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Abstract: The human attention system, similar to other networks in the brain, is of a complex nature.
At any moment, our attention can shift between external and internal stimuli. In this study, we aimed
to assess three EEG-based measures of attention (Power Spectral Density, Connectivity, and Spectral
Entropy) in decision-making situations involving goal-directed and stimulus-driven attention using
a Virtual Reality supermarket. We collected the EEG data of 29 participants in 2 shopping phases,
planned and unplanned purchases. The three mentioned features were extracted and a statistical
analysis was conducted. We evaluated the discriminatory power of these features using an SVM
classifier. The results showed a significant (p-value < 0.001) increase in theta power over frontal,
central, and temporal lobes for the planned purchase phase. There was also a significant decrease in
alpha power over frontal and parietal lobes in the unplanned purchase phase. A significant increase in
the frontoparietal connectivity during the planned purchase was observed. Additionally, an increase
in spectral entropy was observed in the frontoparietal region for the unplanned purchase phase.
The classification results showed that spectral entropy has the highest discriminatory power. This
study can provide further insights into the attentional behaviors of consumers and how their type of
attentional control can affect their decision-making processes.

Keywords: EEG; virtual reality; attention; coherency; spectral entropy

1. Introduction

The human attention system has been traditionally divided into two modes. At
any given moment, our attention has the ability to shift between external stimuli in our
environment and internal cognitive processes, such as memories [1]. Our attention sys-
tems have the capacity to be directed toward internal thoughts, such as our memories or
plans [2], or can be captured by an external stimulus. Based on this division in cognition,
attention is typically distinguished as belonging to one of two types: bottom-up (i.e., exter-
nally directed/stimuli-driven/exogenous) and top-down (i.e., internally directed/schema-
driven/goal-driven/endogenous) attention [1,3,4].

People rely either on external or internal information when making decisions [2,5].
The decision maker’s goals, intentions, and previous knowledge drive top-down attention.
By contrast, decision-making based on bottom-up attention is determined by the lower-
level perceptual properties of a stimulus. Additionally, recent studies demonstrate that the
bottom-up process is more activated during human “free” choices, where decisions are
made without any external forces [6–8].

For decades, electrophysiological research has been assessing the underlying neural
mechanisms of attention processes [9–13]. Two major brain oscillatory rhythms have been
studied in electroencephalogram (EEG) for their functional role in attentional processes:
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theta (roughly between 4 and 8 Hz) and alpha (roughly between 8 and 12 Hz) [13,14]. Power
modulations of these oscillations have been found to be strongly correlated with attentional
state alteration in specific regions, as well as interregional synchronization within these
frequency bands (measuring functional connectivity) [15–18]. We briefly review recent
studies here that concern the modulation of EEG (particularly in the theta and alpha bands)
in top-down and bottom-up attention.

1.1. Theta Activity

Theta activity has been observed mainly in the frontal midline region (around Fz)
in goal-driven tasks which involve internal attention, such as internal planning [19] and
working memory tasks [20–22]. In order to retrieve information from multiple items/cues,
the mentioned tasks require integrating, updating, organizing, and holding information.
These studies suggest that theta activity is associated with internally directed attention
toward information/intention stored in the memory and that it helps with information
retrieval [13,16]. The evidence from theta oscillations mediating the orchestration between
the temporal lobe and medial prefrontal cortex (MPFC) also supports its role in memory
integration [21]. Interestingly, an increase in theta activity in the MPFC is also observed
in prospective memory tasks [23], which is remembering to execute the planned task and
ignoring the irrelevant stimuli [24,25]. This requires orienting attention toward internal
intentions in the memory and successful retrieval of that information. In addition, an
increase in the theta synchronization between frontal, temporal, and posterior regions of
the brain has been observed in those tasks [22].

1.2. Alpha Activity

Alpha-band oscillations regulate attention processes both inside and outside of the
focus of attention. The most prominent role of alpha-band oscillations in attention is the
inhibition of task-irrelevant information that can interfere with task goals [15,26] and en-
hancing the processing of relevant information. This function is important for the selection
and suppression processes required in attention and therefore modulates knowledge access
and orientation [27,28]. Moreover, an increase in alpha activity has been found during
retention intervals in visual working memory tasks [29]. The increase in alpha power in
memory tasks is associated with task difficulty and memory load, which itself supports the
inhibitory role of alpha for the maintenance and protection of task-relevant information
and filtering external interrupting information [15,27,29]. As a filter mechanism, through
a progressive increase in power, alpha oscillations inhibit the distractors. The higher the
attention to task-relevant stimuli, the higher the suppression of distracting information [27].
Therefore, the alpha increase has been associated with internal attention, while external
attention has been linked mainly to alpha decrease [26,30,31].

