
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Inferring human intentions from the brain data

Stanek, Konrad; Winther, Ole; Hansen, Lars Kai

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Stanek, K., Winther, O., & Hansen, L. K. (2017). Inferring human intentions from the brain data. Kgs. Lyngby:
Technical University of Denmark (DTU).  (DTU Compute PHD-2016; No. 420).

http://orbit.dtu.dk/en/publications/inferring-human-intentions-from-the-brain-data(28a6f8c4-31d1-458d-872d-66a32caff71a).html


Inferring human intentions from the
brain data.

Konrad Stanek

Kongens Lyngby 2016



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk



Summary

The human brain is a massively complex organ composed of approximately a
hundred billion densely interconnected, interacting neural cells. The neurons are
not wired randomly - instead, they are organized in local functional assemblies.
It is believed that the complex patterns of dynamic electric discharges across the
neural tissue are responsible for emergence of high cognitive function, conscious
perception and voluntary action. The brain’s capacity to exercise free will, or
internally generated free choice, has long been investigated by philosophers,
psychologists and neuroscientists. Rather than assuming a causal power of con-
scious will, the neuroscience of volition is based on the premise that “mental
states rest on brain processes”, and hence by measuring spatial and tempo-
ral correlates of volition in carefully controlled experiments we can infer about
their underlying mind processes, including concepts as intriguing as “free will”,
“agency” and “consciousness”. Recent developments in electrophysiology and
neuroimaging methods allow for increasingly more accurate estimation of spatial
and temporal characteristics of decision processes.

The work presented in this thesis is intended to contribute to our understanding
of the dynamics of voluntary decision processes about prospective action. In the
two presented studies we probe different types of decisions and compare them in
terms of behavioral and EEG characteristics. We show that decision processes
are manifested by complex, broadband modulation of brain oscillatory patterns,
primarily in Alpha(8-12Hz) and Beta (16-30Hz) ranges. Our results suggest
that decisions about whether to act or not, what type of action to perform, and
about the timing of the action have distinct dynamic representations, and thus
are to some extent mediated by different neural components. Furthermore, free
action can be partially explained by low level behavioral preferences, especially
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in contexts where no explicit incentive favors one action over an other.

Apart from the investigation of volition, considerable part of the work presented
in this thesis is dedicated to experiment design methodology and efficient EEG
processing methods. We have developed a dedicated, flexible Virtual Reality
Environment (VRE) platform, suitable for investigation of volition and action
preparation processes with range of modalities, including electroencephalogra-
phy (EEG), functional magnetic resonance (fMRI), eye-tracking (ET) and be-
havioral measures. By providing ecologically valid, semi-realistic experience we
aimed at reinforcing the natural decision processes and minimize the problem of
random-sequence generation and fatigue in participants undergoing highly re-
peatable cognitive experiments. Other methodological contributions presented
in the thesis are related to efficient, automatized and highly data-preserving
methods for processing of EEG data, based on minimal number of arbitrarily
selected parameters.



Preface

This thesis was prepared at Department of Applied Mathematics and Computer
Science, Technical University of Denmark (DTU Compute) and partly at Dan-
ish Research Centre for Magnetic Resonance, Copenhagen University Hospital
(DRCMR) in fulfillment of the requirements for acquiring a Ph.D. degree in
Engineering. The project was partly funded by Lundbeck Foundation research
grant provided to Hartwig R. Siebner (DRCMR) and partly by DTU compute.
My principal supervisor was Professor Ole Winther from DTU Compute. My
co-supervisors were Professor Hartwig R. Siebner from DRCMR and Professor
Lars Kai Hansen from DTU Compute.
The thesis treats about brain and its capacity to exercise voluntary action. In
series of experiments involving Electroencephalography (EEG) and Virtual En-
vironment (VR) we investigate electrical signatures and behavioral correlates of
human free action.
The thesis consists of summary report, including detailed chapters on methodol-
ogy and literature review, and collection of three journal papers (in preparation
for submission).

Lyngby, 27-June-2016
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Chapter 1

Introduction

The following thesis will discuss the brain and its function. Although the word
“fascinating” has limited usage in science, yet it is exactly the word that comes
to mind when reflecting upon the immensely complex machinery of human
brain, composed of 100.000.000.000 densely interconnected, interacting and
constantly adapting neural cells. Those cells have different morphological struc-
ture (Fig.1.1), and are not wired randomly - instead, they are organized in local
functional assemblies. The brain is a rather compact organ of jelly-consistency,
composed of two symmetric hemispheres of a mango fruit size. And yet it is re-
sponsible for every conscious thought and feeling we experience. Every smell or
taste, vivid colorful memory, feeling of affection or paralyzing fear, sensation of
gentle breeze, or a pleasing view of a rainbow - all those qualities exist nowhere
else but inside the complex circuitry of the brain, or rather, within myriads of
intricate patterns of dynamic electric discharges across the neural tissue.

Considering that brain constitutes the seat of mind, medium for thinking,
and the matter of any conscious experience, it is notable how self-aware, self-
fascinated and self-curious the brain is about its own structure and function.
And even more - its ability to self-reflect. One of the most puzzling properties
of the brain is a capacity to exercise a voluntary action - to freely choose be-
tween alternatives and act according to its own “will”. The problem of volition
and free will has been troubling philosophers for centuries, and neuroscientists
for decades. What does it mean “to intend”? Does the free-will exist or is it
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simply a retrospective illusion created by brain in order to justify unconsciously
determined actions and create the feeling of agency? In either case, where is the
“will” circuitry located in the brain, and how is it manifested by brain dynamic
oscillations?

Neither neuroscience nor neurophilosophy have provided the final answers to the
“hard problem” of free will. Neither is it a purpose of this thesis. Instead, we
post a range of related, more pragmatic questions. How can voluntary action
be characterized by brain oscillatory activity? Can it be measured with non-
invasive methods, and if so - can it be predicted? Can decision processes be
disentangled from other related cognitive processes, such as attention, memory,
mental imagery? Or perhaps those subprocesses constitute integral part of
deciding what to do, when to do it, and whether to do it or not? With this thesis,
we try to contribute to the growing domain of studies conducted in attempt to
pursue the answers to those questions.

The recent developments in non-invasive neuroimaging technologies and ad-
vanced data processing enable us to revisit some of those important problems
and bring us a step closer towards understanding of brain function. Through
the lenses of electroencephalography (EEG) and magnetic resonance imaging
(MRI), we can “zoom into” the physiological and morphological structure of the
brain, and importantly, observe and appreciate its complex, non-linear, dynamic
behavior. Carefully designed experimental paradigms allow us to associate be-
havioral measures with their corresponding electrophysiological responses, and
thus learn about oscillatory nature of the brain, its functional connectivity, and
precise timing of cognitive processes. By coregistering those dynamic data with
structural magnetic resonance images (sMRI), segmenting out layers of skull,
white and gray matter of the cortex, and modeling electromagnetic fields we can
infer about spatial localization of those processes. Combining these information
allows us to investigate the nature of voluntary actions and decisions in terms
of their spatio-temporal characteristics and plausible pathways of information
flow. Since those processes can be partially explained by, or at least related to,
other cognitive processes, it is essential to evaluate the results in light of the
existing literature on brain oscillations, decision making, attention and motor
planning.

1.1 Brain in numbers

A brain of typical adult human weights 1.3 − 1.4kg, corresponding to approx-
imately 2% of body weight, yet it consumes up to 20% of total energy intake.
It is composed of 100 billion neurons, and approximately the same number of
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Figure 1.1: The neurons in the cortex are aligned in distinct layers. Axonal projections of pyra-
midal cells tend to extend perpendicular to the cortical sheath (left). Morphology of
neurons differs largely - their size, shape end extension of dendritic tree depend on
cell function and location in the brain (right). The drawings are adapted from pio-
neering works of Santiago Ramon y Cajal, Nobel price laureate and father of modern
neuroscience [18].

supportive glial cells. Nearly 25% of the neurons are concentrated within thin
folded sheath surrounding inner structures, the neocortex, where most of the
sensorimotor function and higher cognition resides. The surface of the cortex is
estimated to 2.500cm2 while the thickness is only 1.5−4mm. The brain is orga-
nized into two largely independent hemispheres, interconnected by dense bunch
of 250 million fibers (corpus callosum). The brain is highly plastic and con-
stantly reconfiguring its wiring. The number of synaptic connections between
neurons is estimated to 1014. Also the number of functionally intact neurons
is rapidly changing throughout the life span. Starting with growth of 250.000
neurons/minute in early embryonic development, the number of neurons sta-
bilizes in the early childhood and decays through adulthood with average of
85.000 cells per day. A basic computational unit of a brain is a neuron, a cell
weighing 10−6 gram and measuring less than 100 microns in diameter (Fig.1.1).
An active membrane allows it to propagate signals, action potential, along its
long axons with speed up to 120 meters/second. Neurons perform their com-
putations by “weighing” the excitatory and inhibitory inputs received primarily
through synaptic connections. Typically, each cell has 1000-10.000 synapses.

1.2 Brain, mind and volition

The problem of brain-mind dualism is one of the most persistent mysteries in hu-
man sciences. It is not trivial, perhaps not even feasible, to explain the relation
between the subjective, consistent perception of “self” and the complex chain
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of biochemical interactions representing it. Historically, Descartes assumed that
the interface between mind and brain lies within pineal gland - a unique, tiny
structure in the brain which is not bilaterally symmetrical but positioned right
in the middle. Human intentions would thus originate in the “matter of soul”,
and through pineal gland effectuate chain of biological processes leading to bod-
ily action. Nowadays the general consensus in science is that consciousness and
volition are indeed the emergent products of complex biochemical and electrical
processes within the brain matter. This approach does not invalidate the con-
cept of “free will” and volition, however it affects the way it should be defined,
understood, and scientifically investigated.

Within such framework, voluntary action can be understood as an informed,
intelligent response to current sensory representation of environmental context.
The response is an outcome of a balanced weighing between the predictable
patterns derived from past experience and the evolutionary need for unknown
exploratory behavior. The experience of volition, or commonsensical “free will”
could be then explained as a unique ability to perceive and appreciate these
preparatory brain processes and the selection between alternative options, which
must precede any physical or mental action. In this sense, experience of voli-
tion would be closely link to introspective attention. Some theories go further
suggesting that the “free-will” is a retrospective perception of a consistency be-
tween a forethought and the sensory feedback. In that sense, the role of “free
will” would be a reflective narration, or confabulation, in order to causally bind
the events in the stream of consciousness and hence make sense of the dynamic
complexity of the environment.

Important implication of rejection of dualistic explanation of “free will”, is that
although it might be tempting to pursue the true origin of voluntary action, such
as particular neuron or neural group, it is conceptually not feasible. The problem
would be comparable to determining a single water molecule that initiates a
massive oceanic wave. Brain activity is expressed through complex, multi-scale,
recurrent neuronal interactions, where every action potential or synaptic current
has its own cause. It is within those interacting loops where the evidence for
voluntary action gradually accumulates, at certain point reaching the levels
sufficient for the conscious perception of volition to emerge. Activation of those
loops can be detected, observed and quantified with neuroimaging methods and
electroencephalography, just as an oceanic wave can be measured with buoys or
satellite images.

The neurophilosophy of volition is a vast and exciting domain. However it lies
far beyond the scope of this thesis. For extensive overview of topics related
to volition and free will, combining insights from neurophilosophy and neuro-
science, the reader is encouraged to the books of Baer et al [8] and Nadel et al
[112], as well as review articles [45, 47, 136] tackling the current state-of-art in



1.3 EEG and brain dynamics 5

Figure 1.2: The brain circuitry has a multi-level architecture spanning over multiple spatial (A)
and temporal (B) scales. Different recording modalities, such intracellular recordings,
local field potentials or EEG can capture the dynamics on each scale. Typically, an
EEG electrode records from scalp area of a square centimeter, including up to a million
of underlying neural cells. This reflects synchronous post-synaptic activity in hundreds
of cortical columns. (C) Hierarchical organization of brain communication. Processes
on different scales causally influence each other. Macroscopic networks oscillate with
lower frequencies and their phase can influence power of the more focal, fast oscil-
lations. This process that can contribute to functional binding of distributed neural
assemblies and support large scale information integration. (figure adapted from Le
Van Quyen [78], with permission from Elsevier)

empirical approaches to neuroscientific study of “free will”.

1.3 EEG and brain dynamics

The main medium for communication in the brain is a minuscule electrical
signal, an action potential (or spike), propagated by neural cells across active
membranes of their axons. Upon reaching synaptic junction, action potential
will cause neurotransmitter to be released and transmitted to the receptors on
the dendritic tree of the post-synaptic neuron. This will cause a flow of ionic cur-
rents through the membrane and if the summed dendritic currents exceed certain
threshold, a new action potential will be generated at the post-synaptic neuron.
By this mechanism information can be transmitted through neural networks
and thousands of neurons are organized into local, functional, synchronously
oscillating assemblies. Those assemblies can be selectively recruited into larger
distributed cortical networks responsible for cognition, perception and sensori-
motor function. The cerebral cortex has a complex, multi-scale organization,
where each level operates with distinct spatial and temporal constraints. The
electroencephalography (EEG) is a convenient technique operating on the most
macroscopic level, capturing coordinated simultaneous activity of millions of
neural cells (Fig.1.2).
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EEG is a noninvasive technology to record fast changes of electric activity in
the brain with surface electrodes. The oscillations are measured as a potential
difference between pairs of electrodes. Most of the current EEG systems contain
between 32 and 256 electrodes covering entire scalp, usually one or two of them
are designated as reference channels. Different methods are used to improve
the interface (reduce resistance) between skin and electrodes, with gel-based
passive/active systems being the most popular in laboratory setting.

The neural cells in the cortex are not placed randomly, but have horizontal
(layers I-VI) and vertical (cortical columns) organization. Scalp recorded EEG
signals reflect primarily the summed excitatory (EPSP) and inhibitory (IPSP)
post-synaptic potentials at vertically aligned dendritic trees of pyramidal cells
of layer V. When a neural assembly is jointly recruited to a functional task,
the coherence of EPSP/IPSP patterns increases locally, sometimes to the levels
sufficient to be detected by surface EEG sensors. The second important compo-
nent of EEG signal originates from macroscopic, summed ionic currents flowing
from neural source to EEG sensors through brain tissue, the phenomenon known
as volume conduction. The vast part of information contents of brain electric
activity never reaches the surface, due to partial cancellation of local signals
and due to attenuation of signals on brain-skull-electrode interfaces. Notably,
the amplitudes recorded by EEG do not exceed 50µV , which is 3 orders of
magnitude lower than neuronal membrane potential ( 70mV ).

For successful application of EEG methodology in neuroscientific research, it is
important to appreciate its relative strengths and limitations. The strongest lim-
itation is a poor spatial resolution. As discussed above, each EEG electrode cov-
ers the cortical area of 1cm2 corresponding to approximately a million of neural
cells. Considering however the volume conduction of electric fields through bio-
logical tissue, each electrode captures in fact an overlapping activity from mul-
tiple distal sources, amounting jointly for hundreds of millions of functionally-
organized cells. Furthermore, EEG represents a two-dimensional surface pro-
jection of brain oscillations, which emerged in complex three-dimensional brain
structure. This poses further challenges (inverse problem) on disentangling the
superficial and deep sources of activity, and thus reconstructing the original
source. Finally, the changes of conductivity between cortex, cerebrospinal fluid
(CSF), skull, skin and electrodes, which are subject specific, also contribute to
spatial blurring and mixing of the signals recorded by neighboring electrodes.

Some of those shortcomings are however circumvented by the fundamental ad-
vantage of EEG - its high temporal resolution. Typically signals are recorded
with sampling rates 512Hz-5kHz, and can reliably resolve brain oscillations in
ranges 0.01-100Hz (higher frequencies are attenuated due to volume conduction
problem). High temporal precision, combined with high-density electrode mon-
tage covering entire skull, can be thus used to extract some spatial information.
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Subtle, time-sensitive modulation of instantaneous phase and amplitude distri-
bution over scalp can be used to infer about connectivity and directionality of
information flow in the brain. Combined with structural information from mag-
netic resonance and conductivity modeling, multi-channel temporal signals can
be used to reconstruct the estimated true sources.

Furthermore, in many scientific and clinical applications of EEG, the spatial
location of the effect is not the main priority. Sometimes, the location estimate
is known from other modalities, such as fMRI. Scientists and clinicians are then
interested in temporal characteristics of the signal - when the effect of interest
emerges and how long it lasts, what is its oscillatory nature, can it be predicted,
and can it be affected by sensory, experimental manipulation. EEG is indis-
pensable for tackling this kind of problems. It is completely non-invasive and
thus not restricted to animal studies or clinical patient studies (ECoG, LFP). It
is much faster than magnetic resonance imaging (MRI) and thus provides com-
plementary temporal information. Although slightly less sensitive than MEG,
EEG is considerably cheaper, and can be used both in laboratory setting as well
as outside.

1.4 MRI and brain structure

Structural magnetic resonance imaging (sMRI) a common modality in neuro-
science and clinics to obtained detailed images of inner structure of brain and
body. MRI uses a sequences of powerful magnetic pulses (over 10.000 times
stronger than Earth magnetic field) to realign and perturb hydrogen nuclei of
water molecules, present in different densities in different types of tissue. Upon
returning to their “low energy” state, the nuclei release energy, which is mea-
sured by receiver coils. The relaxation time is however dependent on the type
of tissue (gray matter, white matter, skull, etc). This information is used by
advanced signal processing methods to reconstruct a precise 3D structure of the
inner brain tissue. Modulation of parameters of the sequence of pulses will deter-
mine the types of tissue to be enhanced and suppressed on the resulting images.
MRI can reconstruct spatial shape of gray matter (cell bodies), white matter
(fibers, axons), cerebrospinal fluid and skull, with precision of approximately
1mm. Such images are often used for clinical assessment of volumetric abnor-
malities and diagnosis of diseases. In context of EEG, structural MR images can
be further processed to extract precise 3D head models (forward modeling) and
reconstruct spatial sources of fast encephalographic signals (inverse modeling).
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1.5 Virtual Environments in neuroscience

The vast majority of neuroscientific studies are based on very simple visual
or auditory stimuli, usually presented in forms of pictograms, simple anima-
tions, or sequences of beeps. Obviously, such simplification facilitates strict
experimental control and helps to isolate the task-relevant brain activity. On
the other hand, in the natural environment humans are constantly exposed to
rich multisensory stimulation. Phenomena such as attentional selection, task
switching and social context may profoundly influence the information flow in
the brain. While performing neuroscientific experiments in natural environment
is complicated (events and context can not be precisely manipulated) or even
not feasible (most of the imaging techniques require large and non-portable
recording apparatus, i.e. fMRI, MEG), the virtual environments constitute a
promising alternative. Virtual environments can ensure exact control of exper-
imental condition, sequence, randomization and stimuli type and timing, while
at the same time providing more natural, ecologically valid experience to partic-
ipants. Although posing some challenges on data analysis and interpretation of
potential findings, the obtained results might be more generalizable to real-life
scenarios and thus help better to understand human brain processes outside the
laboratory environment.

However, virtual environments seem to be strongly underrated in cognitive neu-
roscience and neuroimaging research. Out of 92.000 of published studies em-
ploying EEG and fMRI, only 230 involved virtual environment (0.25%), and
those usually refer to specific applications only, primarily within the field of
brain-computer interfacing (BCI). Some interesting examples are related to con-
trol of a wheelchair on simulated streets by tetraplegic patients [80], simulated
walking [128] and control of virtual car [170], assessment of driver cognitive
performance [86], perception of “spatial presence” [68], and oscillations during
maze navigation [61].

A considerable part of this thesis is dedicated to design of specialized Virtual
Environment (VR) for neuroscientific studies. Motivation, design considera-
tions, and application of VR to experimental studies of voluntary action will be
discussed in further Chapters.

1.6 Objectives of the thesis

The main purpose of this thesis is to investigate the nature of human volun-
tary action. By applying range of analytical methods to high-resolution multi-
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channel EEG data acquired in carefully design experiments, we intend to de-
scribe the EEG signatures and the role of known neurophysiological oscillations
(theta, alpha, gamma) in voluntary action. In particular, we pursue differ-
ences in electrical responses in respect to different types of decisions, such as
“whether” to perform an action or not, “what” kind of action to perform, and
“when” to perform an action.

Second goal of this thesis was to design and construct enhanced experimental
platform for cognitive studies based on Virtual Environment. By doing so,
we intended to increase ecologic validity of the experiments, enhance natural
decision taking processes, while maintaining rigorous experimental control over
the timing and the nature of experiment. The platform has been used in range of
voluntary action experiments involving EEG, fMRI, Eye-tracking and behavioral
data acquisition, some of which will be discussed in the following Chapters.

1.7 Structure of the thesis

This Introduction (Chapter 1) is followed by a comprehensive literature re-
view (Chapter 2), elaborating on several domains of neuroscience relevant to
the work presented later, in particular the studies of volition and motor prepa-
ration, insights into functional role of brain oscillations and EEG methodologies
relevant to studies of higher cognitive function. Afterwards, Chapter 3 focuses
on the methodology, including devices and apparatus, software, experimental
designs, and data analysis. The two main studies of voluntary decision which
constitute the fundamental part of this thesis are summarized in Chapters
4 and 5, while Appendix A and B contain respective journal manuscripts
(in preparation). Chapter 6 discusses in detail the design and motivation for
our Virtual Environment and summarizes the jornal manuscript attached in
Appendix C. The final Chapter 7 concludes and summarizes the thesis and
presents our further research pursuits. Appendix D describes in detail the
automatized EEG data processing toolbox that was developed during the work
on this thesis. Case studies and application to our datasets will be discussed,
which highlights important aspects of early processing of EEG data. Appendix
E summarizes the conference contributions.
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Chapter 2

Literature review

In the following, I shall review the literature related to the subject of the the-
sis. In particular I will present the scientific approaches to tackle the problem
of volition with different brain imaging methods and discuss the studies inves-
tigating neuroanatomical sources of free action. However the main focus will
remain around the temporal and spectral correlates of voluntary processes in
terms of brain oscillations, which are the most relevant for the work presented
in the further chapters.

2.1 Neuroscience and free will

The problem of volition and free-will have been troubling philosophers for cen-
turies and neuroscientists for decades. And as the problem remains unsolved,
the developments in neuroimaging and electrophysiology enables us to iden-
tify certain types of electrical responses and particular anatomical areas in the
brain which correlate with voluntary decisions. These findings cast more light
on the complex nature of volition, and allow us to construct more precise the-
oretical models. The models can support our understanding of certain aspects
of volition and decision taking, such as temporal constraints, role of conscious
awareness, predictability of outcome, preferential biases, differences between
internally generated versus externally triggered actions. Probably the most
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widespread premise for the neuroscience of volition is that the “mental states
rest on brain processes”, and hence by analysis of controlled experimental brain
data we can learn about their underlying mind processes, including concepts as
intriguing as “free will”, “agency” and “consciousness”.

There have been many attempts of address the problem of volition with use
of EEG, functional magnetic resonance (fMRI) and noninvasibe brain stimu-
lation (NIBS) methods, such as transcranial magnetic stimulation (TMS). It
should be also stated here that many (if not majority) of the studies do not
attempt to directly tackle the “hard problem” of free-will, but instead try to
find and describe the functional and electrophysiological correlates of voluntary
decisions and internally driven actions. It is important to bear in mind that
those correlates may account for entire chain of causally related processes in-
volved in, or related to, voluntary decisions [45] and thus may capture more
than mere, isolated act of “free choice”. It is reasonable to assume that cer-
tain processes may constitute an integral part of the rather widely understood
notion of “intention formation”, for example the processes like: self-monitoring
and introspective attention to action selection [74, 76], knowledge-system access
and memory processes [56, 64] related to options evaluation, or processes of for-
ward modeling and sensory prediction [105]. One could also argue, and this is
generally the stand I take throughout this thesis, that attempts to isolate neural
substrate of volition from other essential mental processes (such as introspec-
tive attention to the process of exercising free-will) would be, even conceptually,
inappropriate. Investigating volition should therefore focus on observing causal
chains of relevant neural processes, characterized by specific brain circuitry and
electrophysiological characteristics (i.e. oscillations).

In general, there are several different approaches to probe volition. The majority
of studies focus on voluntarily initiated, free-paced movements, where partici-
pants decide on timing (and sometimes the type of action). Other studies focus
on voluntary selection of actions or goals, usually a free choice between two
movement alternatives. In order to relate the physiological responses to mental
states, some studies rely additionally on the participant’s subjective reports,
such as the perceived time and the intensity of the “urge” to move.

2.1.1 Models of volition

Important contributions, and the current state-of-art on the intersection be-
tween decision neuroscience, psychology and philosophy, come from the theoret-
ical and empirical works of Brass and Haggard [13, 45], who proposed a model
of voluntary action (WWW-model) composed of three fundamental decisions:
“Whether” to commit to an action, “When” to initiate an action (action tim-
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Figure 2.1: Fundamental components of volition: decisions “whether” to commit to an action,
“when” to initiate an action (action timing), and “what” type of action to perform
(action/goal selection). Reproduced, with permission, from Haggard et al [45].

ing), and “What” type of action to perform (action/goal selection), see Fig.2.1.
The “whether” decision can be further divided into early and late components
[72], the former to decide whether to engage in action, while the latter reflecting
final predictive check or ability to inhibit preprepared action. Kuhn at al [72] in
fMRI focused on “late whether”, and suggested that intentional non-action is a
mode of action and recruits similar neural resources as intentional action, and
thus “early whether” component can be closely related or equivalent to “what”
decision. For detailed presentation of the model and in-depth discussion in con-
text of volition and free will, the reader is encouraged to read the extensive
review [45].

The validity of WWW-model is supported by a line of evidence from fMRI stud-
ies, showing that different components of voluntary decisions recruit partially
distinct neuronal networks [13, 49, 72, 141]. The pre-SMA and bilateral dorsal
premotor areas are selectively active in action selection (What) while the tim-
ing adjustment (When) is mediated by network consisting of superior pre-SMA,
insula, putamen and cerebellum. On the other hand, some other areas are com-
mon to both types of decisions, i.e. dorsolateral prefrontal cortex (DLPFC) and
intraparietal sulcus (IPS). The Whether type of decision is mediated by areas
of the dorso-medio-frontal cortex (dFMC) and rostral cingulate zone (RCZ),
located more anterior than pre-SMA [13, 72].

The Whether/What/When model (WWW-model) was an inspiration for the
second of the two studies presented in this thesis (Chapter 5), while the first
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study (Chapter 4) focuses on Whether-type of decision, i.e. internal choice be-
tween acting or withholding the action.

2.1.2 Electrophysiology of volition

The pioneering work in the field of neuroscience of volition can be attributed
to Benjamin Libet, who in his famous ”Libet’s clock” studies [85] showed that
the electrical cortical activity (readiness potential, RP) precedes not only the
initiation of voluntary action, but also the subjective feeling of ”will” to initiate
the action, by as much as 350ms on average. Those results casted doubt on
whether the voluntary action is initiated consciously, or rather prepared by
brain circuitry before the conscious awareness is informed. In other words,
the study presented first empirical challenge to the notion of “free-will” in its
common sense. Libet proposed an alternative explanation, namely, that “free-
will” can be manifested through “free won’t”, i.e. the ability to consciously
and voluntarily veto the unconsciously initiated choice, and thus abandon the
implementation of related motor program before the execution [84]. Libet’s
experiments inspired a lot of follow-up studies, which elaborated on the original
findings. For instance, [46] showed that lateralized readiness potentials (LRP)
precede awareness of directionality in free choice between left and right index
finger. Recent study using Libet’s paradigm and involving single-cell recordings
from patients undergoing epileptic surgery, showed that firing patterns of as little
as 256 neurons from preSMA area is sufficient to predict the intention to move,
up to 1 second before the “urge” is reported by patients [36]. The interpretation
of Libet’s results in context of volition and free-will was repeatedly addressed
by attacks of skepticism [8, 58, 112]. First of all, estimation of exact timing
might be unreliable and dependent on participants attentional split between
the internal decision processes and the clock face they needed to observe in
order to report the timing. Secondly, it was speculated that the recorded data,
in particular RP deflection, could represent the combined cognitive processes
related to obeying and fulfilling the experiment instructions, while the true act
of volition could have happened only at the moment when participants agreed
to participate in the study. There is also a larger empirical study that failed to
observe correlations between onsets of either RP or LRP to the reported time
of “will”, and thus claimed that RP and LRP represent processes independent
of will and consciousness [144]. Another study [138], although not directly
confronting Libet’s claims, has shown that magnitude of RP deflection depended
on participant’s prior belief in the notion of “free-will”. This suggests that RP, at
least partially, reflects other cognitive processes such as attention, performance-
monitoring, or commitment to the task.

Slow potentials proved to be a valuable method to investigate free-paced vol-
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untary action, however not a unique one. Brain oscillations have been shown
to play a central role in cognitive function of the brain, in particular atten-
tion, information encoding and temporal binding of distributed brain areas into
functional assemblies [17, 64, 90, 119]. It is thus very plausible that neural
processes of volition are expressed by broadband oscillations. Indeed, high-
frequency Gamma (>40Hz) oscillations were reported to be involved in range
of sequential processes related to preferential, voluntary decision making [44].
Alpha (8-13Hz) and Beta (16-30Hz) oscillations have been well studied in con-
text of action preparation [30, 127, 157] but it remains unclear whether they
distinguish internally-generated from externally-cued actions [27]. The topic of
brain oscillations will be expanded in further sections of this chapter.

2.1.3 Delayed response tasks in context of volition

Delayed response reaction time tasks are typically based on two, usually vi-
sual, stimuli - early S1 and late S2, followed by appropriate motor response
[30, 34, 37]. The early S1 (precue) can deliver complete or incomplete infor-
mation about the action to be prepared, and S2 can be either congruent (Go
signal) or incongruent (No-go signal or alternative Go) to the S1. By exper-
imental manipulation of information contents of S1 and S2 and observing the
modulation of brain signals in the interval between S1 and S2, a lot has been
inferred about brain preparation of action and early/late inhibition of action.
Two prevalent phenomena are contingent negative variation (CNV) and spec-
tral desynchronization ERD in alpha and beta ranges. CNV is a slow negative
potential reflecting active buildup of attentional resources and sensory expecta-
tions about upcoming stimulus [34, 155, 165]. It is known that CNV is larger
in Go condition than in NoGo condition [32, 147], can be lateralized if response
type is known [73], and correlates with reaction times [97]. Preparatory effects
other than CNV were also observed in terms of event-related desynchronization
(ERD) in Alpha [27, 32] and in Beta rhythms [30].

A lot of research was done regarding CNV and ERD phenomena especially in
the context of externally triggered actions and inhibition (cued Go/NoGo tasks)
[33, 34, 37, 147], however only few studies examined whether CNV and ERD are
dependent on the mode of action selection (internally driven or externally trig-
gered) [27, 159]. Although most of those studies did not include a component of
free decision, they are indeed informative in context of volition. It is reasonable
to assume that once the voluntary decision had been made and intention about
action had been formed, the further action preparation mechanisms should be
identical to those of externally-cued context (after informative S1). Indeed this
is what we observe in our Study 1. It implies that phenomena such as timing
and magnitude of CNV and ERD, as well as their interpretation as attentional
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expectation and motor preparation, remain intact regardless of the mode of
action selection.

It should be also noted here that the readiness potential (RP) in the Libet
sense, and the CNV do not reflect exactly the same neural processes, despite
their apparent similarity. While the former manifests a self-paced, unconsciously
initiated voluntary action, the latter corresponds to conscious expectation or
preparation for the external stimulus or externally triggered action. On the
other hand, in the context of attention both RP and CNV could reflect gradual
process of allocating attentional resources to the action preparation, regardless
its nature. In the context of voluntary decisions with delayed response (i.e.
studies presented in this thesis, also [27], and prospective memory tasks [142]),
CNV may occur in several ways. Firstly, CNV deflection following decision but
preceding the imperative stimulus is expected, along with contralateral RP pre-
ceding action, regardless whether decision was internally generated (voluntary),
or externally cued. Secondly, CNV deflection can also precede the decision itself.

2.1.4 Internally-generated vs externally-cued actions

In a quest to discover the “holy grail” of volition, a lot of work has been done to
compare two fundamental modes of action selection - internally-generated and
externally-cued actions - in experiments involving fMRI [22, 24], PET [26, 52],
EMG [115] and EEG [27, 156, 166] modalities. This approach, although not
always aiming directly at the problem of volition, can inform about relevant
behavioral and electrophysiological differences, as well as neuroanatomical loca-
tions mediating internally-generated and externally-triggered actions.

The first mode is referred to as internally-generated actions or voluntary actions.
In common sense, these are the actions where the “free will” can be exercised.
More strictly, the information regarding action is generated internally, by de-
liberate and conscious decision process. This information determines time and
type of the action, for instance free choice of when to tap a finger, or which se-
quence to tap. The second mode is referred to as externally-cued action (other
terms used are stimulus-driven action, or externally-triggered action). These
are sensory-guided actions, determined by specifics of external event or envi-
ronment, such as visual stimulus. The most explicit case of this category are
spinal reflexes, such as knee jerk or Achilles reflex, which do not involve cortical
processing. More casual examples of externally-triggered actions can be found
in reaction-time experiments, where participants are instructed to immediately
perform particular action in response to given stimulus, or in object grasping
tasks.
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It is important to note that this distinction is by no means exact or mutually
exclusive. In practice, almost every action (with exception of spinal reflexes)
will involve to certain extent both intentional and externally-guided compo-
nents of action selection [166], and as such will to certain extent activate both
pathways [22], [109] in coordinated manner. Every externally-guided action,
with exception of spinal reflexes, must take into account information about cer-
tain intentional states (for instance intention to follow experiment instructions
regarding pressing left of right finger following visual stimulus flash, or more
striking example - the famous Milgram’s obedience experiment [106] - where
participants applied painful electric shocks to innocent person following verbal
instructions of experimenter). Similarly, every internally-generated action re-
quires some stimulus guidance, or information from environment, in planning
and executing the intended action (for instance, intentional action of crossing
the street will be guided by visual/auditory stimuli such as traffic lights or noise
of approaching truck). One could argue that internally-driven actions are just a
particularly complex, intricate version of stimulus-driven actions, which involve
contextual processing and account for memory, proprioceptive and emotional
states rather than simple sensory processing.

However, there is a lot of evidence from neuroimaging and animal studies that
the internal and external modes of action selection are mediated by distinct cor-
tical networks [22, 26, 52, 76, 120], the former mediated by more rostral brain
areas (prefrontal cortex, preSMA) while the later is more caudally located (sen-
sory parietal areas and lateral premotor cortex). Neuroanatomical coordinates
will be discussed in more detail in the next section. Apart from spatial differ-
ences, these two modes of action selection have different temporal characteristics
[156, 159, 166].

According to some models of cognitive control [146], the stimulus-driven loops
may control behavior as long as stimuli provide sufficient information for the
routine, behavioral schemas. In case the stimuli are ambivalent, or if the need for
exploratory behavior emerges [21, 23], the volitional, internally-driven system
overtakes control. Another interesting findings were reported by Goldberg et
al [39], who demonstrated in fMRI study that internally-generated, voluntary
actions have a common neural substrate with the “̀ıntrinsic” network, which
is responsible for endogenous mental processes such as emotional introspection
and self-judgment. Thus there might be a biophysiologically dictated connection
between phenomenal concepts of “free will” and “the self”.
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2.1.5 Neuroanatomy of volition

A number of neuroanatomical areas have been related to different aspects of
volition, owing to wide range of neuroimaging and animal studies, and clinical
cases of neurological disorders of volition.

