple to the quarks in the nucleon. The nuclear structure functions are then obtained as a convolution of the structure function of the bound nucleon with the light-cone nucleon distributions. We find that we are readily able to reproduce the EMC effect in finite nuclei and confirm earlier nuclear matter studies that found a large polarized EMC effect.Comment: 8 pages, 9 figure

    Numerical analysis of electromagnetic cascades in emulsion chambers

    Get PDF
    A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed
    corecore