14 research outputs found

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs

    Engineering Multi-Agent Systems: State of Affairs and the Road Ahead

    Get PDF
    The continuous integration of software-intensive systems together with the ever-increasing computing power offer a breeding ground for intelligent agents and multi-agent systems (MAS) more than ever before. Over the past two decades, a wide variety of languages, models, techniques and methodologies have been proposed to engineer agents and MAS. Despite this substantial body of knowledge and expertise, the systematic engineering of large-scale and open MAS still poses many challenges. Researchers and engineers still face fundamental questions regarding theories, architectures, languages, processes, and platforms for designing, implementing, running, maintaining, and evolving MAS. This paper reports on the results of the 6th International Workshop on Engineering Multi-Agent Systems (EMAS 2018, 14th-15th of July, 2018, Stockholm, Sweden), where participants discussed the issues above focusing on the state of affairs and the road ahead for researchers and engineers in this area

    Type Checking for Protocol Role Enactments via Commitments

    Get PDF

    Future directions in agent programming

    Get PDF
    Agent programming is a subfield of Artificial Intelligence concerned with the development of intelligent autonomous systems that combine multiple capabilities, e.g., sensing, deliberation, problem-solving and action, in a single system. There has been considerable progress in both the theory and practice of agent programming since Georgeff & Rao’s seminal work on the Belief-Desire-Intention paradigm. However, despite increasing interest in the development of autonomous systems, applications of agent programming are currently confined to a small number of niche areas, and adoption of agent programming languages (APLs) in mainstream software development remains limited. In this paper, I argue that increased adoption of agent programming is contingent on being able to solve a larger class of AI problems with significantly less developer effort than is currently the case, and briefly sketch one possible approach to expanding the set of AI problems that can be addressed by APLs. Critically, the approach I propose requires minimal developer effort and expertise, and relies instead on expanding the basic capabilities of the language

    An agent programming manifesto

    Get PDF
    There has been considerable progress in both the theory and practice of agent programming since Georgeff & Rao’s seminal work on the Belief-Desire-Intention paradigm. However, despite increasing interest in the development of autonomous systems, applications of agent programming are confined to a small number of niche areas, and adoption of agent programming languages in mainstream software development remains limited. This state of affairs is widely acknowledged within the community, and a number of reasons and remedies have been proposed. In this paper, I present an analysis of why agent programming has failed to make an impact that is rooted in the class of programming problems agent programming sets out to solve, namely the realisation of flexible intelligent behaviour in dynamic and unpredictable environments. Based on this analysis, I outline some suggestions for the future direction of agent programming, and some principles that I believe any successful future direction must follow

    An agent programming manifesto

    Get PDF
    There has been considerable progress in both the theory and practice of agent programming since Georgeff & Rao’s seminal work on the Belief-Desire-Intention paradigm. However, despite increasing interest in the development of autonomous systems, applications of agent programming are confined to a small number of niche areas, and adoption of agent programming languages in mainstream software development remains limited. This state of affairs is widely acknowledged within the community, and a number of reasons and remedies have been proposed. In this paper, I present an analysis of why agent programming has failed to make an impact that is rooted in the class of programming problems agent programming sets out to solve, namely the realisation of flexible intelligent behaviour in dynamic and unpredictable environments. Based on this analysis, I outline some suggestions for the future direction of agent programming, and some principles that I believe any successful future direction must follow

    RV4JaCa—Towards Runtime Verification of Multi-Agent Systems and Robotic Applications

    Get PDF
    This paper presents a Runtime Verification (RV) approach for Multi-Agent Systems (MAS) using the JaCaMo framework. Our objective is to bring a layer of security to the MAS. This is achieved keeping in mind possible safety-critical uses of the MAS, such as robotic applications. This layer is capable of controlling events during the execution of the system without needing a specific implementation in the behaviour of each agent to recognise the events. In this paper, we mainly focus on MAS when used in the context of hybrid intelligence. This use requires communication between software agents and human beings. In some cases, communication takes place via natural language dialogues. However, this kind of communication brings us to a concern related to controlling the flow of dialogue so that agents can prevent any change in the topic of discussion that could impair their reasoning. The latter may be a problem and undermine the development of the software agents. In this paper, we tackle this problem by proposing and demonstrating the implementation of a framework that aims to control the dialogue flow in a MAS; especially when the MAS communicates with the user through natural language to aid decision-making in a hospital bed allocation scenario

    An Unexpected Journey: Towards Runtime Verification of Multiagent Systems and Beyond

    Get PDF
    The Trace Expression formalism derives from works started in 2012 and is mainly used to specify and verify interaction protocols at runtime, but other applications have been devised. More specically, this thesis describes how to extend and apply such formalism in the engineering process of distributed articial intelligence systems (such as Multiagent systems). This thesis extends the state of the art through four dierent contributions: 1. Theoretical: the thesis extends the original formalism in order to represent also parametric and probabilistic specications (parametric trace expressions and probabilistic trace expressions respectively). 2. Algorithmic: the thesis proposes algorithms for verifying trace expressions at runtime in a decentralized way. The algorithms have been designed to be as general as possible, but their implementation and experimentation address scenarios where the modelled and observed events are communicative events (interactions) inside a multiagent system. 3. Application: the thesis analyzes the relations between runtime and static verication (e.g. model checking) proposing hybrid integrations in both directions. First of all, the thesis proposes a trace expression model checking approach where it shows how to statically verify LTL property on a trace expression specication. After that, the thesis presents a novel approach for supporting static verication through the addition of monitors at runtime (post-process). 4. Implementation: the thesis presents RIVERtools, a tool supporting the writing, the syntactic analysis and the decentralization of trace expressions
    corecore