Depending on whether an action is internally-generated or stimulus-driven, it
is mediated by one of the two distinct cortical networks [24, 45, 120, 139].
The first network, corresponding to volition-related pathway, consists of sup-
plementary motor area (preSMA), which receives inputs from basal ganglia and
several areas of prefrontal cortex, primarily orbitofrontal cortex, anterior cin-
gulate cortex (ACC), rostral cingulate zone (RCZ) and dorsolateral prefrontal
cortex (DLPFC). The second network, corresponding to sensory-guided and
stimulus-driven actions, starts in early sensory areas (i.e. visual cortex in case
of visually-guided action), followed by higher-level sensory integration areas in
parietal cortex, which project to lateral premotor areas. Both pathways how-
ever terminate in primary motor cortex (M1) which is the final stage before
the efferent motor command is propagated down the spinal tract to the mus-
cle terminals [120]. The schematic representation of the networks involved in
voluntary action is depicted by Fig.2.2.

Several studies show that preSMA plays a central role in voluntary action
[74, 111, 153]. Firstly, the readiness potentials preceding voluntary action and
intention, like those observed in original Libet’s clock experiment and the follow-
up studies, have been source localized at preSMA [168]. Secondly, fMRI studies
consistently report that BOLD responses in preSMA area are stronger [52, 74],
their timing is earlier [22] and the duration longer [156] in voluntary actions as
compared to externally-cued actions. Finally, electrical stimulation of cortical
surface at preSMA region at patients undergoing epilepsy surgery, causes feel-
ing of “urge” to move [35], while stronger stimulation initiates actual movement.
However, several lines of evidence suggest that despite preSMA’s critical role to
volition and its correlation with subjective feeling of “urge”, it is not necessarily
the very first component in the causal chain of neural processes corresponding
to voluntary action. Important inputs to preSMA are provided by prefrontal
cortex and basal ganglia.

Dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC)
were shown to be involved in conscious and intended motor action, reflecting
the internal generation and motor planning [22, 52, 151]. It was suggested that
there is no single dedicated “will center” within DLPFC, but instead exact ac-
tivation patterns depend on the type of the willed action to be performed [50].
Rostral cingulate zone (RCZ) at the median wall of prefrontal cortex is also
relevant to volition [24, 109]. In a fMRI study Mueller et al [109] observed that
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Figure 2.2: (A) Cortical networks involved in voluntary (top left) and externally guided (top right)
actions. The voluntary network consisting primarily of basal ganglia, prefrontal areas
and preSMA, while external action network consists of early and integration parietal
areas and lateral premotor areas. Both networks converge at primary motor cortex
from where the motor command is sent down to the muscle through cortico-spinal
tracts (bottom). The two networks are by no means exclusive, and many typical
actions will involve to certain extend both the prefrontal and parietal circuitry. (B)
Readiness potentials recorded at scalp before the action are originating from preSMA
area. It is plausible that early intentions and early strategic planning is mediated by
frontopolar areas, before action preparation is initiated in preSMA. (Reproduced, with
permission, from Haggard et al [45]).

significant BOLD contrasts occurred only in RCZ (but not in preSMA), when
comparing internal/external modes of action selection. RCZ can be also critical
in voluntary inhibition, or free decision not to act [72]. In the latter study, the
authors reported no difference in activation of RC in voluntary decision between
acting or abstaining from action, which suggests that voluntary non-acting is a
mode of action in terms of its neural implementation. In the analogous context
to that of Libet’s experiments, however using fMRI modality, [148] reported
that BOLD activity, predicting the laterality of voluntary left/right index finger
movement, starts to build up in frontopolar cortex as early as 8 seconds before
conscious awareness of ’will’. The activity then spread to parietal areas (pre-
cuneus, posterior cingulate) and preSMA, finally reaching contralateral primary
motor area (M1). Interestingly, the BOLD trace of early preconscious intention
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in prefrontal cortex is not limited to motor tasks, but expands over abstract
decisions [149]. On the other side, it was suggested that DLPFC activation in
free action context may be more related to increased attentional demand to ac-
tion selection process, rather than actual generation of those actions [76]. This
supports the hypothesis that attention might be a critical component of the
intention formation process (and related subjective feeling of ’urge’). While the
former is mediated by DLPFC, the latter is represented by increased activity in
preSMA area.

Basal ganglia is the second volition-relevant component, which projects strongly
to preSMA [2]. It has been shown with local-field potential(LFP) recordings,
that oscillations in subthalamic nucleaus (functional part of basal ganglia) pre-
dict voluntary hand movements by more than 1 second [91], which is earlier than
the onsets of readiness potentials originating from preSMA [85, 168]. Functional
imaging studies suggest that basal ganglia is activated stronger in self-initiated
than externally-cued movements [22].

In summary, the most relevant neuroanatomical areas in context of volition and
free-action are: distributed areas of prefrontal cortex (DLPFC, AAC, RCZ),
preSMA and SMA, and basal ganglia, while lateral premotor areas and parietal
cortex (precuneus, intraparietal sulcus, posterior cingulate) have been mostly
linked to externally-guided actions. Primary motor cortex is the final area
where those two distinct pathways converge. Finally, it is important to note
that this distinction is by no means exact or mutually exclusive. In practice,
almost every motor task (with exception of reflexes) will involve to certain extent
both intentional and externally-guided components of action selection [166], and
as such will to certain extent activate both pathways [22, 109] in coordinated
fashion.

Furthermore, internally-generated decisions regarding the “willed” actions are
mediated by different neural components depending on the type of response
[50], and the type of voluntary decision [13, 49, 141]. In particular, the “what”,
“whether” and “when” components of voluntary decision (as discussed earlier)
seem to be represented by partially distinct neural processes. Investigation of
dynamic aspects of this difference (measured with EEG) is the main motivation
for our Study 2 (Chapter 5).

2.1.6 Brain stimulation and volition

Other insights to neural pathways mediating the voluntary action come from
noninvasive brain stimulation (NIBS) methods such as transcranial magnetic
stimulation (TMS), or from clinical methods, primarily electrical stimulation
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of brain surface during awake surgery of patients undergoing treatment of in-
tractable epilepsy. Stimulation of primary motor cortex initiates involuntary
motor response, however patients do not have the subjective feeling of neither
urge, intention nor ownership of that action [122]. The effect is different if the
presupplementary motor area (preSMA) is targeted. Sufficiently strong stim-
ulation initiates the motor response, however this time patients report that
they indeed planned the movement, or felt the urge to move [35]. The feeling of
“urge” remains even if stimulation is too week to cause an overt response. Other
studies applying TMS stimulation to the same area showed that the subject vol-
untary action and the feeling of agency can be biased, or tricked, by properly
timed stimulation [12] and that the perceived onset of intention can be manip-
ulated by stimulation applied shortly after the voluntary movement execution
[75]. The latter study suggests that feeling of intention may, to certain extent,
depend on the brain activity after the action has been executed, which renders
the intention closer to retrospective perception rather than causal mechanism.

2.1.7 Neurological disorders of volition

Another source of knowledge regarding the nature of voluntary action are the
clinical studies of the patients with certain disorders of control, inhibition or
initiation of free action. On the other hand, understanding the dynamics and
anatomy of volition is essential for development of effective therapeutic inter-
ventions and treatments methods.

The well studied examples include “utilization behavior” following frontal lobe
damage (especially preSMA area), where patients compulsively reach for and
use the objects in their surrounding [82] and alien/anarchic hand syndromes,
where patients do not have the feeling of agency or ownership of the movement
of one of their limbs, usually due to disruption of connection between primary
motor and premotor areas. Both those neuropsychological conditions suggest
that preSMA plays an important role in voluntary selective inhibition of ac-
tions which are irrelevant or unjustified [111, 153]. Another disorders of volition
include obsessive-compulsive disorder and Tourette syndrome [135], where pa-
tients are usually aware of “urge” and tension building before the tic onset.
Prolonged inhibition of tic is mentally exhausting, and thus it is not straight-
forward to determine whether tics are voluntary or involuntary. This suggests
that, in certain contexts, an intentional inhibition of action can be equivalent
to, or even more resource demanding, than voluntary action. Another explicit
dysfunction of “will” system is observed in conditions of aboulia and akinetic
mutism [10, 98], usually effect of lesions to basal ganglia or prefrontal cortex.
Patients display inability to initiate spontaneous action or make a choice, and
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lack of drive and motivation. This condition explicitly suggests the existence
of a biological, mechanistic representation of the concept of “free will”, and in-
dicates that volition as such should be quantified on continuous scale (level of
volition) rather than binary scale (presence or absence of volition).

2.2 Brain oscillations

Due to its micro- and macroscopic structure, abundant in recurrent feedback
loops on multiple scales, brain can be understood as a complex system of weakly
coupled oscillating systems. Neural oscillations are the critical phenomenon
bridging the gap between spiking neurons and behavior [16]. Regardless if in idle
resting-state, during demanding cognitive task or integration of multi-sensory
information, the distant cortical areas as well as local neural assemblies are inte-
grated into functional task-specific workspaces by means of oscillations [16, 90].
Depending on the nature of the task, its complexity, and the connectivity struc-
ture of the mediating neural resources, different compositions of frequencies (or
rhythms) will be observed at electrophysiological recordings, ranging from slow
Delta(.5-2Hz), Theta(3-7Hz) and Alpha(8-13Hz), up to faster Beta(16-30Hz),
low Gamma(30-60Hz) and high Gamma(70-200Hz) oscillations. Often, although
not exclusively, the central oscillatory frequency will depend on the scale of the
underlying neuronal network, thus the fastest oscillations will reflect activity in
local, function-specific networks, while slower oscillations will play role in func-
tional integration of distributed cortical resources [19]. Information routing via
cortico-cortical and thalamo-cortical networks is performed by mechanisms of
excitation and inhibition providing temporal windows for coherent execution of
relevant tasks [17, 90].

A growing number of studies involving EEG, MEG and ECoG, as well as intra-
cranial recordings from animals and humans, have linked the oscillatory phe-
nomena to various cognitive, sensory and motor functions. It is important to
emphasize though, that there is no one-to-one relation between a given oscilla-
tory frequency and particular cognitive processes. Instead, the similar oscilla-
tions (in terms of their spectral extension), such as Alpha, can be involved in
very different tasks in different brain areas at different times.

Modulation of power in low frequency bands (Theta-Alpha, 3-12Hz) had been
linked to central executive function [20, 63], working-memory [56] and attention
[64]. Increased theta oscillations in parietal areas relates to episodic memory
encoding [65] and retrieval of items [66], while frontal theta power correlates
positively with working memory load [56], and negatively with default mode
network [143]. Interaction of theta, alpha and gamma rhythms may constitute a
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fundamental mechanism for information encoding and coordinated information
flow in brain [19, 88, 119].

The role of alpha oscillations (8-13Hz) has been broadly studied in various con-
texts, in particular its relation to attention [64] and memory [53, 62], percep-
tion [7], and motor preparation [27]. Alpha oscillations are often interpreted as
manifestation of brain’s “idling” mode [131], because its power tends to increase
in resting state, drowsiness, during closed eyes intervals, and with decreasing
task demand. However, it is currently believed that role of Alpha oscillations
is wider than simple idle rhythm. W. Klimesch proposed inhibition-timing hy-
pothesis [67], according to which alpha synchronization may represent top-down
inhibitory control, while alpha desynchronization reflects gradual release of in-
hibition over the task-relevant areas. Given that Alpha guides the attention,
allows semantic orientation and access to knowledge base, it may be consid-
ered as the rhythm reflecting the most fundamental cognitive processes [64].
Other studies employing cross-frequency analysis show that alpha-gamma cou-
pling may be relevant for visual information coding [118] and integration of
distributed networks into functional units [119]. In general, alpha power is sup-
pressed along with growing need for cognitive processing, attentional resources
allocation, or task complexity. In the context of this thesis, the role of alpha in
attention and self introspection is of particular interest, as it might suggest the
alpha oscillations involvement in the process of conscious, voluntary action.

The particular role is assigned to Alpha/Mu (8-13Hz) and Beta (16-24Hz) os-
cillations, which are recognized as main rhythms of motor function [6, 30, 55,
70, 71, 124, 131, 132] both if movement is generated as response to stimulus
or free-paced. Broadband reduction of power in range from Theta(3-6Hz) to
Gamma(>40Hz) is observed during preparation to externally-cued action in
delayed response Go-NoGo tasks [37, 40], and as such can reflect global preac-
tivation of sensorimotor cortices and attentional orienting. Desynchronization
of Alpha and Beta rhythms is stronger in Go than in NoGo condition [5], and
lateralized if the pre-cue carries information about laterality of requested action
[30]. Moreover, Alpha and Beta oscillations are modulated by motor imagery
[103] and may correlate with activation of mirror neuron system during action
observation [110], either of which can be reflected in decision processes. Beta
bursts are also relevant to externally [71, 169] and internally [164] generated
inhibition of action, and prefrontal Beta oscillations may reflect behavioral rule
selection [54].

Oscillations in higher frequency have broad significance in cognition and senso-
rimotor function, and can also be relevant to volition and free action. It has
been shown that distinct gamma modulation over different cortical areas encode
subsequent stages of preferential choices and free decisions [44]. Many studies
showed involvement of gamma in planning and execution of motor function
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[37, 127, 130]. Gamma oscillations are also relevant for memory and atten-
tion [57], and were suggested to mediate the attentionally modulated functional
communication between prefrontal and visual cortex [41]. It plays role in mem-
ory consolidation in sleep [79]. Gamma rhythms are critical in perception and
multi-modal feature binding to create coherent representations of objects and
concepts [4, 31]. Transient synchronization in gamma band was suggested to be
a correlate of conscious visual perception [31, 93, 104].

Furthermore, converging evidence suggests that oscillations in low and high fre-
quencies are coupled and the coupling may reflect a fundamental mechanism for
establishing functional workspaces of distributed brain areas [19, 78]. Notably,
neuronal workspaces recruiting widely distributed brain areas may be responsi-
ble for emergence of higher cognitive function of consciousness [25]. It has been
shown in different studies that bursts of fast Gamma oscillations tend to occur
preferentially on certain phases of slower Theta and Alpha waves [88], and the
degree of coupling can be task-dependent [162, 163]. Task and stimulus depen-
dent modulation of phase-amplitude coupling (PAC) supports the hypothesis of
phase-dependent coding of information in brain [87, 88, 167].

While the most of research efforts focus on well-established physiological bands
ranging from Delta to Gamma (1-100Hz) it is important to note that additional
information might be contained beyond those spectra [161]. Those are often
referred to as infra-slow (0.01-0.5Hz) and ultra-high (100-600Hz) oscillations.
EEG sleep studies [102, 161] show that slow cortical oscillations (<1Hz) play an
important role in modulating cortical excitability during sleep, organizing and
timing other rhythms characteristic for sleep such as slow waves and spindles.
Those slow oscillations seem to have prefrontal origin and promote toward poste-
rior areas in a form of slow traveling wave [102]. Amplitudes of faster oscillations
are modulated by phase of ultra-slow wave [161]. Ultra-slow oscillations are not
limited to sleep states and were reported to affect fundamental aspects of cog-
nition in awake state, such as perception and ability to detect stimuli [108], and
thus influence behavioral performance. In resting state, there is evidence that
electrophysiological activity is weakly coupled with other slow peripheral phys-
iological rhythms such as respiration, cardiac rhythm, and blood-oxygenation
levels [126], operating on range of 0.01-0.1 Hz, which corresponds to a cycle
of several seconds up to over a minute. On the other extremity, attempts are
made to measure ultra-fast oscillations with surface and epidural EEG [113].
For example, fast wavelet responses to peripheral nerve stimulations, measured
with epidural EEG over primary sensory cortex at frequencies up to 600Hz,
were shown to correlate precisely with the timing of neuronal spike discharges
[9]. The study elegantly demonstrates that macroscopically observed oscillations
may directly reflect the very fine cellular phenomena.

In summary, a lot of converging evidence points at the central role of neuronal
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oscillations in the functioning of the brain [17, 31, 60, 63, 90]. A specific coding
of information, as well as dynamic organization of neuronal assemblies into
functional workspaces is realized by means of complex, multi-scale interaction
of networks oscillating in broadband frequencies ranging from 0.01 to 600Hz [79,
90]. Investigating those oscillations, their interactions and behavioral/cognitive
correlates seem to be a crucial aspect to understand the brain dynamics. In
particular, spectral contents of brain oscillations can be informative in context
of voluntary action.

2.3 EEG methods

In this section I review selection of literature related to EEG/MEG analysis. It
should be noted though that in the last two decades, along increase of compu-
tational power, and availability of high-resolution multichannel EEG systems,
the number of methodological approaches exploded. Thus I will limit in this
brief review to those methods that either (1) are used in further analysis steps,
or (2) are a well-established standard in the field and thus must be mentioned
here. Furthermore, for more details regarding methods used in this work, the
reader is encouraged to proceed to Chapter 3.

The first EEG traces were recorded in 1929 by Hans Berger. Although al-
ready at that time one could appreciate the oscillatory nature of brain signals,
it quickly became obvious that the subtle electrical correlates of behavior are
invisible in background activity, further obscured by environmental noise. Al-
most a decade later, Hallowell Davis proposed simple averaging approach, where
multiple repetitions of the same neurocognitive experiment recorded and aver-
aged together, with premise of canceling out irrelevant activity while preserving
task-relevant signal. This approach, known as Event Related Potential (ERP)
remained almost unchanged until today, and has become one of the most widely
used method in clinical and academic neurophysiology. In recent decades, with
the advancement of EEG recording equipment and processing power of com-
puters, the ERPs are computed with considerably higher temporal and spa-
tial (multi-channel) resolution. For detailed review of basic ERP methodology,
guidelines and recommendations, the reader is encouraged to classic book of
Steven Luck [92] and consensus guidelines [133].

The advancement of EEG analysis and visualization came with introduction
of open-source tools such as EEGLAB [28] and FieldTrip [117], enabling re-
searchers to visualize multivariate spectral and temporal data and its topo-
graphic distribution [59]. Very significant contributions to EEG analysis were
made by Scott Makeig and his group, who introduced Independent Component
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Analysis (ICA) to the domain of multichannel EEG data [95]. ICA decomposes
data into set of maximally temporally independent components, each character-
ized by particular topographic distribution [116]. Given its spatial and tempo-
ral characteristic, components can be classified as either artifactual (muscular,
cardiac, oculo-motor origin) or as representing a genuine, independent neural
source. Another valuable contribution of Makeig’s group is extension of the no-
tion of ERP into so called ERP-image - a method of looking at a raster plot of
time-aligned, sorted, smoothed individual trials. ERP-image provides valuable
insights into dynamics of brain response and correlations with external stim-
uli/responses, information that would be (at least partially) lost in simple ERP
averaging process [59].

The limitation of ERP approach is that it is only capable to capture the brain
responses that are phase-locked to the stimulus (evoked response). In order to
measure oscillatory responses to stimulus that very in phase (induced response),
G. Pfurtscheller proposed to compute power of band-pass filtered signals prior
to averaging, thus obtaining measures of event-related synchronization (ERS)
or desynchronization (ERD) [129]. In case of Alpha and Beta frequencies, it
has been suggested that ERD reflects the enhanced cortical activity, while ERS
corresponds to suppressed activity, or cortical “idling” [125].

The time-frequency (TF) analysis is a direct extension of ERD/ERS method-
ology to account for spectral power changes over multiple spectral bands and
temporal windows. The time-frequency decomposition results in a map of power
modulation on the time-frequency space, and can be used to infer about involve-
ment and interaction of different oscillations at different time intervals. Differ-
ent methods have been proposed to perform TF analysis, the most commonly
used are windowed Fourier transform [38], Morlet wavelet decomposition and
Hilbert transform [79]. In general, selection of decomposition method and its
parameters aims at finding an optimal trade-off between temporal and spectral
resolution. Although some methods might be more appropriate for particular
task, it has been shown that with adjusted decomposition parameters they yield
very comparable results [14, 79]. For review of TFA methods we redirect readers
to [140], and for practical considerations to online documentation and tutorials
of Fieldtrip toolbox [117].

Wide range of spectral analysis methods can be applied to measured electro-
physiological signals depending on the nature of the investigated phenomena.
Each method provides specific, complementary type of information. Apart from
power estimates, an instantaneous phase of signal in frequency bands of interest
can be measured, which can be used to compute cross-site phase coherences
[114, 150] or phase-diversity [160] of oscillations recorded across multiple sites.
Those measures can inform about local synchrony and interregional connectiv-
ity. Phase information can also inform about degree of phase-locking to stimu-
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lus/event (inter-trial phase coherence (ITPC) [28] or phase locking factor (PLF)
[154], see [140] for review. Furthermore, combined information about instanta-
neous phase and amplitude can be used to compute phase-amplitude coupling
(PAC) [158] between slow and fast oscillations, and can indirectly inform about
functional interaction between local and global networks [19, 78, 87, 162, 163].

In context of multi-channel EEG/MEG analysis, one of the nontrivial problems
researches must face is the problem of selection of appropriate statistical test.
Unless there is a strong a-priori hypothesis about spatial and temporal location
of the effect, all points need to be tested (i.e. 128channels x 200 time samples)
which often yields vast number of multiple comparisons. Considering high spa-
tial and temporal correlation (between neighboring channels and neighboring
points in time or spectrum), standard correction methods such as Bonferoni
or False-Discovery Rate are too conservative and result in excessive number of
false negatives (type 2 error, accepting null hypothesis while in reality it should
be rejected). Another common problem with standard statistical approaches
(ANOVA, Student t-tests) is their assumption of normally distributed statis-
tical variable - the assumption that is often violated in case of multi-subject,
electrophysiological data. To account for those two problem, nonparametric
statistical tests based on cluster-mass permutation tests were proposed [100],
where all the test statistics are grouped into multi-dimensional clusters based
on their spatial, temporal and spectral adjacency. Permutation tests follow on
the cluster level. The method can be used for testing ERP and time-frequency
contrasts, as well as connectivity and coherence [101]. See Maris and Oostenveld
[100, 101] for in-depth discussion of the strengths and limitations of the method
and its formal validity.

For more elaborated review of methods for spectral and temporal analysis of
EEG signals see [43, 96, 140, 158], and [43, 100] for detailed discussion of sta-
tistical methodology. Practical aspects as well as case examples of ERP and
TF analysis and cluster-mass permutation tests will be presented in Chapter 3,
Methods for EEG data analysis.
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Chapter 3

Materials and Methods

In this Chapter technical aspects of the thesis will be in focus. I will start from
a brief description of the hardware apparatus employed for empirical data ac-
quisition in Study 1 and Study 2, i.e. EEG, Eye-tracking system and structural
MR imaging. Following that, the software implementations of experimental
designs (visual stimulation) will be discussed, in particular PsychoPy based de-
sign for the Study 1, and a dedicated Virtual Reality Environment designed
for the Study 2. Finally, the aspects of scientific computing and data analysis
will be presented: algorithmic solutions to automatized pre-processing of EEG
datasets, data cleaning, ERP and time-frequency analysis, and statistical com-
parisons. Individual head modeling and source reconstruction will be briefly
discussed.

3.1 Brain measurement apparatus

3.1.1 High-resolution EEG

The EEG data presented in the following chapters of this thesis were acquired
with Biosemi Active Two system, with 128 active, low-impedance Ag-AgCl elec-
trodes.
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The pre-amplified signal from each active electrode were sent to low noise DC
coupled post-amplifier (Biosemi AD-box), with a first order anti-aliasing filter,
followed by Delta-Sigma modulator (oversampling rate of 64), and decimation
filter with a steep 5th order response and 24-bit output. The digital outputs
of 128 AD converters were digitally multiplexed and sent to the acquisition
computer via optical fiber in uncompressed form.

Apart from 128 EEG channels, two additional, vendor-specific electrodes labeled
GND and CLS were positioned in the proximity of central Cz location and
served as grounding and hardware reference. Another two auxiliary surface Ag-
AgCl electrodes were used as primary reference channels at bilateral mastoids.
Electromyographic (EMG) signals from the left and right index fingers were
recorded with surface bipolar Ag-AgCl electrodes positioned at the first dorsal
interosseous muscle. Electrooculography (EOG) signals were recorded with two
bipolar surface Ag-AgCl electrodes positioned lateral to the outer canti of the
right eye (hEOG) and below the right eye at the cheekbone (vEOG).

All data were amplified and digitized at sample rate of 512Hz. Immediately after
recording, all data were re-referenced to average mastoids signal. External visual
stimuli (PsychoPy in Study 1 and Virtual Environment in Study 2) and button-
press responses were synchronized with EEG signals via parallel port triggering,
with maximum delay times below 1ms. The same triggering system was used
to synchronize environmental events with EEG and Eye-Tracking system (the
latter only in Study 2).

The brief overview of the equipment and is presented at figure 3.1, and the
specification of Biosemi ActiveTwo system is provided in Appendix F.

3.1.2 Eye-Tracking system

For the purpose of synchronous recording of eye movement, we applied the
integrated RED250 system from SMI SensoMotoric Instruments. The RED250
system is contact free, based on remote infra-red camera, capable of tracking eye
gaze position and pupil diameter changes, while correcting for head movements.

The eye-tracking data was recorded in Study 2, involving virtual environment
task. SMI calibration was performed as the last step before commencing each
experimental sesion, i.e. immediately after EEG montage preparation, when the
participants is in his required position in relation to the screen and keyboard,
as described in the previous section. The calibration procedure is guided by the
vendor’s acquisition software and requires that participants repeatedly fixate
the gaze on subsequent calibration points on the screen, until the standard
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Figure 3.1: Biosemi ActiveTwo EEG system and SMI SensoMotoric RED250 eye-tracking system
- components and hardware configuration.

deviation of the estimate is below certain thresholds. Additional manual check
was performed in which participants continuously tracked the mouse cursor
moved randomly by the experimenter.

The eye-tracking data were digitized and stored at 120Hz. Importantly, all
the triggers (generated both by virtual environment and participants button
presses), were recorded simultaneously by the SMI and EEG acquisition comput-
ers. This allowed for subsequent synchronization of EEG and eye-tracking data
samples with precision <1ms. The main measures derived from the data are:
event-related changes in gaze position and pupil diameter, as well as condition-
dependent changes in fixation distribution and saccade parameters.

The brief overview of the equipment and configuration used is presented at
Fig.3.1, and the specification of the SMI eye-tracking system is provided in
Appendix F.
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3.1.3 Structural MRI and coregistration

In Study 2, additionally to EEG data, structural magnetic resonance images
(MRI T1) were acquired for each of the participants, before the first experiment
session. The images were acquired with prospect of follow-up analysis based on
subject-specific source localization of the brain oscillations. Anatomical imaging
was done using Philips 3T scanner, with a T1 weighted Magnetization Prepared
Rapid Acquisition Gradient Echo sequence (TR = 6 s, TE = 2.7 s, acquisi-
tion matrix = 288x288, field of view =245x245x208 mm3, flip angle = 8o, voxel
size = 0.85x0.85x0.85 mm3). The exemplary three-dimensional image of the
brain of one of the participants is presented at Fig.3.8 (top panel). To facili-
tate subsequent integration of EEG data with structural MR information, the
exact locations of each EEG electrode in 3D space were recorded with Localite
Neuro-Navigation system, and co-registered with 3D brain images by an itera-
tive surface matching procedure performed with SPM software [89].

3.2 Experimental designs

3.2.1 Study 1: PsychoPy based design

In Study 1, we investigated the nature and the neural correlates of voluntary
decisions to act or to inhibit the action, along with related motor and cognitive
processes. The details of the study and the experimental design are presented
in Chapter 4 (Manuscript 1).

In short, the experimental design was based on PsychoPy platform. The Psy-
choPy is a popular, open-source, Python-based tool for designing experiments,
primarily used by neuroscientists and experimental psychologists [121]. It sup-
ports presentation of visual/auditory stimuli, randomization of trials, and record-
ing behavioral data, such as reaction times. The Study 1 was based on sequence
of carefully timed and pseudo-randomized visual stimuli, that triggered certain
cognitive and motor responses (Fig. 3.2). The sequence and timing of the on-
sets of visual stimuli were synchronized with electroencephalographic signals by
means of hardware triggering (see Section 3.1.1).



3.2 Experimental designs 33

Figure 3.2: Study 1 design: Participants freely decide whether to press a button or not, and
execute the action few seconds later. The experimental design and averaged EEG
responses are presented. (A) Visual stimuli (PsychoPy based) in voluntary decision
trials. Participants take fast decision during of Precue interval of 2 seconds duration,
maintain decision in memory during Retention interval of 2.4-2.6 seconds, perform
internally-generated action (press or no-press) immediately after colored Cue. (B)
Visual stimuli in Control trials. Participants relax and passively wait during Precue
and Retention interval. Depending on the color of Cue, they press or do not press
the button. (C) Multi-channel envelope of grand ERPs - averaged brain responses
corresponding to ’Decision-Press’ trials. Each time point (latency) can be represented
as 2D topographic distribution of potentials (panel C top). Alternative, common
visualization is a two-dimensional color-coded raster plot of ERPs in [channel x time]
space (panel C bottom). For a detailed description of the experiment and the results
see Chapter 4.
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3.2.2 Study 2: Virtual Reality Environment (VR) design

In Study 2, we investigated the nature and EEG correlates of different types of
voluntary decisions. We designed and implemented a Virtual Reality Environ-
ment (VR), simulation of a car driving, which replaced the standard pictogram-
based visual stimuli. The main motivation for VR was to provide ecologically
valid, semi-realistic experience, more entertaining and less tedious for partic-
ipants, and thus enhancing the natural brain processes while minimizing the
problem of random-sequence generation. The motivation and design consider-
ations are presented in Chapter 6 (Manuscript 3), while the application of the
VR in the EEG study of voluntary action is discussed in Chapter 5 (Manuscript
2).

In short, the VR environment was designed in a modular way separating exper-
imental logic from the details of implementation and visualization aspects. The
experimenter can used standard tools, such as Matlab to construct the experi-
ment. The definitions are passed via XML markup language to C# based game
generator. The final simulation and visualizations are handled by Unity3D plat-
form. The VR can be used for wide range of cognitive tasks. A particular task
can be defined by (1) specifying instructions given to participants, (2) specifying
pseudo-randomized sequence of conditions and trials, and (3) adjusting visual
stimuli. The latter encompasses a number of parameters, most importantly
road shapes, cross-road configuration, visibility, and the car and the camera
dynamics.

We exploited the VR environment in range of studies of voluntary action in-
volving EEG, Eye-tracking and fMRI modalities. In the Study 2 presented in
this thesis the participants played multiple repeated car simulation games. Oc-
casionally, during 2 second long intervals while passing through a tunnel, the
participants were taking free decisions regarding subsequent actions, such as:

• “What” to do (left/right turn),

• “When” to do (first/second turn),

• “Whether” to turn or not.

The voluntary decisions were subsequently investigated in terms of the modula-
tion of scalp recorded signals, i.e. event-related potentional(ERP) and spectral
modulation of power in time-frequency domain (Fig. 3.3). The VR was sending
triggers denoting game events and participant actions to EEG and ET appara-
tus by means of hardware triggering, which facilitated synchronization of brain
responses with complex VR-based visual stimulation. The general scheme of VR
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platform and experimental data flow are presented in Fig. 6.1, and described in
detail in Chapter 6.

Figure 3.3: Study 2 design: Participants play repeated car simulation games. Every time in a
tunnel, they take voluntary decisions about prospective action of turning a car into
one of the side-roads. Inset panels: screen view before, inside and after the tunnel.
Corresponding brain responses, preprocessed and trial averaged, are presented. Panel
A: Time-frequency contrast between ’Whether’-decision trials and Control trials, time-
locked to the tunnel onset (decision interval), measured at centro-parietal electrode
(Pz). Panel B: ERP envelope from 128 electrodes, corresponding to Whether decision
trials, time-locked to the tunnel onset (decision interval). For a detailed description
of the experiment and the results see Chapter 5.

3.3 Scientific computing and data analysis

Most of the EEG methods and computations presented in this thesis were per-
formed in Matlab environment. Data processing and analysis was implemented
as a pipeline scripts combining in-house methods with open-source toolboxes
such as EEGLAB [28] primarily for basic preprocessing and ICA decomposi-
tion and visualizations, Fieldtrip [117] primarily for statistics, SPM [89] for
EEG/MRI corregistration, forward/inverse modeling and source localization,
EYE-EEG toolbox [1] for eye-tracking data analysis, and others. Computa-
tions applied to the multi-subject and multi-session data were automatized for
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the purpose of reproducibility, and parallelized with Matlab Parallel Comput-
ing toolbox. Appendix D presents details of automatized methods for efficient,
robust data cleaning based on minimal number of subjective parameters. The
exact methods of data analysis are described in Section 3.4, while particular
analytic choices are introduced in methods sections of Study 1 (Chapter 4) and
Study 2 (Chaper 5).

3.4 Methods for EEG data analysis

3.4.1 EEG preprocessing pipeline

All the data in study Study 1 and Study 2 was processed in automatized fashion,
to avoid subjective biases as well as to generate fully reproducible results. We
developed a set of in-house scripts using the EEGLAB data structure, and com-
bined in-house, EEGLAB and Fieldtrip preprocessing and visualization func-
tions, to perform all the cleaning steps from the early data import, referencing,
filtering, downsampling, epoch extraction, through automatized cleaning and
evaluation of results, up to application of cluster-mass permutation tests in
temporal and time-frequency domain.

All the presented EEG data were referenced to average mastoids. We applied
only minimal filtering (0.2-120Hz) to avoid distortion of spectral information.
The 50Hz line noise was cleaned with sine regression method (CleanLine toolbox
[11]), rather than notch filtering.

All datasets were cleaned automatically with respect to absolute thresholds,
cross-channel correlations, and high-frequency noise. In particular, we have
developed a toolbox for automatized, robust data cleaning, based on minimal
number of arbitrary parameters. The toolbox and its application are presented
in detail in Appendix D.

3.4.2 GFP analysis

The Global Field Potential (GFP) was first proposed by Lehmann and Skrandies
[81]. It is a powerful and compact metric to characterize electrophysiological re-
sponses of the brain, yet surprisingly often omitted in interpreting EEG/MEEG
studies. Mathematically, GFP is defined as a standard deviation of averaged
brain responses (such as ERP), computed across N average-referenced chan-
nels. GFP effectively reduces the dimensionality of the data from NxM to
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1xM , where N is the number of channels and M number of time samples in
the interval of interest. As such, GFP can be interpreted as a global measure
of brain responses, or alternatively - as a measure of ”hilliness” of topographic
distribution of scalp potentials. As discussed in [81], the peaks of GFP wave
correlate with periods of relatively stable topographic distribution of potentials
(low standard deviation between successive topographic maps), while low GFP
values relate with higher topographic maps variance. The primary limitation
of GFP is that it by definition discards information about spatial location of
effect. On the other hand, it is sensitive and efficient to infer temporal char-
acteristics of brain responses, i.e. onset/offset of activity, latency of peak of
evoked responses, global magnitude and duration of effect. Furthermore, GFP
can be applied as a preliminary step to detect intervals of interest, while the
detailed multichannel analysis of spatial distribution can follow afterwards. A
considerable advantage of GFP is its property of being reference-free, and thus
unbiased to the selection of reference channels. Finally, dealing with a single
GFP timeseries rather than N ERP timeseries reduces the problem of multiple
comparison inherent to statistical tests of multichannel EEG data, and hence
may render more accurate statistical results in applications where the timing,
rather than spatial distribution, is the primary target of investigation.

