174 research outputs found

    Smart Biofeedback

    Get PDF
    Smart biofeedback is receiving attention because of the widespread availability of advanced technologies and smart devices that are used in effective collection, analysis, and feedback of physiologic data. Researchers and practitioners have been working on various aspects of smart biofeedback methodologies and applications by using wireless communications, the Internet of Things (IoT), wearables, biomedical sensors, artificial intelligence, big data analytics, clinical virtual reality, smartphones, and apps, among others. The current paradigm shift in information and communication technologies (ICT) has been propelling the rapid pace of innovation in smart biofeedback. This book addresses five important topics of the perspectives and applications in smart biofeedback: brain networks, neuromeditation, psychophysiological psychotherapy, physiotherapy, and privacy, security, and integrity of data

    Safety of Simultaneous Scalp and Intracranial Electroencephalography Functional Magnetic Resonance Imaging

    Get PDF
    Understanding the brain and its activity is one of the great challenges of modern science. Normal brain activity (cognitive processes, etc.) has been extensively studied using electroencephalography (EEG) since the 1930’s, in the form of spontaneous fluctuations in rhythms, and patterns, and in a more experimentally-driven approach in the form of event-related potentials allowing us to relate scalp voltage waveforms to brain states and behaviour. The use of EEG recorded during functional magnetic resonance imaging (EEG-fMRI) is a more recent development that has become an important tool in clinical neuroscience, for example, for the study of epileptic activity. The primary aim of this thesis is to devise a protocol in order to minimise the health risks that are associated with simultaneous scalp and intracranial EEG during fMRI (S- icEEG-fMRI). The advances in this technique will be helpful in presenting a new imaging method that will allow the measurement of brain activity with unprecedented sensitivity and coverage. However, this cannot be achieved without assessing the safety implications of such a technique. Therefore, five experiments were performed to fulfil the primary aim. First, the safety of icEEG- fMRI using body transmit RF coil was investigated to improve the results of previous attempts using a head transmit coil at 1.5T. The results of heating increases during a high-SAR sequence were in the range of 0.2-2.4 °C at the contacts with leads positioned along the central axis inside the MRI bore. These findings suggest the need for careful lead placement. Second, also for the body transmit coil we compared the heating in the vicinity of icEEG electrodes placed inside a realistically-shaped head phantom following the addition of scalp EEG electrodes. The peak temperature change was +2.7 °C at the most superior icEEG electrode contact without scalp electrodes, and +2.1 °C at the same contact and the peak increase in the vicinity of a scalp electrode contact was +0.6 °C (location FP2). These findings show that the S-icEEG-fMRI technique is feasible if our protocol is followed carefully. Third, the heating of a realistic 3D model of icEEG electrode during MRI using EM computational simulation was investigated. The resulting peak 10 g averaged SAR was 20% higher than without icEEG. Moreover, the superior icEEG placed perpendicular to B0 showed significant local SAR increase. These results were in line with previous studies. Fourth, the possibility of simplifying a complete 8-contact with 8 wires depth icEEG electrode model into an electrode with 1-contact and 1 wire using EM simulations was addressed. The results showed similar patterns of averaged SAR values around the electrode tip during phantom and electrode position along Z for the Complete and Simplified models, except an average maximum at Z = ~2.5 W/kg for the former. The SAR values during insertion depth for the Simplified model were double those for the Complete model. The effect of extension cable length is in agreement with previous experiments. Fifth, further simulations were implemented using two more simplified models: 8-contact with 1 wire shared with all contact and 8-contact 1 wire connected to each contact at a time as well as the previously modelled simplified 1-contact 1 wire. Two sets of simulations were performed: with a single electrode and with multiple electrodes. For the single electrode, three scenarios were tested: the first simplified model used only, the second simplified models used only and the third model positioned in different 13 locations. The results of these simulations showed about 11.4-20.5-fold lower SAR for the first model than the second and 0.29-5.82-fold lower SAR for the first model than the complete model. The results also showed increased SAR for the electrode close to the head coil than the ones away from it. For the multiple electrodes, three scenarios were tested: two 1-contact and wire electrodes in different separations, multiple electrodes with their wires separated and multiple electrodes with their wires shorted. The results showed interaction between the two tested electrodes. The results of the multiple electrodes presented 2 to ~10 times higher SAR for the separated setup than the shorted. The comparison between the 1-contact with 1 wire model and the complete model is still unknown and more tests are required to show it. From the findings of this PhD research, we conclude that a body RF coil can be utilized for icEEG-fMRI at 1.5 T; however, the safety protocol has to be implemented. In addition, scalp EEG can be used in conjunction with icEEG electrodes inside the body RF coil at 1.5 T and the safety protocol has to be followed. Finally, it is feasible to perform EM computational simulations using realistic icEEG electrodes on a human model. However, simplifying the realistic icEEG electrode model might result in overestimations of the heating, although it is possible that the simplification of the model can help to simulate more complex implantations such as the implantation of multiple electrodes with their leads open circuited or short circuited, which can provide more information about the safety of implanted patients inside the MRI

