74 research outputs found

    Flexible and robust control of heavy duty diesel engine airpath using data driven disturbance observers and GPR models

    Get PDF
    Diesel engine airpath control is crucial for modern engine development due to increasingly stringent emission regulations. This thesis aims to develop and validate a exible and robust control approach to this problem for speci cally heavy-duty engines. It focuses on estimation and control algorithms that are implementable to the current and next generation commercial electronic control units (ECU). To this end, targeting the control units in service, a data driven disturbance observer (DOB) is developed and applied for mass air ow (MAF) and manifold absolute pressure (MAP) tracking control via exhaust gas recirculation (EGR) valve and variable geometry turbine (VGT) vane. Its performance bene ts are demonstrated on the physical engine model for concept evaluation. The proposed DOB integrated with a discrete-time sliding mode controller is applied to the serial level engine control unit. Real engine performance is validated with the legal emission test cycle (WHTC - World Harmonized Transient Cycle) for heavy-duty engines and comparison with a commercially available controller is performed, and far better tracking results are obtained. Further studies are conducted in order to utilize capabilities of the next generation control units. Gaussian process regression (GPR) models are popular in automotive industry especially for emissions modeling but have not found widespread applications in airpath control yet. This thesis presents a GPR modeling of diesel engine airpath components as well as controller designs and their applications based on the developed models. Proposed GPR based feedforward and feedback controllers are validated with available physical engine models and the results have been very promisin

    Real-time energy management for diesel heavy duty hybrid electric vehicles

    Get PDF
    In this paper, a fuzzy-tuned equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for a conceptual diesel engine-equipped heavy duty hybrid electric vehicle (HEV). In the HEV, two electric motors/generators are mounted on the turbocharger shaft and engine shaft, respectively, which can improve fuel efficiency by capturing and storing energy from both regenerative braking and otherwise wasted engine exhaust gas. The heavy duty HEV frequently involved in duty cycles characterized by start-stop events, especially in off-road applications, whose dynamics is analyzed in this paper. The on-line optimization problem is formulated as minimizing a cost function in terms of weighted fuel power and electric power. In the cost function, a cost factor is defined for both improving energy transmission efficiency and maintaining the battery energy balance. To deal with the nonexplicit relationship between HEV fuel economy, battery state of charge (SOC), and control variables, the cost factor is fuzzy tuned using expert knowledge and experience. In relation to the fuel economy, the air-fuel ratio is an important factor. An online search for capable optimal variable geometry turbocharger (VGT) vane opening and exhaust gas recirculation (EGR) valve opening is also necessary. Considering the exhaust emissions regulation in diesel engine control, the boundary values of VGT and EGR actuators are identified by offline design-of-experiment tests. An online rolling method is used to implement the multivariable optimization. The proposed method is validated via simulation under two transient driving cycles, with the fuel economy benefits of 4.43% and 6.44% over the nonhybrid mode, respectively. Compared with the telemetry equivalent consumption minimization strategy, the proposed F-ECMS shows better performance in the sustainability of battery SOC under driving conditions with the rapid dynamics often associated with off-road applications

    Nonlinear control on the basis of the control Lyapunov function method for the model a diesel turbo engine