3.4.3 Event Related Potentials (ERP)

The concept and meaning of ERP analysis were discussed in Chapter 2. The
main premise of the ERP analysis is based on the additive noise model, according
to which the process of averaging together the signals from multiple repetitions
of experimental condition will lead to cancellation of random, non-phase locked
noise, while preserving task-relevant, phase-locked brain activations. The latter
is referred to as evoked response, as opposed to induced oscillatory response
(discussed later).

To investigate evoked activity in Study 1 and 2 such as decision related ERP
and slow potentials preceding action (contingent negativity variation, CNV),
the epochs of interest were extracted from cleaned datasets, which accounted
for 2 second long intervals in which participants were taking voluntary decisions.
The trial data were normalized by subtracting the average amplitude over the
prestimulus intervals (baseline correction). Finally, the trials corresponding to
different conditions were averaged separately. This resulted in two dimensional
datasets [channel x time] for each condition. Those datasets were subsequently
submitted to cluster-mass permutation tests to find significant regions (clusters)
in time and space, which differed between conditions. The example of statistical
ERP analysis of data from Study 1 is presented in the Fig. 3.4.
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Figure 3.4: Exemplary results of ERP analysis and visualizations (dataset from Study 1). Trials
belonging to decision-press (DP), decision-no-press (DNP) were compared to control
condition (middle panels). The conditions were subtracted and cluster-mass permu-
tation tests were applied to identify the regions (clusters) in space and time differ-
entiating decision conditions from control (middle panel, colored patches). Post-hoc
visualizations highlight the exact spatial (inset topomaps) and temporal (right pan-
els) extension of the significant clusters, for a selected time interval or an electrode
respectively. For a detailed description of the experiment and the results see Chapter
4.

In the work presented in this thesis, a raster plot visualization of multi-channel
ERPs will be extensively used, where amplitude of the ERP are represented
as color-coded pixels on the [channel x time] plane (Fig. 3.4, left panels). The
advantage of this visualization is that it represents the complete spatio-temporal
information, where two-dimensional spatial information is encapsulated on the
ordinate axis, while temporal is maintained on the abscissa axis. The raster
plots are also convenient to visualize spatio-temporal extension of statistically
significant clusters differentiating two experimental conditions (Fig. 3.4, middle
panels).

For more precise spatial information, such as distribution of signals (usually
averaged over given time interval) over topographically aligned channels, topo-
graphic map visualizations will be used (Fig.3.4, middle panel inset maps). For
detailed temporal information, such as a time course and confidence intervals of
the ERP at the given scalp channel, typical ERP plots will be employed (Fig.3.4,
right panels).
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Figure 3.5: Exemplary results of time-frequency analysis (dataset from Study 1). Morlet wavelet
decomposition is performed for each channel and trial, followed by averaging the
trials belonging to distinct conditions, in this case decision-press (DP) condition
and control condition (left panels). The conditions are subtracted from each other
and cluster-mass permutation tests are applied to identify the regions (clusters) in
time/spectrum/topographic location which are specific to decision condition only
(middle panel). Post-hoc visualizations highlight the exact temporal and spatial ex-
tension of the significant clusters (right panels). For a detailed description of the
experiment and the results see Chapter 4.

3.4.4 Spectral analysis

The concept and role of brain oscillations were discussed in Chapter 2. Here,
I will briefly describe the methods to compute the spectral contents of EEG
signal as a function of time, i.e. time-frequency (TF) decomposition. The result
of the TF analysis is an estimate of signal power, averaged across the trials,
at any given point on time-frequency plane. The time-frequency analysis is
sensitive to signal modulation that is not phase-locked to the stimulus, and thus
would partially or completely disappear in the process of ERP averaging. These
not-phase-locked oscillations are often referred to as induced response.

The modulation of signal power is often quantified as a relative change in relation
to arbitrary selected baseline (usually the pre-stimulus interval), and thus is
expressed as percentage of change [%] or decibels on logarithmic scale [dB]. The
relative power change is referred to as the event-related spectral perturbation
(ERSP) [94] when related to entire broadband spectrum, or as the event-related
desynchronization/synchronization (ERD/ERS) [123, 125, 129] when the signal
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is extracted from a narrow band of interest.

There are several well-established methods of spectral analysis. The most
straightforward method is to perform narrow band-pass filtering followed by
squaring the amplitude values to estimate the signal power as a function of time
[129]. The drawback of this method is that exact frequency bands need to be
predetermined. The method is useful for testing particular hypothesis or lim-
iting inferences to known physiological frequency bands, such as Theta(3-7Hz),
Alpha(8-13Hz), Beta(16-30Hz) and Gamma(40-80Hz), however it does not show
the entire spectral band or interactions between different oscillations. On the
other hand, the Fourier transform can show the exact power amplitude across
entire spectrum, however lacks the temporal resolution. Solution to this is to
apply a successive Fourier transforms to overlapping chunks of data defined
by windowing function. In this way both temporal and spectral information
is preserved, and the width of the window determines the trade-off between
temporal/spectral precision [38].

To further optimize time-frequency decomposition, the window width can be
adjusted as a function of frequency, with larger windows for the low, and nar-
rower for the high frequencies. The wavelet transform is a useful method in
this case, which is computed as the inner product between complex wavelet
function and the original signal. The wavelet function can be defined differently
depending on the characteristics of the signal, but in case of physiological signals
like EEG the Morlet wavelet family is the most commonly used [79], which is
based on the complex exponential function bounded by Gaussian envelope. The
mother wavelet is progressively scaled along frequency axis to provide increas-
ing temporal precision for higher frequency oscillations (and hence decreasing
spectral precision (see scheme at the top middle panel of the Fig. 3.5). The
Morlet wavelet decomposition is well suited for exploratory analysis of broad
spectral changes without a priori assumptions, and thus was extensively used in
Study 1 (Chapter 4) and Study 2 (Chapter 5). Although different methods were
proposed for TF analysis, and some might be more appropriate for particular
task, it has been shown that with adjusted decomposition parameters they yield
very comparable results [14, 79]. For further review of TF methods we redirect
readers to [79, 140].

The typical procedure (as applied in Study 1 and 2) was the following. The
epochs of interests were extracted, which accounted for 2 second long intervals
in which participants were taking voluntary decisions. For each channel, and
each epoch, the TF information was computed at the frequency ranges 4-80Hz
with a step of 1Hz. Time window varied from 750ms at the lowest frequency
(3 wavelet cycles) to 190ms at the highest (15 wavelet cycles). The temporal
resolution of decomposition was set to 64 samples/seconds. The time-frequency
maps were baseline corrected for 500ms directly preceding Precue onset, and
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converted to logarithmic scale to express ERS/ERD in Decibel units [dB]. The
TF maps corresponding to each condition were averaged together. Thus the
final epoch-averaged time-frequency data for each condition and participant
had 3 dimensions [channel x frequency x time] (i.e. in Study 1 the size for
decision period was [128 x 77 x 148]). This three-dimensional time-frequency
information was used for statistical comparisons (nonparametric cluster-mass
permutation tests), for extraction of event-related spectral power modulation
(ERS and ERD) in particular frequency bands of interest, such as Theta(4-
7Hz), Alpha(8-13Hz), Beta(16-24Hz) and Gamma(40-60Hz), and for evaluation
of topographic distribution of ERS/ERD patterns. The scheme is depicted by
Fig.3.5 and discussed in detail in Study 1 (Chapter 4) and Study 2 (Chapter 5).

3.4.5 Statistical comparisons

The most of the statistical tests performed in our Study 1 and Study 2 were
based on large units of comparison, such as two-dimensional multi-channel ERPs
or three-dimensional multi-channel time-frequency maps. Such tests are unbi-
ased and take into consideration all the available data, without a priori as-
sumptions or constraints, and thus are perfectly suited for explorative analysis.
On the other hand, the number of points being compared is massive, reaching
up to 106 in [channel x frequency x time] domain. Standard methods for
correction for multiple comparisons, such as Bonferoni correction, are overly
conservative for these type of comparisons and would result with large number
of false negative estimates. The reason for this is that Bonferoni correction
assumes independency of multiple tests being performed, while EEG data is
highly correlated in time (due to high-resolution acquisition), in spectrum (due
to inherent smoothing in time-frequency decomposition) and in space (due to
volume conduction and signal dispersion on brain-skull-skin interfaces).

Thus for the most of the statistical comparisons we employed the repeated
measures, two-tailed cluster-mass permutation tests [15, 99], as implemented in
Fieldtrip toolbox [117]. The tests were performed on (1) one-dimensional GFP
traces, (2) two-dimensional, averaged, multi-channel ERP amplitudes and (3)
three-dimensional, averaged, multi-channel time-frequency maps. In all cases,
family-wise alpha level was set to 0.05. All 128 electrodes and all time points
corresponding to the relevant decision processes were included. In case of TF
data, entire spectrum from 4-80Hz was used in the main comparisons, while in
more specific tests the spectrum was constrained to low (4-30Hz) or high (40-
60Hz) band. The electrodes within distance of less than 5cm of one another were
considered spatial neighbors, yielding in average 7.8 neighbors per electrode. For
each comparison, repeated measures t-tests were computed using the original
data and 1000 random within-participant permutations. For each permutation,
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Figure 3.6: Example of application of nonparameteric cluster-mass permutation tests to handle
massive number of multiple comparisons, while accounting for spatial, temporal and
spectral correlation of multi-channel ERPs. The results are taken from Study 2. The
three different conditions corresponding to What, Whether, When and Control con-
ditions were submitted to the cluster-mass permutation tests. Significant positive
clusters (p<0.05, corrected) were found in What and Whether conditions but not in
When condition. The temporal and spatial extension of the clusters is denoted by
color-coded patch on raster plot, and dotted electrodes on the topomaps above. Spa-
tially robust, positive ERP components occur in different latencies, which may suggest
distinct neural processes mediating those two types of decisions. For a detailed de-
scription of the experiment and the results see Chapter 5.

all t-scores corresponding to uncorrected p-values lower or equal to 0.05 were
combined into clusters. The mass of each cluster was computed as the sum of
the t-scores within that cluster. The highest cluster mass in each of the tests
was used to estimate the distribution of null hypothesis.

With this type of statistical tests we could account for all the available data,
without any a-priori constraints to either temporal or spatial extension of po-
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tential effects. Thus we minimized the need for subjective choices, while main-
taining weak control of the family-wise alpha level (i.e., correcting for very large
number of multiple comparisons). Cluster-mass permutation tests have been
shown to perform well in exploratory studies and in case of broadly distributed
ERP/ERSP effects [42, 99] by accounting for high temporal, spectral and spatial
correlations inherent to high resolution EEG data, which is their fundamental
advantage.

The exemplary result of cluster-mass permutation test applied to data from our
VR study is presented at Fig. 3.6. Decisions What, Whether and When are
compared to Control condition in the entire [128 channels x 288 time samples]
space. Significant positive clusters can be observed at early (What) and late
(Whether) latencies, which indicate spatially robust positive ERP components.

Apart from cluster-mass permutation tests, other statistical tests were used
selectively in certain contexts. For the post-hoc assessments of the effect, simple
Student’s t-tests were employed. Furthermore, to evaluate relations between
EEG measures and behavioral measures (RT), we used Pearson product-moment
correlation coefficients and R-square metrics.

3.4.6 Coregistration of EEG with Eye-Tracking data

The Eye-tracking (ET) data [137], recorded simultaneously with EEG, has mul-
tiple advantages. Firstly, using the two modalities can provide complementary
information about the investigated cognitive/perceptual phenomena [29, 145].
Secondly, saccade dynamics extracted from ET data can be used for efficient
EEG correction for oculo-motor artifacts [134]. Finally it can be used as a
validation and assessment of participants performance while undergoing EEG
experiment.

For example, in context of our Study 2 using VR, EEG and ET, the eye-tracking
information was used to validate that subjects obeyed the instructions and fix-
ated while in the tunnels (Fig. 3.7, top panels). Secondly, ET revealed some
interesting cognitive phenomena. The pupil dilation was considerably higher
during voluntary decision trials than control trials (Fig. 3.7, bottom panel).
Secondly, lateral saccadic movements in the direction of intended turn preceded
the turn by over 2-3 seconds (Fig. 3.7, middle panel).

The raw eye-tracking data consists of multiple time series describing parameters
such as instantaneous horizontal/vertical gaze position, pupil dilation, head po-
sition, etc. The first step of the analysis of ET data was to coregister those with
the EEG time-series. The process is straightforward since the ET data regis-
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Figure 3.7: Application of eye-tracking modality to study of voluntary action in Virtual Environ-
ment. Top panels: distribution of fixation positions in the tunnel(decision interval),
at the tunnel exit, and before the action. Middle panels: Time-course of average
fixation position in the What condition (left/right turn choice). Short after decision
interval, participants start to gaze in the direction of intended turn. Bottom panels:
Pupil dilates in the in the decision trials. The effect might be due to voluntary decision
processes or due to general attentional and mental engagement.

ters the same trigger markers as EEG data (triggers are send to both devices
by stimulation platform, in this case - our Virtual Environment). For several
sessions, where the trigger information was lost due to hardware problems, we
restored EEG-ET synchrony by in-house scripting exploiting the unique eye-
blink patterns. Each eye-blink are registered as massive potential changes on
EEG side, and transient signal losses on ET side. As a result, of above steps,
we obtained eye-tracking time-series aligned to EEG time-series, and encoded
them as additional channels in EEG file structure.

The second step of ET analysis is to convert the high-resolution, continuous
ET time-series into more interpretable sequences of oculomotor events, such
as saccades (rapid, often subconscious changes of gaze position) and fixations
(prolonged gaze position, usually at least 80ms). The conversion is performed
by thresholding the velocity of gaze time series, and results in generating of a
long sequence of events (fixation and saccade onsets) aligned with EEG data.
For this step, the EYE-EEG plugin [1] was used.

At this stage, various types of analysis can be performed, such as fixation dis-
tribution in given latencies, time-courses of gaze position or pupil dilation, etc.
Some exemplary ET data related to our VR study is presented in the Fig.3.7.
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3.4.7 Corregistration of EEG with structural MR images

In Study 2, additionally to EEG data, structural magnetic resonance images
(MRI T1) were acquired for each of the participants, before the first experiment
session. The images were acquired, preprocessed and coregistered with EEG
data with prospect of follow-up statistical analysis based on subject-specific
source estimations of the brain oscillations. The preprocessing of the struc-
tural data and its corregistration with dynamic EEG data are presented below.
However, since the rest of the thesis will focus primarily on the sensor-level in-
ferences and statistics, I only briefly present the steps needed for EEG/sMRI
corregistration, followed by subject-specific head modeling, and finally examples
of source localization of brain oscillations related to voluntary decisions.

The anatomical imaging was done using Philips 3T scanner, with a T1 weighted
Magnetization Prepared Rapid Acquisition Gradient Echo sequence (TR = 6 s,
TE = 2.7 s, acquisition matrix = 288x288, field of view =245x245x208 mm3, flip
angle = 8o, voxel size = 0.85x0.85x0.85 mm3). The exemplary three-dimensional
image of the brain of one of the participants is presented at Fig.3.8.

For each subject the acquired image was segmented to extract distinct head tis-
sues, in particular scalp, skull, gray matter (cortical sheath), white matter (brain
fibers), cerebro-spinal fluid. Separated tissue images were subsequently used to
reconstruct three dimensional tissue surfaces, in form of meshes consisting of
8192 triangles. Since different tissues have distinct electrical conductivity, their
shape and interfaces affect volume currents distribution. The proper segmen-
tation and surface reconstruction procedure is essential for subsequent forward
head modeling and inverse modeling of cerebral sources. The segmentation was
performed with SPM software [89], which optimizes the process by bias correc-
tion, spatial gaussian filtering and voxel labeling based on probabilistic tissue
maps [3]. The exemplary segmentation results and surface mesh reconstruction
are presented at Fig.3.8.

To facilitate subsequent integration of EEG data with structural MR informa-
tion, the exact locations of each EEG electrode in 3D space were recorded with
Localite Neuro-Navigation system, and co-registered with 3D brain images by
an iterative surface matching procedure performed with SPM software [89]. The
procedure minimizes the summed square of the distances between electrode posi-
tions and the surface of scalp tissue extracted in segmentation step as described
earlier. As a result, the information about each electrode position in relation
to the underlying cortical tissue is recorded for future analysis. The combined
structural information, coregistered electrode locations and dynamical EEG in-
formation can be then used to construct precise, subject and session-specific
forward models (projection of arbitrary 3D brain source onto 2D scalp surface)
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Figure 3.8: Segmentation of brain tissue and reconstruction of surfaces are the preliminary steps
to compute forward and inverse head models. The exemplary procedure for one of the
participants in Study 2 is presented. (A) T1-weighted, three-dimensional anatomical
image of the whole brain, on sagittal, coronal and axial planes respectively. (B)
Gray matter (cortical sheath) isolated in segmentation process. The segmented, three-
dimensional images are used for surface reconstruction of the cortex (C), white matter
(D), outer skull (E) and scalp (F), for each participant independently.

and to compute inverse solutions (projection of observed 2D scalp distribution
onto anatomically constrained 3D space of brain tissue). The Fig.3.9 illustrates
an exemplary electrode coregistration results and 4-shell forward model con-
struction based on anatomical participant-specific constraints.
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Figure 3.9: The electrode relative locations in space were measured with Localite Neuro-
Navigation system. The iterative surface matching procedure (SPM toolbox) was
used to align the electrodes and fiducial points with the scalp surface extracted from
T1-weighted anatomical images. The combined spatial information about surfaces
and electrodes can be used to construct multi-shell, boundary-element (BEM) forward
models projecting activation of arbitrary brain source onto channel space. Inverse mod-
els can be computed, often based on probabilistic bayesian inference, to provide esti-
mated projection of given current distribution in channel space onto three-dimensional
brain volume (ill-posed problem).

Finally, the individual head models can be used to reconstruct neuro-anatomically
constrained sources of the brain activity. Each reconstruction is based on a
relevant topographic activation map, constructed from the activation of all elec-
trodes (for instance Alpha power) averaged over a certain time interval. The
normalization of subject-specific source estimates to the MNI space allows to
represent the across-subject source localization results in a standardized coor-
dinate system and perform statistical comparisons in voxel space. The Fig.3.10
presents estimated sources of Alpha and Beta oscillations from Study 2, rep-
resenting the voluntary decision of whether to turn the car or not. The prob-
abilistic, distributed source estimation methods were used, based on smooth
Loreta priors and constrained to cortical tissue volume, as implemented in SPM
toolbox [89].
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Figure 3.10: Source reconstruction of Alpha (panel A) and Beta (panel B) oscillations character-
izing voluntary decision of whether to turn a car or not (Study 2). The statistical
inference was performed after normalizing individual subject source estimates to stan-
dardized MNI space. Individual source estimations were based on the probabilistic
bayesian inference with smooth Loreta priors, constrained to cortical tissue extracted
in segmentation step, as implemented in SPM toolbox.

3.4.8 Cross-frequency coupling

As mentioned in the previous chapter, converging evidence from electrophysio-
logical studies suggest that oscillations in low and high frequencies are function-
ally coupled (cross-frequency coupling, CFC), and that dynamics of the CFC
may reflect a fundamental mechanism for establishing functional workspaces of
distributed brain areas [19, 78, 163], communication between local and global
networks [78] and possibly for functions of consciousness [25]. Bursts of fast
Gamma oscillations tend to occur preferentially on certain phases of slower
Theta and Alpha waves [88], often in a task-dependant manner [162, 163]. Brain
oscillations at different frequencies can interact in various ways, one of them be-
ing the phase-amplitude (PAC) coupling, where the amplitude of high-frequency
oscillations is modulated by the phase of low-frequency oscillations. Analysis of
PAC can provide a complementary information to the time-frequency analysis.
The majority of PAC examples in literature is based on intracranial recordings,
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Figure 3.11: Phase-amplitude coupling (PAC) was evaluated for “‘Whether” type of decisions
from the Study 2. PAC was assessed by computing the Modulation Index (MI) for
all 128 channels and all frequency pairs from the range 1-24Hz (frequency for phase)
and 6-80Hz (frequency for amplitude) for the 2 seconds long epochs encompassing
voluntary decisions. Panel A: Comodulogram (for occipital midline electrode, Oz)
is computationally expensive to compute however efficiently scans for PAC interac-
tions between any frequency pairs within band of interest. Delta-Alpha and Alpha-
Gamma coupling is clearly visible at occipital area. Panel B: Comodulogram for
right motor area electrode (C4). Beta-Gamma coupling is dominating. Panel C:
Topographic distribution of MI for Delta-Alpha, Alpha-Gamma and Beta-Gamma
pairs in “Whether” decision condition is non-random and covers parietal, occipital
and bilateral motor areas respectively. Panel D: Topographic distribution of differ-
ence of MI between “Whether” and “Control” conditions. The positive and negative
values reflect that PAC is task modulated.

ECoG and LFP. Evaluation of PAC is not easy with EEG modality because the
estimates of the amplitude of high frequency signal are less reliable.

However, we applied PAC analysis to decision conditions from the Study 2
and consistently observed interactions for three pairs of frequencies - Delta-
Alpha, Alpha-Gamma and Beta-Gamma (Fig. 3.11). We assessed the PAC for
all the 128 channels and all frequency pairs from the range 1-24Hz (frequency
for phase) and 6-80Hz (frequency for amplitude) for the 2 seconds long epochs
encompassing voluntary decisions. The method proposed by Tort et al [158] was
used, which consists of extracting instantaneous phase of low-frequency oscil-
latory signal and instantaneous amplitude of high-frequency oscillatory signal
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(by means of Hilbert tranform of narrow band filtered signal), followed by cal-
culation of Modulation index (MI). The MI measures the distance between two
distributions and calculates how much the amplitude distribution over phase
bins deviates from the uniform distribution. Our preliminary results suggest
that PAC was consistently found between three pairs of frequencies (Fig. 3.11,
panels A and B), had non-random topographic distribution covering parietal,
occipital and bilateral motor areas (Fig. 3.11, panel C), and to certain extent
was task modulated (Fig. 3.11, panel D). Further analysis is needed however to
assess the statistical power of those estimates.



Chapter 4

Study 1: Brain rhythms of
voluntary action and

intentional inhibition.

The nature of voluntary action has been investigated in contexts of subjective
free will ([46, 85, 112]), internally and externally generated actions [27, 120,
166], neuroanatomy of volition circuitry [39, 45, 52, 153]. Most of the studies
however focus on free-paced voluntary action (so called intention-in-action),
which has certain limitations. Furthermore, very few studies exploit fully the
time frequency analysis to infer about broadband brain oscillations reflecting
decision processes.

In the Study 1 (Manuscript 1, reprinted in Appendix A), we investigated the
EEG signature of voluntary decision about future action. We deliberately intro-
duced delay between a decision and its resulting action, in attempt to disentangle
those two processes. We show that both decisions “to act” and decisions “not
to act” share some common neural processes probably related to introspective
attention and options selection, manifested by a prolonged modulation of the
Alpha and Beta oscillations. However, those two decisions differ by other neural
processes, presumably related to motor preparation and manifested by modula-
tion of Gamma rhythms and contralateral components of Alpha and Beta. After
voluntary decision “to act”, the further preparation for voluntary action is in-
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distinguishable from a preparation for externally-cued action, and is reflected
by early contingent negative variation (CNV), lateralization of Alpha (αLERD)
and broadband power desynchronization (ERD). However, those preparation
processes are abandoned in case of voluntary decision “not to act”.

We also found that the magnitude of αERD in free decision interval was pos-
itively correlated with reaction times in Decision condition but not in Control
condition, i.e. participants with the most emphasized αERD tended to respond
faster, even though the decision interval (and thus the peak of the αLERD)
preceded the action by interval of several seconds. On the other hand, the mag-
nitude of CNV deflection was positively correlated with reaction times only in
Control condition, but not in Decision condition. Indeed, in the Control trials
it was the visual stimulus, rather than the internal decision, that guided the
action or inhibition, and thus the stronger CNV might reflect the capacity to
perceive and categorize the informative stimulus and generate quick response
accordingly.

In summary, we suggest that Alpha and Beta oscillations play an important role
in voluntary decision about prospective action, and may represent the cognitive
processes inherently associated with internal action selection and action inhibi-
tion. The ability to understand and detect the oscillatory activities in different
frequency bands will not only help to comprehend the processes of volition, but
can also support the work towards designing enhanced, intention-driven BCI
systems in the foreseeable future.



Chapter 5

Study 2: EEG signature of
voluntary decisions in Virtual

Reality Environment.

The capacity to perform a voluntary action and freely choose action parameters
is one of the fundamental qualities of human nature. It has been proposed that
decision about voluntary action has distinct, complementary components, such
as decisions “what” to do, “when” to do, and “whether” to do or not [13, 45].
Those components have different functional role and can be mediated by distinct
neural substrates [45, 49].

In Study 2 involving EEG and Virtual Reality Environment (Manuscript 2,
reprinted in Appendix B), we investigated temporal and spectral differences be-
tween different types of voluntary decisions. In attempt to enhance the natural
decision processes in the brain and reduce random sequence generation, we re-
placed pictogram-based task with a simulated car driving in a dedicated Virtual
Reality Environment (VR).

We show that, similarly like in Study 1, voluntary decisions are manifested
by prolonged alpha and beta power modulation. However the magnitude and
timing of EEG signatures differs in distinct types of decisions. Whether deci-
sions have the strongest manifestation in broadband power desynchronization
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Environment.

extending up to gamma range, while What decisions are represented by earlier
positive ERP deflection. The When decisions had the weakest spectro-temporal
representation and did not differ statistically from the control condition.

Furthermore, we observed that voluntary actions are subconsciously biased by
low-level behavioral preferences, such as the preference to the “first” over the
“second”, the “right” over the “left” and “acting” over “not acting”. This
regularity can explain a part of the entropy of the “free will”-driven behavior,
at least in the contexts where random or exploratory behavior is probed, and
no direct rewards are associated with alternative choices.



Chapter 6

Virtual Reality Environment
for scientific study of

cognition

In a large part of our empirical studies we decided to use a dedicated car driv-
ing simulation, the Virtual Reality Environment (VR), in place of standard,
pictogram-based visual stimuli. The application of the VR in neuroscientific
study of voluntary action was presented in Manuscript 2 (reprinted in Appendix
B), while the details of the VR design and applicability to neuroimaging studies
in general are discussed in Manuscript 3 (reprinted in Appendix C). Below, I
briefly discuss the general motivation, design features and construction of the
VR platform.

6.1 Motivation

The motivation for VR comes from the following rationale. Primarily, by pro-
viding ecologically valid, semi-realistic experience we aimed at reinforcing the
natural decision processes and minimize the problem of random-sequence gen-
eration [51]. Secondly, the game environment promotes active participation of



56 Virtual Reality Environment for scientific study of cognition

subjects in multiple repetitions of the task and reduces the undesired influence
of fatigue and/or boredom. Thirdly, the car driving paradigm is a suitable
and naturally appealing setup for the purpose of the study of voluntary action,
i.e. investigating the nature of intention formation and the differences between
Whether, What and When types of voluntary decision [13].

6.2 Requirements

A virtual environment (or a gaming environment in general) in context of neuro-
scientific experimentation must fulfill certain criteria. First of all it needs to be
capable of synchronization with specialized equipment with millisecond-range
precision, so that the brain signals from EEG and fMRI, and eye-tracking in-
formation, can be correlated with environmental events. Secondly, it needs to
accept alternative inputs (specialized input devices in MR scanner, or neuro-
feedback control signal in BCI setting). The platform must be highly flexible to
allow the experimental manipulation, such as carefully planned timing and type
of events, randomization of conditions, specification of visual aspects of scenery
such as brightness, visibility, distribution of distractors. Finally, in context of
our study, it was crucial to minimize the unnecessary, task-irrelevant motor ac-
tivity. In particular, we wanted the car to automatically follow the curvature of
the road, while participants intervention was only required when they intended
to turn at a cross-road. This enabled us to focus on volition related motor and
cognitive processes, while minimizing the task-irrelevant, confounding motor ac-
tivity which would be otherwise needed to sustain the car on the road. Since it
was not possible to find off-the-shelf product meeting the above requirements,
we have designed our own dedicated VR environment.

6.3 Design and implementation

Our primary goal was to implement the VR environment in a flexible fashion,
to facilitate its potential application to different experimental settings, such as
studies of volition, attention, brain-computer interfacing (BCI), etc., and with
different modalities (EEG, fMRI, Eye-tracking), thus rendering it useful for po-
tential future follow-up studies. So far, the VR design was used to perform series
of studies investigating voluntary action, using EEG (presented in this thesis in
Chapter 5) and in parallel studies involving fMRI imaging (in preparation). Be-
sides, we have adapted and tested the VR in real-time BCI context, where the
classified EEG/EOG signals (such as occipital alpha power, or horizontal eye
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movements) were used as a control signal to interact with environment (turn
the car, reduce speed, etc).

The graphical part and physics of the car simulation were implemented in
Unity3D platform, backed by C# and JavaScript programming languages. The
experimental design is specified by set of Matlab based scripts. Notably, the
game logic, graphical scenery and the car behavior, are all governed by precise
specification provided by the experimenter.

The main VR features, relevant to our studies but also the neuroscientific ex-
perimental approaches in general, are listed below.

Modularity and Configurability The entire game logic (experiment design)
is entirely defined by external XML files, which are read and effectuated
by the game engine at the start of each block. The configuration files
are provided by experimenter, and specify the following aspects of the
experiment: number and sequence of trials, the exact shape of the roads,
position and type of the crossroads, size of the scene and thus duration of
the trial, speed profile of the car, instructions displayed at the beginning
of each block.

Alternative inputs The game does not read keyboard input directly, but in-
stead reads control signals from input text file. The text file in turn can
be updated by any arbitrary input device with help of supportive external
scripts (i.e. fMRI compatible touchpad). In particular, the file can be up-
dated by BCI classifier thus rendering VR suitable to run in brain-interface
closed-loop.

’Smart’ roads The road is constructed from the set of invisible control points
specified by experimenter. This serves several purposes: (1) the road is
generated automatically by spline interpolation between points, (2) every
control point can cause certain event, such as car turning at the cross-road
or car changing speed, (3) car can automatically follow road curvature,
(4) the points of interest (such as cross-road or tunnel entry) can send
hardware trigger to external devices.

Auto-pilot mode The invisible control points on the road allow automatic
adjustment of car orientation to be tangent the road curvature at each
time point, making the car automatically follow the road. This reduces
motor activity of the participant only to requested situations, such as
turning at the crossroad. Secondly, the car can automatically turn to
specified cross-roads, which is important for Control condition (discussed
later).
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Synchronization Any event in the game, such as car reaching a certain control
point on the road or participant pressing a button, can cause immediate
execution of external executable script. In particular, this mechanism is
used to send hardware triggers (via parallel port) to data acquisition equip-
ment (through Biosemi synch-box to EEG and Eye-tracking acquisition
computers).

Time-sensitive event logging Apart from hardware triggers, the game gen-
erates regular, equally time-spaced status logs and stores them in text file.
The information stored is time stamp since the beginning, car position,
orientation, speed, current block and trial.

Visual features Most of the environment features and their graphical appear-
ance are configurable, such as fog density, height of mountains, camera
position, textures, types and positions of distractor objects such as trees
or buildings, etc.

Trial-to-trial teleport Participants have the feeling of continuous, uninter-
rupted navigation through sceneries, separated by tunnels. In practice,
each scenery is an identifiable, trackable, counterbalanced, pseudo-randomized
trial. The smooth transition is realized by teleporting the car (while sur-
rounded by dense fog in the tunnel) from trial n to n+1 upon reaching the
final control.

6.4 Experimental setup - VR, EEG and ET

The block diagram of VR design and synchronization with multi-modal EEG
and eye-tracking data is presented in the Fig. 6.1. Set of Matlab scripts spec-
ifies experimental design details, in particular it defines the trials and pseudo-
randomizes them, specifies instructions displayed to participant, determines ex-
act shape of the roads and positions of the crossroads. For each block of the
experiment, one Unity3D game is compiled, based on the specified experimental
design. Thus the exact contents and timing of each game is a priori determined
to meet requirements of the repetition based, cognitive experiment.

During the experiments, fast electroencephalographic data from participants
scalp were recorded with 128-channel Biosemi ActiveTwo system, along with
EMG and EOG signals, as detailed in 3.1.1. Simultaneously, eye-tracking data
were acquired with SMI system. The synchronization between the VR, EEG
and ET is achieved through hardware triggering, namely every relevant event
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Figure 6.1: VR design and synchronization with multi-modal data. A set of Matlab scripts spec-
ifies experimental design, i.e. sequence and timing of trials, shape of roads, position
of crossroads, etc (top). For each block of experiment, one Unity3D game is com-
piled, based on the specified experimental design (top-right). During the cognitive
experiment, fast encephalographic data from participants scalp and eye-tracking data
are acquired (mid-right), which are synchronized with the game events by hardware
triggering. Prior to the main experiment, structural MR images of participant brain
are recorded with Philips 3T scanner (bottom-left). EEG signals can then coregistered
offline with structural MR images by means of 3D electrode position measurements
(Localite NeuroNavigation system). The blue shaded area (mid-left) demonstrates
VR used in real-time, closed-loop mode (BCI). The VR-monitor application loads and
preprocesses EEG data and the game status logs. The real-time visualizations are
generated, and optionally - a control signal brain data can be computed (i.e. Alpha
oscillatory power) and supplied as input to the game.

in VR game executes external script communicating with Biosemi SynchBox
through parallel port.

The optional BCI operation mode of VR is presented as shaded blue area at Fig.
3.1.1. The signals are recorded in real-time with support of low-level functions
of BCILAB toolbox, providing real-time data acquisition and buffering. After
a minimal preprocessing (filtering and thresholding), the data are presented by
VR-monitor Matlab-based application in either raw or band-filtered form, along
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with status information from the game (position of the car on the road, trial
number, etc). Based on real-time EEG signals, simple threshold measures can
be defined (i.e. topographic laterality, or averaged power of selected channels) to
generate control signal, which in turn can be delivered back to VR game (closed-
loop), through input file. This functionality can serve as a BCI control signal
(steering the car), or as a neurofeedback (information provided to participant
through VR messaging).

Moreover, some other relevant data, are recorded independently before and after
the main experiment. These include structural MR images of participants brains
with 3T Philips scanner, and spatial coordinates of electrodes in relation to
scalp recorded with Localite NeuroNavigation systems. Combining those with
multivariate EEG timeseries is performed offline, and can significantly improve
the precision of source localization and spatial normalization of signals.

6.5 Modular construction of Virtual Reality for
neuroimaging research.

The VR was constructed with the purpose of extensibility and adaptability to
wide range of neuroscientific experiments. One of the main design goals was
to achieve modular structure by separation of the implementation layers from
experiment design layer. In Manuscript 3 (reprinted in Appendix C), we discuss
this concept along with design challenges and benefits of virtual environments
in neuroscientific research. Exemplary data from fMRI and EEG recordings in
VR setup is also presented.



