337 research outputs found

    EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion

    Get PDF
    Variations in alpha rhythm have a significant role in perception and attention. Recently, alpha decrease has been associated with externally directed attention, especially in the visual domain, whereas alpha increase has been related to internal processing such as mental arithmetic. However, the role of alpha oscillations and how the different components of a task (processing of external stimuli, internal manipulation/representation, and task demand) interact to affect alpha power are still unclear. Here, we investigate how alpha power is differently modulated by attentional tasks depending both on task difficulty (less/more demanding task) and direction of attention (internal/external). To this aim, we designed two experiments that differently manipulated these aspects. Experiment 1, outside Virtual Reality (VR), involved two tasks both requiring internal and external attentional components (intake of visual items for their internal manipulation) but with different internal task demands (arithmetic vs. reading). Experiment 2 took advantage of the VR (mimicking an aircraft cabin interior) to manipulate attention direction: it included a condition of VR immersion only, characterized by visual external attention, and a condition of a purely mental arithmetic task during VR immersion, requiring neglect of sensory stimuli. Results show that: (1) In line with previous studies, visual external attention caused a significant alpha decrease, especially in parieto-occipital regions; (2) Alpha decrease was significantly larger during the more demanding arithmetic task, when the task was driven by external visual stimuli; (3) Alpha dramatically increased during the purely mental task in VR immersion, whereby the external stimuli had no relation with the task. Our results suggest that alpha power is crucial to isolate a subject from the environment, and move attention from external to internal cues. Moreover, they emphasize that the emerging use of VR associated with EEG may have important implications to study brain rhythms and support the design of artificial systems

    Alpha and theta mechanisms operating in internal-external attention competition

    Get PDF
    Attention is the ability to prioritize a set of information at expense of others and can be internally- or externally-oriented. Alpha and theta oscillations have been extensively implicated in attention. However, it is unclear how these oscillations operate when sensory distractors are presented continuously during task-relevant internal processes, in close-to-real-life conditions. Here, EEG signals from healthy participants were obtained at rest and in three attentional conditions, characterized by the execution of a mental math task (internal attention), presentation of pictures on a monitor (external attention), and task execution under the distracting action of picture presentation (internal-external competition). Alpha and theta power were investigated at scalp level and at some cortical regions of interest (ROIs); moreover, functional directed connectivity was estimated via spectral Granger Causality. Results show that frontal midline theta was distinctive of mental task execution and was more prominent during competition compared to internal attention alone, possibly reflecting higher executive control; anterior cingulate cortex appeared as mainly involved and causally connected to distant (temporal/ occipital) regions. Alpha power in visual ROIs strongly decreased in external attention alone, while it assumed values close to rest during competition, reflecting reduced visual engagement against distractors; connectivity results suggested that bidirectional alpha influences between frontal and visual regions could contribute to reduce visual interference in internal attention. This study can help to understand how our brain copes with internal-external attention competition, a condition intrinsic in the human sensory-cognitive interplay, and to elucidate the relationships between brain oscillations and attentional functions/dysfunctions in daily tasks

    Relationship between electroencephalographic data and comfort perception captured in a Virtual Reality design environment of an aircraft cabin

    Get PDF
    Successful aircraft cabin design depends on how the different stakeholders are involved since the first phases of product development. To predict passenger satisfaction prior to the manufacturing phase, human response was investigated in a Virtual Reality (VR) environment simulating a cabin aircraft. Subjective assessments of virtual designs have been collected via questionnaires, while the underlying neural mechanisms have been captured through electroencephalographic (EEG) data. In particular, we focused on the modulation of EEG alpha rhythm as a valuable marker of the brain's internal state and investigated which changes in alpha power and connectivity can be related to a different visual comfort perception by comparing groups with higher and lower comfort rates. Results show that alpha-band power decreased in occipital regions during subjects' immersion in the virtual cabin compared with the relaxation state, reflecting attention to the environment. Moreover, alpha-band power was modulated by comfort perception: lower comfort was associated with a lower alpha power compared to higher comfort. Further, alpha-band Granger connectivity shows top-down mechanisms in higher comfort participants, modulating attention and restoring partial relaxation. Present results contribute to understanding the role of alpha rhythm in visual comfort perception and demonstrate that VR and EEG represent promising tools to quantify human-environment interactions

    Inferring human intentions from the brain data

    Get PDF

    Frontal alpha oscillations and attentional control: a virtual reality neurofeedback study