More recently, there has been a rise in more advanced methods for studying and
understanding the brain mechanisms of attentional processes. Here, we focus on two
analysis methods that also represent underlying brain mechanisms that may be relevant
for understanding attentional processes in the brain: synchronous brain activity, and
entropy-based measures of brain activity.

1.3. Synchronized Intra-Regional Activity

The dorsal frontoparietal attention network is one of the executive networks that
mediate goal-directed behaviors [4,32,33]. A combination of this inhibitory mechanism
and an excitatory baseline shift that orients attention sharpens visual spatial focus [34].
Studies that have assessed connectivity between parietal and dorsofrontal attentional
regions have shown that voluntary vs. involuntary attention have different attentional
networks (the dorsal attention networks) depending on the type of attention. The role
of bottom-up and top-down processes in action comprehension has been investigated in
previous studies [35]. They suggest that there exists a distinct interactivity among brain
regions indicating the degree of bottom-up vs. top-down attention. In addition to that, a
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large amount of research has suggested that synchronized activity in the aforementioned
networks in the theta frequency band is modulated by internally directed attention and
sustained attention [22,36–40]. Having said that, an increase in low-frequency coupled
activity in the frontoparietal network has been considered an indicator of working memory
and top-down brain activity [22,36]. However, these well-established concepts and neural
behaviors have not been discussed or investigated in the consumer neuroscience context.
Particularly, to what extent the underlying neural response of humans’ attentional process
could explain consumers’ shopping behavior is still missing.

1.4. Spectral Entropy

Entropy (e.g., Shannon entropy) is a concept in stochastic signals that quantifies the
irregularity of random variables by measuring proportion distribution [41]. Since its first
debut in EEG [42], Shannon or spectral entropy (SpE) has been used as an irregularity
index of EEG signals where higher values correspond to more irregular or unpredictable
signals (more “flat” distribution) and lower values correspond to more predictable signals
(power spectrum is bounded in specific frequency band) [43]. Recently, spectral entropy
has been utilized as an attention index [43] to develop a more accurate attention-based
diagnostic tool. Moreover, modulation of SpE in focused attention when exposed to
auditory stimuli has been investigated, and a decrease in SpE has been observed in active
attention compared with passive attention in response to audio stimuli [44,45]. To our
knowledge, only one study of attention to visual objects has been published [46], where
the researchers report a greater approximate entropy for externally operative attention
compared with internally operative attention. In spite of this discussion around the role
of entropy in the human attention system, it has not been tested whether the activation of
different attention modalities such as top-down or bottom-up will modulate SpE.

Extended reality technologies such as Virtual Reality (VR) have been found to be
useful in marketing, retail, and consumer behavior analyses, such as of attention [47–50].
VR has a multidimensional framework with real-time graphics. Interactivity, imagination,
and immersion are the essential features of VR; therefore, using VR for testing consumer
behavior provides the participants with a 3D dynamic purchase experience that is closer to
real life [47,51,52].

Previous studies that have explored the relationship between brain oscillations and at-
tentional control have generally not focused on consumer behavior. Furthermore, although
numerous studies have investigated the effect of attention level on the SpE of EEG, to the
best of our knowledge, the effect of goal-driven and stimulus-driven attention on SpE has
not been previously examined. Additionally, no prior study has assessed brain activity
related to different modes of attention in (a VR) environment, making the present study
particularly ecologically valid. To understand the impact of distractors in the environment
or visual field, it is also important to investigate connectivity and power across brain
regions when attention is directed toward task-relevant stimuli versus when it is directed
toward distractors or external stimuli.