Chapter 7

Conclusions

7.1 Discussion and conclusions

The work presented in this thesis is a selection of results, problems and ac-
complishments from the last four years of my research, aiming at measurement
of EEG signatures of human intentions, voluntary decisions and free actions.
During the process I managed to find answers to some of the initially posed
questions, while, on the other hand, many further ideas and research prospects
emerged, which I will discuss in the further section. It is important to emphasize
here, that the results presented here are only a very modest contribution to the
growing and evolving field of the neuroscience of volition.

Considerable part of the efforts focused on methodologies of EEG signal pro-
cessing and of complex stimulus presentation in alternative experimental designs
(VR platform). The former resulted in development of methods for automatic
data preprocessing and efficient artifact cleaning, which is highly data-preserving
and based on minimal number of arbitrary parameters (see Appendix D). Sec-
ondly, number of supportive tools were developed (combining in-house methods
with the functionality of EEGLAB, Fieldtrip, SPM toolboxes) to perform effi-
cient time-frequency and phase-amplitude coupling analysis, cross-modal inte-
gration of EEG with sMRI and ET, visualizations of multi-dimensional statis-
tical analysis of the EEG data.
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The latter resulted in development of a dedicated Virtual Reality (VR) car
simulation with the purpose to provide a natural platform for neuroscientific
studies of cognition in semi-realistic, yet strictly controllable, experimental en-
vironment. The main motivation was to reinforce the natural cognitive processes
and minimize the problem of random-sequence generation and promote active
participation in the highly repeatable cognitive tasks. Our goal was to design
the VR platform in a modular and customizable way, separating experimental
design layer from the implementation and graphical representation. In this way,
the VR after moderate modification can be used to pursue many experimen-
tal questions related to volition, perception, attention, action preparation and
others. In particular, the car driving paradigm was a suitable and naturally
appealing setup for the purpose of our studies of voluntary action. As such we
have successfully applied it to the range of empirical studies using EEG (see
Chapter 5), fMRI (see Chapter 6, details reported elsewhere) and Eye-tracking
(see Chapter 3). The closed-loop setup for the purpose of BCI studies was also
tested (see Chapter 6). The details of the modular structure of VR and discus-
sion of rationale and feasibility of Virtual Reality environments in neuroscience
are presented in Chapter 6 and Appendix C.

The main part of the work was dedicated to electrophysiological correlates (mea-
sured with EEG) of voluntary decisions about prospective actions. In both
Study 1 and Study 2 we imposed a time interval separating decision processes
from subsequent action execution, in attempt to disentangle the intention forma-
tion from the respective motor implementation. Study 1 was based on standard
pictogram-based design (PsychoPy platform), while the Study 2 employed the
rich, constantly changing visual stimulation (VR platform).

The Study 1 investigated EEG signatures of the neural processes related to
voluntary decisions “to act” or “not to act” in context where respective mo-
tor response are postponed in time. The results suggest that the occurrence
of voluntary decisions can be detected by scalp recordings, and distinct spatio-
temporo-spectral patterns can distinguish between early intention “to act” or
“not to act”. The decision is manifested by prolonged, global desynchronization
of Alpha and Beta oscillations, dominating in parietal areas. Only in decisions
“to act”, the Alpha and Beta desynchronization was significantly lateralized,
and assisted by brief modulation of Gamma oscillations. The Alpha oscillations
seem to reflect the chain processes related to conscious decision, while its spa-
tial distribution can suggest possible involvement of motor preparation/imagery
processes related to a prospective action. The action preparation, as assessed
by CNV and broadband desynchronization, is abandoned in case of voluntary
decision “not to act”. However, the action preparation remains unchanged re-
gardless if subject voluntarily decided “to act” or merely expects an external
guidance. For detailed description of the study results see Chapter 4.
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In the Study 2 we investigated three types of voluntary decisions (What, When,
Whether), their spectral signature and the possibility to detect and distinguish
those decisions from EEG scalp recordings. The Study 2 was also a feasibility
study for the VR platform in context of neuroscientific study of higher cog-
nitive function. The voluntary decisions were manifested by prolonged Alpha
and Beta power modulation (effect similar as reported in the Study 1). How-
ever the magnitude and timing of EEG signatures differed in distinct types of
decisions. “Whether” decisions were manifested by the strongest and most pro-
longed Alpha ERD, assisted by significantly higher Gamma power. The “What”
decisions were represented by the early positive ERP, while the “Whether” deci-
sions by the late positive ERP deflection. The “When” decisions had the weakest
spectro-temporal representation and did not differ statistically from the control
condition. Furthermore, we observed that voluntary actions are subconsciously
biased by low-level behavioral preferences, such as the preference to the “first”
over the “second”, the “right” over the “left” and “acting” over “not acting”.
The latter was also observed in the Study 1. This regularity can partially ex-
plain the entropy of the “free will”-driven behavior, at least in the contexts
where random or exploratory behavior is probed, and no direct rewards are
associated with alternative choices. For detailed discussion of the Study 2 see
Chapter 5.

In summary, our main findings suggest that decision processes are detectable by
EEG scalp recordings. Furthermore, different types of decisions (What, When,
Whether) have partially different temporal and spectral representation, which
goes in line with other fMRI studies showing involvement of distinct neural
pathways in different types of decisions. Alpha, Beta, and Gamma oscillations
seem to play important role in voluntary decision and intention formation. The
dominating Alpha desynchronization in decision interval may reflect at least two
categories of neural processes - motor-related preparation/inhibition of action,
and cognitive components related to conscious act of volition and introspective
attention to that act.

7.2 Future work

The work presented in this thesis certainly has not exhaustively exploited all
possible analytical approaches nor the potential of the rich multi-modal data
that we collected in the Study 2. In the following, I will highlight several other
methodological approaches and preliminary results obtained in context of the
Study 2, which will be tentatively elaborated on and published in the course of
my future research.
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EEG and MRI In the Study 2, we have acquired the structural T1-weighted
MR images of all the participants (3T Philiphs scanner), and spatial po-
sitions of electrodes in each session (Localite Nuero-Navigation system).
We have preprocessed the data to segment out different brain tissues and
compute subject-specific head models. In preliminary attempts, we ob-
tained anatomically plausible Bayesian source estimates of decision re-
lated Alpha/Beta brain oscillations in the parietal cortex and motor ar-
eas. The procedure is briefly highlighted in Chapter 3, however further
work is needed for concluding and reporting the source localization re-
sults. This approach can help to relate our findings to other studies based
on fMRI and PET modalities, as well as improve signal-to-noise ratio by
accounting for subject and session specific variability. Furthermore, in the
series of parallel studies involving fMRI and VR (reported elsewhere, in
preparation) we have found multiple brain regions being active in What,
When and Whether decisions, in particular the prefrontal cortex and the
preSMA region. In Bayesian framework, the statistically significant voxels
in fMRI contrasts can be used to form anatomically constrained priors to
the probabilistic EEG source modeling, and thus further enhance precision
and interpretability of the source estimates.

EEG and ET In the Study 2, we have acquired eye-tracking activity, including
gaze position and pupil dimension. We have preprocessed and coregistered
the ET time series with the EEG activity, and with the VR events (as
discussed briefly in Chapter 3). The information was used for validation
that subjects obeyed the eye-fixation instructions, however the potential of
the dataset is considerably larger. The statistical analysis of the saccadic
activity and pupil dillation in relation to cognitive processes of voluntary
decision deserves a further investigation and tentatively an independent
report. Our preliminary results reveal that horizontal eye saccades predict
early the direction of the intended turn, and that decision processes are
reflected by on average 3-4% pupil dilation.

Cross-frequency coupling The considerable part of the EEG analysis per-
formed in Study 1 and Study 2 was focused on broad-band time-frequency
analysis. We observed the selective modulation of oscillations in Alpha,
Beta and Gamma ranges. Thus a natural, data-justified, next step is to
investigate interactions between those different frequencies. One of the
common methods to evaluate this interaction, exploited mostly in ECoG
and LFP recordings, is the phase-amplitude coupling (PAC). A growing
number of studies suggest that Theta-Gamma and Alpha-Gamma cou-
pling is relevant to cognitive function and may constitute fundamental
mechanism for information coding and dynamic formation of functional
workspaces in the brain. Our preliminary PAC results from the Study 2
(discussed briefly in Chapter 3), suggest that: (1) PAC can be reliably
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detected by scalp EEG, (2) PAC is topographically organized for differ-
ent frequency pairs, (3) PAC is task-modulated and thus plausibly can
be applied as an alternative method of further investigation of voluntary
decision.

Real-time decision decoding In both Study 1 and Study 2 the off-line anal-
ysis showed that the patterns of modulation of the brain oscillations were
not identical for different types of conscious voluntary decisions and their
outcomes. It would be of utmost interest to quantitatively evaluate the
feasibility and accuracy of single-trial classification of those decision pro-
cesses. Future work along this path could aim at designing enhanced,
intention-driven BCI systems in place of current systems which are based
on less-natural processes such as imagery, visual or auditory attention.
With this prospect in mind, we have designed and tested our VR plat-
form in the closed-loop BCI mode, which can support future experimental
attempts to tackle the real-time classification of natural decision processes.

7.3 Final word

The neuroscience of volition is a challenging and uneasy domain of human sci-
ences. The effects being pursued are rather subtle in their nature, subjective,
context specific, and often intermingled with other cognitive processes. It is
nontrivial, and perhaps not even feasible, to isolate the mere act of volition
from other neural processes such as introspective attention and self-monitoring.
Yet understanding of the phenomena of voluntary action is the key to under-
stand a fundamental aspect of a human nature - the capacity to exert a “free
action”. As such it can profoundly affect the fields of psychology, psychiatry,
legal system, nature of social phenomena, and many others.

With the work presented in this thesis, we only contribute a single drop of in-
sights into the ocean of research focused on this fascinating subject. I believe it
is essential for the science to tackle and to probe the mystery of human “free ac-
tion” from all possible angles, including neuroimaging of the anatomical sources,
observation of the fast electrophysiological characteristics and the behavioral
correlates, developing diverse experimental paradigms, constructing physiologi-
cal and conceptual models of volition. The emerging field of neurophilosophy can
help to build plausible theories and interpretations, combining the rapidly grow-
ing database of neuroscientific insights with the centuries of experiences from
psychology, psychiatry and philosophy fields. The mechanistic understanding of
the neurophysiological processes involved in internal action generation at some
points need to address subjective nature of conscious perception of “self” and



66 Conclusions

“will” - only then can we claim that the problem of volition was fully resolved.
Otherwise, it remains rather disputable if “internally-generated action” is equiv-
alent to “free action”, and if the fact of an action being generated by internal
processes, disregarding conscious perception of “will”, categorizes this action as
“freely willed”.

Every human being understands, deeply and intuitively, the quality of being
“free”. Nevertheless, the pure definition of this term in the context of brain,
mind and consciousness is not trivial. Perhaps one day we will be able to
understand the strict meaning of this term sufficiently enough to pass this unique
insight to a human-invented machine. Perhaps not.
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Abstract
The nature of volition and free-will has long been investigated by neuroscien-
tists and philosophers of mind. One of the most critical aspects of free human
behavior is a voluntary decision of "whether" to commit to an action or not. It
has been suggested that decisions not-to-act are by no means passive but involve
similar neural components as decisions to act. In this EEG study we investi-
gate spectral signatures of intention ’to act’ and ’not to act’ in early stages of
voluntary decision formation, as well as compare their differential activations in
later stages of response preparation. In particular, based on multi-channel time-
frequency analysis we found that desynchronization patterns in alpha and beta
band distinguish decision processes from passive expectation, while lateraliza-
tion of alpha and power modulation of gamma discriminates between decisions
’to act’ and ’not to act’. We discuss the role of broadband oscillations in inten-
tion formation and preparation of voluntary motor response, and suggest that
the alpha and gamma oscillations may play important role for early neural pro-
cesses governing human free action.

Keywords:
voluntary action, intention formation, motor preparation, alpha oscillations,
presupplementary motor area (preSMA), electroencephalography(EEG)

1. Introduction

One of the most critical aspects of free human behavior is a voluntary deci-
sion of "whether" to commit to an action or not [32, 48, 91].

The nature of free voluntary action, and its relation to widely understood
concept of “free will”, has been debated by philosophers of mind for centuries.
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The famous study of Libet’s clock [53] directed attention of neuroscientific com-
munity to the problem of volition. The study showed that readiness potentials
(RP) recorded with scalp EEG precede not only the action, but also the con-
scious awareness of the will to perform that action, which challenged the notion
of “free will” and human freedom. The original findings of B.Libet were targeted
by skeptical critic [7, 63], but also reproduced and elaborated by other groups.
For instance, Haggard et al [34] showed that lateralized readiness potentials
(LRP) precede awareness of directionality in free choice between left and right
index finger, while Fried et al [25] reproduced Libet’s paradigm showing that
firing rates of single neurons in presupplementary motor area (preSMA) predicts
awareness of volition up to 1 second. It has been also proposed that “free will”
might be manifested by the ability to consciously inhibit unconsciously initiated
action, which can be conceptualized as “free won’t” [52].

Notably, all neuroimaging studies of volition are purely correlational, and
none has proved a causal, executive function of a particular brain area which
could be labeled as the origin of intention formation. Considering complex,
recurrent nature of brain circuitry, even the mere idea of existence of such true
origin is conceptually difficult. Any activity within neural assembly, dendritic
current or action potential has its own biophysiological cause. It is rather within
neural loops, constantly updated by current and past contexts, where the actions
are originated. Those loops may include parietal cortex, basal ganglia and
prefrontal areas with preSMA [32]. Thus more tangible understanding of volition
is to consider it as a capacity of an individual to allocate attentional resources
to the action-selection processes performed constantly in the brain, along with
the capacity to make the meaning of action and its causes, and thus to assume
ownership/agency over the outcome of resulting action [77]. “Free will” is not
a specific cognitive property or ability, nor has it a causal power. It is rather
an outcome of chain of causal events in the brain, and as such should not be
studied in isolation - perhaps processes such as introspective attention, conflict
processing, knowledge access constitute its intrinsic and necessary part.

Regardless whether neuroscience can or cannot provide the final answers to
the hard problem of direction of causality between consciousness and action, i.e.
existence of commonsensical “free will”, it may certainly address related prag-
matic problems - such as determining which neural substrates are involved in free
action selection [36, 48, 69], what micro- and macro-scale electrical signatures
correlate with voluntary processes [25, 30, 53, 91], which neural resources are
distinct and which are common to different types of free decisions [9, 35, 81],
can disorders of volition [8, 57, 76] be addressed with systematic therapeutic
methods, and finally - are the processes of intentional action detectable and dis-
criminable for brain-computer interfacing (BCI) purposes [51, 86]. Along those
lines, a lot of work has been done to compare two fundamental modes of action
selection - internally-generated and externally-cued actions - in experiments in-
volving fMRI [15, 16], PET [17, 36], EMG [64] and EEG [18, 88, 93] modalities.
It has been shown that the two modes of action selection have different temporal
characteristics [88, 90, 93] and involve distinct neural pathways [15, 17, 36, 50].
The volition-related network consists of supplementary motor area (preSMA),
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which receive inputs from basal ganglia and prefrontal cortices (ACC, RCZ,
DLPFC). The second network, corresponding to sensory-guided and stimulus-
driven actions, starts in early sensory areas, followed by higher-level sensory
integration areas in parietal cortex, which project to lateral premotor areas.
Both pathways terminate in primary motor cortex (M1) which is the final stage
before the efferent motor command is propagated down the spinal tract to mus-
cle terminals [68]. It is important to note that this distinction is by no means
exact or mutually exclusive. In practice, almost every action (with exception
of spinal reflexes) will involve to certain extent both intentional and externally-
guided components of action selection [93], and as such will to certain extent
activate both pathways [15], [61] in coordinated manner. For completeness, it
should be mentioned that the role of sensory areas and their connections to pre-
motor areas in voluntary action should not be underrated. The match between
predicted effect of motor command (prospective prediction) and the afferent
sensory feedback (retrospective check) might be critical for the emergence of
the feeling of agency [33] and perhaps for the experience of conscious will itself
[94].

Brass and Haggard [9, 32] proposed a conceptual framework explaining a
voluntary action as a composition of ’what’, ’when’ and ’whether’ components,
each describing different aspect of intended action . Those components account
for type, timing, and initiation/inhibition of action respectively, and may have
different neural representation and electrophysiological dynamics [9, 35, 48, 81].
The ’whether’ component can be further divided into ’early’ (decision to en-
gage into action preparation or not), and ’late’ (final validation and capacity
to inhibit preprepared action). In context of this study, the time course of the
’early whether’ component is investigated, which corresponds to intention for-
mation regarding engaging or disengaging from action preparation. It has been
suggested that intentional non-action is a mode of action and recruits similar
neural resources as intentional action [48]. Thus ’early whether’ can correspond
to a choice between equivalent alternative options, and in this sense resembles
the ’what’ type of decision.

Growing evidence from empirical and theoretical studies indicate that corti-
cal oscillations and cross-frequency interactions may constitute the fundamental
mechanism of neural computation and effective integration of information across
multiple spatiotemporal scales [12, 13, 54, 55]. Different brain rhythms and in-
teractions between them have been associated to perception, cognition and sen-
sorimotor function [2, 13, 41]. Thus it is very plausible that brain oscillations
and selective modulation of spectral power (ERD/ERS) are the fundamental
mechanisms underlying certain aspects of voluntary decisions, which motivated
the methodological choices in our data analysis.

Alpha/Mu (8-13Hz) and Beta (16-24Hz) oscillations are recognized as main
rhythms of motor function [5, 20, 46, 47, 70, 74, 75], both if movement is gen-
erated as response to stimulus or free-paced. Broadband reduction of power in
range from Theta(3-6Hz) to Gamma(>40Hz) is observed during preparation to
externally-cued action in delayed response Go-NoGo tasks [26, 27], and as such
can reflect global preactivation of sensorimotor cortices and attentional orient-
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ing. Desynchronization of Alpha and Beta rhythms is stronger in Go than in
NoGo condition [4], and can be lateralized if precue carries sufficient informa-
tion about parameters of the requested action [20]. Moreover, Alpha and Beta
oscillations are modulated by motor imagery [59] and may correlate with acti-
vation of mirror neuron system during action observation [62], either of which
can be reflected in decision processes. Beta bursts are also relevant to externally
[47, 95] and internally [91] generated inhibition of action.

Apart from its relevance to motor function, the modulation of power in low
frequency bands (Theta-Alpha,3-12Hz) had been linked to central executive
function [14, 41], working-memory load [38] and attention [42]. Role of Alpha
oscillations seem to be much broader than simple idle rhythm. W.Klimesch pro-
posed inhibition-timing hypothesis [45], according to which Alpha synchroniza-
tion may represent top-down inhibitory control, while Alpha desynchronization
reflects gradual release of inhibition over the task-relevant areas. Given that
alpha guides the attention, correlates with behavioral performance and allows
memory and knowledge base access, it may be considered as a rhythm reflecting
the most fundamental cognitive processes [42].

Oscillations in higher frequency bands can also be relevant to volition and
free action. It has been shown that distinct gamma modulation over different
cortical areas encode subsequent stages of preferential choices and free decisions
[30]. Gamma is also relevant for memory and attention [39] and for execution
of motor function [71, 73].

In context of motor preparation and attentional expectation of upcoming
stimulus, variations of delayed response Go/NoGo tasks are commonly employed
[20, 24, 26]. In such tasks participants receive a warning stimulus (S1), followed
by delayed imperative stimulus (S2). A slowly accumulating negativity pre-
ceding the imperative stimulus usually by 0.5-3 seconds can be observed at
central and frontal EEG channels, which is known as contingent negative varia-
tion (CNV) [87, 92]. Despite its apparent similarity to readiness potential (RP)
[53], CNV reflects distinct phenomena. While RP is related to motor prepara-
tion and can occur without external stimuli [53, 89], CNV is related to attention
and expectancy of upcoming imperative stimulus and is present even if overt
motor response is not required [80]. Usually however, the late part of CNV will
contain both lateralized RP and stimulus preceding negativity [10], where the
amplitude of the former depends on parameters of the motor response while the
latter on expected informativeness of stimulus. In context of externally-cued
response preparation, late CNV is larger in Go than NoGo condition [22, 85]
and correlates positively with reaction times.

While large number of studies elaborated on CNV and ERD effects related
to response preparation in externally-cued mode of action selection, there is
surprisingly few reports of the oscillatory signatures of internally-generated,
voluntary actions, and those are confined primarily to Alpha/Beta bands [18,
90].

Therefore, our primary goal is to evaluate the broadband spectral contents of
voluntary decisions ’to act’ and ’not to act’. Given the wide functional meaning
and rich cognitive associations of oscillations in theta-gamma range reported in
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literature (as discussed earlier), it is very plausible that interplay between those
broadband oscillations might have critical role in effectuating and synchronizing
the neural processes of voluntary decisions, as well as subsequent processes of
action preparation and inhibition.

We propose a paradigm in which intended actions are separated from vol-
untary decision by jittered interval of several seconds. We evaluate broadband
neural oscillations in the early stages of decision (formation of intention about
future action) and in later stages of action preparation (effectuating or inhibiting
action), and compare the modulation of signal to idle control condition, in which
participants do not generate internal decision but act according to external cue.
The motivation for such paradigm is twofolds. Firstly, in daily situations it is
common that voluntary decision about action does not result in instantaneous
implementation of the respective motor command, but often in formation of
intention to perform a given action in future, where the delay can range from
seconds to days. Secondly, other paradigms which involve a free-paced volun-
tary action, and thus do not specify the exact timing of decision, face at least
two main challenges. In case of voluntary decision to act, the neural processes
of action selection and intention formation may be confounded by immediately
following processes of action preparation and motor implementation. Secondly,
in case of voluntary decision not to act, there is no overt response and thus
it is difficult to localize in time the onset of neural processes corresponding to
intentional non-acting, or inhibition. It is impossible to determine whether the
lack of action results from explicit conscious decision “not to act” or perhaps
from the passiveness and lack of decision process at all. Our paradigm resolves
those two major issues by (1) time-locking decision and action to visual cues
(precue and cue respectively), and (2) imposing jittered interval of several sec-
onds between decision (intention formation) and action (motor preparation and
execution).

Since we expect broadband patterns of modulation in time-frequency domain
to differ decisions from baseline, as well as decisions ’to act’ from decisions
’not to act’, we include in statistical analyses the entire frequency spectrum
ranging Theta to Gamma band (4-65Hz). Additionally, we are also interested in
action preparation that follows voluntary decision - in particular, whether ERD
and CNV are modulated by mode of action selection (internally-generated vs.
externally-cued), whether ERD and CNV are suppressed in case of intentional
non-action and whether ERD and CNV correlate with reaction times. We also
expect motor related readiness potentials (RP) to coexist with CNV, which can
be verified by lateralization of RP and ERD. Notably, our Control condition
resembles closely a delayed response Go/NoGo task with informative S2 cue,
commonly used in studies of externally-cued action.

2. Methods

Participants Sixteen healthy adult participants (ten females) were recruited
for the study. The mean age was 33.8 (std=7.3). All participants were in-
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formed about the purpose of the study and signed informed consent, in accor-
dance with ethical requirements of the local committee.

Data acquisition EEG data was acquired with Biosemi ActiveTwo system
with 128 active electrodes. Two reference electrodes were positioned on left
and right mastoids. Electromyographic (EMG) signal from the right index
finger was recorded with surface bipolar electrodes positioned at the first dor-
sal interosseous muscle. All data were amplified and digitized at sample rate
of 512Hz. Visual stimuli and button-press responses were synchronized with
EEG signals via parallel port triggering in Python/Psychopy environment.

Task Participants were comfortably seated in front of the screen, with both
wrists resting on the keyboard. The 15-inch LCD screen was positioned at
the distance of 60cm from participant eyes. Stimuli width and height were set
to 3cm.
Each participant performed 480 repetitions split into 8 blocks of 60 trials.
To minimize fatigue and increase commitment to the task, participants could
freely decide upon duration of the break between the blocks. The sequence
of trials (conditions) was fully randomized within blocks. Participants were
instructed to fixate gaze on the fixation cross (or corresponding symbol of
identical dimensions) and avoid unnecessary movements, including eye blinks.
The scheme of the task is presented at Fig.1. In free-decision trials, the fix-
ation cross was replaced by circle/square to indicate a Precue-interval of 2
seconds, where participants were freely choosing whether they intend to press
the button or abstain from doing so. Participants were asked to take an inde-
pendent decision each time and avoid pre-planning or changing mind. After
2 seconds the circle/square was replaced back by fixation cross, to indicate a
Retention-interval of jittered duration of 2.4-2.6 seconds, where participants
were supposed to keep their decision in mind and wait. Finally, fixation cross
altered color to indicate Cue-interval of 1 second, where participants had to
press or not-press the button, depending on their earlier decision. Right in-
dex finger response was used. The next trial started after jittered interval of
2.4-2.6 seconds.
In control trials, durations of all stimuli and intervals were identical. However,
during Precue-intervals participants were not making decisions, but instead
relaxing and passively waiting. During the Cue-interval, the color of fixation
cross indicated whether the participants should press the button or not.
The assignment of a symbol (circle of square) to the Precue-interval (decision
or control), and the color (blue, yellow, magenta) to the cue interval, was fixed
for each participant and counter-balanced across participants. Subjects were
asked to carefully memorize the meaning of symbols/colors and perform a
short training session before the experiment started. Furthermore, they were
asked a set of control questions between the blocks, to ensure they remembered
instructions.
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Figure 1: Experimental design and averaged EEG responses in Study 1. (A) Visual stimuli in
voluntary decision trials. Participants make decision during of Precue interval of 2 seconds dura-
tion, maintain decision in memory during Retention interval of 2.4-2.6 seconds, perform internally-
generated action (press or no-press) immediately after colored Cue. (B) Visual stimuli in Control
trials. Participants relax and passively wait during Precue and Retention interval. Depending on
the color of Cue, they press or do not press the button. (C) Multi-channel envelope of grand ERPs
- averaged brain responses corresponding to ’Decision-Press’ trials. Each time point (latency) can
be represented as 2D topographic distribution of potentials (panel C top). Alternative, convenient
visualization is a two-dimensional color-coded raster plot of ERPs at (channel x time) space (panel
C bottom).

EEG data preprocessing The EEG data were referenced to averaged mas-
toids signals and bandpass-filtered at 0.2-100Hz and downsampled to 256Hz.
The relatively low value of high-pass (0.2Hz cut-off) was used to account for
low-frequency components of CNV traces. The long trials were extracted
from -1000ms before the Precue onset until 6500ms after the Precue onset,
thus covering the entire period of task-relevant events, including decisions,
retention, action preparation and execution. The baseline of 1000ms preced-
ing the Precue interval was subtracted from each trial. Short jitter intervals
(0-200ms) were removed at the midpoint of the retention interval (3200ms).
Noisy channels were interpolated and the remaining noisy epochs were cleaned
by thresholding (moving window 500ms, threshold 120uV). Infomax ICA was
computed on the precleaned datasets [66]. ICA components corresponding to
eye blinks, eye movements and and general discontinuity were removed from
data (EEGLAB [19] and ADJUST [60] toolboxes). Final visual inspection
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was performed to ensure that no noisy epochs remained. In total, on average
37 epochs (out of 480) were removed, 5.6 channels (out of 128) interpolated,
and ICA components accounting for 58.1% of total variance were corrected
for, most of those related to eye-blinks and eye-movements.

ERP/CNV analysis To investigate evoked activity such as ERP and slow
potentials of CNV, the trials corresponding to DP, DNP, CP and CNP con-
ditions were averaged separately. Subsequently, the intervals of interest were
extracted. The first interval of -200-2100ms, time-locked to the Precue in-
terval accounted for ERPs related to decision task, including visual and cog-
nitive components. The second interval of -2000-1500s, time-locked to the
Cue-interval, accounted primarily for the CNV negativity related to action
preparation and Cue expectation, as well as motor related ERPs after the
Cue onset. Considering the sampling rate of 256Hz, the final epoch-averaged
data for each condition and participant had a size of [128x590] for decision in-
terval and [128x896] for action preparation interval, in [channel x time] space.
Critically, both intervals were based on precisely the same data cleaning pro-
cedure and the same baseline.

Time-Frequency analysis To investigate induced activity and event-related
changes in spectral power we applied Morlet wavelets to decompose chan-
nel data into time frequency (TF) representation. The TF information was
computed for each channel and epoch at the frequency range 4-65Hz with
a step of 1Hz. Time window varied from 750ms at the lowest frequency (3
wavelet cycles) to 300ms at the highest (20 wavelet cycles). The temporal
resolution of decomposition was set to 64 samples/seconds. The decomposi-
tion was performed on the entire trials of -1000-6000ms, time-locked to the
Precue interval, after the cleaning procedure and jitter correction (as detailed
above). The time-frequency maps were baseline corrected for 500ms directly
preceding Precue onset. Subsequently, the intervals of interest were extracted:
-200-2100ms time-locked to the Precue interval (decision related), and -1100-
1000ms time-locked to the Cue-interval (action preparation and execution).
Thus the final epoch-averaged time-frequency data for each condition and
participant had size of [128x62x148] for decision interval and [128x62x138]
for action preparation interval, in [channel x frequency x time] space. The
three-dimensional time-frequency information was used for statistical com-
parisons (nonparametric cluster-mass permutation tests), and for extraction
of event-related spectral power perturbation (ERSP) for visualization pur-
poses, in theta(4-7Hz), alpha(8-13Hz), beta(16-24Hz) and gamma(40-60Hz)
bands.
Lateralization in time-frequency domain (LTF) was assessed by subtracting
time-frequency maps of right central, centro-frontal and centro-parietal elec-
trodes from their left counterparts:
LTF = (TFFC3 + TFC3 + TFCP3)/3 − (TFFC4 + TFC4 + TFCP4)/3
The same time interval of -200-2100ms was used, while the spectral band
was set to 4-30Hz, to account for entire low-frequency range. Thus a unit of
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comparison had dimension of [27x148] in [frequency x time] space.

Statistcal tests In all performed statistical tests, the multi-channel data se-
ries from Decision and Control conditions were submitted to repeated mea-
sures, two-tailed cluster-mass permutation tests [11, 58], as implemented in
Fieldtrip toolbox [1]. The tests were performed both on the averaged, multi-
channel signal amplitudes (ERP/CNV effects) and on the averaged, multi-
channel time-frequency maps (spectral effects). Family-wise alpha level was
set to 0.05. All 128 electrodes and all time points corresponding to the Pre-
cue interval and the Cue interval were included in the tests. In each of the
statistical tests, a unit of comparison was two-dimensional [channel x time]
(for ERP/CNV), two-dimensional [frequency x time] (for spectral laterality)
or three-dimensional three-dimensional [channel x frequency x time] (for TF
data). In case of TF data, entire spectrum from 4-65Hz was used in the main
comparisons, while in more specific tests the spectrum was constrained to
low (4-30Hz) or high (40-60Hz) band (as detailed in Results sections). The
electrodes within distance of less than 5cm of one another were considered
spatial neighbors, yielding in average 7.8 neighbors per electrode. For each
comparison, repeated measures t-tests were computed using the original data
and 1000 random within-participant permutations. For each permutation, all
t-scores corresponding to uncorrected p-values lower or equal to 0.05 were
combined into clusters. The mass of each cluster was computed as the sum of
the t-scores within that cluster. The highest cluster mass in each of the tests
was used to estimate the distribution of null hypothesis.
This type of statistical tests allowed us to account for all the available data,
without any a-priori constraints to either temporal or spatial extension of
potential effects. Thus we minimized the need for subjective choices, while
maintaining weak control of the family-wise alpha level (i.e., correcting for
very large number of multiple comparisons). Cluster-mass permutation tests
have been shown to perform well in exploratory studies and in case of broadly
distributed ERP/ERSP effects [29, 58] by accounting for high temporal, spec-
tral and spatial correlations inherent to high resolution EEG data, which is
their fundamental advantage.
Furthermore, to evaluate relations between EEGmeasures (CNV, Alpha power)
and behavioral measures (RT), we used Pearson product-moment correlation
coefficients and R-square metrics. Finally, simple Student’s t-tests were used
occasionally for post-hoc assessment of ERP and laterality measures.

Correlational analysis To investigate correlation between behavior and EEG
data, we first computed individual mean reaction times (one value per sub-
ject). Then we extracted the maximum negativity of CNV in the 2 seconds
interval preceding action, and maximum desynchronization of Alpha power
within the 2 seconds of decision interval (128 values per subject, one for each
channel). Those two metrics were chosen based on the results of prior EEG
analysis which suggested that CNV and αERD play important role in action
preparation and voluntary decision, respectively. Finally, for each channel
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we computed Pearson correlation coefficients (and R2 values of linear fit) be-
tween reaction times and CNV/Alpha scores. Apart from reporting p-values
and correlation coeffcients, we present topographic distributions of most pre-
dictive electrodes, as well as CNV/Alpha traces of slow and fast responders
obtained by median split.

3. Results

The following notation will be used to denote different types of trials: Deci-
sion (voluntary decision trials), Control (control trials), DP (voluntary deci-
sion to press), DNP (voluntary decision not to press), CP (control with press),
CNP (control without press).

Behavioral data The mean reaction time (RT) in Decision trials was 422ms
(std=57ms). The mean RT in Control trials was 523ms (std=69ms). The
RTs in Decision trials were faster than in Control trials (p<0.001) in average by
101ms. This regularity was observed for every participant. Detailed distribution
of reaction times in DP and CP conditions is presented at Fig.8, bottom panels.
In Decision trials, all subjects displayed preference to DP over DNP. The mean
asymmetry equaled 61% (std=7.3%), indicating that participants chose to press
the button on average in 61% of their decisions, and intentionally abandon action
in remaining 39% of decisions.

ERP analysis - Decision interval The nonparameteric cluster-mass permu-
tation tests were performed on the multichannel ERP traces from 128 channels
and covering the time interval -200-2100ms (Decision interval). Contrasting DP
and DNP conditions against Control condition revealed two types of ERP ef-
fects, a posterior positive and a prolonged frontal negative components, present
in both DP and DNP conditions. However their magnitude was not equal.
The posterior positive component only reached significance in DNP condition
(p=0.03), but not in DP condition (p=0.18). The post-hoc analysis of clus-
ter suggests it extends over 70 posterior electrodes over the interval of 620-
840ms. The frontal negative component only reached significance in DP condi-
tion (p=0.02), but not in DP condition (p=0.24). The post-hoc analysis of the
cluster suggests it extends over 61 frontal and fronto-central electrodes over the
interval of 650-1100ms. Direct comparison of DP against DNP condition did
not yield significant differences (p=0.18), probably due to insufficient statistical
power resulting from choice asymmetry between DP and DNP conditions (par-
ticipants decided to press the button in on average 61% of trials while abstain
from pressing in only 39% of trials).
The spatial and temporal extension of the ERP differences between DP, DNP
and Control conditions are presented at Fig.2.

