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Abstract. Agent programming is a subfield of Artificial Intelligence
concerned with the development of intelligent autonomous systems that
combine multiple capabilities, e.g., sensing, deliberation, problem-solving
and action, in a single system. There has been considerable progress in
both the theory and practice of agent programming since Georgeff &
Rao’s seminal work on the Belief-Desire-Intention paradigm. However,
despite increasing interest in the development of autonomous systems,
applications of agent programming are currently confined to a small num-
ber of niche areas, and adoption of agent programming languages (APLs)
in mainstream software development remains limited. In this paper, I ar-
gue that increased adoption of agent programming is contingent on being
able to solve a larger class of AI problems with significantly less devel-
oper effort than is currently the case, and briefly sketch one possible
approach to expanding the set of AI problems that can be addressed by
APLs. Critically, the approach I propose requires minimal developer ef-
fort and expertise, and relies instead on expanding the basic capabilities
of the language.

1 Introduction

Agent programming is a subfield of Artificial Intelligence concerned with the de-
velopment of intelligent autonomous systems that combine multiple capabilities,
e.g., sensing, deliberation, problem-solving and action, in a single system. It aims
to provide the tools to realise and integrate these capabilities so as to achieve
flexible intelligent behaviour in dynamic and unpredictable environments. Agent
programming has a long history dating back to (at least) the mid 1980’s, and has
strong connections with logic programming; indeed many agent programming
languages incorporate a sizeable subset of Prolog as a sublanguage. However the
origins of agent programming lie more in work on reactive planning, e.g., [6],
than logic programming per se.

Over the last 30 years, there has been considerable progress in both the
theory and practice of agent programming, and a wide variety of agent pro-
gramming languages (APL) and agent platforms have been developed. However,
despite the increasing interest in the development of intelligent autonomous sys-
tems, e.g., driverless cars, UAVs, manufacturing, healthcare etc., the impact of
current agent programming languages and agent programming generally in both



mainstream AI and in applications is minimal. Surveys suggest that the adoption
of Agent-Oriented Programming Languages (AOPL) and Agent-Oriented Soft-
ware Engineering (AOSE) in both research and industry is limited [5, 24, 12].
More worrying, the most distinctive outputs of the agent programming com-
munity, the Belief-Desire-Intention (BDI)-based approaches which specifically
target the development of intelligent or cognitive agents, and which would ap-
pear to be best suited to the development of autonomous systems, are least
used. A study by Winikoff [24] of applications appearing in the Autonomous
Agents and Multiagent systems (AAMAS) Conference Industry/Innovative Ap-
plications tracks in 2010 and 2012, reveals that the systems described do not
require intelligent goal-based (BDI) agents, and the focus of many applications
is at the multi-agent system (MAS) coordination level. The most recent survey
by Müller & Fischer in 2014 [12] reports similar results: 82% of mature appli-
cations focus on the MAS level, while only 9% focus on ‘intelligent agents’; and
only 10% of mature applications clearly used a BDI-based platform.

In this paper I explore possible reasons for the lack of adoption of agent pro-
gramming by the broader AI research community and developers of agent-based
systems, and suggest some directions for future work to address the problem.
The paper draws heavily on [11], which contains a more detailed analysis of
the current state of the art in agent programming. However the present paper
offers more concrete examples of the kinds of future research directions I am
advocating.

2 Agent Programming

In this section, I define the problem agent programming is trying to solve and
briefly review the state of the art in agent programming language research.

There are many different views of the aims and objectives of ‘agent pro-
gramming’ considered as a field. At a high level, these differing perspectives can
be broadly characterised as being either ‘AI-oriented’ or ‘software engineering-
oriented’. The AI-oriented view focuses on connections with the broader field of
Artificial Intelligence, and sees agents as ‘an overarching framework for bringing
together the component AI sub-disciplines that are necessary to design and build
intelligent entities’ [10]. The software engineering-oriented view on the other
hand, focuses on synergies between software engineering and agent research.1

In what follows, I focus on the AI-oriented view. The AI-oriented view repre-
sents the original motivation for agent programming as a subfield, and arguably
the most significant contributions of agent programming have emerged from this
tradition, e.g., the 2007 International Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS) Influential Paper Award for Rao & Georgeff’s

1 There are, of course, overlaps between the two views. In particular, there is a strand
of work in what I am characterising as the AI-oriented view, that focuses on the
engineering of intelligent autonomous systems. However the focus of work in the
software engineering-oriented tradition is much less on AI and more on distributed
systems.



work on rational agents [14]. In addition, the agent programming languages and
tools developed in this tradition are arguably the most mature software products
of the agent programming community, representing approximately thirty years
of cumulative development.