    Get PDF
    даній статті представлено альтернативний спосіб розробки оптимального керування з допомогою управляючої функції Ляпунова для дизельного двигуна, який оснащений системою рециркуляції відпрацьованих газів і турбокомпресором змінної геометрії. Розраховуються параметри управляючої функції Ляпунова для досягнення стійкості контролера, розроблено алгоритм оптимізації функції Ляпунова з метою отримання його кращої продуктивності. Запропонований підхід дозволяє замість використання тривіальної квадратичної функції Ляпунова, перейти до більш загальної функції Ляпунова з додатковими ступенями свободи. Можливість маніпулювання і підбору параметрів згідно умов стійкості сприятимуть поліпшенню якості керування. Представлено спосіб пошуку параметрів оптимального керування на базі узагальненої форми управляючої функції Ляпунова для досягнення критерію якості. Основною є умова від’ємності похідної Лі функції Ляпунова, що є функціональною нерівністю залежною від стану системи і формулюється як задача лінійних матричних нерівностей з обмеженнями. Вона може бути вирішена шляхом перетворення її в задачу SOS оптимізації з використанням програмної технології SOS-tools. Перевірено різні функції Ляпунова на базі обчислювальних експериментів з метою отримання більш високої продуктивності. This article presents an alternative way to develop an optimal control for a diesel engine equipped of EGR system and variable geometry turbocharger by using of control Lyapunov functions. The parameters of control Lyapunov functions to achieve stability of the controller are calculated, the developed algorithm of optimization of the Lyapunov function is aimed to obtain a better performance of the controller. Proposed approach allows instead of trivial quadratic Lyapunov function, use more general Lyapunov function with additional degrees of freedom. The possibility of manipulation and selection the parameters under the condition of stability will improve the quality of control. The method of finding optimal control parameters based on a generalized form of the management Lyapunov function to achieve the quality criterion is presented. The main condition is negativity of Lee derivative of Lyapunov function, it is depended on functional inequalities of the system and formulated as linear matrix inequalities with restrictions. It can be solved by turning it into a problem of SOS optimization, it can be solved using software technologies of SOStools

    System analysis of a diesel engine with VGT and EGR

    Get PDF
    A system analysis of a diesel engine with VGT and EGR is performed in order to obtain insight into a VGT and EGR control problem where the goal is to control the performance variables oxygen fuel ratio λO and EGR-fraction xegr using the VGT actuator uvgt and the EGR actuator uegr. Step responses over the entire operating region show that the channels uvgt → λO, uegr → λO, and uvgt → xegr have non-minimum phase behaviors and sign reversals. The fundamental physical explanation of these system properties is that the system consists of two dynamic effects that interact: a fast pressure dynamics in the manifolds and a slow turbocharger dynamics. It is shown that the engine frequently operates in operating points where the non-minimum phase behaviors and sign reversals occur for the channels uvgt → λO and uvgt → xegr, and consequently, it is important to consider these properties in a control design. Further, an analysis of zeros for linearized multiple input multiple output models of the engine shows that they are non-minimum phase over the complete operating region. A mapping of the performance variables λO and xegr and the relative gain array show that the system from uegr and uvgt to λO and xegr is strongly coupled in a large operating region. It is also illustrated that the pumping losses pem −pim decrease with increasing EGR-valve and VGT opening for almost the complete operating region. Content

    Characterisation, control, and energy management of electrified turbocharged diesel engines

    Get PDF
    The electrification of engine components offers significant opportunities for fuel efficiency improvements. The electrified turbocharger is one of the most attractive options since it recovers part of the engine exhaust gas mechanical energy to assist boosting. Therefore, the engine can be downsized through improved transient responsiveness. In the electrified turbocharger, an electric machine is mounted on the turbine shaft and changes the air system dynamics, so characterisation of the new layout is essential. A systematic control solution is required to manage energy flows in the hybrid system. In this paper, a framework for characterisation, control, and energy management for an electrified turbocharged diesel engine is proposed. The impacts of the electric machine on fuel economy and air system variables are analysed. Based on the characterisation, a two-level control structure is proposed. A real-time energy management strategy is employed as the supervisory level controller to generate the optimal values of critical variables, while a model-based multi-variable controller is designed as the low level controller to track the values. The two controllers work together in a cascade to address both fuel economy optimisation and battery state-of-charge maintenance. The proposed control strategy is validated on a high fidelity physical engine model. The tracking performance shows the proposed framework is a promising solution in regulating the behavior of electrified engines