Therefore, the aim of the present study was to assess three types of EEG-based mea-
sures of attention and their discriminatory power in decision-making situations involving
goal-directed and stimulus-driven attention using a VR supermarket. The experiment
consisted of two phases: a planned purchase phase (or listed condition, in which par-
ticipants shopped from a list) and an unplanned purchase phase (in which participants
were free to buy what they wanted). We hypothesized that the unplanned purchase phase
would elicit more bottom-up attention, while the planned purchase phase would elicit
more top-down attention. Accordingly, we expected to see higher theta activity over frontal,
central, and temporal lobes during the planned purchase phase and lower alpha activity in
frontal and parietal lobes during the unplanned purchase phase. Furthermore, during the
planned purchase phase, we predicted a higher level of synchronized activity within the
frontoparietal network Additionally, we hypothesized that there would be a more distinct
alternation of SpE in the frontal, parietal, and occipital lobes, reflecting shifts between
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goal-directed and stimulus-driven attention. At a data analysis level, this means that we
expected to observe an increase in SpE in the frontal, parietal, and occipital lobes, from
planned to unplanned purchase phases. Furthermore, we evaluated the discriminatory
power of the three mentioned features using an SVM classifier.

2. Materials and Methods
2.1. Participants

A total number of 29 (14 women and 15 men) volunteers (age range: 23 to 44; mean = 31.8;
SD = 6.6) without any prior psychiatric or neurological conditions were recruited in the
experiment via the Neurons Inc. online recruitment system. Among these participants that
we considered as the data for the study, eight of them had previous experience with VR and
using controllers and two of them had participated in a study with a virtual supermarket
previously. All participants were informed about the experiment and had read and signed
the consent form prior to the experiment. The experiment was approved by the ethical
committee of the University of Aalborg. All data were analyzed and reported anonymously.

2.2. Experimental Procedure

The experiment was performed in a virtual reality environment designed in Unreal
Engine V4.1 and run using HTC Vive 5 in a machine with 16 GB of RAM (Intel(R) Core (TM)
i7-10875H CPU 2.30 GHz) and NVIDIA GeForce RTX 2070 GPU on Microsoft Windows
10 operating system. A supermarket was designed in VR (similar to Danish supermarkets),
and we asked participants to perform a shopping task. We allocated 250 Danish Kroner,
DKK (~USD 35), to each participant. We first asked them to buy six items from a predefined
list (the planned purchase phase), and then they could buy whatever they wanted with the
remaining budget (the unplanned purchase phase). The cost of the items on the list added
up to DKK 120, which left half of the budget for unplanned purchases. Overall, 172 items
were chosen as unplanned purchases, which is almost equal to 174 planned purchases.

First, we collected 30 s of resting-stage EEG data (with eyes closed and a black screen)
while the participants had the VR headset on. Afterward, we instructed participants on
how to use the controller to navigate through the supermarket, find the list of products,
and choose a product. In the physical space, participants could have limited movement
(one or two steps for getting closer to a product) but in general, they were instructed to
teleport with the controller to navigate through the supermarket, which they could do by
pointing to a location and reaching there with a short delay (200 ms), to ensure they would
experience a “flow” in the supermarket. The list of the required products was provided for
them in VR and participants could look at the list whenever they needed using a button in
the controller. The products had price labels and the prices were according to the actual
price ranges for products in Danish supermarkets.

When participants were completely familiar with the tasks, we started to record the
data, and they needed to first purchase six items from the list (i.e., broccoli, milk, cheese,
soda, cereal, and chocolate). This phase was considered as the “Planned Purchase Phase”.
We expected “goal-driven” or “top-down” attention to be activated in this phase. When the
participants had purchased all the items on the list, we asked them to buy whatever they
wanted with the remaining budget, or they could leave the environment immediately. The
remaining time that the participants spent buying the items they wanted using the leftover
money was considered the “unplanned purchase phase”. We expected “stimuli-driven” or
“bottom-up” attention to be activated in this phase. After participants were done with the
shopping task, they had to go to the cashier, which was taking them out of the environment.