Time-Frequency analysis in Decision interval Statistical comparison of DP
and Control conditions with cluster-mass permutation tests revealed two signif-
icant, negative clusters. The first cluster (p<0.01) was prolonged in time (490-
1850ms), prevalent in Alpha (8-13Hz) but extending to Beta range (16-24Hz).
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Figure 2: Event related potentials time-locked to the onset of Decision interval. Top panels: all
the ERPs in [channel x time] space corresponding to Control, DP and DNP conditions. Middle
panels: ERP differences of DP-DNP, DP-Control and DNP-Control. Statistically significant regions
(cluster-mass permutation tests) are color-coded, while remaining points are shaded. Although both
DP and DNP displayed larger posterior positivity and anterior negativity than Control, only DP
reached significance in frontal regions, while DNP in posterior regions. Bottom panels: The time
course with 95% confidence intervals of the ERPs for the representative channels (Fz and Pz). The
inset topomaps show the spatial distribution of the significant clusters, while the inset bar-charts
their average activation in the significant interval for DP(blue), DNP(red) and Control(black).

The cluster extended over all 128 channels, however αERD dominated in pos-
terior and centro-posterior areas. The second negative cluster (p=0.035) lasted
shorter (500-720ms) and dominated in Gamma band (45-60Hz). The modu-
lation of Gamma power was strongest over frontal and fronto-central channels
(Fig.3, middle column).
Statistical comparison of DNP and Control conditions revealed only one signif-
icant negative cluster (p<0.01), similar in its extension to the Alpha cluster of
the DP-Control contrast. It was prolonged in time (560-1830ms), spread over
Alpha (8-13Hz) and Beta ranges (16-24Hz), extended over 128 channels with
αERD dominating over posterior and centro-posterior channels. There were no
other significant clusters, in particular not in Gamma band (Fig.3, right col-
umn).
The direct comparison of DP and DNP in entire [channel x frequency x time]
space did not reach significant effects. As mentioned before, statistical power
of this comparison is reduced by considerable choice asymmetry (61% DP, 39%
DNP). Therefore, to test difference in Gamma band between DP and DNP con-
ditions we constrained the region of interest spectrally to 40-60Hz range and
temporally to 500-1000ms interval, while still accounting for all 128 channels.
The choice can be justified by the following three rationale: (1) the interval
corresponds to ERP effects, (2) the interval corresponds to the onset of ERD
in Alpha/Beta bands, and ERD reaching its peak values, (3) the spectral band
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accounts for gamma effects observed in DP-Control statistical tests (notably,
independent test). The statistical test showed that DP condition differed from
DNP condition in Gamma band (p=0.03). The negative cluster spread over
entire 40-60Hz band and time interval 660-740ms (Fig.3, left column).
Similarly, to compare Alpha/Beta band activity between DP and DNP condi-
tions, we constrained region of interest spectrally to 4-20Hz and temporally to
500-2000ms. Although αERD seemed considerably stronger and prolonged in
DNP condition, the difference did not reach significance (p=0.58).
In summary, both DP and DNP were characterized by broadband desynchro-
nization of oscillatory power predominantly in Alpha and Beta range (8-24Hz).
DP condition differed significantly in Gamma band (40-60Hz) from DNP and
Control conditions, in time interval coinciding with ERP effects and onset of
Alpha/Beta ERD. Detailed contrasts and statistical results are presented at
Fig.3.

Lateralization in Decision interval In order to test whether the brain os-
cillatory activity is lateralized in Decision interval, we computed lateralized
time-frequency maps (LTF), as detailed in Methods section. The same time
interval of -200-2100ms was used, while spectral band was set to 4-30Hz to ac-
count for entire low-frequency range.
The desynchronization in Alpha/Beta range (8-16Hz) was stronger at the con-
tralateral (left) electrodes, in all conditions. However, the duration and mag-
nitude of lateralized desynchronization (LERD) was the strongest and most
prolonged in DP condition (Fig.4). The DP condition differed significantly
from DNP (p=0.039) and from Control condition (p=0.029), with LERD lasting
500ms longer. There were no significant differences between DNP and Control
conditions (p=0.45).

Action preparation/inhibition In this section we evaluate brain activations
directly preceding the action. The ERP differences were assessed by means of
cluster mass permutation tests on all channels from the interval -2000-1500ms
time-locked to the onset of the Cue. The slow negative potential (CNV) was
present in DP, CP and CNP conditions and we found no significant difference
between those conditions in the interval preceding action. However, CNV was
nearly completely abandoned in DNP condition. Significant negative cluster
was found in DP-DNP comparison (p<0.005, -280-350ms) and significant posi-
tive cluster in DNP-CNP comparison (p<0.005, -450-320ms). Clusters extended
over all channels but dominated in central region. For detailed distribution of
effect see Fig.5.
Similarly, spectral lateralization was evaluated by cluster-mass permutation
tests on time-frequency maps of difference between left and right channels. Sim-
ilarly as in case of CNV deflection, contralateral desynchronization in Alpha
range was observed in DP, CP and CNP conditions, however it is abandoned in
DNP condition. Significant negative clusters were found in DP-DNP comparison
(p=0.03, -700-370ms) and significant positive cluster in DNP-CNP comparison
(p<0.005, -1140 - -310ms). For detailed distribution of the effect see Fig.6.
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Figure 3: Voluntary decisions are characterized by broad-band modulation of power (ERD), dom-
inating in Alpha and Beta range (8-24Hz). Top panels: Morlet wavelet time-frequency decompo-
sition of Control, DP and DNP conditions. Middle panels: the differences DP-DNP, DP-Control
and DNP-Control are presented in left, middle and right columns respectively, with statistically
significant regions marked by white lines. Cluster-mass permutation tests were performed in entire
(channel x time x frequency) space. Lower panels: modulation of power over all electrodes in
frequency bands of interest, with the significant regions color-coded. The inset topomaps show
averaged spatial distribution of ERD effect over the interval of 700-1000ms. The colored traces
present the time-courses of signal power with 95% confidence intervals, in the selected frequency
bands, for representative channels (Pz, FCz).

Spectral signature of action preparation was evaluated by cluster-mass permuta-
tion tests in period -1000-1000ms and entire broadband frequency range 4-65Hz.
Short before the Cue stimulus, stronger broadband responses were observed in
DP, CP and CNP conditions than in DNP condition, in particular lateralized
Beta and Gamma desynchronization. Significant negative clusters were found
in DP-DNP comparison (p=0.01) and significant positive cluster in DNP-CNP
comparison (p=0.024).
In particular, the difference in Theta band (4-7Hz) was prevalent in comparison
of DP and DNP conditions. The negative cluster (p=0.01) spread over frontal
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Figure 4: Power modulation in Decision interval is most lateralized during decisions to act (DP).
Top panels: the time-frequency lateralization maps were computed by subtracting averaged time-
frequency maps of selected right channels from their corresponding left channels. Middle panels:
Cluster-mass permutation tests revealed that DP condition differed from DNP and Control with
stronger contralateral desynchronization, but there was no difference between DNP and Control.
The non-significant regions are shaded. The significant cluster extended over high alpha and beta
range (10-24Hz). Bottom panels: time course of lateralized alpha/beta desynchronization (LERD)
in DP(blue), DNP(red) and Control(black) conditions, with 95% confidence intervals. The inset bar
charts show the mean magnitudes of LERD in the significant regions.

and fronto-central channels. The Theta power increased in DNP (ERS) and de-
creased in DP condition (ERD) in the interval preceding action by over 1000ms.
Importantly, we did not find any significant spectral differences between prepa-
ration to voluntary action (DP condition) and preparation for externally-cued
action (CP and CNP), neither in distribution of ERD/ERS patterns nor in
lateralization. The only difference observed between DP and CP conditions oc-
curred at the final stage of CNV deflection, where CNV peaks were on average
more negative in CP condition (positive cluster, p=0.036, 40-290ms, posterior
channels). For detailed distribution of spectral effect see Fig.7.

Action execution/inhibition As the motor execution is not the primary goal
of this study, we limit here to rather general observations. Motor potentials
were considerably higher in CP than in DP condition (p<0.005). Both DP and
DNP conditions displayed prolonged positivity after the Cue onset, although
the latter represented intentional inhibition rather than action. Positivity was
stronger in DP condition (p<0.005) mostly observed over central and parietal
areas (Fig.5) Characteristic contralateral Beta rebound was observed in DP and
Control conditions, but not in DNP.

EEG-RT correlations In externally cued condition (CP), we found no cor-
relations between αERD and RT. However, the CNV negativity was positively
correlated with RT (subjects with more negative CNV deflection responded
faster). The effect was robust and statistically significant at 71 (out of 128)
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Figure 5: Preparation to action is manifested by slowly accumulating, prolonged ERP negativity
(contingent negative variation, CNV), lateralized desynchronization (Fig.6) and broad-band power
modulation (Fig.??). Top panels: multi-channel ERP/CNV traces, time-locked to the onset of the
Cue stimulus (t=0, Action call). Middle panels: statistical evaluation (cluster-mass permutation
tests) of three main contrasts: DP-DNP, CP-CNP and DP-CP, in (channel x time) space. Insignif-
icant regions are faded out. The inset topomaps represent spatial distribution of activity in 500ms
before(left) and after(right) action, while the bar charts illustrate the average ERP amplitude in
those intervals, for each condition separately. Bottom panels: channel-averaged ERP/CNV traces
with 95% confidence intervals and the histograms of reaction times overplotted at the lower edge.
Notably, the action preparation (as indexed by CNV) is largely abandoned in DNP condition, while
preparation for voluntary action (DP) seems equivalent to preparation for unknown, externally-cued
action (CP or CNP).
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Figure 6: The Alpha/Beta power modulation is lateralized in preparation for freely intended actions
(DP) and for unknwon, externally-cued actions (CP and CNP). However there was no lateralization
in case of the intentional inhibition (DNP). Top panels: Time-frequency lateralization maps (top
panels) were computed by subtracting averaged time-frequency maps of selected right channels from
their corresponding left channels. Lateralization in Alpha can be observed followed by characteristic
post-movement Beta rebound in Control and DP conditions. Middle panels: statistical evalua-
tion (cluster-mass permutation tests) of three main contrasts: DP-DNP, CP-CNP and DP-CP, in
[frequency x time] space. The non-significant regions are shaded. Bottom panels: time course of
lateralized Alpha desynchronization (LERD) in DP(blue), DNP(red) and Control(black) conditions,
with 95% confidence intervals. The inset bar charts show the mean magnitudes of LERD in the
period of 1 second preceding action.

electrodes, primarily distributed over central and frontal regions. For repre-
sentative Cz channel, the correlation was 0.62 (p=0.01). In voluntary decision
condition (DP), the effect was reverse. We found no correlations between CNV
and RT, but αERD correlated robustly with RT at 64 (out of 128) electrodes,
primarily distributed over posterior and contralateral regions. For represen-
tative Pz channel, the correlation was 0.63 (p=0.009). The correlation plots,
scalp distributions of predictive channels, and CNV/Alpha traces of fast and
slow responders are presented at Fig.8.

4. Discussion

4.1. Temporal and spectral signature of voluntary decisions
To our knowledge, the spectral contents of voluntary decision about prospec-

tive action has not been systematically studied. Other reports focused primarily
on intention-in-action, where spectral effects might be due to motor prepara-
tion for action directly following decision [91], or were constrained to particular
band of interest such as Alpha and Beta [18, 90]. One of aims of this study was
to evaluate a complete, time-frequency signature of voluntary decision (when
contrasted with a baseline Control condition), and thus assess the duration, the
magnitude and the frequency contents of the decision processes.
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Figure 7: Broadband modulation of power (ERD) is stronger in preparation for voluntary action
(DP) than in voluntary inhibition (DNP), during the retention interval preceding Cue stimulus
(Action call). Preparation for voluntary action (DP) does not differ from preparation for unknown
externally-cued action (CP and CNP). Top panels: Morlet wavelet time-frequency decomposition
of Control, DP and DNP conditions. Middle panels: the differences DP-DNP, DP-CP and DNP-
CNP are presented in left, middle and right columns respectively, with statistically significant
regions marked by white lines. Cluster-mass permutation tests were performed in entire [channel
x time x frequency] space. Lower panels: modulation of power over all electrodes in frequency
bands of interest, with the significant regions color-coded. The inset topomaps show averaged spatial
distribution of ERD effect over the interval of 500ms preceding the action. The colored traces present
the time-courses of signal power with 95% confidence intervals, in the selected frequency bands for
a representative channel (FCz).

The dominating effect obtained by contrasting Decision conditions with Con-
trol condition was reflected by global, prolonged Alpha and Beta ERD lasting
nearly 1500ms, before returning towards the baseline. The effect spread over
entire scalp, but the effect size was largest over parietal and centro-parietal
regions. Interestingly, a strong Alpha/Beta ERD was very similar in its dura-
tion and magnitude for DP and DNP conditions, that is, regardless if decision
resulted in action or inhibition of action. Although visual inspection suggests
slightly longer duration of αERD in DNP condition, the effect did not reach
statistical significance, even after constraining region of interest (Fig.3, bot-
tom). Secondly, we found also spectral signatures specific to DP condition
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Figure 8: Correlations between behavioral and electrophysiological measures depend on the mode of
action selection. Top panels: in externally-cued condition (CP) the reaction times correlated with
maximum negativity of CNV, but not with maximum αERD. Conversely, in decision condition (DP)
the reaction times correlated with maximum αERD, but not maximum CNV. The inset topomaps
show the R2 score of the linear fit of all scalp channels (p<0.05, marked with black dots), showing
that the CNV-RT and Alpha-RT correlations are robust and spreads over wide regions. The inset
traces show grand average responses of fast(red) and slow(blue) participants as divided by median
split, in respective EEG measure, i.e. CNV and αERD respectively. Bottom left panel: individual
mean reaction times in DP aligned with correlated mean αERD. Bottom right panel: individual
mean reaction times in CP aligned with correlated mean CNV amplitudes.

only. In particular, lateralization of Alpha power was considerably more pro-
longed (>1000ms), with desynchronization dominating on the side contralateral
to movement (left hemisphere) (Fig.4). Furthermore we observed brief, but sta-
tistically significant desynchronization of Gamma power, only in DP condition,
which coincided in time with onset of alpha ERD.

The fact that strong contrasts were observed between Decision conditions
and Control, as well as between DP and DNP conditions, constitute a promising
phenomenon in context of brain-computer interfacing (BCI). Further studies are
needed to investigate whether the specific signatures of DP and DNP can be
used for single-trial classification, which would be a significant step towards
designing natural intention-driven BCI systems.
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4.2. Broadband oscillations and their role in intention formation
The knowledge of exact temporal, spectral and spatial extension of the de-

cision effects in DP and DNP conditions can inform about complex nature of
voluntary decisions and its inherent neural processes. Modulation of Alpha/Beta
band in our task might reflect at least two distinct aspects of neural processing.
The first may relate to involvement of motor system while the other represents
cognitive and attentional processes.

First of all we observed widespread, prolonged and bilateral Alpha desyn-
chronization in both DP and DNP conditions (Fig.3), even though the latter
does not result in overt motor response. The fact that ERD occurred in both
DP and DNP conditions (Fig.3), suggests that it may reflect cognitive processes
(rather than motor preparation), which are present independently of decision
outcome. Those processes may be related to attention [42] towards internal ac-
tion selection [49], self-monitoring, or mental effort related to selection between
two alternative future plans (action or no action).

It is very plausible, that decreased Alpha power may correlate with allo-
cation of introspective attentional resources to the neural processes of action
selection. Alpha band has been already linked to attentional processes [42, 90].
Even if the attentional needs are different depending on the outcome (action
or non-action), they should be similar at least in the early stages of decision,
before sufficient evidence is accumulated for one of the options for the intention
to be formed. Such function of Alpha would explain close resemblance of αERD
in parietal areas in both conditions. In fact, it can be arguably suggested that
the introspective attention is not only a mere cognitive add-on to volition, but
rather an intrinsic and indispensable component of any conscious, internally-
generated, voluntary choice. Under such assumption, modulation of Alpha can
be interpreted not only as a correlate of introspective attention, but also as an
indirect electrophysiological correlate of the early processes of intention forma-
tion.

Secondly, we observed that Alpha/Beta lateralization was present briefly in
all conditions, but it was significantly prolonged only in DP condition. This
may suggests that DP condition contains additional component related to early
preparation of motor program, or to mental imagery of the motor plan. Con-
tralateral Alpha was repeatedly shown to be related to motor preparation [20,
74, 89] and Beta rhythms to motor imagery [59] and action selection [90].

Thus, Alpha and Beta oscillations may play more than one role in voluntary
decision. Indeed, there is a converging evidence in literature that Alpha oscilla-
tions are not representing a particular neural process, but represent very differ-
ent processes relevant to cognition and sensorimotor function. The functional
meaning of Alpha modulation will depend primarily on the task and context, but
also the exact frequency specifics, and recording site [4, 6, 28, 31, 37, 41, 42].
The peak Alpha frequencies can vary across subjects [3] and within-subject,
where it tends to shift towards higher frequencies as a function of cognitive load
and channel location [31, 67].

There are only few studies directly linking Alpha oscillations with volition
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and free action. Deiber et al [18] contrasted Alpha oscillations in delayed re-
sponse task between “free” condition (where after precue subjects could freely
decide between left or right hand), “full” condition (where precue indicated the
left or right hand response) and “none”condition (where precue was not infor-
mative, and the cue indicated type of response). They concluded that Alpha
oscillations are only related to strategy of motor preparation, but do not resolve
the mode of action selection (internal decision or external cue). However their
task was different than ours. Participants were choosing between the type of
response, rather than between acting or not acting, and thus the overt response
was always present. Tremblay et al [90] investigated the role of Alpha and
Beta oscillations in internally-generated and externally-cued actions of either
finger movement or speech production. They suggested that mode of action
affects ERD patterns and the Alpha oscillations are more related to attentional
processes, while the Beta band reflects action selection and execution processes.

4.3. Active nature of voluntary non-action
Our results suggest that conscious decision not to act (DNP) is not pas-

sive, but to certain extent involves the same neural processes as decision to act
(DP), which is manifested by closely resembling pattern of Alpha/Beta desyn-
chronization and ERP modulation in DP and DNP (Fig. 3 and Fig. 2). If the
opposite was true, we would expect that any decision related mental processing
is abandoned, and thus cortical activation (indexed by the Alpha/Beta ERD)
would be considerably reduced to the levels observed in Control condition. This
was however not the case, and ERD pattern in DNP was approximately equally
large and prolonged as in DP. Hence, although DNP does not produce an overt
motor response, certain brain processes remain active and result in modulation
of scalp EEG signals. Those processes may correspond to attention to action
selection, conflict monitoring, or mental imagery of the action to be inhibited -
processes inherently linked to decision independent of the final outcome. Our
results are closely in line with fMRI findings reported by Kuhn et al [48], where
they found that rostral cingulate zone (RCZ) was equally activated regardless of
decision outcome. Furthermore, by contrasting decision to act with decision not
to act, they found difference only in contralateral motor cortex. This supports
our lateralized ERD in alpha band, which is present only in DP but not in DNP.

4.4. Inhibition in voluntary decision
During voluntary decision intervals, we observed prolonged frontal ERP neg-

ativity, which was present regardless of the final decision outcome (although
statistically significant only in Go decisions). The negativity lasted approxi-
mately from 500ms to 2000ms (Fig. 2, bottom left). The onset of negativity
coincided with onsets of desynchronization in a broad spectrum including Al-
pha, Beta and Gamma bands (Fig. 7). Notably, γERD was strongest at the
frontal channels and its short temporal occurence coincided with the onset of
ERP negativity. A possible function role of those modulations is active inhi-
bition [23, 91]. Since we observed both the negativity and ERD in both Go
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and NoGo decisions, they can be explained by at least two plausible inhibitory
mechanisms: (1) intentional and permanent inhibition of action in NoGo trials,
and (2) sustained but temporary inhibition of prepared action in the Go trials,
while awaiting for the imperative Cue stimulus. In literature, the frontal neg-
ativity was repeatedly linked to inhibition processes. In Go/NoGo paradigms
involving monkeys, Sasaki et al [82] reported negative potentials over frontal
lobes related to inhibition of the movement. Filipovic et al [23] suggested that
early negative components of ERP (N1 complex) might reflect inhibitory na-
ture of NoGo decision. Several other studies showed that electrical stimulation
of prefrontal cortex in monkeys [83] inhibits or delays the prepared Go action,
and TMS stimulation of dorsal premotor cortex in humans interferes with ac-
tion selection process [79, 84]. In most of those studies the inhibition-related
activity was observed in early period of approximately 100-200ms after stim-
ulus, and was related to immediate motor response. In context of our study
however, the effect is much more dispersed in time, which can be explained
by the fact that decision processes (intention formation) need to occur before
the inhibition takes place, i.e. before implementation of the motor inhibition
processes in NoGo trials, and before implementation of temporary inhibition
of motor response in Go trials. The timing of this internal decision processes
might be longer than the timing of external cue processing in Go/NoGo tasks,
thus rendering inhibition-related negativity in our task delayed and prolonged.
Secondly, inhibition in our Decision interval is related to future action rather
than to immediate motor preparation. Walsh et al [91] in their study observed
Beta power increase when participants in the last moment freely abandoned
voluntarily initiated actions. Similarly, in externally cued Go/NoGo task the
pre-movement Beta rebound was significant only in NoGo condition [95]. In-
deed we observed that although βERD is significant in both our Go and NoGo
trials, it is less widespread and weaker in the NoGo condition (so absolute Beta
power is higher) than in Go condition (Fig. 7), which may correspond to similar
inhibitory effect to that reported by Walsh et al [91].

4.5. Preparatory processes after voluntary decision
We have observed slow negativity potential (contingent negative variation,

CNV) preceding Cue stimulus in the Control condition, when response was not
known, and in DP condition, where the response was predetermined by earlier
decision. However, CNV was abandoned in DNP condition, where the response
was voluntarily inhibited (see Fig. 5) (since no action was planned, obviously
there was no behavioral benefit in either motor preparation for action or sensory
preparation for Go stimulus).

Importantly, CNV did not differ between DP and Control conditions, which
implies that after a decision ’to act’ had been made, the late preparatory activity
for internally generated action is identical to the preparation for an externally
cued, unknown action. Thus the findings from the domain of studies investi-
gating action preparation in context of externally-cued, delayed-response tasks
[20, 24, 26, 85] can be generalized onto internally generated actions, in contexts
where the decision explicitly precedes the action itself.
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In context of motor preparation and attentional expectation of upcoming
stimulus, variations of delayed response Go/NoGo tasks are commonly employed
[20, 24, 26]. In such tasks participants receive a warning stimulus (S1), followed
by delayed imperative stimulus (S2). A slowly accumulating negativity pre-
ceding the imperative stimulus usually by 0.5-3 seconds can be observed at
central and frontal EEG channels, which is known as contingent negative varia-
tion (CNV) [87, 92]. Despite its apparent similarity to readiness potential (RP)
[53], CNV reflects distinct phenomena. While RP is related to motor prepara-
tion and can occur without external stimuli [53, 89], CNV is related to attention
and expectancy of upcoming imperative stimulus and is present even if overt
motor response is not required [80]. Usually however, the late part of CNV will
contain both lateralized RP and stimulus preceding negativity [10], where the
amplitude of the former depends on parameters of the motor response and the
latter on expected informativeness of stimulus. In context of externally-cued
response preparation, late CNV is larger in Go than NoGo condition [22, 85]
and correlates positively with reaction times.

Increased Theta oscillations has been shown to be relevant to episodic mem-
ory [43] and memory storage and retrieval [21, 44]. The frontal Theta power
correlates with working memory load [38]. We observed that Theta power was
higher in our DNP condition, where the action was intentionally inhibited, than
in DP and Control conditions (Fig. 7). The Theta modulation commenced ap-
proximately 1 second before the imperative Cue stimulus, and dominated at
centrofrontal and frontal areas. It may suggest that intentional non-action,
which was less frequent choice than intentional action (participants freely chose
’to act’ on average in 61% of trials), involved more actively the working-memory
encoding and retrieval. It is plausible that participants focused on remembering
to inhibit the default action (up-regulation of theta oscillations), while at the
same time contributing less attentional resources to the expectation of upcoming
’Go’ cue (reduced CNV negativity). Sustained Theta modulation could be inter-
preted as a trace of active inhibition, or retrieval of information about the inhibi-
tion from the working-memory. Beta oscillations were higher in DNP condition
than in DP conditions in the interval directly preceding Cue stimulus, which can
indicate intentional late inhibition of action. As such, our late Beta modulation
could correspond to P. Haggard’s late component of “whether” decision [32],
and would closely correspond to inhibition-related Beta modulation reported
by [91], where subjects were internally generating free-paced movements and,
in some of the trials, intentionally inhibiting them in the last moment before
execution. A similar Beta increase effect was reported in context of externally
cued NoGo stimulus [95] There is also another plausible explanation of reduced
Beta and Gamma oscillations in DP condition, in the interval directly preceding
action. Several studies have shown broadband reduction of power during expec-
tation for imperative stimulus in delayed response tasks [26, 27]. Such a global
decrease of oscillatory activity is believed to increase cortical excitability and
thus facilitate processing of the target stimulus and related actions. Thus it is
reasonable that we observe such a broadband desynchronization in our DP trials
(where motor action is predetermined by earlier decision and stimulus contents
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is effectively a “Go” signal) and in Control trials (where motor action might
or might not occur depending on stimulus contents), but not in DNP (where
action is intentionally abandoned in earlier decision, and stimulus contents is
irrelevant). Finally, it is known that both free-paced and externally-cued move-
ments are preceded by lateralized Alpha/Beta ERD, followed by bilateral ERD
during movement initiation and Beta rebound shortly after [40, 65, 72, 75, 89].
Those motor related components can account for the lateralized Beta ERD pre-
ceding action and contralateral Beta ERS following action in our DP and CP
condition, but not in DNP (Fig.7 and Fig.6).

In summary, although we observed numerous differences between volun-
tary action and voluntary non-action in the action preparation interval (CNV,
broadband lateralized ERD, post-movement Beta ERS), we found no differ-
ences between preparation for voluntary action (DP condition) and preparation
for unspecific externally-cued action (CP condition). This indicates that ac-
tion preparatory processes following voluntary decision “to act” are completely
equivalent to preparation for externally-cued action. On the other hand, vol-
untary decision “not to act” results in withdrawal from motor preparation, yet
preserves the trace of active inhibition in form of prolonged, increased Theta
power.

4.6. Behavioral results and EEG/RT correlations
For every participant, we observed an approximately 100ms faster reaction

time in DP condition than CP condition. This is not unexpected finding, con-
sidering that in Decision conditions response was predetermined by participant’s
prior choice, while in Control condition participants needed to map the response
(press or do not press the button) to the color of imperative stimulus, which re-
quired additional semantic processing and thus resulted in increased RTs. The
difference is similar to analogous reported in Deiber et al [18]. The absolute
reaction times in our DP and CP conditions are only slightly larger to those
reported in other studies [18, 26], in conditions with informative S1 or S2 re-
spectively. The larger reaction times could be due to considerably longer interval
between Precue and Cue in our study (4.4-4.6s) and more explicit distinction
between preparation, retention and action. Furthermore, the shorter reaction
times in DP condition as compared to CP constitute a fine validation of the
paradigm, by confirming that participants indeed had made their decision prior
to the imperative Cue.

Interestingly, for every participants we observed behavioral biases in volun-
tary Decision condition, with clear preference ’to act’ over ’not to act’. The
average asymmetry of choice was 61%, with minimum of 51% and maximum
of 74%. In another study (in preparation) we observed similar low-level be-
havioral biases in spatial choices (preference to ’right’ over ’left’) and temporal
domain choices (preference to ’earlier’ over ’later’). Importantly, those biases
are emerging entirely from participants free binary choices, and are not influ-
enced by experimenter’s feedback or instructions. The participants are merely
instructed to take new, independent, binary decisions in every trial, and avoid
planning ahead. Participants remain unaware of the regular bias governing their
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choice. Thus, it seems that a certain fraction of variance in human voluntary
action can be explained by low-level behavioral preferences.

In order to investigate potential relations between main EEG effects and
behavioral measures, we performed correlational analysis between αERD, CNV
and reaction times.

Correlations between CNV deflection and RTs were already investigated in
literature [22, 56], however results were not always converging (for a review see
Smith et al [85]). In our study we found that only in the externally-cued CP
condition, the significant CNV-RT correlations were observed. In CP condition
participants needed to process the semantic meaning of Cue stimulus to deter-
mine whether the action is required or not. The effect was robust and spanned
over nearly all central and fronto-central channels. The fastest responding par-
ticipants had more negative deflection of CNV (Fig. 8, top panels). Interestingly,
CNV did not correlate with RT in internally-driven DP condition, where partic-
ipants action was already determined by their prior voluntary decision. Those
results suggest, that CNV magnitude affects primarily the efficiency of sensory
processing of informative Cue stimulus and response mapping, rather than ef-
ficient implementation of motor response [78]. If the opposite was the case, we
would expect CNV-RT correlation to occur regardless of the mode of action
selection (DP or CP).

Secondly, we were interested whether the maximum desynchronization of Al-
pha power in the Decision interval min(αERD), which is the dominating effect
discriminating voluntary decision trials from control trials, affects the reaction
times. We found that only in DP condition αERD was correlated with RTs, and
the effect was robust over majority of parietal and central contralateral chan-
nels (Fig. 8, middle panels). In externally-cued CP condition, no significant
correlations between αERD and RT were found. There are several plausible
explanations of this effect. Firstly, αERD might represent efficient encoding of
preplanned motor program for the future use. This hypothesis is further sup-
ported by contralateral distribution of correlating channels. Secondly, αERD
could reflect a general level of arousal and thus the commitment of individu-
als to their internally-selected actions, which by reducing the entropy of action
outcome may lead to shorter reaction times. Finally, αERD can be also rele-
vant to efficient encoding of planned action in working-memory system, which
would then facilitate the retrieval and implementation of motor command after
the onset of imperative Cue stimulus. Increased Theta and Alpha power was
previously shown to correlate with working-memory load [21, 38]. Although
the load imposed by our task on working-memory system is not large (a binary
decision between action or non-action), it is important to note that participants
performed the task repeatedly in 480 trials. Thus certain level of encoding effi-
ciency is obviously necessary to avoid confusing the current trial decision from
multitude of similar simple choices performed earlier.
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5. Conclusions

We investigated EEG signatures of the neural processes related to voluntary
decisions “to act” or “not to act” in context where respective motor response are
postponed in time. Our results suggest that the occurrence of voluntary deci-
sions can be detected by scalp recordings, and distinct spatio-temporo-spectral
patterns can distinguish between early intention “to act” or “not to act”.

The statistical analysis of broad time-frequency spectrum and event-related
modulation suggest the following chain of neural events. The decision is man-
ifested by prolonged, global desynchronization of Alpha and Beta oscillations,
dominating in parietal areas. Only in decisions “to act”, the Alpha and Beta
desynchronization becomes significantly lateralized, and this process is assisted
by brief modulation of Gamma oscillations. The role of Alpha seem to be a
critical biomarker of ongoing processes related to conscious decision, while its
spatial distribution can suggest a presence of the motor preparation/imagery
processes related to a prospective action.

In the retention interval the EEG modulation differs depending on whether
participant decided “to act” or “not to act”. In case of decision “to act”, motor
preparation processes start along with attentional expectation of the imperative
stimulus, which is manifested by slowly increasing CNV broadband, lateralized
desynchronization from Alpha to Gamma band, in the last moments preceding
action. The latter processes may reflect global increase of cortical excitabil-
ity preceding intended motor command. Finally, the action implementation is
manifested by desynchronization in Alpha/Beta bands, followed by contralateral
Beta rebound.

In case of decision “not to act”, Theta band oscillations are considerably
increased, which seem to encode the trace of active inhibition, or memory trace
of the inhibition requirement. Increased Theta is accompanied by nearly aban-
doned CNV negativity and lack of spectral desynchronization, which suggests
decrease of the expectation for imperative stimuli (no action needed, thus no
behavioral benefit in preparing for perception and action), and ceased prepara-
tion of motor program. Also the absence of of the Beta rebound suggests early,
rather than late, abandonment of action preparation.

In brief, modulation of Alpha, Beta and Gamma oscillations seem critical to
voluntary decision processes including intention formation regarding prospec-
tive action, while slower oscillations in Theta and slow accumulating negativity
(CNV) manifest retention of decision in working-memory and preparation of
respective, intended motor action or inhibition.

Dominating Alpha ERD in decision interval might reflect at least two cat-
egories of neural processes: (1) motor-related preparation/inhibition of action
(manifested by lateral αERD and fronto-central γERD), and (2) cognitive com-
ponents related to conscious act of volition and introspective attention to that
act (manifested by global, bilateral, prolonged αERD).
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Abstract

The nature of volition and free-will has long been investigated by neuroscien-
tists and philosophers of mind. Decisions about future actions are not always
unitary, but instead may tackle particular aspect of the prospective action,
such as timing, type of response or choice of whether to commit to an action
or withstand. Growing evidence from neuroimaging studies suggests that dif-
ferent types of decisions may involve distinct neural substrates. In this EEG
study we focus on temporal and spectral characteristics of three different types
of voluntary decisions, in a paradigm involving continuous driving of a simu-
lated car through a virtual environment. We show that voluntary decisions are
manifested by broadband Alpha-Gamma desynchronization patterns, however
the timing, magnitude and spectral contents of the modulation is not identical.
Furthermore we show that human free choice is consistently biased by low-level
behavioral preferences, which can explain part of the variance of “free action”
outcome.

Keywords:
voluntary action, virtual environment, intention formation, alpha oscillations,
presupplementary motor area (preSMA), electroencephalography(EEG)

1. Introduction

Understanding of the nature of human “free action” has a profound signif-
icance not only from the philosophical standpoint [5, 56], but also in domains
such as legal system and responsibility [56], clinical practice and treatment of
disorders of volition [8, 45, 67] and cognitive neuroscience [26, 47, 68].
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Rather than assuming a causal power of conscious will, the modern neuro-
science of volition is based on the premise that “mental states rest on brain
processes”, and hence by measuring spatial and temporal correlates of volition
in strictly controlled experiments we can infer about their underlying mind
processes, including concepts as intriguing as “free will” and “consciousness”.
Although subjective report from the participants is often of interest (such as
the perceived time of “urge” to move), it can be often circumvented by the ex-
perimental design. With this EEG study we intend to contribute to the current
understanding of the dynamics of the processes involved in voluntary decisions
about prospective actions, in a paradigm where the participants drive simu-
lated car through a Virtual Reality (VR) environment and repeatedly take free
choices regarding further route, in explicitly marked time intervals.

A lot of research efforts has been made to identify the neural circuitry in-
volved in voluntary action. Two fundamental modes of action selection are
often compared in the literature - the internally-generated and externally-cued
actions, in experiments involving fMRI [14, 15], PET [16, 31], EMG [57] and
EEG [17, 74, 78] modalities. One could argue that the internally-generated
actions are just a particularly intricate version of the externally-cued actions,
where decision is determined not only by neural representation of the early
sensory inputs but also by the representation of prioprioceptive-, memory- and
emotional states. However, it was repeatedly showed that the two modes of
action selection have different temporal characteristics [74, 76, 78] and involve
distinct neural pathways [14, 16, 31, 43]. The volition-related network consists of
supplementary motor area (preSMA), prefrontal cortices (ACC, RCZ, DLPFC)
and basal ganglia. The second network, corresponding to sensory-guided and
stimulus-driven actions, starts in early sensory areas, followed by parietal cor-
tex and sensory integration areas, projecting then to the lateral premotor areas.
Both pathways terminate in primary motor cortex (M1) which is the final stage
before the efferent motor command is sent down the spinal tract to the muscle
terminals [61]. Regardless this distinction, in practice it is not always possible
to categorize an action as entirely external or internal. Internally-generated ac-
tions will often require sensory guidance, while externally-cued actions will need
a voluntary component for initiation (or disinhibition) of the motor preparation
and execution. Thus the distinction is not exact nor mutually exclusive and
in practice almost every action (with exception of spinal reflexes) will involve
to certain extent both mechanisms [78] and as such may activate both path-
ways [14, 54] in coordinated manner. Finally, the role of sensory areas and its
connections to the premotor areas might be relevant for voluntary action. The
formation of forward models of intended action [52], as well as matching the pre-
dicted effect of motor command (prospective prediction) to the afferent sensory
feedback (retrospective check) might be critical for the emergence of the feeling
of agency [27] and perhaps for the experience of the volition and conscious will
[79].