    Optimal Control for Automotive Powertrain Applications

    Full text link
    Optimal Control (OC) is essentially a mathematical extremal problem. The procedure consists on the definition of a criterion to minimize (or maximize), some constraints that must be fulfilled and boundary conditions or disturbances affecting to the system behavior. The OC theory supplies methods to derive a control trajectory that minimizes (or maximizes) that criterion. This dissertation addresses the application of OC to automotive control problems at the powertrain level, with emphasis on the internal combustion engine. The necessary tools are an optimization method and a mathematical representation of the powertrain. Thus, the OC theory is reviewed with a quantitative analysis of the advantages and drawbacks of the three optimization methods available in literature: dynamic programming, Pontryagin minimum principle and direct methods. Implementation algorithms for these three methods are developed and described in detail. In addition to that, an experimentally validated dynamic powertrain model is developed, comprising longitudinal vehicle dynamics, electrical motor and battery models, and a mean value engine model. OC can be utilized for three different purposes: 1. Applied control, when all boundaries can be accurately defined. The engine control is addressed with this approach assuming that a the driving cycle is known in advance, translating into a large mathematical problem. Two specific cases are studied: the management of a dual-loop EGR system, and the full control of engine actuators, namely fueling rate, SOI, EGR and VGT settings. 2. Derivation of near-optimal control rules, to be used if some disturbances are unknown. In this context, cycle-specific engine calibrations calculation, and a stochastic feedback control for power-split management in hybrid vehicles are analyzed. 3. Use of OC trajectories as a benchmark or base line to improve the system design and efficiency with an objective criterion. OC is used to optimize the heat release law of a diesel engine and to size a hybrid powertrain with a further cost analysis. OC strategies have been applied experimentally in the works related to the internal combustion engine, showing significant improvements but non-negligible difficulties, which are analyzed and discussed. The methods developed in this dissertation are general and can be extended to other criteria if appropriate models are available.El Control Óptimo (CO) es esencialmente un problema matemático de búsqueda de extremos, consistente en la definición de un criterio a minimizar (o maximizar), restricciones que deben satisfacerse y condiciones de contorno que afectan al sistema. La teoría de CO ofrece métodos para derivar una trayectoria de control que minimiza (o maximiza) ese criterio. Esta Tesis trata la aplicación del CO en automoción, y especialmente en el motor de combustión interna. Las herramientas necesarias son un método de optimización y una representación matemática de la planta motriz. Para ello, se realiza un análisis cuantitativo de las ventajas e inconvenientes de los tres métodos de optimización existentes en la literatura: programación dinámica, principio mínimo de Pontryagin y métodos directos. Se desarrollan y describen los algoritmos para implementar estos métodos así como un modelo de planta motriz, validado experimentalmente, que incluye la dinámica longitudinal del vehículo, modelos para el motor eléctrico y las baterías, y un modelo de motor de combustión de valores medios. El CO puede utilizarse para tres objetivos distintos: 1. Control aplicado, en caso de que las condiciones de contorno estén definidas. Puede aplicarse al control del motor de combustión para un ciclo de conducción dado, traduciéndose en un problema matemático de grandes dimensiones. Se estudian dos casos particulares: la gestión de un sistema de EGR de doble lazo, y el control completo del motor, en particular de las consignas de inyección, SOI, EGR y VGT. 2. Obtención de reglas de control cuasi-óptimas, aplicables en casos en los que no todas las perturbaciones se conocen. A este respecto, se analizan el cálculo de calibraciones de motor específicas para un ciclo, y la gestión energética de un vehículo híbrido mediante un control estocástico en bucle cerrado. 3. Empleo de trayectorias de CO como comparativa o referencia para tareas de diseño y mejora, ofreciendo un criterio objetivo. La ley de combustión así como el dimensionado de una planta motriz híbrida se optimizan mediante el uso de CO. Las estrategias de CO han sido aplicadas experimentalmente en los trabajos referentes al motor de combustión, poniendo de manifiesto sus ventajas sustanciales, pero también analizando dificultades y líneas de actuación para superarlas. Los métodos desarrollados en esta Tesis Doctoral son generales y aplicables a otros criterios si se dispone de los modelos adecuados.El Control Òptim (CO) és essencialment un problema matemàtic de cerca d'extrems, que consisteix en la definició d'un criteri a minimitzar (o maximitzar), restriccions que es deuen satisfer i condicions de contorn que afecten el sistema. La teoria de CO ofereix mètodes per a derivar una trajectòria de control que minimitza (o maximitza) aquest criteri. Aquesta Tesi tracta l'aplicació del CO en automoció i especialment al motor de combustió interna. Les ferramentes necessàries són un mètode d'optimització i una representació matemàtica de la planta motriu. Per a això, es realitza una anàlisi quantitatiu dels avantatges i inconvenients dels tres mètodes d'optimització existents a la literatura: programació dinàmica, principi mínim de Pontryagin i mètodes directes. Es desenvolupen i descriuen els algoritmes per a implementar aquests mètodes així com un model de planta motriu, validat experimentalment, que inclou la dinàmica longitudinal del vehicle, models per al motor elèctric i les bateries, i un model de motor de combustió de valors mitjans. El CO es pot utilitzar per a tres objectius diferents: 1. Control aplicat, en cas que les condicions de contorn estiguen definides. Es pot aplicar al control del motor de combustió per a un cicle de conducció particular, traduint-se en un problema matemàtic de grans dimensions. S'estudien dos casos particulars: la gestió d'un sistema d'EGR de doble llaç, i el control complet del motor, particularment de les consignes d'injecció, SOI, EGR i VGT. 2. Obtenció de regles de control quasi-òptimes, aplicables als casos on no totes les pertorbacions són conegudes. A aquest respecte, s'analitzen el càlcul de calibratges específics de motor per a un cicle, i la gestió energètica d'un vehicle híbrid mitjançant un control estocàstic en bucle tancat. 3. Utilització de trajectòries de CO com comparativa o referència per a tasques de disseny i millora, oferint un criteri objectiu. La llei de combustió així com el dimensionament d'una planta motriu híbrida s'optimitzen mitjançant l'ús de CO. Les estratègies de CO han sigut aplicades experimentalment als treballs referents al motor de combustió, manifestant els seus substancials avantatges, però també analitzant dificultats i línies d'actuació per superar-les. Els mètodes desenvolupats a aquesta Tesi Doctoral són generals i aplicables a uns altres criteris si es disposen dels models adequats.Reig Bernad, A. (2017). Optimal Control for Automotive Powertrain Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90624TESI