2.3. EEG Recording and Processing

EEG data were recorded via Brain Product EEG device with 32 electrodes (Fp1, Fp2,
F8, F4, Fz, F3, F7, FT9, FT10, FC5, FC1, FC2, FC6, T7, T8, C3, Cz, C4, CP5, CP1, CP2, CP6,
TP9, TP10, P7, P3, Pz, P4, P8, O1, Oz, and O2). The ground and reference electrodes were
located at AFz and FCz, respectively, for online processing. The data were transmitted
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wirelessly from the amplifier to a PC using a USB module. The EEG data were digitalized
with a 500 Hz sampling frequency and then exported to the MNE Python library for pre-
processing and further analysis. For each participant, 30 s of the rest data were recorded, but
the time spent for each condition varied among participants. The following pre-processing
steps were applied for the EEG data of each participant (the whole analysis for the data
from pre-processing to statistical analysis was carried out via different Python libraries).
First, the data were filtered using an FIR bandpass filter with a hamming window for the
0.1 and 100 Hz frequency bands, and then a 50 Hz notch filter was applied to remove the
power line artifact.

Independent Component Analysis (ICA) was used to manually remove “bad” com-
ponents with a visual inspection. The components that contain the eye-blink and eye-
movement patterns were eliminated based on visual inspection. Furthermore, components
with an increasing pattern of power distributions with regard to the frequency were re-
moved during ICA. On average, 9.5 components out of 32 were removed during ICA for
each subject. Thereafter, we changed the EEG reference to average all electrodes for the rest
of the analysis. Then, we segmented data into 5 s epochs for consistency of the analysis
and computational convenience.

2.4. Power Spectral Density Computation

Power spectrum density (PSD) was computed via the Welch method with a window
size of 256 samples, equal to 512 milliseconds (ms) for each phase (i.e., rest, planned
purchase, and unplanned purchase). Theta (4–8 Hz) and alpha (8–13 Hz) frequency bands
were considered for PSD analysis. For each channel, first, we averaged power values over
frequency bins, and then we took the average over epochs to represent the PSDs of that
condition for the corresponding channel. To compute PSD over regions, we averaged the
PSD of channels included in those regions. The underlying regions of each EEG channel
are shown in Table 1.

Table 1. EEG channels allocated for each region.

Regions Channels

Frontal FP1, FP2, F8, F4, Fz, F3, F7
Parietal P7, P3, Pz, P4, P8

Temporal T7, T8, TP9, TP10, FT9, FT10
Occipital O1, O2, Oz
Central FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6

2.5. Functional Connectivity

Spectral coherency is a synchronization metric that has been widely used to measure
functional connectivity in neuroscientific studies [53–57]. As is shown in Equation (1),
coherency shows variance explainability of signal X with regard to signal Y by measuring
cross-spectral density of X and Y (SXY), normalized by power estimates of X and Y (SX , SY).

Equation (1):

CohXY(ω) =
|SXY(ω)|√

SXX(ω)SYY(ω)
(1)

where coherence coefficient is a value between 0 and 1; 0 indicates no synchronization, and
1 indicates perfectly synchronized signals.

Due to spurious connectivity caused by volume conduction [54,58], we conducted
current source density [59,60] to reduce the volume conduction effect. Afterward, we used
the Fourier method to transform the data from a time domain to a frequency domain with
256 points (equal to 512 ms) in the theta frequency band (4–8 Hz). Thereafter, by computing
coherence between two given signals, we averaged coherency measurement over frequency
bins to represent the connectivity values for each of the two channels. Lastly, by averaging
pairwise connectivity values in regions of interest (especially the frontoparietal networks),
the final connectivity values were computed and ready for statistical analysis.
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2.6. Spectral Entropy

In information theory, entropy and spectral entropy are analytical techniques to quan-
tify irregularity and (un)predictability in a stochastic signal such as EEG [41]. As noted
in Equation (2), spectral entropy (SpE) uses power spectrum density to quantify EEG
irregularity between 0 and 1, where ‘0’ means no irregularity (totally predictable) and ‘1’
means a completely random sequence.

Equation (2):

SE[ f1, f 2] =
1

log(N[ f1, f 2])

f2

∑
fi= f1

Pn( fi)·log
(

1
Pn( fi)

)
(2)

where Pn( fi) represents normalized power spectrum at the frequency of fi, which, by divid-
ing the power spectrum at each frequency by total power spectrum, yields the normalized
power spectrum. f1 and f2 are the boundaries of the frequency range, and N[ f1, f 2] is the
number of frequency bins within that range.

We considered a frequency range of 0.5 to 32 Hz and used FFT (Welch’s method) to
compute the PSD with a window of 256 points, which is equal to a 512 ms time window. In
addition, since attention mainly activates frontal and parieto-occipital networks [4], our
focus for entropy analysis was mainly on these areas.