    Get PDF
    Two competing views about alpha oscillations suggest that cortical alpha reflect either cortical inactivity or cortical processing efficiency. We investigated the role of alpha oscillations in attentional control, as measured with a Stroop task. We used neurofeedback to train 22 participants to increase their level of alpha amplitude. Based on the conflict/control loop theory, we selected to train prefrontal alpha and focus on the Gratton effect as an index of deployment of attentional control. We expected an increase or a decrease in the Gratton effect with increase in neural learning depending on whether frontal alpha oscillations reflect cortical idling or enhanced processing efficiency, respectively. In order to induce variability in neural learning beyond natural occurring individual differences, we provided half of the participants with feedback on alpha amplitude in a 3-dimensional (3D) virtual reality environment and the other half received feedback in a 2D environment. Our results showed variable neural learning rates, with larger rates in the 3D compared to the 2D group, corroborating prior evidence of individual differences in EEG-based learning and the influence of a virtual environment. Regression analyses revealed a significant association between the learning rate and changes on deployment of attentional control, with larger learning rates being associated with larger decreases in the Gratton effect. This association was not modulated by feedback medium. The study supports the view of frontal alpha oscillations being associated with efficient neurocognitive processing and demonstrates the utility of neurofeedback training in addressing theoretical questions in the non-neurofeedback literature

    The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence

    Get PDF
    Real-world experience is typically multimodal. Evidence indicates that the facilitation in the detection of multisensory stimuli is modulated by the perceptual load, the amount of information involved in the processing of the stimuli. Here, we used a realistic virtual reality environment while concomitantly acquiring Electroencephalography (EEG) and Galvanic Skin Response (GSR) to investigate how multisensory signals impact target detection in two conditions, high and low perceptual load. Different multimodal stimuli (auditory and vibrotactile) were presented, alone or in combination with the visual target. Results showed that only in the high load condition, multisensory stimuli significantly improve performance, compared to visual stimulation alone. Multisensory stimulation also decreases the EEG-based workload. Instead, the perceived workload, according to the "NASA Task Load Index" questionnaire, was reduced only by the trimodal condition (i.e., visual, auditory, tactile). This trimodal stimulation was more effective in enhancing the sense of presence, that is the feeling of being in the virtual environment, compared to the bimodal or unimodal stimulation. Also, we show that in the high load task, the GSR components are higher compared to the low load condition. Finally, the multimodal stimulation (Visual-Audio-Tactile-VAT and Visual-Audio-VA) induced a significant decrease in latency, and a significant increase in the amplitude of the P300 potentials with respect to the unimodal (visual) and visual and tactile bimodal stimulation, suggesting a faster and more effective processing and detection of stimuli if auditory stimulation is included. Overall, these findings provide insights into the relationship between multisensory integration and human behavior and cognition

    Watching Nature Videos Promotes Physiological Restoration: Evidence From the Modulation of Alpha Waves in Electroencephalography

    Get PDF
    Various lines of evidence have shown that nature exposure is beneficial for humans. Despite several empirical findings pointing out to cognitive and emotional positive effects, most of the evidence of these effects are correlational, and it has been challenging to identify a cause-effect relationship between nature exposure and cognitive and emotional benefits. Only few of the published studies use psychophysiological methods to assess the biological correlates of these positive effects. Establishing a connection between human physiology and contact with natural settings is important for identifying cause-effect relationships between exposure to natural environments and the positive effects commonly reported in connection to nature exposure. In the present study, we recorded physiological indexes of brain activity (electroencephalography) and sympathetic nervous system (electrodermal activity), while the participants were presented with a series of videos displaying natural, urban, or neutral (non-environmental, computerized) scenes. Participants rated the scenes for their perceived relaxing value, and after each experimental condition, they performed a cognitive task (digit span backward). Participants rated natural videos as the most relaxing. Spectral analyses of EEG showed that natural scenes promoted alpha waves, especially over the central brain. The results suggest that experiencing natural environments virtually produces measurable and reliable brain activity markers which are known to be related to restorative processes.publishedVersio

    Estimating Cognitive Workload in an Interactive Virtual Reality Environment Using Electrophysiological and Kinematic Activity

    Get PDF
    As virtual reality (VR) technology continues to gain prominence in commercial, educational, recreational and research applications, there is increasing interest in incorporating physiological sensors in VR devices for passive user-state monitoring to eventually increase the sense of immersion. By recording physiological signals such as the electroencephalogram (EEG), electromyography (EMG) or kinematic parameters during the use of a VR device, the user’s interactions in the virtual environment could be adapted in real time based on the user’s cognitive state. This dissertation evaluates the feasibility of passively monitoring cognitive workload via electrophysiological and kinematic activity while performing a classical n-back task in an interactive VR environment. The results indicate that scalp measurements of electrical activity and controller and headset tracking of kinematic activity can effectively discriminate three workload levels. Since motion and muscle tension can create co-varying task-related artifacts in EEG sensors mounted to the VR headset, decontamination algorithms were developed. The newly developed warp correlation filter (WCF) and linear regression denoising were applied on EEG, which could significantly decrease the influence of these artifacts. Analysis of the scalp recorded spectrum suggest two transient activity (termed pulse-decay effects) that impact feature extraction, modeling, and overall interpretation of workload estimation from scalp recordings. The best classification accuracy could be achieved by combining EMG, EEG and kinematic activity features using an artificial neural network (ANN)
    • …
    corecore