2.1 The BDI Model

The BDI approach to agent programming is based on early work on reactive
planning, e.g., [6]. The underlying rationale for reactive planning rests on a
number of key assumptions, including:

– the environment is dynamic, so it’s not worth planning too far ahead as the
environment will change; and

– the choice of plans should be deferred for as long as possible — plans should
be selected based on the context in which the plan will be executed.

The BDI approach can be seen as an attempt to characterise how flexible intel-
ligent behaviour can be realised in dynamic environments, by specifying how an
agent can balance reactive and proactive (goal directed) behaviour.

In BDI-based agent programming languages, the behaviour of an agent is
specified in terms of beliefs, goals, and plans. Beliefs represent the agent’s in-
formation about the environment (and itself). Goals represent desired states of
the environment the agent is trying to bring about. In many BDI-based agent
programming languages, beliefs and goals are maintained using some form of
declarative knowledge representation, for example, an agent’s beliefs are often
represented by a set of Horn clauses. Plans are the means by which the agent
can modify the environment in order to achieve its goals. Plans are often imple-
mented by a set of rules. The rule conditions consist of queries to be evaluated
against the agent’s beliefs and goals, and the rule actions consist of a sequence of
steps which are either basic actions that directly change the agent’s environment
or internal state, or subgoals which are in turn achieved by other plans. Plans
are pre-defined by the agent developer, and, together with the agent’s initial
beliefs and goals, form the program of the agent. For each event (belief change
or top-level goal), the agent selects a plan which forms the root of an intention
and commences executing the steps in the plan. If the next step in an intention
is a subgoal, a (sub)plan is selected to achieve the subgoal and pushed onto the
intention.

In most BDI-based agent programming languages, plan selection follows four
steps. First the set of relevant plans is determined. A plan is relevant if its
triggering condition matches (unifies with) a goal to be achieved or a change
in the agent’s beliefs the agent should respond to. Second, the set of applicable
plans are determined. A plan is applicable if its condition evaluates to true given
the agent’s current beliefs. Third, the agent commits to (intends) one or more
of its relevant, applicable plans. Finally, from this updated set of intentions, the
agent selects one or more intentions and executes one (or more) steps of the
plan which forms the top of the intention. This process of repeatedly choosing



and executing plans is referred to as the agent’s deliberation cycle. Deferring the
selection plans until the corresponding goal must be achieved allows BDI agents
to respond flexibly to changes in the environment, by adapting the means used
to achieve a goal to the current circumstances.

2.2 Limitations of Current BDI-Based Languages

The BDI approach has been very successful, to the extent that it arguably the
dominant paradigm in agent programming [7], and a wide variety of agent lan-
guages and agent platforms have been developed which at least partially im-
plement the BDI model, e.g., [23, 3, 2, 4, 8]. A number of these languages and
platforms are now reasonably mature in terms of their feature set, and often
have a solid theoretical foundation in the form of a precise operational seman-
tics specifying what beliefs, desires and intentions mean, and how they should
be implemented. It is therefore appropriate to consider what the scientific con-
tribution of this work consists of.

The features common to state of the art BDI languages, and which currently
define this style of programming, are essentially limited to:

– selecting canned plans at run time based on the current context; and

– some support for handling plan failure (e.g., trying a different plan for the
current goal)

All other aspects of implementing an autonomous agent is left to the program-
mer. More specifically, the things that must be coded ‘from scratch’ by a devel-
oper include:2

– how to handle costs, preferences, time, resources, durative actions, etc.

– which plan to adopt if several are applicable

– which intention to execute next

– how to handle interactions between intentions

– how to estimate progress of an intention

– how to handle lack of progress or plan failure

– when to drop a goal or try a different approach

– and many others . . .

While not all of these capabilities will be required in every agent application,
many are necessary in most, if not all, cases (e.g., which plan to adopt, which in-
tention to execute next, how to handle plan failure), and each feature is required
for a significant class of applications.

2 There has been some preliminary work on how many of these capabilities could
be implemented, see, for example, [1, 20, 15, 22, 16, 18, 21, 17, 13, 26, 19]. However, to
date, this work has not been incorporated into the core feature set of popular BDI
platforms.



3 Future Directions

The support currently offered by state of the art APLs is useful, particularly
for some problems. However, as I have argued elsewhere [11], it is currently not
useful enough for most developers to switch platforms. Widespread adoption of
agent programming languages is contingent on being able to solve a larger class
of AI problems with significantly less developer effort than is currently required
using ‘mainstream’ languages and tools (or current APLs).