Brass and Haggard [9, 26] proposed a conceptual framework explaining a
voluntary action as a composition of What, When and Whether components,
each describing different aspect of intended action . Those components account

2



for the type, timing, and initiation/inhibition of the action respectively. The
Whether component can be further divided into the “early” and the “late”
components [26], where the former reflects decision to engage into action prepa-
ration or not, while the latter corresponds to the final validation and to the
capacity to inhibit the preprepared action. Importantly, it has been shown in
several fMRI studies that the three components may recruit partially distinct
functional networks and have different neuronal realization [9, 29, 42, 71]. This
suggests that electrophysiological dynamics, measured as the timing and spec-
tral content of EEG responses, should also differ forWhat,When andWhether
decisions. Validation of this hypothesis is one of the motivations for our study.

The nature of voluntary action has been repeatedly probed with EEG, and
electrophysiological recordings in general, mostly in the context of free-paced
action. In that context the slow, negative readiness potentials (RP) are known
to precede not only the action itself but also the conscious awareness of the
intention to act [28, 46, 47]. However, there are only few studies investigating
spectral contents of voluntary decisions, and those are confined either to one
particular type of decision or to arbitrary frequency bands. The voluntary
inhibition has been shown to be reflected by Beta power modulation [77] and
high-frequency Gamma (>40Hz) oscillations were reported to be involved in
range of sequential processes related to preferential, voluntary decision making
[24]. Alpha (8-13Hz) and Beta (16-30Hz) oscillations have been well studied in
context of externally cued action preparation [19, 63, 75] but it remains unclear
whether they distinguish internally-generated from externally-cued actions [17,
76]. To our knowledge, there are no reports of detailed comparison of different
decision components in temporal and time-frequency domains.

Cortical oscillations and cross-frequency interactions may reflect the fun-
damental mechanisms of neural computation and effective integration of infor-
mation across multiple spatiotemporal scales [11, 12, 48, 49]. Different brain
rhythms and interactions between them have been associated to perception,
cognition and sensorimotor function [1, 12, 36]. Modulation of Theta(3-7Hz)
and Alpha (8-13Hz) rhythms was linked to central executive function [13, 36],
working-memory load [33] and attention [37]. Alpha synchronization may repre-
sent top-down inhibitory control, while Alpha desynchronization reflects grad-
ual release of inhibition over the task-relevant areas [39]. Given that alpha
guides the attention, correlates with behavioral performance and allows mem-
ory and knowledge base access, it may be considered as a rhythm reflecting
the most fundamental cognitive processes [37]. Besides its cognitive role, Al-
pha/Mu (8-13Hz) along with Beta (16-24Hz) oscillations are also recognized as
main rhythms of motor function [3, 19, 40, 41, 62, 65, 66], both if movement is
generated as response to stimulus or free-paced. Broadband reduction of power
in range from Theta(3-6Hz) to Gamma(>40Hz) is observed during preparation
to externally-cued action in delayed response Go-NoGo tasks [20, 21], and as
such can reflect global preactivation of sensorimotor cortices and attentional
orienting. Desynchronization of Alpha and Beta rhythms is stronger in Go than
in NoGo condition [2], and can be lateralized if precue carries sufficient informa-
tion about parameters of the requested action [19]. Moreover, Alpha and Beta
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oscillations are modulated by motor imagery [51] and may correlate with acti-
vation of mirror neuron system during action observation [55], either of which
can be reflected in decision processes. Beta bursts are also relevant to externally
[41, 81] and internally [77] generated inhibition of action. Oscillations in higher
frequency bands can also be relevant to volition and free action. It has been
shown that distinct gamma modulation over different cortical areas encode sub-
sequent stages of preferential choices and free decisions [24]. Gamma play role
in execution of motor function [63, 64] and is relevant for memory and attention
[34]. Considering the broad involvement of neural oscillations in realization of
the cognition and motor function, it is very plausible that brain oscillations and
selective modulation of spectral power (ERD/ERS) are the fundamental mech-
anisms underlying certain aspects of voluntary decisions, which motivated the
methodological choices in our study.

In this EEG study we investigate voluntary decisions in a paradigm involv-
ing maneuvering a simulated car through a landscape of a dedicated Virtual
Reality (VR) environment. By replacing the standard pictogram-based with
the VR platform we intended to provide a natural, semi-realistic experience and
thus reinforce the natural decision processes, while minimize the problems of
monotony, fatigue and random-sequence generation [30]. Furthermore, a car
driving paradigm is a suitable and naturally appealing setup for the purpose of
investigating the differences between distinct components of voluntary decision.

We are interested in comparing three types of voluntary decisions about
prospective action, along the taxonomy proposed by Brass and Haggard [9], i.e.
What to do (left or right side-road),When to act (first or second side-road) and
Whether to act (turn or no turn). Notably, ourWhether condition corresponds
to “early Whether” discussed above. On the other hand, our When condition is
externally paced and involves a decision about timing of a future action. In this
sense, our When condition involves selection between two temporal options,
similarly like What condition involves selection between two spatial options.
Thus our When condition differs subtly from the When component discussed
by Brass and Haggard [9], where When decision is free-paced and initiates
action in internally determined time moment. Furthermore it is important to
emphasize that there was no reward nor incentive in our paradigm to favor one
choice over another.

In our paradigm, the time intervals for decisions are determined and pre-
cede the motor execution by jittered intervals of approximately 4-10 seconds.
The motivation for such paradigm is twofolds. Firstly, in daily situations it is
common that voluntary decision about action does not result in instantaneous
implementation of the respective motor command, but often in formation of
intention to perform a given action in future, where the delay can range from
seconds to days. Secondly, other paradigms which involve a free-paced volun-
tary action, and thus do not specify the exact timing of decision, face at least
two main challenges. Firstly, the neural processes of action selection and inten-
tion formation may be confounded by immediately following processes of action
preparation and motor implementation. Secondly, in case of voluntary decision
not to act, there is no overt response and thus it is difficult to localize in time
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the onset of neural processes corresponding to intentional non-acting, or inhibi-
tion. Our paradigm resolves those two major issues by (1) time-locking decision
to visual cues (car crossing through a tunnel), and (2) imposing jittered inter-
val of several seconds between decision (intention formation) and action (motor
preparation and execution).

We expect that, given the broad functional and cognitive meaning of neural
oscillations in Theta-Gamma range reported in literature (as discussed earlier),
it is very plausible that interplay between those broadband oscillations might
also play a critical role in effectuating and synchronizing the neural processes of
voluntary decisions. Thus we expect selective modulation of oscillatory power to
be present in the intervals corresponding to voluntary decisions. Secondly, given
growing evidence from other studies indicating that different types of voluntary
decisions are mediated by partially distinct neural pathways [9, 29, 71], we
expect the dynamic brain responses to differ accordingly across What, When
and Whether decisions, in terms of the timing and the spectral contents of the
EEG response.

2. Methods

Participants Fifteen healthy adult student were recruited for the study (7
females) and each participated in three experimental sessions on three different
days. The mean age was 24.7 (std=2.3). All participants were informed about
the purpose of the study and signed an informed consent, in accordance with
ethical requirements of the local committee.

Experiment All the participants took part in three experimental sessions on
three different days. Each session consisted of multiple blocks in which partici-
pants were instructed to take various voluntary decisions in respect to driving a
car through a virtual environment. The EEG, EMG and ET data was acquired
simultaneously. Before the first session, structural T1-weighted MR image of
the participants head was acquired. After each session, the electrode positions
were measured with Localite Neuro-Navigation system. Finally, the partici-
pants filled a short questionnaire related to their performance and experience
from the experiment. The scheme is presented in the Fig. 2, while the details
of the task and experimental design are discussed in detail below.

Virtual environment We have designed and implemented a dedicated Virtual
Reality (VR) environment for neuroscientific studies of cognition. The plat-
form was designed in a modular fashion, separating the experimental design
(Matlab based, XML specification of experiment) from the implementation
and visualization layers (C#, JavaScript and Unity3D engine), and as such
can be easily adapted to studies of volition, action preparation, attention, etc.
Furthermore, the VR has been tested in experiments involving EEG, Eye-
tracking and fMRI modalities, as well as closed-loop BCI mode. While the
feasibility assessment and the detailed description of the VR are reported else-
where (in preparation), below we will describe its adaptation to the current
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Figure 1: Virtual Reality (VR) design and synchronization with multi-modal data. A set of Matlab
scripts specifies experimental design, i.e. sequence and timing of trials, shape of roads, position of
crossroads, etc (top left). For each block of experiment, one Unity3D game is compiled, based on the
specified experimental design (top right). During the cognitive experiment, fast encephalographic
data from participants scalp and eye-tracking data are acquired (mid-right), which are synchronized
with the game events by hardware triggering. Prior to the main experiment, structural MR images
of participant brain are recorded with Philips 3T scanner (bottom left). EEG signals can then
coregistered offline with structural MR images by means of 3D electrode position measurements
(Localite Neuro-Navigation system).

study of voluntary decisions. The Fig. 1 presents an overall block diagram of
the VR platform and the data flow scheme, while the Fig. 3 illustrates the
experimental setup and trial structure.

Task A session consists of multiple VR games (blocks) with breaks in be-
tween. In each of the games the participant continuously drives a simulated
car through subsequent sceneries (trials) which are connected by tunnels. In
every tunnel the participant takes decisions regarding her action in the next
scenery (for instance, decision between turning into the left or into the right
side road). After leaving the tunnel, the participant turns into the appropriate
side road, following her earlier decision. Importantly, the car follows the roads
automatically and the participant input (button press) is only required when
she intends to turn into a side-road.

Conditions Every game (block) is randomly assigned one of the four condi-
tions, three of which correspond to different types of voluntary decisions and
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Figure 2: The participants took part in three sessions on three different days, each session was
composed of 10, 10 and 8 blocks respectively. The conditions (types of decision to be taken) were
assigned pseudo-randomly to the blocks. The first session was preceded by structural T1-weighted
MR image acquisition. Each session was followed by electrode position measurements and a short
questionnaire. Exemplary sequence of blocks for one of the participants is presented.

one to the control condition, where no decision is taken:

W hat Voluntary decision about W hat action to perform. In the tunnel, participant decides
between left or right side-road, without knowing which side road would occur first
(spatial decision)

W hen Voluntary decision about W hen to act. In the tunnel, participant decides between
first or second side-road, without knowing if it will be left or right turn (temporal
decision).

W hether Voluntary decision about W hether to act or not. In the tunnel, participant decides
between turning into the first side road (action) or passively driving straight (no overt
action).

Control No voluntary decisions. Participant passively observes the car, which automatically
and randomly turns into side roads or drives straight.

Decision Voluntary decision in general, any of W hat, W hen or W hether conditions.

Block design and randomization The experiment has a block design, where
each block corresponds to one of the conditions specified above. Each partici-
pant performed 3 sessions on different days, consisting of 10, 10 and 8 blocks
respectively. Each block contained 32 trials (repetitions) of particular condi-
tion (see Fig. 2). Thus, in total 840 trials were acquired from each participant
(210 trials per condition). Critically, we have automatically generated pre-
cisely 210 possible template layouts of the VR environment. Each of those
templates corresponds to one trial and is used exactly once in each experi-
mental condition. The trials are assigned to blocks in random order. The
order of blocks (conditions) is also randomized (see Fig. 2, colored blocks).
In this way we excluded the possibility of hidden biases imposed by rich vi-
sual stimulation, when comparing conditions in later analysis. Trials lasted
approximately 13 seconds, blocks 7 minutes, and entire session approximately
80min. Participants could freely decide upon duration of the breaks between
the blocks.

7



Trial structure Every trial (one of 210 possible templates) starts with a tun-
nel. Following the tunnel, open-air scenery shows up with a gently curved road
leading to another tunnel (see Fig. 3, top panels). Along the road, there are
two side roads, one leading to the left and one leading to the right. Their order
is randomized. Side roads are marked by two symmetrically place road signs
indicating turn possibility. Each of the side roads leads to another tunnel. Re-
gardless which of the three routes participant chooses (left, right or straight),
after reaching the ending tunnel the car will be transparently relocated to the
entry tunnel of the subsequent trial (Fig. 3, top-middle panel). As a result, the
sequence of trials (sceneries) if fully determined by experimental design, even
though participants have subjective feeling of ’continuous navigation’ through
the environment. Duration of trials (13.5 ± 1.0s), as well as onsets of the first
(5.5±0.04s) and the second (9.4±0.06s) side roads are jittered by experimen-
tal manipulation and the physics of the car. However, the average duration of
trial is equal regardless which route is taken, that is, participant gets no time
benefit in taking one choice over another.

Tunnel - voluntary decision interval The critical point in the study is the
construct of the tunnel. The tunnels mark the time interval when the actual
decision processes are taking place regarding voluntary action. In tunnels, par-
ticipants are supposed to stabilize their gaze on the fixation cross (as opposed
to the rest of the game, where they can freely move their eyes). Furthermore,
the visual field is stable and strongly constrained by dark, dense fog (Fig. 3,
top-right panel). The onset and the midpoint of a tunnel are marked by two
horizontal white lines on the road surface. Participants are instructed to take
decision (specific to current condition, as explained earlier), as soon as the car
crosses the first white line, marking the entry of the tunnel. Decision should
be accomplished within 1.95 ± 0.025s, which is indicated by the second white
line inside the tunnel.

Scenery - voluntary action interval After subsequent 1.2 ± 0.025s the car
leaves the tunnel. Depending on the earlier decision, participants awaits for
the appropriate side road and executes the proper action (turn or not). The
action is executed by pressing a key with left or right index finger within the
natural interval of -2s to -0.5s before approaching the respective side road.

Instructions The main guidelines and instructions were given before starting
the experiment. The participants were informed about the goal of the study,
structure of the VR environment and details of the task. In particular, it
was emphasized that decisions should be quick, spontaneous and independent
in each tunnel. Participants should avoid pre-deciding, planning ahead and
changing their mind after decision has been made. They should fixate gaze on
the fixation cross while driving through the tunnels.
Before commencing the experiment, the participants performed short train-
ing session to get accustomed with the task, timing and the environment.
Moreover, after each session, participants filled a simple control questionnaire
ensuring they obeyed and understood the instructions.
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Figure 3: Experimental design and data analysis overview. Panel A: In each trial the participants
take voluntary decisions while passing through a tunnel and perform the respective action a few
seconds later, upon approaching the appropriate side road. Panel B: Each trial starts with the
tunnel and has two side-roads denoted by symmetrically positioned road signs. The side-roads
terminate with tunnels leading to the same destination trial. The participants have a feeling of
continuous navigation through the environment, however the sequence of trials is experimentally
controlled. Panel C: The decision interval of duration of 2 seconds is delimited by the tunnel
entry and the moment when fixation cross crosses the white line on the road. Panels D and
E: The decision interval (characterized by stable, foggy visual field) is submitted to the statistical
tests presented further. The event-related potentials (ERP, panel D) and time-frequency maps (TF,
panel E) specific to distinct Decisions and the Control condition will be compared to determine the
EEG signatures of voluntary decisions. Pre-tunnel intervals will be used as a baseline, as specified
later.

Critically, the experimental conditions differed only in terms of instructions
presented visually to participants at the beginning of each block. The specific
condition-related instructions informed which type of decision participant is
supposed to repeatedly take in the course of the subsequent 32 trials. Partic-
ipants were also reminded to take independent, spontaneous decisions, avoid
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pre-deciding, planning ahead and changing their mind after decision had been
made.

Data acquisition EEG data was acquired with Biosemi ActiveTwo system
with 128 active electrodes. Two reference electrodes were positioned on left
and right mastoids. Electromyographic (EMG) signals from the left and right
index fingers were recorded with surface bipolar electrodes positioned at the
first dorsal interosseous muscles. All data were amplified and digitized at
sample rate of 512Hz. Continuous stream of visual stimulation (virtual envi-
ronment) and button-press responses were synchronized with EEG signals via
parallel port triggering. Apart from EEG data, the eye-tracking (ET) data was
acquired with SMI Red system with sampling rate of 120Hz, and synchronized
with EEG signals by the same hardware triggering mechanism. Additionally,
the structural T1-weighted magnetic resonance images (sMRI) were acquired
before the first session for each of the subjects. Positions of Biosemi electrodes
were measured with Localite Neuro-Navigation system and coregisterred with
anatomical images. The ET and sMRI data will be presented elsewhere (in
preparation), while in this article we focus on EEG and behavioral results only.
The scheme of the hardware configuration and the experimental data flow is
presented at Fig.1.

EEG data preprocessing One participant was excluded from further analy-
sis, as due to medical reasons he could not participate in MR acquisition which
was a part of data acquisition protocol. The EEG data from the remaining
14 participants (42 sessions) were referenced to averaged mastoids reference
channels, bandpass-filtered at 0.2-100Hz and downsampled to 256Hz. Long
trials were extracted from 2.0 second before till 13.0 seconds after the Tun-
nel onsets, thus covering the entire interval of task-relevant events including
decision, retention, action preparation and execution. The average amplitude
of the baseline from -2000ms to -1000ms preceding the Tunnel onset was sub-
tracted from each trial. The interval from -1000ms to 0ms was not included
in baseline calculation to avoid inclusion of the confounding slow negative po-
tential (CNV) preceding the Tunnel onset (Fig. 3 and Fig. 5).
Noisy channels were interpolated and the remaining noisy epochs were cleaned
by thresholding (moving window 500ms, threshold 120uV). Infomax ICA was
computed on the precleaned datasets [58]. ICA components corresponding to
eye blinks, eye movements and local noise were removed from data (EEGLAB
[18] and ADJUST [53] toolboxes). Final visual inspection was performed to
ensure that no noisy epochs remained. In total, on average 17.6 epochs (out
of 300) were removed from each session dataset, and 4.2 channels (out of 128)
were interpolated. ICA components accounting for 59.8% of total variance
were corrected for, most of those related to eye-blinks and eye-movements.
Depending on the block type (decision What, When orWhether) and partici-
pants choice (Left or Right, First or Second, Turn or NoTurn), each trials was
labeled accordingly, so that different contrasts can be analyzed in subsequent
analysis.
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Event-related potential (ERP) analysis To investigate evoked activity, all
the single trials corresponding to different decision/outcome were averaged sep-
arately. Then, for the purpose of comparing decision related activity, the in-
terval from -1500ms to 3000ms, time-locked to the Tunnel onset was extracted.
The interval accounted for both visual components and cognitive components
related to voluntary decision. The ERP data was downsampled to 64Hz for the
purpose of statistical comparisons, thus the final epoch-averaged data for each
condition and participant had the size of (128 channels x 288 time samples).
These data were submitted to further statistical tests (as discussed later), and
used for visualization of temporal (ERP traces) and spatial (ERP topomaps)
distribution of EEG activity.

Time-Frequency(TF) analysis To investigate induced activity and event-
related changes in spectral power we used Morlet wavelets to decompose chan-
nel data into time frequency (TF) representation. The TF information was
computed for each channel and epoch at the frequency range 4-80Hz with
a step of 2Hz. Time window varied from 750ms at the lowest frequency (3
wavelet cycles) to 190ms at the highest (15 wavelet cycles). The temporal res-
olution of decomposition was set to 50 samples/seconds. The decomposition
was performed after the cleaning procedure, on the trial subintervals directly
surrounding the decision interval, i.e. from -1500ms to 3000ms, time-locked
to the Tunnel onset. The time-frequency maps were baseline corrected for the
interval from -1000ms to -500ms directly preceding the Tunnel onset. The
final epoch-averaged time-frequency data for each condition and participant
had size of [128 channels x 38 frequency bands x 158 time samples). The
three-dimensional time-frequency information were subsequently submitted to
nonparametric cluster-mass permutation tests, in order to evaluate statisti-
cally significant regions of desynchronization (ERD) or synchronization (ERS)
of cortical oscillations. The TF data were also used for visualization of event-
related spectral power perturbation (ERSP) in physiologically meaningful fre-
quency bands, in particular the Alpha (8-13Hz), Beta (16-30Hz) and Gamma
(50-80Hz) ranges.

Statistcal tests In all performed statistical tests, the multi-channel data series
from Decision and Control conditions were submitted to repeated measures,
two-tailed cluster-mass permutation tests [10, 50], as implemented in Field-
trip toolbox [59]. The tests were performed on (1) two-dimensional, averaged,
multi-channel ERP amplitudes and (2) three-dimensional, averaged, multi-
channel time-frequency maps. In all cases, family-wise alpha level was set to
0.05. All 128 electrodes and all the time points corresponding to the inter-
vals of interest (as described above) were included in the tests. In case of TF
data, entire spectrum from 4-80Hz was used in the comparisons. The elec-
trodes within distance of less than 5cm of one another were considered spatial
neighbors, yielding in average 7.8 neighbors per electrode. For each compari-
son, repeated measures t-tests were computed using the original data and 1000
random within-participant permutations. For each permutation, all t-scores
corresponding to uncorrected p-values lower or equal to 0.05 were combined
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Figure 4: Behavioral biases in voluntary decision. Left panel: Number of choices inWhether(red),
What(green) and When(blue) condition. Mean values (solid line), standard deviations (shaded
area), and individual participant scores (gray dots) are presented. All participants displayed be-
havioral preferences to the Right turn over the Left, to the First side road over the Second, and to
the Turn choice over the No-turn choice. Right panel: Probability of participant repeating her
previous binary choice. Considerable bias to flip the choice can be observed for the majority or
participants.

into clusters. The mass of each cluster was computed as the sum of the t-scores
within that cluster. The highest cluster mass in each of the tests was used to
estimate the distribution of null hypothesis.
This type of statistical tests allowed us to account for all the available data,
without any a-priori constraints to either temporal or spatial extension of po-
tential effects. Thus we minimized the need for subjective choices, while main-
taining weak control of the family-wise alpha level (i.e., correcting for very
large number of multiple comparisons). Cluster-mass permutation tests have
been shown to perform well in exploratory studies and in case of broadly dis-
tributed ERP/ERSP effects [23, 50] by accounting for high temporal, spectral
and spatial correlations inherent to high resolution EEG data, which is their
fundamental advantage.

3. Results

The following notation will be used to denote experimental conditions (dif-
ferent types of decisions and the intentional outcomes):

What ’what’ type of decision, free choice between left and right sideroad
When ’when’ type of decision, free choice between first and second sideroad
Whether ’whether’ type of decision, free choice between turning or not turning
Control control condition, participants are passive and do not make any choices

.

Behavioral data - choice asymmetry In all decision conditions, consider-
able asymmetry of choice was observed. The results are generated based on all
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single-trial choices. In total 8820 were performed, 2940 for each decision type,
210 by each participant. Number of omission errors was negligible (<1%).
In the Whether condition, the participants preference to turn rather than
abstain from turning (p<0.001). The mean asymmetry was 60.1% (std=2.8%),
meaning that on average participants chose to turn in 60.1% and abstain from
turning in 39.9% of trials. The most biased participant had asymmetry of
65.2%, while the least biased 55.6%.
In the What condition the participants displayed a preference to turn right
rather than left (p=0.009). The mean asymmetry was 54.2% (std=5.1%). The
most biased participant had asymmetry of 62.4%, while the least biased 44.2%.
In theWhen condition, the participants displayed a preference to turn into the
first side road rather than into the second (p<0.001). The mean asymmetry
was 56.5% (std=4.4%). The most biased participant had asymmetry of 63.9%,
while the least biased 47.5%.
Detailed asymmetry results are presented in the Fig. 4, left panel.

Behavioral analysis - choice predictability Predictability of the choice on
trial-to-trial basis was modeled with a simple, first-order Markov process. The
model estimated a probability of participant repeating her last binary choice
(for instance, probability of choosing left turn if the previous choice was also
toward left, inWhat decision condition). The value of 0.5 corresponds to ideal
randomly generated sequence, values below 0.5 indicate that participant had
tendency to flip the choice (e.g. left-right-left-right-...), while values above
0.5 indicate that participant had tendency to repeat the previous action (e.g.
left-left-left-left-...).
On average, probability of participant repeating her choice was 0.43 (std=0.10).
Only one of the participants had considerably reverse tendency (0.59), and
five others were close to 0.5 value. Remaining eight participants had a strong
tendency to flip their choice. The most extreme individual score was 0.25,
indicating that mere observation of choice sequence of that participant would
allow to correctly predict her next trial choice with 75% chance of success.
Individual predictability values are presented in the Fig. 4, right panel.

ERP results The spatial and temporal extension of the ERP differences be-
tween What, When, Whether and Control conditions are presented in the
Fig. 5.
The nonparametric cluster permutation tests were performed on the multi-
channel ERP traces from 128 channels and covering the time interval from
-1500ms to 3000ms, where the subinterval of 0ms to 2000ms corresponds to
the Decision interval.
The comparison of What with Control revealed an early positive ERP effect
(p=0.04). The post-hoc inspection of the cluster suggests the effect occur in
the time interval from 380ms to 550ms, and was widespread over 113 out of
128 electrodes (Fig. 5, top panel). The amplitude was highest at the central
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Figure 5: The ERP signatures of different decision types, obtained by subtracting the grand ERPs
of the Control trials from the grand ERPs of the Decision trials, i.e. What (panel A, blue trace),
Whether (panel B, red trace) andWhen (panel C, magenta trace). Each panel contains topographic
distributions of potentials in the selected time-intervals (-500ms, 500ms, 1300ms, 2200ms, 2800ms)
with significant electrodes marked by dots, a raster plot of all ERPs in channel x time space with
non-significant regions faded out (cluster-mass permutation tests), and an ERP trace of Decision
and Control conditions with shading representing 95% confidence intervals. Vertical dashed line
denote decision interval (between the tunnel entry and the white line on the road). Notably, the
posterior positive ERP effect occurs later inWhether than inWhat decisions, whileWhen decisions
did not display significant effect at all.

and the parietal areas. ERP activity at this time interval was not observed
neither in Whether nor in When conditions.
The comparison of Whether with Control revealed considerably later positive
ERP effect (p=0.005). The post-hoc inspection of the cluster suggests the effect
was occured in the time interval from 1100ms to 1500ms, and spread over 112
posterior electrodes. The amplitude and spatial extension was similar to the
What-Control effect however it was more prolonged (Fig. 5, middle panel).
There was no significant ERP activity at this time interval neither in What
nor inWhen conditions. The comparison ofWhen with Control did not reveal
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significant clusters. The ERP traces of the When condition behaved similarly
to ERP traces of the Control condition (Fig. 5, bottom panel).
In direct comparisons of different types of decisions, only the contrast the
Whether - When yielded significant positive cluster (p=0.002), which closely
corresponded to theWhether - Control effect described above. In the compar-
ison of the What condition with the Whether conditions, one positive cluster
and one negative cluster were close to significance thresholds (p=0.075 and
p=0.09 respectively). Those clusters corresponded to the early What and the
late Whether effects described earlier.
Finally, the What and Whether decisions displayed a negative deflection of
ERP immediately following the Decision interval (corresponding to the car
crossing the white line in the tunnel). The significant, negative clusters (p=0.03
and p=0.017 respectively) spread over majority of the channels with the strongest
effect at the central channels. The When decision had similar tendency, how-
ever the cluster was not significant (p=0.11).

Time-Frequency results Details of time-frequency differences and statistical
results are presented in the Fig. 6, while the time-frequency decomposition
results for individual conditions are illustrated in the Fig. 3, panel E.
The nonparametric cluster permutation tests were performed on the multi-
channel ERP traces from 128 channels and covering the broad spectrum 4-
80Hz and the time interval from -1000ms to 2200ms, where the subinterval of
0ms to 2000ms corresponds to the Decision interval.
The time-frequency decomposition shows that all Decision conditions as well
as the Control condition displayed broadband desynchronization starting ap-
proximately 500ms before the Tunnel (Fig. 3, panel E). However, the statistical
comparisons indicated that the magnitude and spectral extension of the mod-
ulation was not identical across the different conditions.
Statistical comparison of the What and Control conditions revealed a a sig-
nificant negative cluster (p=0.022). The cluster was prolonged in time 500-
2200ms, dominated in Alpha (8-13Hz) range but briefly extended to Beta (16-
30Hz) frequencies. The cluster reflects widespread Alpha and Beta ERD, dom-
inating in the parietal region and stronger on the contralateral side (Fig. 6,
panel A).
A similar negative cluster (p=0.024) was found in comparison ofWhether and
Control conditions. The cluster spanned over Alpha and Beta frequencies,
however the Alpha ERD started earlier (-50-2200ms) and was more bilateral
than inWhat condition. The second significant cluster (p=0.014) was positive
and extended over Gamma (50-80Hz) range in the time interval 500-2050ms.
The cluster corresponds to Gamma ERS, which was observed only inWhether
condition (Fig. 6, panel B). A similar cluster differentiatedWhether andWhat
conditions in direct comparison (p=0.029) (Fig. 6, panel D).
In comparison of When and Control condition, a similar Alpha ERD was
observed, however due to lower magnitude and spatial extension the cluster
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Figure 6: Time-frequency contrasts were computed for each possible pair of Decision and Control
conditions. Three-dimensional data units in [channel x frequency x time] space were submitted
to the cluster-mass permutation tests to determine spatio-spectro-temporal regions differentiating
the conditions. The significant contrasts (p<0.05, corrected) at the representative centro-pariatel
channel Pz are presented on the left panels. The exact extensions of the significant clusters are
denoted by white lines. The middle panels present Alpha(8-13Hz) power desynchronization (αERD)
at the multi-channel raster view (with non-significant regions faded out) and the traces of αERD
for the representative Pz channel in different conditions. Topographic maps at the right panel
indicate mostly parietal locus of the αERD. All Decisions are reflected by considerable Alpha and
Beta modulation when compared with Control condition, although for the When condition the
magnitude and spatial extension is not sufficient to reach cluster-level significance. The Whether
condition is the only one with significantly reduced Gamma(50-80Hz) ERD. A widespread Gamma
modulation differentiates the Whether decisions from the What decisions in direct comparison.
The Alpha and Gamma power, averaged over all the channels and the time interval of 500-1500ms,
are presented at the bottom bar plots.

slightly missed the significance thresholds (p=0.057) (Fig. 6, panel C).

4. Discussion

Behavioral results Interestingly, for every participants we observed substan-
tial behavioral biases. Those biases were not participant specific, but gener-
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alized over entire sample. Importantly, there was no behavioral benefit nor
reward associated with choices, and the sequence of trials was also not affected
by previous-trial choice. All except one participants displayed preference to
“right” turn over “left” turn (54.2% assymetry on average). This can be justi-
fied by right-handedness, however we did not perform handedness assessment
to validate this claim. The second plausible explanation is that participants
are unconsciously biased towards the more routine behaviors. In the coun-
tries with right-hand traffic regulation, the right turns are more frequent and
usually collision-safe. Even stronger preference biases were observed towards
“turn” over “no turn” (60.1% on average) and “turn first” over “turn second”
(56.5% on average). This tendency can be explained by individual impul-
sivity tendency. Regardless the exact psychological mechanisms behind the
observed phenomena, it is notable that the unconscious behavioral biases can
explain considerable part of a “free will”-driven action, especially in contexts
were there are no explicit benefits associated with particular choice, or if the
behavior is intentionally exploratory.
Importantly, those biases are emerging entirely from participants free binary
choices, and are not influenced by experimenter’s feedback or instructions. The
participants are merely instructed to take new, independent, binary decisions
in every trial, and avoid planning ahead. Participants remain unaware of the
regular bias governing their choice. Thus, it seems that a certain fraction of
variance in human voluntary action can be explained by low-level behavioral
preferences.