2.7. Statistical and Classification Analysis

As noted, the time spent in each condition varied among the participants. Therefore,
in order to have a valid comparison, we used a permutation-based statistical method that
previously had been used in an ERP study for imbalance trial comparison [61]. First, desired
features (PSD, connectivity, and SpE) were calculated from the trial of each condition. Then,
those values of one condition were subtracted from the other to calculate the difference
between the features. By repeating this procedure for all subjects, the average of the relevant
feature was computed to provide the “ground truth” values. Next, for generating data-
driven null distribution, we randomly shuffled trail labels between conditions and repeated
the same procedure of calculating the ground truth. By repeating this procedure 1000 times,
we conducted a null distribution to compare the ground truth value in the two conditions.
Ultimately, if the ground truth was far enough from the mean of this distribution, we could
conclude that our findings are not due to randomness and are statistically significant.

To compare the discriminatory power of PSD, connectivity, and SpE in classifying
goal-directed or stimulus-driven attention, we implemented a support vector machine
(SVM) classifier [62] and used these features as inputs. In addition, by measuring the Area
Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) for each feature,
the performance of those features was evaluated in a 5-fold cross-validation setting.

3. Results

Since the duration of the experiment was subject-dependent, we provided the time
length of the data here to show the amount of EEG data we used for the analysis. In
Figure 1, box plots of the time that each participant spent on the two phases are provided.
The mean duration of the planned and the unplanned purchase phases across participants
are 238.87 ± 85.57, and 228.00 ± 107.20 s, respectively.

To evaluate the subjective experience of the VR supermarket, two survey question-
naires with a 7-point Likert chart were administered to inquire about participant satisfaction
with the store and their sense of presence. We found a significant correlation between
“Sense of presence” and “Store Satisfaction” r (27) = 0.54, p-value < 0.01. The results are
reported in Figure 2.
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As mentioned, participants were free to choose whatever they wanted under the
unplanned purchase condition, and therefore, a range of choices were made that differed
from fixed purchases under the planned condition. In Figure 3, the distribution of the
unplanned purchases is illustrated.
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3.1. Power Spectrum Analysis

The distribution of theta and alpha power over the scalp during the rest, planned
purchase, and unplanned purchase phases are presented in Figures 4 and 5 (averaged across
all subjects). Figure 6 presents the regional statistical comparison for the theta frequency
band, focusing on the frontal and parietal regions. During the planned purchase phase,
there was an increase in Fz activity compared with the rest and unplanned purchase phases.
In the fronto-central regions (Fz, Cz, Fc1, Fc2), theta power during the planned phase was
higher than during the rest and unplanned purchase phases. In the temporal lobe (T7,
T8, TP9, TP10, FT9, FT10), an increase in theta activity was observed under the planned
condition compared with the rest and unplanned conditions. This increase was also seen
under the unplanned condition compared with the rest. In addition, a similar pattern of
variation was observed in T7 and T8.
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A statistical comparison of the three conditions for the alpha frequency band in the
frontal and parietal lobes is presented in Figure 7. A decrease in alpha power over the
parietal lobe occurred for the unplanned phase and was not observed in the rest and
planned phases. In the frontal lobe, a stronger decrease in alpha activity was found for
the unplanned condition, in comparison with the rest and planned purchase phases. We
observed an increase in alpha activity in the planned phase compared with the rest, but it
was not statistically significant.
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3.2. Functional Connectivity Analysis

Table 2 and Figure 8 show the results of a connectivity analysis for the frontal–parietal
networks after applying the current source density. In Table 2, the coherency values in the
theta frequency band for both the planned and unplanned conditions are presented. For all
pairs (frontal–frontal, fontal–parietal, and parietal–parietal), the coherency values for the
planned phase were significantly higher (p-value < 0.0001, p-value < 0.000, p-value < 0.001,
respectively) than for the unplanned phase.

Table 2. Coherency values (mean ± std) for inter-regional (frontal–frontal, parietal–parietal) and
intra-regional (frontal–parietal) for each condition.