    Considerations on the low-pressure exhaust gas recirculation system control in turbocharged diesel engines

    Full text link
    Although high-pressure exhaust gas recirculation has been commonly used in turbocharged diesel engines for controlling the NOx formation, recent advances in after-treatment and material technology make possible using a low-pressure architecture, which recirculates the exhaust gas upstream the compressor. This brief article presents a basic study of control aspect related to the low-pressure architecture, emphasising the similarities and differences with the highpressure system. Data from experimental tests with both configurations and from a one-dimensional wave action model simulations are combined for the analysis of the input–output paring, linearity and the transient performance of both systems.This research has been partially financed by the Spanish Ministerio de Economia y Competitividad, through project IPT-370000-2010-022 'Investigacion y desarrollo de tecnologias de EGR adaptadas a las nuevas arquitecturas y requerimientos de refrigeracion en motores diesel sobrealimentados para automocion (HIREFIRE)'.Lujan Martinez, JM.; Guardiola García, C.; Plá Moreno, B.; Cabrera López, P. (2014). Considerations on the low-pressure exhaust gas recirculation system control in turbocharged diesel engines. International Journal of Engine Research. 15(2):250-260. https://doi.org/10.1177/1468087413485209S25026015

    Feedforward mapping for engine control

    Get PDF
    Feedforward control is widely used in electronic control units of internal combustion engines besides feedback controls. However, almost all feedforward control values are used in table form, also called maps, having engine speed and engine torque in their axes. Table approach limits all inte ractions in two input dimensions. This paper focuses on application of Gaussian process modelling of errors of inverse parametric model of the valve position. Validation results based on real engine data are presented for steady and dynamic conditions
    corecore