Spectral modulation of Alpha, Beta and Gamma We have observed that
prolonged Alpha and Beta desynchronization characterized all types of volun-
tary decisions, including What (p=0.022), Whether (p=0.024) and When
(p=0.057, close to significance level). The reduction of Alpha power was pro-
longed for nearly 2 seconds of decision interval and covered almost entire scalp,
although it was most emphasized at parietal channels (Fig. 6). The increased
Gamma power was only observed in Whether condition (p=0.014), and the
effect was strongest in central and parietal areas.
The Alpha and Beta band modulation in our task may reflect two distinct
aspects of neural processing. The first possibility is related to involvement
of motor system by either preactivation of the motor command [3, 17, 19] or
imagery of the prospective action [51]. In case of Whether and When con-
ditions the laterality of the response is not known a priori, thus it is possible
that both options are equally preactivated. The second plausible function of
the Alpha oscillations can be related to the joint activity of the early neu-
ral cognitive processes involved in internally-generated action selection. Those
cognitive components could reflect a valuation of alternative options, conscious
perception of the action selection and general mental effort related to a free
choice. Decreased Alpha power may correlate with allocation of introspective
attentional resources to the neural processes of action selection. Alpha band
has been already linked to attentional processes [37, 76]. The allocation of at-
tentional resources is presumably required for all types of conscious, voluntary
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decisions, which would explain the occurence of the αERD in all the condi-
tions. On the other hand, different types of decision may require a varying
degree of the mental effort and attentional resources, which would explain dif-
ferences in the magnitude of the αERD. It can be arguably suggested that the
introspective attention is not a cognitive confound of volition, but rather an
intrinsic and indispensable component of any conscious, internally-generated,
voluntary choice. Under such assumption, modulation of Alpha can be inter-
preted not only as a correlate of introspective attention, but also as an indirect
electrophysiological correlate of the early processes of intention formation.
The prolonged duration of the αERD may indicate that the decision is a rela-
tively long process in which alternative actions and their outcomes are progres-
sively valued and the evidence for either of them is accumulated. In this sense,
decisions would be closely related to resolving a conflict between two com-
peting options [69, 70]. The conflict monitoring is mediated by preSMA and
rostral cingulate zone (RCZ) areas of the fronto-median cortical wall [69, 70].
Alternatively, prolonged αERD can reflect the processes following the volun-
tary decision, such as active attention to the selected option or the process of
encoding of the decision outcome in the working memory. Indeed, reduction
of Alpha band power was demonstrated during encoding of words in working
memory [38].
In fact, it is plausible that the widespread αERD can be attributed not to a
single process, but rather to multiple overlapping processes relevant to volun-
tary decisions. The evidence from the literature indicates that Alpha frequency
oscillations multiple roles in cognition and sensorimotor integration. The func-
tional meaning of Alpha depends primarily on the task and context, but also
the exact frequency specifics and the recording site [2, 4, 22, 25, 32, 36, 37, 60].
We also observed increased Gamma power, but only in theWhether condition
(Fig. 6). In fact, the Whether condition was the only one in which the par-
ticipant had an option to consciously and voluntarily refrain from executing
any action, i.e. decide not to act. The other two conditions always resulted in
an action (turn into one of the side-roads). Thus it is possible that increased
Gamma reflects active inhibition of an action, or conflict between options “to
act” and “not to act”. Indeed, synchronous activity of the cortical inhibitory
interneuron networks is often manifested by gamma band oscillations [7].
The study of Yuval-Greenberg et al. [80] rose concerns that most of the Gamma
band activity observed in EEG and MEG studies may reflect micro-saccadic
eye activity rather than true brain sources. Although we cannot exclude this
possibility with absolute certainty, we consider it unlikely in case of our study.
Firstly, because statistically significant Gamma modulation was observed only
in one of the conditions and not in the others, which would imply that sac-
cadic activity was present only in Whether condition. Secondly, the Whether
condition was identical to the other conditions in terms of visual stimulation
and timing. Thirdly, the oculo-motor artifacts were handled in preprocessing
steps and corrected for by rejection of respective ICA components.
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Distinct EEG patterns in What, When and Whether decisions Our re-
sults suggest that all three components of voluntary decisions have distinct
temporal and spectral representations. As discussed earlier, the magnitude
and duration of the αERD differed between the conditions, and only Whether
condition was characterized by Gamma ERS (Fig. 6). Furthermore, the What
condition had significant, positive, early ERP component (p=0.04), while the
Whether had a significant, late, positive ERP component (p=0.005). The
When decision did not differ from the Control in terms of ERP (Fig. 5).
The differences in the oscillatory dynamics which we observed are not un-
expected, considering the converging evidence from fMRI studies that differ-
ent types of voluntary decisions recruit partially distinct neuronal networks
[9, 29, 42, 71]. The pre-SMA and bilateral dorsal premotor areas are selec-
tively active in action selection (What) while the timing adjustment (When)
is mediated by network consisting of superior pre-SMA, insula, putamen and
cerebellum. On the other hand, some other areas are common to both types of
decisions, i.e. dorsolateral prefrontal cortex (DLPFC) and intraparietal sulcus
(IPS). The Whether type of decision is mediated by areas of the dorso-medio-
frontal cortex (dFMC) and rostral cingulate zone (RCZ), located more anterior
than pre-SMA [9, 42]. Given that those areas only partially overlap, it is highly
expected that the very nature of the respective neuronal functions differs as
well, and so do the temporal constraints and the resource requirements. This
can explain statistically significant differences in the ERP and ERD/ERS ob-
served in our data.
Interestingly, we have not observed ERP effect in theWhen condition, and the
corresponding αERD effect was considerably weaker than in the other condi-
tions and in fact did not reach the significance levels (p=0.057). One of the
possible explanation is that the When condition in our paradigm is externally
determined in time and tackles the choice of the timing of the future action,
whereas the When condition as defined by Brass and Haggard model is free-
paced, or “internally determined” in time and tackles the initiation of internal
action. As such, ourWhen condition involves selection between two competing
temporal options, similarly likeWhat condition involves selection between two
competing spatial options. It is plausible that the temporal options are more
abstract and thus have more subtle neuronal representation than the spatial
options, where the neuronal substrate is clearly defined (action preparation for
the left or right index finger movement).
It is also possible, that despite the best attempts we have not managed to com-
pletely disentangle the pure What, When and Whether components of volun-
tary action. If that would be the case, one of our conditions could implicitly
activate more than one of the decision components. For instance, assuming
that participants make their choices based on the prospective memory system
[72] and thus mentally visualize their next action based on the recent history of
their choices, it is possible that Whether and When conditions would implic-
itly involve the What component in form of the envisioned assumption about
direction of the turn.

19



Finally, it is also possible that each of the conditions involves a conflict res-
olution between two competing, alternative options [69, 70]. The differences
in EEG responses could then be attributed to distinct neuronal representation
of the competing options in different conditions (spatial left/right, temporal
first/second, inhibitory turn/no-turn).

Detection and classification of decision process Our results suggest that
the voluntary decision processes regardless of their final outcome can be de-
tected by scalp recordings, even though the actual motor execution is delib-
erately postponed in time by interval of several seconds. Furthermore, the
patterns of modulation of the brain oscillations were not identical for different
types of the conscious voluntary decisions.
In context of free-paced initiation of movement (the When component accord-
ing to Brass and Haggard [9]), Soon et al. [73] demonstrated in fMRI study
that in certain circumstances the intention to move can be predicted as early
as 10 seconds before it enters conscious awareness. In another study using
online EEG Bai et al. [6] reported successful prediction of intention to move
on average 0.6 seconds before the movement onset, based on Alpha and Beta
power shift and slow readiness potentials.
Considering that we observed a robust modulation of EEG signals for all com-
ponents of voluntary decision, the question arises if those distinct components
can be detected and classified on single trial basis, in the context where the
actual motor action is postponed in time. Further studies along this line are
needed to assess feasibility of such classification, which could lead to construct-
ing enhanced, non-invasive, intention-driven BCI systems.

5. Conclusions

We applied a dedicated, ecologically-valid Virtual Reality environment to
the neuroscientific study of voluntary decisions, in order to provide a rich, con-
tinuous visual stimulation resembling natural life scenarios. By doing so we
intended to enhance the natural decision processes and minimize the problems
of fatigue and random sequence generation [30].

We found that the three fundamental types of voluntary decision about
prospective action (What, When and Whether components [9]) differ in their
temporal signature and broadband spectral modulation. TheWhether decisions
have the strongest spectral response and involve Gamma band modulation, pos-
sibly due to involvement of inhibitory mechanisms. TheWhen decisions display
the weakest EEG response, perhaps due to less explicitly defined neuronal rep-
resentation of the abstract concepts related to time domain.

Regardless of the type of decision, we observed a significant power desyn-
chronization, particularly prolonged in Alpha(8-13Hz) range, lasting for approx-
imately 2 seconds. It has been repeatedly demonstrated that low frequency os-
cillations play fundamental role in attention, memory, functional integration and
executive function ([35, 37, 44, 49]). Our results suggest that Alpha and Beta
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oscillations may also play a critical role in voluntary decision formation. The
role of those oscillations can be twofolds: (1) preactivation of motor command
and (2) representation of higher cognitive components such as introspective at-
tention, option valuation and mental imagery of the intended choice.

The rich spectral representation of voluntary action is a promising finding
in relation to BCI research. The tentative next step is to quantitatively assess a
feasibility of single-trial, online detection of decision processes with prospect of
constructing enhanced, intention-driven BCI systems. Also further investigation
is needed to localize sources of the EEG signatures and thus relate our findings
more precisely to the fMRI literature [9, 26, 29, 71].
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Abstract 
 
We constructed a framework for generation of Virtual Reality (VR) which was suited for neuroimaging 
experiments and provides a car driving experience. The VR generation hereby followed the principle to 
allow for specification of the experiment in a way common to neuroscience. Design features of standard 
neuroimaging experiments, for instance randomisation, jittering or factorial, trial-based design were 
transferred to the VR. Yet, we took care of creating a seamless experience for the user which disguises 
these design principles to a higher extent as a standard design would do. 
VR construction is based on a layered software architecture and strongly relies on the principle of 
modularity. In a first step, the layout is specified in 2D in the form of XML documents. In a second step 
XML documents are processed further to 3D scenes via procedural landscape generation and in the 
third step they are linked together and an executable is created which can be run on a standard PC. 
Input / Output is integrated flexibly via different subroutines and a communication protocol relying on 
text files, so that every hardware, especially custom made, can be used. Due to the separation into 
experimental logic and visualization researchers without a background in software engineering are able 
to design, control and change their experiment whereas visualisation can be developed in a separate 
manner. 
We provide some imaging results to show principal usability of the design, as well as some behavioural 
and questionnaire data to show how subjects received the VR.
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INTRODUCTION 
Functional Magnetic Resonance Imaging has provided invaluable insights into how the human brain 
works, both in healthy volunteers and in patients. It’s field of application has broadened from research 
in cognitive neuroscience to clinical applications (Matthews et al., 2006) and continues to expand into 
fields like marketing research or brain computer interfaces (Reimannke et al., 2011; Sitaram et al., 
2009). Behavioural paradigms, however, which are presented to subjects in the scanner via screen and 
headphones, have widely remained the same. They mostly involve static stimuli, following a certain 
study specific logic with a certain degree of jitter. Such stimuli are relatively easy to construct, relatively 
easy to present and, what might be even more important, relatively easy to optimize towards specific 
aspects - like for instance contrast - while other aspects of the stimulus space -  like for instance 
saturation - can be controlled accordingly. Mechanisms underlying their presentation are well-studied 
and they can be closely related to psychological concepts like stimulus – response theory (Guthrie, 
1935; Hull, 1943; Thorndike, 1898) and psychophysics (Gescheider, 1997). Statistical theory provides 
powerful methods for their analysis like signal detection theory or linear regressions (Aiken et al., 2003; 
Green et al., 1966).  
Yet, these are rarely the kind of stimuli which we experience in our daily lives and research in many 
topics might suffer from missing ecological validity. Such topics involve more complex tasks, for 
instance decision making where a high number of variables potentially have to be taken into account 
(Heekeren et al., 2003; Sanfey et al., 2003), emotions where interaction with other acting agents and 
memory might be a decisive factor (Dolcos et al., 2004; Dolcos et al. 2005; Murty et al., 2012), 
consciousness and many others. Here, research might benefit a lot from studying human subjects in 
their natural habitat. Use of an fMRI scanner in the outer world however is not to expect in the near 
future as these machines are extremely bulky and with the development of scanners with higher field 
strengths machines rather get bigger than smaller. Thus, the scanner cannot be brought into the real 
world but the real world must be simulated in the scanner. For these purposes the use of Virtual Reality 
(VR) technique has been proven very successful (Maguire, 2012; Spiers & Maguire., 2004; Spiers & 
Maguire, 2007). VRs provide a high level of experienced reality, an immersive feeling and high 
ecological validity. In fact, they can be optimized towards certain aspects in the same way as simple 
stimuli and for instance be constructed with parametrical regularity. Moreover, social situations can be 
recreated in an identical manner and thus become comparable across subjects, a scenario which never 
occurs in real life as interaction always contaminates a social situation (observer-effects, experimenter 
effects).   
Yet, compared to the number of neuroimaging studies that have been published the overall number of 
studies employing VR is very small (Table 1). On average, only a few out of 1000 neuroimaging studies 
employed a VR paradigm and of these few some are literature reviews, purely methodological studies 
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or investigations that reused existing paradigms. We see two main reasons as to why this potentially 
extremely useful technique is so underrepresented.  
 
Table1: Number of studies employing Virtual Reality in EEG/fMRI compared to the total number of studies (data taken from an abstract-title PubMed search 02/05/2016 with the keywords VR/Virtual Reality and EEG/Electroencephalography or fMRI/functional Magnetic Resonance Imaging). 
 

 Neuroimaging & 
VR 

Neuroimaging 
only 

Relative 
Frequency [%] 

 
fMRI 127 30555 0.4 
EEG 103 61862 0.15 

 
First, almost every one of the published articles introducing a new VR paradigm stresses the complexity, 
thus costs, which is inherent in this approach. This complexity is present on all steps of the experiment, 
both in designing an experiment, constructing the stimuli, in presenting a subject with the experiment 
and in analysing the data. Reasons are both technical ones and the high number of dimensions involved. 
As it is so expensive to introduce a new paradigm a number of studies have used pre-existing stimuli 
like movies or commercially available games (Maguire, 2012). That however diminishes experimental 
power.  
Second, we believe that it is a problem for many researchers that they do not have the full control over 
their experimental design. Whereas many Neuroscientists are trained users of (script)-languages like 
MATLAB (The MathWorks Inc. Natick MA) or Python (Python Software Foundation,   
www.python.org) not very many have a background in software engineering and are familiar with the 
construction of VR. That means, that control over experimental stimuli has to be outsourced, a scenario 
that might be unpopular for researchers and allows only a limited number of flexibility. Importantly, 
parametric changes in a VR paralleling parametric modulations, which are a powerful tool for fMRI 
experiments, seem almost impossible to communicate to third-party providers. Complete solutions on 
the other hand, for instance (Mueller et al., 2012) lack this aspect of manipulating the VR in a parametric 
manner and might be too constrained. 
A solution for these two problems must be able to break down complexity in a way that leaves control 
over important aspects to the scientists. We here report our development of a Virtual Reality framework 
that tries to overcome the aforementioned problems and implements such a solution. This is mostly 
achieved by relying on a layered software architecture which allows for specification of an experiment 
in a way typical for imaging research. The framework was developed in the context of a VR to be used 
for investigation of voluntary action decisions with EEG and fMRI. Whereas the neurobiological results 
of those experiments are reported elsewhere we here describe the very framework and show some data 
to validate our points.  
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MATERIALS AND METHODS 
Construction principles / design aim 
In order to investigate voluntary action decisions, we aimed for creating a landscape of roads and tunnels 
through which the participant would drive with a car in a first or third person perspective. In the tunnel 
periods participants were supposed to voluntarily decide a side road which to turn down to. The decision 
period and the subsequent motor action are spaced out by some seconds to account for the sluggishness 
of the BOLD signal (Glover, 2011) which is the signal measured in fMRI. Our design tried to 
incorporate several aspects which we considered crucial for a VR – Neuroimaging approach. Firstly, in 
order to be able to relate our results to the existing literature and ensure comparability with previous 
findings we deemed it crucial to have a structure which reflects the usual setup of trials or blocks. This 
structure is common for factorial designs, and allows for comparing the manipulation of different 
aspects/factors. Importantly, this is also the experimental structure which is assumed by many analysis 
software packages (e.g. SPM for fMRI). Generating an experiment in that framework will make data 
analysis easier as existing analysis tools can be used.  
However, we wanted to disguise this trial based setup as much as possible and instead create a seamless 
user experience. Following current software development paradigms, we aimed for separating content 
(i.e. the experimental structure and logic) and visualization as much as possible. This allows for 
independent manipulation and to outsource some development tasks, for instance to software firms. As 
an important practical aspect we considered usability of standard hardware, i.e. the standard computer 
and trigger setup present at our imaging site. 
As the experimental logic in itself to a huge extent reflects a two-dimensional version of the experiment 
we refer to it as the 2D skeleton. For the remainder of this article we will be rather specific in describing 
our current VR. It should be obvious, however, that the general framework is easily translatable to any 
type of virtual reality approach. At some occasions we’ll point general applicability for all types of 
problems out. 

2D XML skeleton 
Our 2D skeleton contained the crucial aspects of the basic shape of our road layout and the experimental 
logic, i.e. the main specification of the experiment. The skeleton was divided into four parts: the 
layout/shape information which described the static road network, information about dynamic events 
along the road network, e.g. whether the car should turn by itself in a control trial, information about 
objects in a scene, for instance about road signs or distractor events and link information, i.e. how to 
transition from one scene to the next.  
In order to describe the shape of the road we used cubic splines. These are piecewise polynomials which 
can be used to interpolate between sets of points. Splines create organic shapes and trajectories and are 
widely used in computer graphics, game design and animation. Their shape is defined by a set of control 
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points and by constraining them in a certain way several splines can be aligned smoothly. We 
randomized control points positions according to some predefined logic. In this way we obtained 
jittering in our road layout. Dynamic event information was specified in units of the underlying road 
shape. For this purpose, we defined what we called waypoints along the shape of the road. Each 
waypoint had some information assigned which would specify for instance the position of the waypoint 
on the road, whether to turn (in a control trial), whether to show an image or a text string (for instance 
for debugging) and more. Object information was specified in absolute scene coordinates and link 
information basically contained the scene numbers. 
We stored the respective information in document object models (DOM) and saved them as XML files 
(Extensible Markup Language, W3C, www.w3.org/XML/). That seemed appropriate for our purpose 
for various reasons. First, the format is simple, widely usable, both human and machine readable, 
descriptive and can be generated in many different ways, both with a simple text editor but also with a 
programming language (we used MATLAB here). Second, by providing XML schema definition 
(XSD), the interface between our 2D skeleton and subsequent processing steps can be clearly defined. 
Third, the tree-structure of an XML file made it easy to translate the trial-structure of a neuroimaging 
experiment to the DOM. Each trial had its own entry in each DOM which contained all the information 
for that respective trial and they can be easily interlinked. Finally, in case we needed to specify more 
information about other aspects, we simply could have created additional files, specialized to the 
respective aspect of interest and following the same tree-structure. In this way we achieved a 
considerable breakdown of complexity. 

3D object files 
In a next step, the shape information of the 2D skeleton was extended to the third dimension. For this 
purpose, procedural landscape creation was used in C#. The details of this process are described in 
(Arslan & Jørgensen, 2012) and will be omitted here. 
The resulting three-dimensional models were stored in .OBJ-files, a format to store 3D geometry which 
is widely accepted by graphics applications, for instance game engines. In order to provide some level 
of control over visualisation to researchers some of the parameters of the 2D to 3D step which had been 
considered important for the very experiment (e.g. the width of the tunnels) had been defined 
beforehand and could optionally be specified by adding a further XML file to the 2D skeleton. Note, 
that this requires close coordination with the party responsible for programming this step. Apart from 
these parameters the 3D step was however independent. The 2D to 3D step requires some more 
advanced graphics and programming knowledge (procedural landscape generation) and is a good 
candidate for outsourcing. Likewise, due to the exact specification of the underlying 2D skeleton and 
the XML schema definition it is a good candidate for separate development and research on the graphics 
side, for instance by exploiting bachelor or master projects.  
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3D+ experiment.exe 
In a last step, the 2D skeletons (dynamic and link information) and the .OBJ files containing the 3D 
models were loaded into a game engine. We here used Unity (Unity Technologies, San Francisco, CA) 
but potentially any game engine might be used that offers adequate functionality. Purpose of a game 
engine is to provide the proper physics, methods for rendering and collision detection; some also contain 
forms of Artificial Intelligence (AI) for behaving agents which might considerably ease the creation of 
a social context. The use of a game engine has several advantages and has also been suggested 
previously (Mueller et al., 2012). 
All of the trials belonging to an experiment were placed in an empty game template in an arbitrary 
position. Link information from the 2D skeleton was then applied to connect the trials and so to bind 
the single trials together to an experiment, providing a seamless user experience. Lastly, the now 
enriched scene was compiled to an executable file for which we used the inbuilt compilation routines 
provided by Unity.  
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Fig. 1: A) Construction of the VR. The grey box in the upper right is connected to the rest of the experiment only through a well-defined interface and can be outsourced. Whereas in theory a separation in static and dynamic content in the 2D skeleton might be possible we found it more feasible for our purposes to have a higher number of dedicated files. For testing purposes a simple visualisation can be programmed which is only focusing on some aspects of the experiment and omits 3D objects and the game engine but instead only relies on the 2D parameters and link information.  
B) Process communication while running an experiment. All the processes are bound together by a Microsoft batch script. In the main loop of the experiment.exe a placeholder for callables must exist in order to enable invoking functionality from inside the game. The logic of when to invoke what with what parameters can equally be specified in the 2D skeleton and bound into the generation of the experiment.exe as visualized in A). 

  
Experimental infrastructure  
In line with our design goal we were able to employ standard experimental hardware for our setup. To 
create the experiment, we used a desktop PC with 6GB RAM and a standard i5 dual core processor with 
3 Ghz. Alternatively, we used a notebook with 8GB RAM and a similar processor, both running 
Windows 7 (Microsoft Corporation, Redmond, WA). To run the experiments, we relied on comparable 
machines. 
We pursued a similar approach to break down complexity during the experiment as during its 
construction. We used small specialised programs to handle aspects like communication with the MR 
scanner or communication with other experimental hardware (for instance eyetracking hardware or 
button press devices). Thus, they were controllable by research personnel and only needed to be 
instantiated according to a predefined way (Fig. 1B). We used windows batch scripts in order to thread 
processes together and to start and finish them in the correct order. Batch files were written out by 
MATLAB. In this way we reduced the communication between the executable experiment files and 
other processes to a minimum. 
For communication with the MR scanner (trigger signals) this meant that we could rely on the standard 
Python functions which are used at the imaging site to access the parallel port. The only change as 
compared to a standard fMRI experiment was that we compiled them for performance reasons. For user 
input we relied on a communication protocol based on text files. Separate applications would record 
from the hardware (in this case: custom made MR compatible mice), analyse the results and write events 
into a text file, which was read out by the main thread of the VR at critical time points. This solution is 
comparatively slow but very flexible and was deemed sufficient for our purposes. A more appropriate 
solution with shorter response times might be the use of sockets and pipes or shared memory. The 
important aspect is to synchronize with the ones programming the experiment.exe as to ensure that 
information is exchanged correctly and read out when needed; for us a regular update interval proved 
useful that also served for logging information.  
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Virtual Reality Experiments 
We ran four different experiments with different configurations of the VR, different lengths and 
different ways of instructing the participants. Three of these experiments were run with fMRI, one was 
combined with EEG. Two were block designs with instructions being given beforehand by the 
experimenter whereas the other two had a fast event related setup. Here the instructions changed in 
every trial. Instruction change was realised by road-sign-like objects that were specified in the objects 
file at appropriate locations (see previous section).  
Experiments were covered by an ethics approval of the regional ethics committee (project ID: H-3-
2012-146) and in total 80 subjects underwent neuroimaging. The neurobiological results of our research 
question are shown elsewhere. In the following we will focus on presenting the results with respect to 
our VR.   

RESULTS 
Depending on the length of the experiments the files resulted in about 3GB of compiled code. We did 
not experience any performance issues while running the experiments and the interplay of the different 
modules, threaded together with batch files worked smoothly. 

Fig 2: Screenshots and setup of the VR. Every trials starts with a decision period while the car is driving in a tunnel. Later in the trial participants are supposed to act out their decision, involving turning down into the first or the second side road. As visible in the histograms on the timeline critical events (decision period, 
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position of the roads) follow a rather strict time course whereas a considerable amount of jitter is present on the overall trial length. Motor actions are depicted in grey and indicate times of button presses.  
 
Brain Imaging 
Compared to a standard fMRI experiment input in VR is embedded in an (audio-) visual stream of rich 
complexity. Thus, potentially many brain regions might be involved in the task. We used a navigation-
like task to frame the context for our question regarding voluntary action decisions. Thus one should 
expect brain regions to be activated that reflect both the navigational element of the task, the voluntary 
component and the visual aspects. We report four contrasts in the following (Figure 3).  Contrasts were 
calculated with SPM12 software (Statistical Parametric Mapping; Wellcome Trust Centre for 
Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm) and second level (group statistics) 
significance level was set to p < 0.05 (familywise error corrected for multiple comparisons).  
Motor activity occurs when participants indicate the direction of their decision. Figure 3A.1 shows 
right-hemispheric (contralateral) motor activity when subjects use their left finger. Right finger presses 
resulted in a mirror inverted activity pattern (not shown here).  
Figure 3A.2 reflects the main effects of the decision period where subjects had to make a voluntary 
decision. Amongst different other regions strong activity in pre-SMA can is observed which is expected 
(Brass & Haggard, 2008; Haggard, 2009; Krieghoff, Waszak, Prinz, & Brass, 2011; Kühn, Haggard, & 
Brass, 2009).  
As reasoned above the nature of our task is navigation-like. We expected navigation related activity 
(Figure 3A.3) in periods when subject would make a decision which way to go next particularly in 
parahippocampal regions (Hugo J. Spiers & Maguire, 2007).  
Eventually, to account for the presentation form (visual stream) we expected to see activity in visual 
areas sensitive to visual flow. Figure 3A.3 shows the result for control trials only, where motion area 
MT+ is activated bilaterally. Task trials containing a decision component feature the same activity in 
these visual areas (not depicted here). 
EEG data shows task processing with high temporal resolution. Figure 3.B1 reflects the contrast 
between task (voluntary decision) and control. Event related synchronisation as a response to the task 
is observed in the theta-frequency band (4-7Hz) whereas desynchronisation, occuring predominantly in 
the alpha-band (8-28 Hz) indicate decision processes and preparation of motor activity. Figure 3B.2 
shows event related potentials as responses to events in the VR. World events like entering the tunnel 
evoke visual potentials whereas the subsequent more central components probably are connected to the 
decision. 
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Fig 3: Brain activity as recorded while participants were performing the task. Panel A.1-A.4:  Summary fMRI-
statistics in a set of 23 participants. T-maps are overlaid on a standard MNI brain. Panel B.1-B.2 shows single 
subject EEG data, undergoing the same task. 
A.1 Left button press  right motor cortex activity. The right button press contrasts (not shown here) roughly 
reflects mirror inverted left hemispheric activation. A.2 Period of interest (voluntary decision making). 
Amongst other regions of the task- positive network the pre-SMA is activated. A.3 Main effect of all tasks (all 
types of voluntary decisions): parahippocampal activity is expected as all conditions – due to context and the 
nature of the task – involve a navigational aspect. A.4 Motion area MT+ significantly activated in the control 
conditions when no decision is made. The same activation pattern is observed in the task 
B.1 Time-frequency contrast between decision and control in the period of interest (voluntary decision). Red 
reflects ERS in the 4-7 Hz theta range whereas blue reflects ERD, predominantly in the alpha & beta (8-28Hz) 
range, related to motor preparation. B.2 Envelope of al event related potentials (ERP) on the decision 
condition. Dominant peaks show visual processing; following central components reflect the decision about 
the prospective motor action. 
 
 
Behavioural data – response balance 
An important aspect with respect to voluntary decision making is how balanced responses are. Do 
participants favour one option over another and if so, to which extent? Our paradigm offered 3 different 
binary decisions (choose the left or the right side road / the first or the second / turn down or drive 
straight ahead) which were neither encouraged nor discouraged by reward, instruction or other 
incentives. Table 2 shows the response distribution. 
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Table 2: Average behavioural balance [Choice in %] in a subset of 43 subjects. The first row depicts participants (n = 23) having undergone a blocked design, the second row participants (n = 20) that were tested with a fast, event related design. Rows 3 and 4 show the number of participants that would have to be excluded for classification purposes; in parentheses the total number of participants. 
 

 Right / Left 
Binary Decision 

First / Second Binary 
Decision 

Turn / Straight Binary 
Decision 

 
Block        52   48        55   45        60   40 

Fast event        56.3   43        56.3   43        54   46 
Block_exclude1 0 (23) 1 (23) 5 (23) 
Event_exclude1 4 (20) 4 (20) 12 (20) 
1 Exclusion criterion: asymmetry index more extreme than 0.3; identical with Soon et al. (2008) 

 
Subjects self-reports 
We presented a short questionnaire to a subset of participants (n = 43) and conducted a short interview 
after the experiment. The questionnaire was about whether the environment was perceived as being 
naturalistic and immersive, whether subjects estimated that they were able to time their decisions 
correctly and whether they stuck to their decision once it had been done or whether they changed it. 
Latter was important as for fMRI purposes we had a temporal delay between the making of a decision 
and its indication via a motor act. Whereas the principle problem of a subject being collaborative always 
exists one might assume that a more interesting, richer environment might encourage exploratory 
behaviour to a higher extent than usual. The interviews did not reveal any particularities. Questionnaire 
results are shown in table 2. 
 
Table 3: Summary of self-reports of a subset of 43 subjects about their experience in the VR. Immersion has been measured on a 3-point Likert scale and is present in % here; timing and commitment have been rated on 5-point scales with values of 1 indicating correct timing / absolute commitment and 5 incorrect timing / no commitment.  
 

 Immersive feeling 
[%] 

Correct timing when 
making decision 

 [1-5] 
Commitment to the 

decision made 
 [1-5] 

 
Block 97.9 1.9 1.6 

Fast event 96.7 2.1 1.3 
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Discussion 
In the present study we developed and implemented a modular approach to generate a virtual reality 
environment for use in the neuroimaging environment. The cardinal design feature of our design is that 
separated the experimental logic from its visualisation and implementation as an actual 3D-experiment. 
The benefit is that neuroscientific researchers can focus on experimental design work and specify an 
experiment in two dimensions whereas the 3D generation can be outsourced. For testing reasons the 3D 
step might even be omitted, creating a simplified 2D visualisation of (sub-) aspects, suited for piloting. 
This visualisation can for instance be done in MATLAB, a script language familiar to many in 
Neuroscience. In this way the design process is kept flexible and the experiment generation process is 
accessible to researchers.  
Previous attempts have either relied on pre-existing stimuli (e.g. Maguire et al., 2006; Maguire et al., 
1998) or have been very specific in the generation of their VR resulting in a closed system (Mueller et 
al., 2012). Even though the framework described in the latter offered the option to design an experiment 
we are not aware of any study that made the VR construction and parameterisation an explicit part of 
the experimental design process. Depending on the research question aforementioned attempts are 
hence rather suited to an observational approach and do not provide the advantages an experimental 
studies. We figure that this is a crucial point preventing acceptance of VR as a tool in the Neuroimaging 
community. 
Opposed to many VR neuroimaging studies which have been conducted up to date, we do not use our 
car driving VR to investigate an aspect like navigation, obvious to the 3D setup. Instead, our primary 
focus of interest, voluntary decision making, is embedded in the context (as it would be in ‘real life’); 
by sticking to a standard trial based design we do not exploit its full power, even though we tried to 
disguise this aspect as good as possible. The reason is the requirement of having transition conditions 
between trials that are visually identical. This can be quite challenging as it limits experimental freedom 
and, in particular, puts heavy constraints on visualisation. Yet, in order to relate our findings to previous 
ones we deliberately chose this setup; we argue that in future steps one might be able to resolve the 
current strict separation of trials. Leaving out the transition periods will have immediate consequences 
for visualisation which can be tackled in different ways. So can 3D generation, i.e. creation of the .OBJ 
files take place after several trials of interest have been linked together; in this way bigger chunks are 
created. Alternatively, the transition between trials can be camouflaged by procedural landscape 
generation. This then probably requires a closer integration of step 2 (3D models) and step 3 (3D+ 
experiment). It should be kept in mind that also analysis will become more complex.  
On a broader conceptual level this our use of VR mirrors a paradigm change in Neuroimaging research; 
previously, prevalent approaches tried to assign particular function to particular brain regions, i.e. they 
investigated functional specialisation and localisation. More recent attempts try to understand 
interrelations between different distinct units of a network, i.e. functional integration (Friston, 2002; 
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Sporns et al., 2004). We believe that by providing a natural framework of sufficient complexity and 
ecological validity a situation is created that allows for the different nodes of the brain-network to work 
in a more realistic manner and forward realistic input into the network. Not artificially separating stimuli 
into discrete isolated entities thus means creating a true basis for investigation of functional integration. 
This might potentially be especially important for the investigation of voluntary decision making for 
which the current VR was designed. Here, the participant cannot rely on external criteria like reward 
maximization in order to guide behaviour. It is an open question what exactly drives a voluntary 
decision but probably integration of different types of information on different timescales, for example 
perception and autobiographic memory, will be involved. Due to the lack of external criteria and 
constraints response patterns can become quite unbalanced. Depending on how brain imaging data 
obtained in such a situation will be used this might pose a severe problem. Classification approaches 
for instance that try to predict behavioural outcome based on the brain state at the time of the decision 
suffer from unbalanced responses and might yield artificially high classification rates. Thus, an 
exclusion criterion for subjects whose response patterns are too unbalanced is required (Bode et al., 
2011; Lages & Jaworska, 2012; Soon et al., 2008). Soon et al. (2008) for instance used as their inclusion 
criterion an asymmetry index not more extreme than 0.3 what reflects a 65% - 35% ratio. They had to 
exclude 22 of their 36 subjects as they failed to produce spontaneous decisions staying within these 
boundaries. As depicted in table 2 our binary decisions came on average not even close to their cut-off. 
On an individual basis we would have to exclude a number of subjects, yet by far not as many as they 
had to. Balancing of responses can in principle be enforced by instructions, however it is likely that 
constraints are put on a free decision process which invoke other and possibly disturbing processes like 
counting or other additional monitoring processes or the attempt to generate random behaviour. 
Therefore, it is desired that the task as such puts constraints on subject’s behaviour which the participant 
sis not aware of and which do not interfere. This aspect our VR seems to have provided well.  
An exact formal specification of the interface between logic and visualisation is required for our 
approach. We here used XML in combination with an adequate schema definition. All generation 
mechanisms that implement that schema definition can be valid generators for an experiment. This eases 
communication with suppliers, minimizes misunderstandings and helps to break down complexity 
inherent in a high-dimensional approach such as VR. The use of a mark-up language which is both 
human and machine readable hereby proved to be a decent choice and fulfilled its purpose well. One 
might speculate about future dialects of mark-up languages which are specifically derived to describe 
experimental setups. This might further ease the integration of machines to support and conduct 
experiments and present behavioural paradigms, could however also apply to areas as remote as for 
instance controlling robots for TMS or other experimental hardware. 
An advantage of a formal specification is that it in fact already requires a lot of considerations about 
the possible states an experiment can take and a lot of thought work itself; usually, these considerations 
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are implemented in form of some code to generate a logic and at best copy-pasted to the next study. 
Storage and possible reuse of the logic in the way proposed can be more efficient. The XML files can 
easily be stored and distributed, as well as easily used for regeneration. This has a number of potential 
benefits.  
Quite often cultural aspects of experiments are for instance not taken into account. Especially higher 
level cognitive and emotional processing might be more susceptible to intercultural differences. 
Separating experimental logic from its visualisation itself means that the very same study can be 
conducted with a totally different visualisation in different cultures. The same argument applies for 
replication studies. The progress in visualisation throughout the years has been huge and a study with a 
visualisation conducted 10 years ago might have lower acceptance rates when being replicated, now. 
Being able to update just one part of an experiment without the need for a total redesign lowers cost 
and workload and can for instance also be carried out as a research project at an institute researching in 
visualisation.  
Yet, we acknowledge that it conceptually can be very challenging to separate experimental logic from 
its presentation. Furthermore, there will probably always be peculiarities which must be handled 
separately for one specific experiment. Nonetheless, even when using commercial software packages, 
these descriptions must be made and if a researcher wants to keep a certain level of control then it is 
mandatory to formalize them.  
A cardinal feature of a VR is the degree of immersion it allows for. We here used standard hardware in 
the form of a MR–compatible computer screen. Allowing for separate manipulation of visualisation and 
hardware also allows for controlling the level of immersion independently. Evidence exists that the 
degree of immersion in VR has an effect on behaviour (Gutierrez et al., 2007) and attempts have been 
made to manipulate it in the neuroimaging environment (Hoffman et al., 2003). VRs as different as 
simple mazes (Astur et al., 2005) and cubes representing tunnels (Plank et al., 2010) have been used, as 
well as complex worlds (Maguire et al., 2006) and advanced VR-goggle technology (Hoffman et al., 
2003). However, we are not aware of any investigation that tried to investigate degree of immersion 
systematically and to shed light on its neural underpinnings.  
Summing these considerations up we basically argue for a separation into content and visualization, a 
design principle that is known in computer science as Separation of Concerns (SoC, Dijkstra, 1982). 
Commercial stimulus presentation software like E-Prime (Psychology Software Tools Inc, Pittsburgh, 
PA) or Presentation (NeuroBehavioral Systems, Albanym, CA)  likewise provide this separation to a 
certain extent. While being suited for many experimental research questions, they rely on proprietary 
languages and lack the flexibility which we describe here.  
The SoC principle we recommend here is probably almost always considered somehow in experimental 
design processes in most laboratories around the world. Our contribution is to show, that such an 
approach is working for a comparatively high degree of complexity and still is relatively easy to handle. 
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Furthermore, we show a specific way of how a reliable separation could look like. That approach proved 
feasible, stable and easy to handle when implementing four different but related setups. They differed 
in their parameterization of the roads (e.g. number of roads), length of the scenes, and their instructions, 
being either presented in blocks or on every trial. These changes were entirely covered by our 
framework and no changes in the very experiment generation process had to be undertaken. In order to 
manipulate the general VR layout bigger adjustments would be necessary which would involve 
changing the 3D objects and the experiment. Yet, due to its modular structure the biggest parts of our 
experiment would be reusable.  
Last but not least, modular components are quite flexible and can be replaced easily. We here relied on 
algorithmic generation and extensive randomization to generate the particular road-shapes for the 2D 
skeleton. Other approaches are conceivable like for instance hand drawing shapes and generating a 
skeleton from them (Arslan & Jørgensen, 2014). Such techniques will further ease the use of VR 
technique by adding an intermediate construction layer suited to the special needs of the neuroscience 
community and hopefully help making this useful technique more available in the future. 