Coherency Values

Frontal–Frontal Parietal–Parietal Frontal–Parietal

Planned Purchase Phase 0.52 ± 0.09 0.51 ± 0.11 0.39 ± 0.10

Unplanned Purchase Phase 0.45 ± 0.08 0.45 ± 0.05 0.31 ± 0.08
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In Figure 8, the circle of coherency values between and within the frontal and parietal
lobes is illustrated. For both phases, coherency values were averaged over all epochs,
and for visualization in Figure 8, the mean of coherency values was averaged over all
participants. A stronger synchronization, both locally and regionally, was found in the
planned purchase phase compared with the unplanned purchase phase.

3.3. Spectral Entropy Analysis

The spectral entropy values for 32 channels are presented in Table 3. For each channel,
the spectral entropy for the planned purchase phase (Entropy 1), the unplanned purchase
phase (Entropy 2), the difference (Entropy 2–Entropy 1), and the p-value (with a significance
level being 0.05/32 = 0.001) are reported. For Fp1 and F7, sensors that are placed in the
frontal region, spectral entropy in the unplanned purchase phase was significantly higher
(p-value < 0.0001) than in the planned purchase phase. In the parietal and occipital lobes,
P8 and Oz channels showed a higher spectral entropy for the planned purchase phase than
the unplanned purchase phase, and they were statistically significant (p-value < 0.0001).
In Figure 9, entropy values and topography plots are provided for the planned purchase
phase, the unplanned purchase phase, and their differences.

Table 3. SpE values of each EEG channel. SpE for the planned and unplanned conditions are indicated
with Entropy 1 and Entropy 2, respectively. The Difference column shows the subtraction of Entropy 2
from Entropy 1. Channels with statistically significant different values are indicated with *.

Channels Entropy 1 Entropy 2 Difference p-Value

* Fp1 0.855 0.933 0.078 <0.0001
Fz 0.935 0.933 −0.002 0.578
F3 0.930 0.934 0.003 0.423

* F7 0.843 0.939 0.096 <0.0001
FT9 0.936 0.935 0.0 0.567
FC5 0.929 0.936 0.006 0.154
FC1 0.925 0.937 0.011 0.161
C3 0.934 0.926 −0.007 0.655
T7 0.935 0.934 −0.001 0.575

TP9 0.929 0.934 0.005 0.359
CP5 0.936 0.925 −0.01 0.92
CP1 0.929 0.929 0.0 0.571
Pz 0.934 0.930 −0.003 0.644
P3 0.937 0.925 −0.011 0.821
P7 0.931 0.929 −0.002 0.522
O1 0.934 0.932 −0.002 0.687

* Oz 0.815 0.939 0.124 <0.0001
O2 0.938 0.930 −0.007 0.825
P4 0.925 0.935 0.01 0.088

* P8 0.887 0.933 0.046 <0.0001
TP10 0.936 0.933 −0.003 0.625
CP6 0.930 0.936 0.005 0.283
CP2 0.923 0.933 0.009 0.253
Cz 0.936 0.930 −0.005 0.687
C4 0.932 0.935 0.002 0.452
T8 0.930 0.935 0.004 0.35

FT10 0.938 0.928 −0.01 0.832
FC6 0.934 0.929 −0.004 0.691
FC2 0.936 0.935 0.0 0.524
F4 0.934 0.930 −0.003 0.645
F8 0.932 0.930 −0.001 0.679

Fp2 0.933 0.932 0.0 0.58
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3.4. Classification Results

The results of this subject-independent model are shown in Figures 10 and 11. The
highest accuracy was achieved when all three features were used as inputs, and other
metrics were also relatively high, indicating a balanced performance of the model in
predicting between the two classes. Among the individual features, SpE resulted in the
highest accuracy, with comparably high precision, recall, and F1 score, indicating that
the model was not biased toward either class. When using PSD as the sole input, the
classifier exhibited an imbalanced performance, with the highest sensitivity (91%) but low
accuracy and precision, indicating a bias toward the goal-directed attention class. The
model performed worst in terms of accuracy when using connectivity as the sole input, but
the other metrics showed a balanced performance between the two classes.
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To compare these features more thoroughly, we conducted a five-fold cross-validation
analysis and calculated the AUC of the ROC for each feature and for all features combined
as inputs to the model. As shown in Figure 11, the ROC of the model using all features as
input had the highest AUC of 0.94 ± 0.04 (average across five folds). This result was similar
to the AUC of the model using SpE alone, which was 0.94 ± 0.05, but with a slightly higher
standard deviation. Using connectivity as the sole input resulted in an AUC of 0.80 ± 0.15
on average across five folds, which was slightly higher than the AUC of the model using
PSD alone, which was 0.79 ± 0.05.