In this section, I briefly sketch one possible approach to expanding the set of
AI problems that can be addressed by agent programming languages. Critically,
the approach I propose requires minimal developer effort and expertise, and
relies instead on expanding the basic capabilities of the APL.

In many BDI agent architectures, the plans comprising the agent’s intentions
are executed in parallel, e.g., by executing one step of an intention at each
cycle in round robin fashion [23, 2]. Interactions between interleaved steps in
plans in different intentions may result in conflicts, i.e., the execution of a step
in one plan makes the execution of a step in another concurrently executing
plan impossible. Such conflicts between intentions can sometimes be avoided
by using atomic constructs available in languages such as Jason [2] and 2APL
[4], that prevent the interleaving of actions in one plan with actions from other
plans, or by limiting the agent to the execution of a single intention at a time
(FIFO scheduling) [23]. However, it is difficult for the programmer to ensure
that all potential interactions between plan steps are encapsulated within atomic
constructs, and disallowing the interleaved execution of intentions may reduce
the responsiveness of the agent to an unacceptable degree.

While current agent programming languages provide considerable syntactic
support for steps one and two in the deliberation process (i.e., determining rel-
evant applicable plans), support for the third and fourth steps (i.e., selection of
which applicable plan to adopt for a particular goal and deciding which steps
of which intentions to execute) is limited to some flags, and/or over-riding the
default deliberation cycle behaviour by redefining ‘selection functions’ in the
host language (the language in which the agent programming language is itself
implemented). For example, the SO and SI selection functions of Jason [2] allow
a developer to customise Jason’s plan and intention selection for a particular
application domain. While such customisation may be necessary or desirable
for some problems, it requires specialist expertise on part of the developer to
program at the level of the interpreter rather than writing BDI plans.

To address this problem, we have investigated an alternative approach, which
involves extending the capabilities of an APL to incorporate reasoning about
possible interactions between steps in an agent’s intentions [26, 27, 25, 27]. Rea-
soning about interactions can be used to avoid conflicts between intentions [25],
to recover from action failures without backtracking [28], and to schedule inten-
tions so as to achieve goals by their deadlines [27]. Our approach, SA, involves
stochastic sampling of possible future executions of the agent program. SA has
been shown to out-perform current approaches to intention progression in a range



of application domains, and has modest computational cost (a few milliseconds
per deliberation cycle).

SA effectively merges steps 3 and 4 of the standard BDI deliberation cycle
into a single process, which is responsible for determining both which plan to
adopt for a particular (sub)goal, and which step of which intention to execute at
this cycle. Only the choice of which top-level goals to adopt is left to the devel-
oper: once a top-level goal is adopted, SA determines which plans to execute and
how these plans should be interleaved so as to maximise a developer-specified
measure of performance (e.g., number of goals achieved). If the intention se-
lected for execution at the previous cycle posted a subgoal, SA explores through
sampled pseudorandom simulation the implications of intending all relevant ap-
plicable plans for the subgoal (and the possible subplans of those plans) and
their possible interleavings with all possible ways of achieving the agent’s other
intentions. As such it assumes responsibility for decisions that current APLs tra-
ditionally leave to the developer. Critically, it both reduces developer effort (the
developer no longer has to anticipate and control possible interactions between
intentions using atomic constructs, for example) and in many cases improves the
performance of agent programs. The role of the developer changes from specify-
ing low-level procedural knowledge (how a particular set of intentions should be
interleaved) to specifying declarative knowledge (the pre- and postconditions of
actions).

4 Discussion

The sketch of possible future directions for agent programming in the previ-
ous section is shaped by my own interests and research. However, as explained
in Section 2.2, there are many other proposals for extending the capabilities of
agent programming that may be fruitful directions for future research. Whichever
direction(s) are followed, I believe that any future work must involve a fun-
damental shift in emphasis: agent programming must become more about de-
scribing the problem rather than ‘hacking code’, with the agent programming
language/platform doing (more of) the hard bits currently left to the agent de-
veloper.

Clearly, developers will have to write code specific to their particular appli-
cation. The aim is to raise the level of abstraction offered by the agent pro-
gramming language, and by doing so address the challenge of integrating the
AI sub-disciplines necessary to design and build intelligent entities.3 To make
progress, we need to focus on solving more interesting AI problems in an inte-
grated, general and tractable way. By doing so, I believe we can create agent
theories and languages that are much more powerful and easy to use, and en-
courage the adoption of agent programming in mainstream programming and
AI generally.

3 A similar point is made by Hindriks [9] when he advocates easy access to powerful AI
techniques. However Hindriks sees this as merely desirable rather than a necessary
condition for progress.
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