5 research outputs found

    Finding the discriminative frequencies of motor electroencephalography signal using genetic algorithm

    Get PDF
    A crucial part of the brain-computer interface is a classification of electroencephalography (EEG) motor tasks. Artifacts such as eye and muscle movements corrupt EEG signal and reduce the classification performance. Many studies try to extract not redundant and discriminative features from EEG signals. Therefore, this study proposed a signal preprocessing and feature extraction method for EEG classification. It consists of removing the artifacts by using discrete fourier transform (DFT) as an ideal filter for specific frequencies. It also cross-correlates the EEG channels with the effective channels to emphases the EEG motor signals. Then the resultant from cross correlation are statistical calculated to extract feature for classifying a left and right finger movements using support vector machine (SVM). The genetic algorithm was applied to find the discriminative frequencies of DFT for the two EEG classes signal. The performance of the proposed method was determined by finger movement classification of 13 subjects and the experiments show that the average accuracy is above 93 percent

    Study and analysis of motion artifacts for ambulatory electroencephalography

    Get PDF
    Motion artifacts contribute complexity in acquiring clean electroencephalography (EEG) data. It is one of the major challenges for ambulatory EEG. The performance of mobile health monitoring, neurological disorders diagnosis and surgeries can be significantly improved by reducing the motion artifacts. Although different papers have proposed various novel approaches for removing motion artifacts, the datasets used to validate those algorithms are questionable. In this paper, a unique EEG dataset was presented where ten different activities were performed. No such previous EEG recordings using EMOTIV EEG headset are available in research history that explicitly mentioned and considered a number of daily activities that induced motion artifacts in EEG recordings. Quantitative study shows that in comparison to correlation coefficient, the coherence analysis depicted a better similarity measure between motion artifacts and motion sensor data. Motion artifacts were characterized with very low frequency which overlapped with the Delta rhythm of the EEG. Also, a general wavelet transform based approach was presented to remove motion artifacts. Further experiment and analysis with more similarity metrics and longer recording duration for each activity is required to finalize the characteristics of motion artifacts and henceforth reliably identify and subsequently remove the motion artifacts in the contaminated EEG recordings

    A general dual-pathway network for EEG denoising

    Get PDF
    IntroductionScalp electroencephalogram (EEG) analysis and interpretation are crucial for tracking and analyzing brain activity. The collected scalp EEG signals, however, are weak and frequently tainted with various sorts of artifacts. The models based on deep learning provide comparable performance with that of traditional techniques. However, current deep learning networks applied to scalp EEG noise reduction are large in scale and suffer from overfitting.MethodsHere, we propose a dual-pathway autoencoder modeling framework named DPAE for scalp EEG signal denoising and demonstrate the superiority of the model on multi-layer perceptron (MLP), convolutional neural network (CNN) and recurrent neural network (RNN), respectively. We validate the denoising performance on benchmark scalp EEG artifact datasets.ResultsThe experimental results show that our model architecture not only significantly reduces the computational effort but also outperforms existing deep learning denoising algorithms in root relative mean square error (RRMSE)metrics, both in the time and frequency domains.DiscussionThe DPAE architecture does not require a priori knowledge of the noise distribution nor is it limited by the network layer structure, which is a general network model oriented toward blind source separation

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods
    corecore