4. Discussions

In this study, we investigated to what extent goal-driven versus stimulus-driven atten-
tion is involved in different shopping behaviors, i.e., planned, and unplanned decisions.
By labeling different decision types as planned and unplanned, we were able to observe a
higher activity in both alpha and theta bands over frontal and parietal lobes in the planned
purchase phase compared with the unplanned purchase and rest phases. On the other hand,
for unplanned purchases, we observed a decrease in both theta and alpha activity in com-
parison with planned purchases. Stronger connectivity over the frontoparietal network was
found in the planned purchase compared with the unplanned purchase phase. However,
in the unplanned condition, SpE was higher in the frontal, parietal, and occipital regions.

4.1. Theta Power Changes in Frontal, Central, and Temporal Lobes

Compared with the unplanned and the rest phase, an increase in theta power was
observed in the frontocentral regions (Fz, Cz, Fc1, Fc2) during the planned purchase
phase. This increase was also observed in the temporal region (T7, T8, TP9, TP10, FT9,
FT10). The increase in theta band activity, as compared with the rest, was also observed
in the unplanned phase for some temporal regions (T7, T8). These findings are in line
with the previous studies that support an increase in theta power during goal-driven
attention, mainly over frontal, central, and temporal lobes. More specifically an increase
in theta power in the frontal midline regions has been found for tasks that require goal-
driven control of attention, such as information retrieval and planning [63,64]. This is
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consistent with our findings, which show a substantial increase in the theta frequency band
in the frontocentral region and signify a goal-directed mode of attention in the planned
phase. It is worth noting that an increase in theta power in the mentioned regions has
been observed in various cognitive tasks, with a stronger increase for more demanding
conditions [65]. Similarly, a stronger theta activity has been reported in the temporal
region while performing tasks that require the activation of prospective memory (that is,
directing the attention toward intentions stored in the memory to execute the planned
intention) [13,66]. An increase in the frontal midline has been also observed in the tasks
that require sustained internal attention, such as working memory tasks [22]. One of the
explanations for the higher activity of theta during these tasks is the necessity for updating
and organizing information, a feature presented in our planned purchase phase.

4.2. Alpha Power Changes in Frontal and Parietal Lobes

We observed a weaker alpha activity in the parietal lobe for the unplanned phase
in comparison with the planned and the rest phases. Similarly, there was also a lower
alpha activity during the unplanned phase in the frontal lobe. However, a stronger alpha
activity was observed in both the frontal and the parietal regions for planned purchases
compared with unplanned purchases. These findings support the previous studies that
suggest that an increase in alpha band activity is observable in goal-driven attention or
during the processing of “task-relevant information” [15,26,67,68], whereas lower alpha
activity has been observed during “sensory-intake tasks”, which require the processing of
external sensory information [26]. An alpha power decrease has been found to be the most
prominent feature in tasks that require the direction of attention to external stimuli—in
our study, the unplanned purchases—and it has been found over occipitoparietal and
frontotemporal regions, as well as over left dorsal frontoparietal regions [1,13]. An increase
in alpha-band oscillations, however, has been observed in tasks that require internal atten-
tion, or in goal-driven tasks. In fact, alpha activity plays an important role in information
processing by inhibiting task-irrelevant information and suppressing the distractors that
interfere with the task’s goals.

4.3. Increased Synchronized Activity over the Frontoparietal Network in Theta for
Goal-Driven Attention

We found stronger connectivity both between frontal and parietal regions and within
the regions themselves during planned purchases compared with unplanned purchases.
This supports our hypothesis that in the planned purchase phase, the goal-driven atten-
tional network is more activated in comparison with the unplanned purchase phase, which
is a stimulus-driven process.

The frontoparietal network has been considered as a control network for internally
directed attention [37]. Goal-directed attention modulates an increase in the synchronized
activity in the frontoparietal network compared with stimulus-driven attention, according
to recent findings in the theta frequency band [22,36,37]. Research also shows that top-
down control signals may emerge from the dorsoparietal attention network as well as other
higher-order executive regions that mediate behavior directed toward goals [4,69,70].