Conclusions 
We argue for an adequate separation of concerns by separating experimental logic from visualization 
and show a reliable way of how to achieve that. Employing this approach, we create a VR suited for the 
investigation of voluntary decision making which features good experimental characteristics. The 
separation we describe involves a mark-up language (XML) to store and pass information and an 
adequate schema definition (XSD) that formally specifies the interface between different steps of the 
VR generation process. Research in visualisation and neuroimaging research focusing on the paradigm 
aspect can be divided properly. Whereas we report the advantage of such an approach for a complex 
scenario, the generation of virtual reality, this principle might even turn out useful for different types of 
experiments, also simpler ones. 
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Appendix D

Automatized multi-modal
EEG data processing

D.1 Abstract

Manual cleaning of EEG/MEG data, based on visual observation and subjective
judgment of the experimenter, is one of the most commonly reported approaches
to early data processing in EEG/MEG studies, despite being the most inefficient
one. Such approach suffers several serious pitfalls: (1) it is time-consuming, (2)
it is not reproducible, (3) depends strongly on experimenter’s experience and
preferences, (4) in extreme cases may lead to emergence of spurious statistical
effects (false positives) or reduction of true effects (false negatives), especially if
experimenter is not blindfolded to condition/group labels in the early process-
ing steps. Here we propose an automatized, reproducible method of EEG/MEG
data processing which is fast, unbiased and based upon a minimal set of para-
metric criteria (absolute thresholds, spectral power thresholds, across-channel
correlation). Furthermore, the method is highly data-preserving, by performing
local interpolation of artifactual data selectively in [channel x trial] space. Fi-
nally, concise reports are automatically generated to allow the experimenter to
evaluate the processing results globally and report them in publications.
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D.2 Introduction

The vast majority of EEG/MEG studies report data cleaning in overly general,
inexact manner. Statements of the kind: ’The data was visually inspected and
artifactual epochs were removed from further analysis’ are commonly encoun-
tered and accepted. Such approaches should be based on solid criteria, and
those should be reported in detail [43]. However, a lot of potential issues may
arise from a purely manual cleaning. First of all it remains unknown to the
reader and to the peer reviewer which criteria were undertaken by authors to
ensure high-quality, artifact-free data. The results may depend to high extent
on the technical experience of the experimenter. Notably it is not unusual that
’the most tedious’ work of data cleaning is often performed by least experi-
enced members of the lab or novice students. Even if the task is performed by
skilled technician it will be still subjective, with choices dependent on overall
data quality, relative subject’s data quality, and in worst case - on the group or
condition the dataset belongs to. Finally, manual inspection effectively yields
as many parameters of the cleaning procedure, as many trials and channels are
in the data (or more generally equal to the number of subjective binary choices
being made). As a result, the whole process is hardly reproducible, even if per-
formed by the same experimenter. In summary, manual data cleaning may lead
to hardly reproducible results and depend on skills and subjective opinion of
experimenter. At worst case, it may lead to spurious emergence of false positive
findings or suppression of true effects.

Automatized and semi-automatized methods may provide equal or higher qual-
ity of data cleaning, while being much faster to perform, and preserving the unbi-
asedness and objectiveness of data [43, 48]. A common approach is to systemat-
ically apply a certain set of rules to the dataset in order to (semi-)automatically
detect and eliminate channels and epochs exceeding certain criteria. Popular
toolboxes like EEGLAB [28] and Fieldtrip [117] offer some support in this task,
for instance channels can be assessed by kurtosis, normality of distribution, and
epochs by maximum voltages, signal slope, or spectral features. Another strat-
egy to data cleaning is based on correction rather than elimination and use of
signal processing methods to isolate artifactual components from genuine brain
components. Some of the common methods are based on independent com-
ponent analysis (ICA), principal component analysis (PCA), linear regression,
signal space projection (SSP), for review see [43].

Although automatized approaches are considerably better than manual data
cleaning some problems still remain. Firstly, usually more data is removed than
it is necessary. For instance, while using a typical thresholding method a noise
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in a single (or few) channels will cause the entire trial to be eliminated. Ana-
logically, a short lasting, transient, high-frequency noise at a given channel (for
example in the last few minutes of experiment) may result in sufficient change
of kurtosis that the entire channel will be interpolated, instead of the noisy in-
terval only. Also the signal processing based methods risk partial removal of
brain sources, if those are temporally correlated with artifactual sources (i.e.
eye-blinks). Secondly, there is little support for the experimenter to run those
methods in a batch mode on all datasets and thus evaluate the global results
and efficiency of the cleaning procedure. The latter is critically important es-
pecially for larger studies consisting of hundreds of datasets. The need for
effective automatized data cleaning might become even more important along
with the emergence of cheap, portable EEG solutions [152] and with increasing
crowd-sourcing of EEG data acquisition to the outside laboratory environments
[69, 83].

With the toolbox proposed in this manuscript we intend to circumvent the above
limitations by providing the following functionality:

1. Rule-based, objective data cleaning

2. Efficient detection of artifactual data by thresholding:

Epoch Voltage

Sample-to-sample Voltage

Spectral Power in Beta/Gamma range

Channel Correlation

3. Support for batch processing and reporting of the global results

4. Data-preserving by means of economical, local interpolation in the
2-dimensional [channel x trial] space

D.3 Methods

The proposed approach combines several measures to efficiently detect and han-
dle both local and global artifacts. Importantly, the method automatically
cleans all experimental datasets applying only 6 predetermined parameters, as
opposed to subjective manual data cleaning where effectively every binary deci-
sion is a hidden parameter (thus the number of hidden parameters would effec-
tively equal to the summed number of trials and channels). We propose typical
values for those parameters, however optimal values will obviously depend on
epoch length, number of channels, EEG system, etc.
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The parameters are listed below and described in detail in the further sections:

Ve Maximum allowed Epoch Voltage spread [µV ]

Vss Maximum allowed sample-to-sample voltage spread [µV ]

Sbg Maximum allowed spectral power in beta-gamma range [µV 2]

Cc Minimum required correlation with neighbor channels [a.u.]

Te Tolerance on epoch [%]

Tc Tolerance on channel [%]

The sequence of processes is following:

1. Experimenter specifies the allowed threshold values for Ve, Vss, Sbg,
Cc parameters, and tolerance parameters Te, Tc.

2. For each dataset and for each (channel x trial) combination, the em-
pirical values of Ve, Vss, Sbg, Cc are computed. According to the
specified thresholds and Te and Tc tolerances, local interpolation is
applied to eliminate noisy chunks of data, defined as those that ex-
ceed the threshold values.

3. Report of the cleaning is generated, one detailed report for each dataset,
and one summary report for the entire experiment (as discussed be-
low).

4. Depending on results, the experimenter might want to return to step
(1) and adjust the threshold parameters

5. ICA decomposition is performed for each cleaned dataset, followed
by automatized ICA classification of artifactual components based on
spatio-temporal features (modified ADJUST toolbox [107] is used).

6. Report of ICA correction is generated, one detailed report for each
dataset, and one summary report for the entire experiment.

Local interpolation The main approach to correcting for noisy intervals of
data is a local interpolation in [channel x epoch] space. In the first step,
EEG datasets of each subject/session are divided into epochs (event-based,
or temporarily chunks of 1s for continuous data). For each trial and chan-
nel, the exclusion criteria are computed (Fig.D.1, left panels) as discussed
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below, and compared against allowed thresholds. This step results in cre-
ating 2-dimensional mask [channel x epoch] indicating chunks of data that
will need to be excluded (Fig.D.1, middle panels). At this stage, instead of
interpolating the entire channels or eliminating the entire trials we allow
for local interpolation of the channel data only within those epochs, where
the artifactual noise was recognized. This solution preserves a lot of data
which otherwise would be eliminated by standard methods. It should be
noted though that too many noisy channels ( 10% and more) within the
same epoch can render local interpolation imprecise and in that case the
entire epoch should be indeed interpolated. This constraint is captured
by epoch tolerance Te and channel tolerance Tc parameters.

Epoch Voltage threshold (Vg) The global voltage threshold is the simplest
measure to detect signal abnormalities. It is the difference between max-
imum and minimum amplitude of the signal within an epoch. Usually
epochs with Vg exceeding 100µV can be considered as artifactual. The Vg
measure is sensitive to detection of eye-blinks and high amplitude move-
ment related artifacts.

Sample-to-sample Voltage threshold (Vss) The sample-to-sample voltage
threshold is another simple measure to detect rapid signal changes (spike-
or step-alike). It is a maximum difference between to points adjacent
in time. Usually epochs with Vss exceeding 60µV can be considered as
artifactual. The Vss is sensitive to detect signal inconsistencies, high-
frequency environmental noise and horizontal eye movements.

Spectral thresholds (Sbg) The muscular, ocular and environmental sources
of noise are often expressed in high power in Beta/Gamma range (>24Hz).
We estimate the single-trial power spectrum for each epoch and channel
with Fast-Fourier transform, and use this measure as another criterion to
detect artifacts. The spectral power measure is complementary to Vg and
Vss defined earlier in the sense that high-frequency noise is not necessarily
high in amplitude.

Channel correlation thresholds (Cc) The criterion is based on the follow-
ing rationale. EEG/MEG surface recordings are strongly affected by vol-
ume conduction and brain-skull-skin interfaces. This results in consid-
erable spatial blurring of recorded signals, and thus - especially in case
of high-density systems (64+ channels) - intrinsically high correlation be-
tween a channel and its nearest neighbors. Reduction of correlation may
only occur in case of exogenous influences affecting subgroup of channels
or individual channels selectively (muscular artifact, electrode movement
against skin, etc). Thus reduction of channel correlation all of its neigh-
bors below certain threshold level may be considered artifactual. This
criterion is independent from absolute amplitudes and spectra, and thus
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complements Vg, Vss and Sbg measures defined earlier. Furthermore it can
eliminate artifacts while preserving high-amplitude sources where needed
(such as eye movements and eye-blinks). Cc is computed independently
for each channel and epoch, as a minimum correlation of this channel with
its 5 nearest neighboring channels, within given epoch.

Optional ICA decomposition and artifact correction ICA has been suc-
cessfully used for EEG data cleaning from ocular artifacts, muscular arti-
facts and general discontinuities [59, 77, 96, 107]. However, successful de-
composition of data into ICA components requires reasonably pre-cleaned
and stationary dataset. Failure to provide this may result in artifact-
oriented decomposition where most of the ICA components are attracted
to artifactual, high-variance chunks of original data. Thus, to obtain the
optimal results, we propose to use our thresholding method as a primary
cleaning step, followed by ICA decomposition and automatized classifica-
tion/elimination of artifactual ICA components. An optional third step
will repeat threshold-based cleaning, however with more rigid threshold
values.

Reporting and visualization We consider appropriate summarization and
visualization of cleaning result a critical functionality, that allows the ex-
perimenter to assess the resulting quality of cleaned data and the impact
of the cleaning method. This information can be used to re-evaluate the
threshold levels and possibly re-run cleaning procedure. Several reports
are generated:

Dataset cleaning details The report presents details of cleaning results
for each individual dataset, including estimated values of Vss, Vg, Sbg,
Cc for each channel/epoch combination (Fig.D.1, left panels), respective
exclusion masks obtained by comparing those measures with thresholds
(Fig.D.1, middle panels). Finally the impact of cleaning is presented by
comparing the dataset before and after the procedure, in terms of multi-
channel ERP (Fig.D.1, top right panels), multi-channel Power Density
(Fig.D.1, middle right panels) and Global Field Power (GFP) and its
standard deviation (Fig.D.1, bottom right panels)

Global cleaning results The report presents summary effect of data
cleaning applied to multiple datasets (typically all datasets of the given
experiment, in this example 16 subjects dataset). The information pre-
sented is number of interpolated channels, removed trials and local in-
terpolation points for each dataset (Fig.D.2, top left panels), global and
individual ERPs before and after cleaning (Fig.D.2, right panels), global
and indiviudal GFPs before and after cleaning (Fig.D.2, middle panels).

ICA correction - Dataset details The report presents details of ICA
correction for each individual dataset. The components were automati-
cally recognized as brain origin, eye-movement or general discontinuity.
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The topographic maps of those three groups and their projections onto
ERP space are presented at Fig.D.3, left side panels. The right panels
present ERP, Spectral Density and GFP before and after the ICA correc-
tion.

ICA correction - Global results The report summaries the effect of
ICA correction applied to multiple datasets (typically all datasets of the
given experiment, in this example 16 subjects dataset). The components
were automatically recognized as brain origin, eye-movement or general
discontinuity.The number of components in each group, and the respective
total variance explained by each group are summarized for each subject
(Fig.D.4, top right panels), along with grand projection of each group
onto channel space (Fig.D.4, lower right panels). The individual and
grand GFPs and ERPs are also presented, before and after ICA correction
(Fig.D.4, middle and right column panels).

D.4 Results

We have applied the toolbox to complete datasets from two EEG experiments.
The first experiments accounted for 16 subjects, 480 trials of 6 seconds duration,
128 channels Biosemi system. The second experiment accounted for 42 sessions
(14 subjects, 3 sessions each), 270-300 trials of 13 seconds duration, 128 channels
Biosemi system. Both datasets were referenced to average mastoids, filtered in
the broadband range 0.2-120Hz, downsampled to 256Hz, and epoched. No prior
manual pre-cleaning was performed of any type.

In both cases the entire threshold cleaning procedure was fast (<15min), and
could we easily re-iterated after adjusting cleaning parameters to particular
experiment specifics and requirements. The threshold-based local interpolation
cleaning was followed by ICA decomposition and automatized ICA classification
of artifactual components based on spatio-temporal features (modified ADJUST
toolbox [107]).

The global results for dataset 1 are presented at Fig.D.2 and Fig.D.4. On aver-
age 37.6 epochs (out of 480) were removed and 5.6 channels (out of 128) were
interpolated. Additional 0.27% of data were locally interpolated. On average,
62.1 components were classified as brain origin, which accounted for 41.9% of to-
tal data variance. The remaining 9.8 components (44.2% of total variance) were
classified as eye-origin, 56 as general noise (13.9% of total variance) artifactual.

Similar global results for dataset 2 are presented at Fig.D.5 and Fig.D.6. On av-
erage 17.6 epochs (out of 300) were removed and 4.2 channels (out of 128) were
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interpolated. Additional 0.36% of data were locally interpolated. On average,
63.4 components were classified as brain origin, which accounted for 40.1% of to-
tal data variance. The remaining 8.9 components (51.0% of total variance) were
classified as eye-origin, 55.7 as general noise (8.9% of total variance) artifactual.

The 2-step procedure resulted in clean datasets, ready for submission to statis-
tical tests. Visual inspection did not reveal remaining residual noise or obvious
artifacts that would require further intervention. Importantly, the entire proce-
dure can be easily repeated if such need arises, for example if early processing
choices need to updated (different filters, modification of epoch intervals, addi-
tional subjects available, etc.).

D.5 Summary and conclusions

Automated and unbiased data cleaning procedures are critical to obtain high-
quality, reproducible, statistical results in EEG/MEG studies. We presented
extendable framework that (1) efficiently detects and eliminates artifacts in ob-
jective and unbiased way, (2) preserves data by economical local interpolation
procedure, and (3) is considerably faster than manual methods and can be ap-
plied in batch mode to all datasets of given experiment. The presented method
limits to the minimum the number of experimenter’s subjective choices, and
thus reduces the risk of spurious false positive and false negative findings. Im-
portantly, the method vastly reduces the time needed to perform the early data
processing, thus allowing to focus more efforts on important aspects of statistical
inferences. If applied in parallel (for example via Matlab’s Parallel Processing
toolbox), hundreds of datasets can be processed within minutes. Finally, if ap-
plied multiple datasets, the method will provide informative summary reports.
Those reports may help to assess general data quality, impact of cleaning results,
and also recognize outlying datasets to be considered for exclusion.
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Figure D.1: The exemplary detailed report of cleaning results for a typical individual dataset. For
each channel/trial pair, the 4 parameters are estimated to be subsequently compared
with predefined thresholds to preserve or remove the data points (left and middle
panels). Results before and after cleaning in terms of multi-channel ERP, spectral
density and GFP are displayed (right panels).

Figure D.2: The summary report of cleaning results applied to entire dataset of 16 subjects from
Study 1. Number of rejected trials, interpolated channels, and percentage of local
point interpolations are presented at left panels. The impact of the cleaning proce-
dure on the individual datasets multi-channel ERPs (right panels) and GFP (middle
panels), as well as grand multi-channel ERP (bottom right panels).
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Figure D.3: The exemplary detailed report of ICA correction for a typical individual dataset.The
ICA components are automatically classifed into brain/eye/noise categories based on
spatial and temporal features (left panels). The impact of ICA correction on the final
multi-channel ERP, spectral density and GFP is reported (right panels)

R

Figure D.4: The summary report of ICA correction applied to entire dataset of 16 subjects from
Study 1. Number of components classified into brain/eye/noise categories (and their
corresponding variances) are reported (left panels) along with the grand impact of
ICA correction on the final quality of data. Summary for all sessions datasets (right
panels).
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Figure D.5: The summary report of cleaning results applied to entire dataset of 45 sessions from
Study 2. Number of rejected trials, interpolated channels, and percentage of local
point interpolations are presented at left panels. The impact of the cleaning proce-
dure on the individual datasets multi-channel ERPs (right panels) and GFP (middle
panels), as well as grand multi-channel ERP (bottom right panels).

Figure D.6: The summary report of ICA correction applied to entire dataset of 45 sessions from
Study 2. Number of components classified into brain/eye/noise categories (and their
corresponding variances) are reported (left panels) along with the grand impact of
ICA correction on the final quality of data. Summary for all sessions datasets (right
panels).
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Appendix E

Conferences and contributions

The appendix summarizes the conference contributions made in relation to the
topics investigated in this thesis. The accepted conference abstracts, and a
scaled version of a poster are attached.

E.0.1 ASSC conference 2015

Conference of Association of Scientific Study of Consciousness
Paris, France, 7th-10th July, 2015

Poster presentation:
“What, When, Whether - the electrophysiological correlates of vol-
untary action in virtual environment”
(the scaled copy of the poster is attached below the abstract)

Konrad Stanek1,2, Ole Winther1, Steffen Angstmann2, Kristoffer H. Madsen2,
Hartwig R. Siebner2

(1) Technical University of Denmark, DTU Compute, Cognitive Systems
(2) Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, Den-
mark
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The study of (Libet 1985) gave rise to active discussion among scientists over the
nature of free-will and conscious voluntary action, suggesting that, at least in
certain circumstances, an intention to perform voluntary action can be predicted
from prior neural activity. (Brass and Haggart 2008) proposed to distinguish
three different classes of voluntary decisions: ”what” type of action to perform,
“when” to act, and “whether” to act or not. Those distinct decisions might
involve different neural pathways and distributed anatomical regions (Haggart
2008, Brass 2013, Mueller 2007, Krieghoff 2009), including medial pFC, ACC,
preSMA and SMA, PMC, and parietal cortex.

In our study we confront participants with the three classes of decisions in more
natural, yet still strictly controlled experimental setup, involving navigating
a car through a virtual environment. By adopting the virtual environment,
rather than abstract pictogram-based stimuli, we intend to provide more natural
platform for analysis of neural correlates of voluntary action, and avoid common
problems such as random sequence generation behavior (Jahanshahi 1999) and
lack of external validity (Haggart 2008).

Each of the 16 participants performed 840 voluntary decisions split into blocks
corresponding to “what” (left/right turn), “when” (first/second crossroad), “whether”
(turn or do not turn), and “control” (do not take any decisions). High-resolution
EEG data was acquired with 128-channel Biosemi ActiveTwo system. Oculo-
motor activity was recorded with SMI eye-tracking system and synchronized
with EEG signals. Furthermore, for each participant we acquired structural
MR brain image (3T Philips scanner), and recorded exact electrode coordinates
with Localite neuro-navigation system.

We demonstrate electrophysiological differences in activation of selected brain
regions related to the three aforementioned classes of decisions, in terms of tim-
ing, spatial distribution and time-frequency modulation of lower (theta/alpha)
and higher (gamma) frequency bands, time-locked to the onset of the decision
intervals. This event-related modulation of EEG signals, along with subject-
specific T1 images, sessionspecific electrode coordinates, and set of spatial fil-
ters are then used to reconstruct decision-relevant neuroanatomical sources dis-
tributed over prefrontal, motor and parietal cortical regions.
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The nature of voli�on has been a subject of scien�fic pursuit for a long �me. The famous 

study of (Libet 1985) gave rise to ac�ve discussion over the nature of free-will and 

conscious voluntary ac�on, sugges�ng that, at least in certain circumstances, an 

inten�on to perform voluntary ac�on can be predicted from prior neural ac�vity. (Brass 

and Haggart 2008) proposed to dis�nguish three dis�nct classes of voluntary decisions: 

”what” type of ac�on to perform, “when” to act, and “whether” to act or not, which 

might involve different neural pathways and distributed cor�cal regions, including medial 

pFC, ACC, preSMA and SMA, PMC, and parietal cortex.

In the light of growing evidence of involvement of neural oscilla�ons in various 

cogni�ve processes (Klimesh et al) and cross-frequency interac�ons between those 

processes (Canolty at al.,2006), we hypotesize that voluntary ac�on may result from, or 

be manifested by, transient modula�on of brain oscilla�ons. Those in turn can be 

inves�gated through surface measures such as evoked poten�als (ERP), spectral 

perturba�ons (ERSP) and phase/amplitude modula�on (PAC, PCF).

We confront par�cipants with three classes of decisions in natural, yet s�ll strictly 

controlled experimental setup, involving naviga�ng a car through virtual environment. 

We demonstrate several electroencephalographic markers that dis�nguished voluntary 

ac�on from control condi�on, such as event related changes in evoked poten�als and 

broad spectral modula�on of power, ranging from theta up to gamma bands.

15 healthy subjects par�cipated in 3 sessions each. 

Dedicated Virtual Environment was designed to create 

quasi-natural, yet strictly controllable experimental setup 

Visual s�muli and pseudo-random sequence were 

counterbalanced to be iden�cal in Decision and Control 

condi�ons. High-resolu�on EEG data was recorded with 

Biosemi Ac�ve2 128 channel system, Eye-tracking data 

with SMI system, and structural MR scans with 3T Philips.

Each par�cipant performed 840 trials in blocks of 30, 

corresponding to different types of decision:

"Whether" (turn/no turn)

"What" (le�/right)

"When" (first/second),

"Control" (lack of voluntary decision).

Par�cipants were instructed to make a spontaneous 

decision in the tunnel (2 sec. interval), keep the decision 

in the memory and execute it 3-7sec. later upon 

reaching the desired cross-road, by single bu�on press

Behavioral sta�s�cs

Eye-tracking sta�s�cs

Conclusions

Introduc�on Methods

Our results indicate that human behavioral is 

non-random and voluntary choice is clearly 

biased to certain pa�erns, even in the absence 

of explicit incen�ve, goal, or reward. All except 

one par�cipants represented bias towards 

“right”, ”first” and “turn” choices,  in “what”, 

“when” and “whether” decisions respec�vely 

(Fig [1]). It may be related to handedness, 

impulsivity, or result from subconscious 

minimiza�on of the perceived task difficulty.

Brain oscilla�ons

Fig.5: Grand effect of "Whether" decision, presented as ERP/ERSP contrasts to "Control"
condition, in channel/time/freq.band space. P<0.05, cluster-based permutation tests.
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The outcome of the binary decision is 

predictable, even with as simple model as 

first-order Markov chain, which considers 

only single prior outcome to predict the 

following one. Nearly all par�cipants had 

higher tendency to revert ac�on (i.e. le� 

choice a�er prior right), than random 

sequence generator would have (Fig[2])

Fig.2: Probability of subject repeating her last binary choice.
The value is close to 0.5 for random generator.
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Fig.1: Assymetry of voluntary decision
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Humans are poor in genera�ng random behavior. Even in the lack of reward or explicit 

incen�ve, humans  display biases to certain behavioral pa�erns, and tendency to create 

transient, local incen�ves.

Nature of voli�on can be studied in context of brain oscilla�on and selec�ve modula�on of 

power bands. Our preliminary results indicate wide range of spectral perturba�ons pa�erns 

(from slow theta to gamma) following the onset of decision intervals. It must be noted 

though, that along with "act of voli�on" per se, those oscilla�on may encode other 

suppor�ve cogni�ve processes, such as spa�al and motor imagery, memory system access. 

The pa�erns of spectral perturba�ons varied between different types of decision ("What", 

"When", "Whether"). This may support the hypothesis that they are mediated (at least 

par�ally) by different cor�cal pathways.

Simultaneously with EEG, 120Hz eye-tracking 

data was recorded, with primary goal to 

validate that par�cipants followed fixa�on 

instruc�ons and that observed EEG ac�va�on 

pa�erns are not due to systema�c oculo-

motor ac�vity in decision intervals. Heatmap 

and gaze posi�on densi�es are good metrics. 
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Data processing
The data from 42 sessions was preprocessed, 

labeled, cleaned for ar�facts, corrected for 

oculo-motor ar�facts (ICA approach). For the 

results presented here,  epochs of 3s. 

dura�on �me-locked to the onset of the 

tunnel (decision interval) were extracted.

Event-Related poten�als
At the first step of analysis, we contrasted 

Event-Related poten�als of decision trials 

against control trials. Fig.4 shows the 

representa�ve ERPs from selected regions of 

interest spanning over parietal (Pz) and 

frontal (Fz) midline, lateral motor area (C3 

and C4). In the parietal and central 

electrodes we found sta�s�cally significant 

early (500ms) and late (>1000ms) 

components, par�cularly evident in 

"whether"-type of decisions.

Fig.6: Grand effect of "What" decision, presented as ERP/ERSP contrasts to "Control"
condition, in channel/time/freq.band space. P<0.05, cluster-based permutation tests.
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Fig.7: Grand effect of "When" decision, presented as ERP/ERSP contrasts to "Control"
condition, in channel/time/freq.band space. P<0.05, cluster-based permutation tests.
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Time-Frequency  and ERSP analysis
We performed �me-frequency analysis on all 128 channels, and extracted �me 

series of event-related power changes (ERSP, induced ac�vity) in the well-

known physiologically relevant frequency bands. Morlet Wavelet 

decomposi�on with variable cycles was used, which provides good trade-off 

between temporal and spectral accuracy of resul�ng �me-frequency images. 

Alterna�ve approach, based on narrow-band filtering followed by Hilbert 

transform, yielded very comparable results.

Fig.5A presents �me-frequency grand average at parietal area (Pz) for whether-

type condi�on (top le�) and control condi�on (top right). Those images 

correspond to logarithm of rela�ve change (dB scale) of power spectra a�er at 

the decision intervals. The comparison of those two (Fig.5A, bo�om) yields the 

spectral modula�on that was characteris�c for voluntary decision but absent in 

control. The modula�on of low theta rhythms is clearly visible (may contribute 

to ERP effect discussed earlier), followed by late alpha desynchroniza�on and 

intensive, transient gamma burst.

In order to observe this type of modula�on over en�re scalp 

surface, we analyzed �me courses of the above men�oned 

spectral �me-series and their task-control differences. To 

account for large number of mul�ple comparisons on highly 

correlated �me-series, we performed cluster-based 

permuta�on sta�s�cs (FieldTrip toolbox).

The global results of those tests in channel/freq.band/�me 

space, are presented on Fig.5("whether"), Fig.6("what"), 

Fig.7("when"). Color-coded patches correspond to 

significant effect of decision process (p<.05, corrected). 

Modula�on, and apparent interac�on, of different 

oscillatory processes is evident especially for "whether" 

and "what" condi�ons.

Acknowledgements: dr.med Hartwig R. Siebner, Danish Research Center for Magnetic Resonance
dr. Ole Winther, Technical University of Denmark, Cognitive Systems
Lundbeck Foundation
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However, ET data reveals a lot of interes�ng 

behavioral informa�on as well. On le�-top 

figure we observe that almost immediately 

a�er decision interval, long before the cross-

road is visible, par�cipants start to gaze 

towards desired turn direc�on.

Le�-bo�om figure shows pupil diameter. 

Pupil dila�on is stronger in decision condi�on 

decision trials, par�cularly in decision 

intervals.
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E.0.2 PMC10 conference 2015

Progress in Motor Control 10th Conference
Budapest, Hungary, 22th-25th July, 2015

Symposium talk:
“What, When, Whether - the electrophysiological correlates and clas-
sification of voluntary action in virtual environment”

Konrad Stanek1,2, Hartwig R. Siebner2, Steffen Angstmann2, Kristoffer H. Madsen2,
Ole Winther1

(1) Technical University of Denmark, DTU Compute, Cognitive Systems
(2) Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, Den-
mark

The study of (Libet 1985) gave rise to active discussion among scientists over the
nature of free-will and conscious voluntary action, suggesting that, at least in
certain circumstances, an intention to perform voluntary action can be predicted
from prior neural activity. (Brass and Haggart 2008) proposed to distinguish
three different classes of voluntary decisions: ”what” type of action to perform,
“when” to act, and “whether” to act or not. Those distinct decisions might
involve different neural pathways and distributed anatomical regions (Haggart
2008, Brass 2013, Mueller 2007, Krieghoff 2009), including medial pFC, ACC,
preSMA and SMA, PMC, and parietal cortex.

In our study, we confront participants with the three classes of decisions in
more natural, yet still strictly controlled experimental setup, involving navigat-
ing a car through a virtual environment. We investigate the behavioral and
electrophysiological characteristics of different classes of decisions and identify
the relevant neuroanatomical regions modulated between conditions. By adopt-
ing the virtual environment, rather than abstract pictogram-based stimuli, we
intend to provide more natural platform for analysis of neural correlates of vol-
untary action, and avoid common problems such as random sequence generation
behavior (Jahanshahi and Dirnberger 1999) and lack of external validity (Hag-
gart 2008). The virtual environment ensures properly balanced randomization
of trials corresponding to distinct classes of decision and synchronizes partici-
pants’ behavior and environmental variables with EEG data. While navigating
a simulated car, each of the 16 participants performed 840 voluntary decisions
split into blocks corresponding to “what” (left/right turn), “when” (first/second
crossroad), “whether” (turn or do not turn), and “control” (do not take any de-
cisions). The decisions were time-locked to the intervals when car was passing
through tunnels with stable visual field, constant luminance and visible fixation
cross. Depending on prior decision, participants performed action of button
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press few seconds later upon approaching an appropriate crossroad.
High-resolution EEG data was acquired with 128-channel Biosemi ActiveTwo
system. Oculo-motor activity and gaze position were recorded with SMI eye-
tracking system and synchronized with EEG signals.. For each participant we
acquired structural MR brain image (3T Philips scanner) and recorded exact
electrode coordinates with Localite neuro-navigation system.
We demonstrate electrophysiological differences in activation of neural networks
distributed over cortical midline related to the three aforementioned classes of
decisions, in terms of timing, spatial distribution and power modulation of lower
(theta/alpha) and higher (gamma) frequency bands, time-locked to the onset
of the decision intervals. This event-related modulation of EEG signals, along
with subject-specific T1 images, session-specific electrode coordinates, and set
of spatial filters are then used to reconstruct decision relevant neuroanatomical
sources activated in prefrontal, motor and parietal cortical regions.
Furthermore, we apply spatial filtering to select the most discriminative features
and apply probabilistic methods (Tipping 2001, Frolov 2011) to classify deci-
sion trials against control trials and to predict decision outcome on single-trial
basis. We demonstrate above-chance prediction accuracy and discuss feasibil-
ity of using single-trial classification of voluntary decisions to build natural,
intention-driven BCI systems.

E.0.3 Donders Discussions

Donders Discussions conference, Neurophilosophy session
Nijmegen, Netherlands, 5th-6th November, 2015

Neurophilosophy session talk:
“Brain oscillations and complex nature of voluntary action”

Konrad Stanek1,2, Ole Winther1, Steffen Angstmann2, Kristoffer H. Madsen2,
Hartwig R. Siebner2

(1) Technical University of Denmark, DTU Compute, Cognitive Systems
(2) Danish Research Centre for Magnetic Resonance, Hvidovre Hospital, Den-
mark

The nature of volition and free will has been a subject of scientific debate for
decades, especially since the famous study of (Libet 1985). Recent developments
in neuroimaging technologies allow us to gradually bridge the gap between the
conceptual models and neurophysiological evidence. Growing number of studies
and experimental designs try to determine the anatomical sources and temporal
characteristics of voluntary actions and decisions that precede them. (Brass and
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Haggard 2008) proposed three main components of voluntary action: ”what”,
“when” and “whether”. Each may involve different neural pathways and cortical
regions, including medial pFC, ACC, preSMA and SMA, PMC, and parietal
cortex.

In our experiments participants are confronted with different types of binary,
voluntary choices, both in classic pictogram-based paradigms and in more re-
alistic designs involving navigating a simulated car through a dedicated virtual
environment. Participants decide “what” to do (left/right turn), “when” to act
(first/second crossroad), “whether” to act (turn or do not turn). Spectral anal-
ysis of high-resolution EEG data revealed task-modulated oscillatory activity in
parieto-frontal cortical areas at wide range of spectra, starting from theta (4-
7Hz) and alpha (8-12Hz) up to gamma (40-80Hz) frequencies. Furthermore, the
cross-frequency interactions between those activities may indicate hierarchical
organization of the underlying neuronal networks, where the phase of slow-
oscillating thalamo- and cortico-cortical networks modulates the amplitude of
fast, focal, task-specific assemblies. Our results suggest that voluntary deci-
sions, even as simple as navigation-alike choices, might outcome from complex
interaction of coordinated cognitive processes, such as introspective attention,
working-memory, motor and spatial imagery. Each of those can be reflected by
distinct spatio-temporal activity patterns, which poses considerable challenges
on data analysis and interpretation.
During the talk I will highlight several promising methods for investigating sub-
tle nature of brain oscillations, such as wavelet decomposition, cross-frequency
coupling measures, and benefits of mass univariate approach for robust statistics
and unbiased analysis of high-resolution EEG.



Appendix F

Specification of EEG/ET
apparatus

The appendix contains the vendor specification of the devices used in the studies
presented in this thesis for EEG and eye-tracking data acquisition:

1) EEG Biosemi ActiveTwo system (Figure F.1)

2) SMI RED eye-tracking system (Figure F.2)
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Figure F.1: Top: Biosemi ActiveTwo EEG system components overview. Bottom table: Vendor
specification for biopotential measurement system, type ActiveTwo Mk2 with two-wire
active electrodes.
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Figure F.2: SMI RED eye-tracking system - vendor specification.
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