    Models and image: reconstruction in electrical impedance tomography of human brain function

    Get PDF
    Electrical Impedance Tomography (EIT) of brain function has the potential to provide a rapid portable bedside neuroimaging device. Recently, our group published the first ever EIT images of evoked activity recorded with scalp electrodes. While the raw data showed encouraging, reproducible changes of a few per cent, the images were noisy. The poor image quality was due, in part, to the use of a simplified reconstruction algorithm which modelled the head as a homogeneous sphere. The purpose of this work has been to develop new algorithms in which the model incorporates extracerebral layers and realistic geometry, and to assess their effect on image quality. An algorithm was suggested which allowed fair comparison between reconstructions assuming analytical and numerical (Finite Element Method - FEM) models of the head as a homogeneous sphere and as concentric spheres representing the brain, CSF, skull and scalp. Comparison was also made between these and numerical models of the head as a homogeneous, head-shaped volume and as a head-shaped volume with internal compartments of contrasting resistivity. The models were tested on computer simulations, on spherical and head-shaped, saline-filled tanks and on data collected during human evoked response studies. EIT also has the potential to image resistance changes which occur during neuronal depolarization in the cortex and last tens of milliseconds. Also presented in this thesis is an estimate of their magnitude made using a mathematical model, based on cable theory, of resistance changes at DC during depolarization in the cerebral cortex. Published values were used for the electrical properties and geometry of cell processes (Rail, 1975). The study was performed in order to estimate the resultant scalp signal that might be obtained and to assess the ability of EIT to produce images of neuronal depolarization

    Safety of Simultaneous Scalp or Intracranial EEG during MRI: A Review

    Get PDF
    Understanding the brain and its activity is one of the great challenges of modern science. Normal brain activity (cognitive processes, etc.) has been extensively studied using electroencephalography (EEG) since the 1930's, in the form of spontaneous fluctuations in rhythms, and patterns, and in a more experimentally-driven approach in the form of event-related potentials (ERPs) allowing us to relate scalp voltage waveforms to brain states and behavior. The use of EEG recorded during functional magnetic resonance imaging (EEG-fMRI) is a more recent development that has become an important tool in clinical neuroscience, for example for the study of epileptic activity. The purpose of this review is to explore the magnetic resonance imaging safety aspects specifically associated with the use of scalp EEG and other brain-implanted electrodes such as intracranial EEG electrodes when they are subjected to the MRI environment. We provide a theoretical overview of the mechanisms at play specifically associated with the presence of EEG equipment connected to the subject in the MR environment, and of the resulting health hazards. This is followed by a survey of the literature on the safety of scalp or invasive EEG-fMRI data acquisitions across field strengths, with emphasis on the practical implications for the safe application of the techniques; in particular, we attempt to summarize the findings in terms of acquisition protocols when possible

    Effects of cathodal transcranial direct current stimulation on cortical spreading depression

    Full text link
    The purpose of this study was to examine the effects of cathodal transcranial direct current stimulation (tDCS) on cortical spreading depression (CSD) in the rat cerebral cortex. CSD is a propagating wave of hyperexcitability that occurs in a number of neurological disorders characterized by excess cerebral excitability such as migraine, acute brain injury, or stroke. Since tDCS is a non-invasive method capable of inducing polarity-dependent changes in cortical excitability, we hypothesized that cathodal stimulation would prevent, attenuate, or change the characteristics of CSD. Forty Sprague-Dawley male rats were randomly divided into two stimulation condition groups: sham tDCS and cathodal tDCS. In both experimental groups, CSD was induced by applying potassium chloride onto cortical surface. Electroencephalogram (EEG) data was recorded during each experiment and subjected to analysis. CSD incidence was compared between the sham and cathodal tDCS group. We observed that significantly fewer CSD events were exhibited during cathodal tDCS relative to sham stimulation. Evaluation of CSD wave characteristics between experimental groups revealed no differences in propagation velocity, amplitude, or waveform of CSD, nor in the presence of neuronal silencing. The results of this study lend support for the use of cathodal tDCS as an effective method for reducing cortical excitability and provides the groundwork for future study of the mechanisms of tDCS and its treatment targets in neurological disorders whose symptoms are created or exacerbated by CSD
    • …
    corecore