4.4. Spectral Entropy Increase in Frontal and Parietal Sites for Stimulus-Driven Attention

A higher SpE was observed in the frontal and parietal regions during the unplanned
condition compared with the planned condition. These results suggest that while partici-
pants are in a more predictable situation, such as a planned purchase compared with an
unplanned purchase, this regularity pattern has its own neural signature in EEG signals.
However, due to a lack of adequate evidence in this field, further research is required to
investigate the modulation of SpE in goal-driven and stimulus-driven attention.

As mentioned before, the application of SpE as an objective measurement of attention
is relatively a new approach [44,45]. SpE has been utilized as an index for attention
level [43,44], in which an increase in SpE is associated with “active attention” compared



Brain Sci. 2023, 13, 928 15 of 18

with “passive attention”, especially in the frontal and the parietal regions. However, to
the best of our knowledge, the SpE role has not been investigated for comparison of
goal-directed versus stimulus-driven attention.

4.5. The Discriminatory Power of SpE Is Almost Equal to the Combination of PSD, Connectivity,
and SpE

As the classification results suggested, SpE has the highest discriminatory power
among the three features to classify goal-directed and stimulus-driven attention. Con-
sidering both sensitivity and specificity, using SpE as an input for the predictive model
would result in equal performance while using all of the features combined. In addition,
although the PSD feature will lead to the highest sensitivity (recall) since will result in
poor specificity, the overall performance (AUC) of the model is worse than when using
connectivity to feed the model. It is worth mentioning that the train and test sets of the
model derive from different subjects, which results in a subject-independent and more
generalized performance.

4.6. Limitations

Some limitations are worth mentioning for consideration in future studies. One of
the limitations of the present study is the uneven duration of the unplanned and planned
purchase phases, which could potentially cause a bias in the results. Even though we
tried to reduce the bias with the mentioned statistical method, it should be taken into
consideration for future research. Another point is that, since we needed to consider the
“budget” that each participant could spend on each purchase, the planned phase was
always the first phase of the experiment. Nevertheless, considering that the phases were
not very long, we assume that this should not have had a major impact on the findings
of the study. Moreover, we had no rest phase before the unplanned purchase phase as
it started immediately after the planned phase. Having no pause between the phases,
however, contributed to the ecological validity of our study.

5. Conclusions

In conclusion, this study analyzed alpha and theta activity during planned and un-
planned purchase tasks in a VR environment. The findings revealed distinct neural oscilla-
tion patterns associated with different phases of the purchase process. During the planned
purchase phase, both alpha and theta powers increased, indicating heightened cognitive
engagement. In contrast, the unplanned phase showed a decrease in both theta and alpha
activity, suggesting reduced cognitive engagement.

Moreover, our investigation provided insights into the functional connectivity within
the frontoparietal network during the planned and unplanned purchase phases. Specifically,
we observed greater connectivity within the frontoparietal network during the planned
purchase phase compared with the unplanned purchase phase. This finding suggests the
involvement of coordinated activity between the frontal and parietal regions, which are
crucial for attentional control and decision-making processes. Interestingly, the SpE analysis
yielded contrasting results, with higher SpE observed in the frontal and parietal regions
during the unplanned purchase phase compared with the planned purchase phase, which
shows the capability of SpE in examining the human attention system. This suggests a shift
in attentional dynamics, potentially reflecting a transition from goal-directed attention to
stimulus-driven attention during unplanned purchasing.

Overall, this study expands our knowledge of the neural mechanisms underlying
planned and unplanned purchase tasks, offering insights into attentional behaviors in
consumer decision-making. These findings have implications for marketers aiming to
influence consumer behavior and guide purchase decisions by understanding the neural
mechanisms involved in attentional control and decision-making processes.

Future research directions include exploring larger and more diverse samples to
enhance the generalizability of the findings. Additionally, investigating the impact of indi-
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vidual differences, such as personality traits or prior purchasing experiences, could provide
a comprehensive understanding of consumer behavior. Incorporating other neurophysio-
logical measures, such as event-related potentials (ERPs) or functional magnetic resonance
imaging (fMRI), would offer a more detailed characterization of the brain mechanisms
underlying purchase decisions. Furthermore, studying real-world purchasing scenarios
and considering contextual factors could provide a more ecologically valid understanding
of consumer attention and decision-making processes.
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